WO2014002785A1 - 高周波信号線路 - Google Patents

高周波信号線路 Download PDF

Info

Publication number
WO2014002785A1
WO2014002785A1 PCT/JP2013/066373 JP2013066373W WO2014002785A1 WO 2014002785 A1 WO2014002785 A1 WO 2014002785A1 JP 2013066373 W JP2013066373 W JP 2013066373W WO 2014002785 A1 WO2014002785 A1 WO 2014002785A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
frequency signal
line
conductor
axis direction
Prior art date
Application number
PCT/JP2013/066373
Other languages
English (en)
French (fr)
Inventor
加藤 登
聡 石野
佐々木 純
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201390000331.4U priority Critical patent/CN204257793U/zh
Publication of WO2014002785A1 publication Critical patent/WO2014002785A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0187Dielectric layers with regions of different dielectrics in the same layer, e.g. in a printed capacitor for locally changing the dielectric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09245Crossing layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09672Superposed layout, i.e. in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09727Varying width along a single conductor; Conductors or pads having different widths

Definitions

  • the present invention relates to a high-frequency signal line, and more particularly to a high-frequency signal line used for transmission of a high-frequency signal.
  • FIG. 12 is an exploded view of the high-frequency signal transmission line 500 described in Patent Document 1. As shown in FIG.
  • the high-frequency signal transmission line 500 includes a dielectric body 502, a signal line 506, and ground conductors 508 and 510.
  • the dielectric body 502 is configured by laminating dielectric sheets 504a to 504c.
  • the signal line 506 is provided on the surface of the dielectric sheet 504b.
  • the ground conductors 508 and 510 are provided on the surfaces of the dielectric sheets 504a and 504c, respectively.
  • the ground conductor 508 is provided with a plurality of openings 520 along the signal line 506. As a result, a plurality of openings 520 and a plurality of bridge portions 522 are alternately overlapped with the signal line 506.
  • the characteristic impedance of the signal line 506 in the region where the opening 520 and the signal line 506 overlap is the signal line in the region where the bridge portion 522 and the signal line 506 overlap. It becomes lower than the characteristic impedance of 506. As a result, the characteristic impedance of the signal line 506 varies periodically.
  • the high-frequency signal transmission line 500 As a result, in the high-frequency signal transmission line 500, a high-frequency standing wave having a half wavelength of the length of the interval between the bridge portions 522 is generated, and a low frequency having a length of about the entire length of the high-frequency signal transmission line 500 being a half wavelength The standing wave is less likely to occur. Therefore, in the high-frequency signal transmission line 500, generation of low-frequency noise is suppressed.
  • the high-frequency signal transmission line 500 requires three-layer dielectric sheets 504a to 504c. Therefore, further thinning of the high-frequency signal transmission line 500 is required.
  • an object of the present invention is to provide a high-frequency signal line that can suppress generation of low-frequency noise and can be reduced in thickness.
  • a high-frequency signal line includes a dielectric layer having a first main surface and a second main surface, a signal line provided on the first main surface, and the first main surface.
  • a first ground conductor provided on a surface or the second main surface, which is orthogonal to the direction in which the signal line extends when viewed in plan from the normal direction of the dielectric layer
  • a plurality of insulator layers provided on the signal line, and a plurality of bridge conductors that overlap the first ground conductor and the signal line when viewed from the normal direction of the dielectric layer. And being provided on the insulator layer, so as to be isolated from the signal line. That it comprises a and a plurality of bridge conductors being characterized by.
  • FIG. 1 is an external perspective view of a high-frequency signal transmission line 10 according to an embodiment.
  • 2 and 3 are exploded perspective views of the high-frequency signal transmission line 10 according to the embodiment.
  • FIG. 4 is a plan view of the high-frequency signal transmission line 10 according to the embodiment. 1 to 4, the stacking direction of the high-frequency signal transmission line 10 is defined as the z-axis direction.
  • the longitudinal direction of the high-frequency signal transmission line 10 is defined as the x-axis direction, and the direction orthogonal to the x-axis direction and the z-axis direction is defined as the y-axis direction.
  • the high-frequency signal line 10 includes a main body 12, a signal line 20, ground conductors 22 and 24, a bridge conductor 30, an insulator layer 32, connectors 100a and 100b, and via-hole conductors b1 to b6. ing.
  • the main body 12 extends in the x-axis direction when seen in a plan view from the z-axis direction, and includes a line portion 12a and connection portions 12b and 12c. As shown in FIG. 2, the main body 12 is a flexible structure in which a protective layer 14, a dielectric sheet 18, and a protective layer 15 are laminated in this order from the positive side in the z-axis direction to the negative side. It is a laminate.
  • the main surface on the positive direction side in the z-axis direction of the main body 12 is referred to as a front surface
  • the main surface on the negative direction side in the z-axis direction of the main body 12 is referred to as a back surface.
  • the line portion 12a extends in the x-axis direction.
  • the connecting portion 12b is connected to the end portion on the negative direction side in the x-axis direction of the line portion 12a, and has a rectangular shape.
  • the connecting portion 12c is connected to the end portion on the positive side in the x-axis direction of the line portion 12a and has a rectangular shape.
  • the width in the y-axis direction of the connecting portions 12b and 12c is equal to the width in the y-axis direction of the line portion 12a. Therefore, the main body 12 has a rectangular shape extending in the x-axis direction when viewed in plan from the z-axis direction.
  • the dielectric sheet 18 extends in the x-axis direction when viewed in plan from the z-axis direction, and has the same shape as the main body 12.
  • the dielectric sheet 18 is made of a flexible thermoplastic resin such as polyimide or liquid crystal polymer.
  • the thickness of the dielectric sheet 18 after lamination is, for example, 200 ⁇ m.
  • the main surface on the positive side in the z-axis direction of the dielectric sheet 18 is referred to as the front surface
  • the main surface on the negative direction side in the z-axis direction of the dielectric sheet 18 is referred to as the back surface.
  • the dielectric sheet 18 includes a line portion 18a and connecting portions 18b and 18c.
  • the line portion 18a constitutes the line portion 12a.
  • the connection part 18b comprises the connection part 12b.
  • the connection part 18c comprises the connection part 12c.
  • the signal line 20 is a linear conductor provided on the surface of the dielectric sheet 18 and extends in the x-axis direction.
  • the end of the signal line 20 on the negative side in the x-axis direction is located at the center of the surface of the connection portion 18b.
  • the positive end portion of the signal line 20 in the x-axis direction is located at the center of the surface of the connection portion 18c.
  • the signal line 20 is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • An end portion on the negative direction side in the x-axis direction of the signal line 20 and an end portion on the positive direction side in the x-axis direction of the signal line 20 are used as external terminals, respectively.
  • the end on the negative direction side in the x-axis direction of the signal line 20 and the end on the positive direction side in the x-axis direction of the signal line 20 are referred to as external terminals 16a and 16b.
  • Gold plating is applied to the surfaces of the external terminals 16a and 16b.
  • the ground conductor 22 (first ground conductor) is provided on the surface of the dielectric sheet 18 on which the signal line 20 is provided, as shown in FIGS. When viewed in plan from the (line direction), it forms a rectangular frame surrounding the periphery of the signal line 20. Thereby, the ground conductor 22 has a plan view of the signal line 20 in the y-axis direction (direction orthogonal to the direction in which the signal line 20 extends) when viewed in plan from the z-axis direction (normal direction of the dielectric sheet 18). Exists on both sides.
  • the ground conductor 22 is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the ground conductor 22 includes line portions 22a and 22b, terminal portions 22c and 22d, and projecting portions 23a and 23b.
  • the line portion 22a is provided on the positive side of the signal line 20 in the y-axis direction on the surface of the line portion 18a, and extends in the x-axis direction.
  • the line portion 22b is provided on the negative side of the signal line 20 in the y-axis direction on the surface of the line portion 18a, and extends in the x-axis direction.
  • the plurality of projecting portions 23a are provided so as to protrude from the line portion 22a to the negative direction side in the y-axis direction, and are arranged at equal intervals in the x-axis direction. However, the protrusion 23 a is not connected to the signal line 20.
  • the plurality of protrusions 23b are provided so as to protrude from the line portion 22b to the positive side in the y-axis direction, and are arranged at equal intervals in the x-axis direction. However, the protrusion 23 b is not connected to the signal line 20.
  • the terminal portion 22c is provided on the surface of the connecting portion 18b and has a U shape surrounding the external terminal 16a.
  • the terminal portion 22c is connected to the end portion on the negative direction side in the x-axis direction of the line portions 22a and 22b.
  • the terminal portion 22d is provided on the surface of the connection portion 18c and has a U shape surrounding the external terminal 16b.
  • the terminal portion 22d is connected to the ends on the positive direction side in the x-axis direction of the line portions 22a and 22b.
  • the ground conductor 24 (second ground conductor) is provided on the back surface of the dielectric sheet 18, and when viewed in plan from the z-axis direction (normal direction of the main body 12), A rectangular shape overlapping with the signal line 20 is formed.
  • the ground conductor 24 is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the ground conductor 24 includes a line portion 24a and terminal portions 24b and 24c.
  • the line portion 24a is provided on the back surface of the line portion 18a and extends in the x-axis direction.
  • the line portion 24a is a solid conductor having no opening. As a result, the line portion 24a overlaps the signal line 20 when viewed in plan from the z-axis direction.
  • the terminal portion 24b is provided on the back surface of the connecting portion 18b and has a rectangular shape.
  • the terminal portion 24b is connected to the end portion on the negative direction side in the x-axis direction of the line portion 24a.
  • the terminal portion 24c is provided on the back surface of the connecting portion 18c and has a rectangular shape.
  • the terminal portion 24c is connected to the end portion on the positive direction side in the x-axis direction of the line portion 24a.
  • the plurality of insulator layers 32 are provided on the positive side of the signal line 20 in the z-axis direction so as to be arranged at equal intervals in the x-axis direction, and have a rectangular shape.
  • the insulator layer 32 is provided at a position corresponding to the protrusions 23a and 23b, and overlaps a part of the dielectric sheet 18 and does not overlap the entire surface.
  • the thickness of the insulator layer 32 is, for example, 10 ⁇ m.
  • the insulator layer 32 is formed, for example, by printing a resist material.
  • the plurality of bridge conductors 30 overlap with the ground conductor 22 and the signal line 20 when viewed in plan from the z-axis direction, and are insulated from the signal line 20 by being provided on each insulator layer 32.
  • the both ends of the bridge conductor 30 in the y-axis direction are connected to the ground conductor 22.
  • the bridge conductor 30 is formed by printing a conductive paste such as Ag, for example.
  • the bridge conductor 30 has an H shape and includes a capacitor portion 30a and connection portions 30b and 30c.
  • the capacitor 30a is a linear conductor extending in the y-axis direction, and overlaps the signal line 20 by intersecting the signal line 20 when viewed in plan from the z-axis direction.
  • the insulator layer 32 exists between the capacitor portion 30a and the signal line 20, a capacitor is formed.
  • connection part 30b is connected to the end part on the positive direction side in the y-axis direction of the capacity part 30a and extends in the x-axis direction.
  • the connecting portion 30b is connected to the protruding portion 23a and the line portion 22a by overlapping the line portion 22a and the protruding portion 23a when viewed in plan from the z-axis direction.
  • connection part 30c is connected to the end part on the negative direction side in the y-axis direction of the capacity part 30a, and extends in the x-axis direction.
  • the connecting portion 30c is connected to the protruding portion 23b and the line portion 22b by overlapping the line portion 22b and the protruding portion 23b when viewed in plan from the z-axis direction.
  • the plurality of bridge conductors 30 and the plurality of insulator layers 32 are arranged at equal intervals along the signal line 20.
  • the distance between the bridge conductor 30 and the insulator layer 32 is shorter than 1 ⁇ 2 wavelength of the high-frequency signal transmitted through the signal line 20.
  • a region where the signal line 20 and the bridge conductor 30 overlap is defined as a region A1.
  • An area other than the area A1 is defined as an area A2.
  • the line width W1 of the signal line 20 in the region A1 is smaller than the line width W2 of the signal line 20 in the region A2.
  • the line width of the signal line 20 varies periodically.
  • a plurality of via-hole conductors b1 pass through the line portion 18a of the dielectric sheet 18 in the z-axis direction, and are provided in a plurality in a line in the x-axis direction on the positive direction side in the y-axis direction from the signal line 20. Yes.
  • the end portion on the positive side in the z-axis direction of the via-hole conductor b1 overlaps with the connection portion 30b of the bridge conductor 30 when viewed in plan from the z-axis direction.
  • the via-hole conductor b ⁇ b> 1 connects the ground conductor 22 and the ground conductor 24.
  • a plurality of via-hole conductors b2 pass through the line portion 18a of the dielectric sheet 18 in the z-axis direction, and are provided in a plurality in a row in the x-axis direction on the negative direction side in the y-axis direction from the signal line 20. Yes.
  • the end portion on the positive side in the z-axis direction of the via-hole conductor b2 overlaps with the connection portion 30c of the bridge conductor 30 when viewed in plan from the z-axis direction.
  • the via-hole conductor b ⁇ b> 2 connects the ground conductor 22 and the ground conductor 24.
  • the via-hole conductor b3 passes through the connecting portion 18b of the dielectric sheet 18 in the z-axis direction, and is provided on the positive side in the y-axis direction with respect to the external terminal 16a.
  • the via-hole conductor b ⁇ b> 3 connects the ground conductor 22 and the ground conductor 24.
  • the via-hole conductor b4 passes through the connecting portion 18b of the dielectric sheet 18 in the z-axis direction, and is provided on the negative direction side in the y-axis direction with respect to the external terminal 16a.
  • the via-hole conductor b ⁇ b> 4 connects the ground conductor 22 and the ground conductor 24.
  • the via-hole conductor b5 passes through the connecting portion 18c of the dielectric sheet 18 in the z-axis direction, and is provided on the positive side in the y-axis direction with respect to the external terminal 16b.
  • the via-hole conductor b5 connects the ground conductor 22 and the ground conductor 24.
  • the via-hole conductor b6 passes through the connecting portion 18c of the dielectric sheet 18 in the z-axis direction, and is provided on the negative direction side in the y-axis direction with respect to the external terminal 16b.
  • the via-hole conductor b ⁇ b> 6 connects the ground conductor 22 and the ground conductor 24.
  • the via-hole conductors b1 to b6 are made of a metal material having a small specific resistance mainly composed of silver or copper. Instead of the via hole conductors b1 to b6, a through hole in which a conductor layer such as plating is formed on the inner peripheral surface of the through hole may be used.
  • the distance between the signal line 20 and the bridge conductor 30 in the z-axis direction is larger than the distance between the signal line 20 and the ground conductor 24 in the z-axis direction. small.
  • the distance between the signal line 20 and the bridge conductor 30 in the z-axis direction is substantially equal to the thickness of the insulator layer 32, for example, 10 ⁇ m.
  • the distance between the signal line 20 and the ground conductor 24 in the z-axis direction is substantially equal to the thickness of the dielectric sheet 18 and is, for example, 200 ⁇ m. That is, the thickness of the dielectric sheet 18 is designed to be larger than the thickness of the insulator layer 32.
  • the width of the ground conductors 22 and 24 in the y-axis direction is, for example, about 800 ⁇ m.
  • the protective layer 14 covers substantially the entire surface of the dielectric sheet 18. Thus, the protective layer 14 covers the signal line 20, the ground conductor 22, the bridge conductor 30, and the insulator layer 32.
  • the protective layer 14 is made of a flexible resin such as a resist material, for example.
  • the protective layer 14 includes a line portion 14a and connecting portions 14b and 14c.
  • the line portion 14a covers the line portion 22a by covering the entire surface of the line portion 18a.
  • the connecting portion 14b is connected to the end portion on the negative side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18b.
  • openings Ha to Hd are provided in the connection portion 14b.
  • the opening Ha is a rectangular opening provided substantially at the center of the connection portion 14b.
  • the external terminal 16a is exposed to the outside through the opening Ha.
  • the opening Hb is a rectangular opening provided on the positive side of the opening Ha in the y-axis direction.
  • the opening Hc is a rectangular opening provided on the negative direction side of the opening Ha in the x-axis direction.
  • the opening Hd is a rectangular opening provided on the negative direction side of the opening Ha in the y-axis direction.
  • the terminal portion 22c functions as an external terminal by being exposed to the outside through the openings Hb to Hd.
  • the connecting portion 14c is connected to the end portion on the positive side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18c.
  • openings He to Hh are provided in the connection portion 14c.
  • the opening He is a rectangular opening provided substantially at the center of the connection portion 14c.
  • the external terminal 16b is exposed to the outside through the opening He.
  • the opening Hf is a rectangular opening provided on the positive side of the opening He in the y-axis direction.
  • the opening Hg is a rectangular opening provided on the positive direction side of the opening He in the x-axis direction.
  • the opening Hh is a rectangular opening provided on the negative side of the opening He in the y-axis direction.
  • the terminal portion 22d functions as an external terminal by being exposed to the outside through the openings Hf to Hh.
  • the protective layer 15 covers substantially the entire back surface of the dielectric sheet 18. Thereby, the protective layer 15 covers the ground conductor 24.
  • the protective layer 15 is made of a flexible resin such as a resist material, for example.
  • FIG. 5 is an external perspective view and a cross-sectional structure diagram of the connector 100 b of the high-frequency signal transmission line 10.
  • the connector 100b includes a connector main body 102, external terminals 104 and 106, a central conductor 108, and an external conductor 110, as shown in FIGS.
  • the connector body 102 has a shape in which a cylinder is connected to a rectangular plate, and is made of an insulating material such as a resin.
  • the external terminal 104 is provided at a position facing the external terminal 16b on the surface of the connector main body 102 on the negative side in the z-axis direction.
  • the external terminal 106 is provided at a position corresponding to the terminal portion 22d exposed through the openings Hf to Hh on the surface of the connector main body 102 on the negative side in the z-axis direction.
  • the center conductor 108 is provided at the center of the cylinder of the connector main body 102 and is connected to the external terminal 104.
  • the center conductor 108 is a signal terminal for inputting or outputting a high frequency signal.
  • the external conductor 110 is provided on the cylindrical inner peripheral surface of the connector main body 102 and is connected to the external terminal 106.
  • the outer conductor 110 is a ground terminal that is maintained at a ground potential.
  • the connector 100b configured as described above is mounted on the surface of the connection portion 12c such that the external terminal 104 is connected to the external terminal 16b and the external terminal 106 is connected to the terminal portion 22d. Thereby, the signal line 20 is electrically connected to the central conductor 108.
  • the ground conductors 22 and 24 are electrically connected to the external conductor 110.
  • the characteristic impedance Z1 of the signal line 20 in the region A1 is different from the characteristic impedance Z2 of the signal line 20 in the region A2. More specifically, the signal line 20 overlaps the bridge conductor 30 in the region A1. Therefore, a capacitance is formed between the signal line 20 and the bridge conductor 30 in the region A1. On the other hand, the signal line 20 does not overlap the bridge conductor 30 in the region A2. For this reason, no capacitance is formed between the signal line 20 and the bridge conductor 30 in the region A2. Therefore, the characteristic impedance Z1 of the signal line 20 in the region A1 is smaller than the characteristic impedance Z2 of the signal line 20 in the region A2.
  • the characteristic impedance Z1 is, for example, 30 ⁇
  • the characteristic impedance Z2 is, for example, 70 ⁇ .
  • the overall characteristic impedance of the signal line 20 is, for example, 50 ⁇ .
  • the characteristic impedance Z3 at both ends (that is, the external terminals 16a and 16b) of the signal line 20 is between the characteristic impedance Z1 and the characteristic impedance Z2.
  • a dielectric sheet 18 made of a thermoplastic resin having a copper foil formed on the entire front and back surfaces is prepared.
  • the front and back surfaces of the copper foil of the dielectric sheet 18 are smoothed, for example, by applying zinc plating for rust prevention.
  • the thickness of the copper foil is 10 ⁇ m to 20 ⁇ m.
  • the signal line 20 and the ground conductor 22 shown in FIG. 2 are formed on the surface of the dielectric sheet 18 and the ground conductor 24 shown in FIG. 2 is formed on the back surface of the dielectric sheet 18 by a photolithography process.
  • a resist having the same shape as the signal line 20 and the ground conductor 22 shown in FIG. 2 is printed on the copper foil on the front surface side of the dielectric sheet 18, and on the copper foil on the back surface side of the dielectric sheet 18.
  • a resist having the same shape as the ground conductor 24 shown in FIG. 2 is printed.
  • the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed.
  • the signal line 20 and the ground conductor 22 are formed on the surface of the dielectric sheet 18, and the ground conductor 24 is formed on the back surface of the dielectric sheet 18.
  • a laser beam is irradiated from the back side to the position where the via-hole conductors b1 to b6 of the dielectric sheet 18 are formed to form a through hole. Thereafter, the through-hole formed in the dielectric sheet 18 is filled with a conductive paste.
  • the insulator layer 32 is formed on the signal line 20 by screen-printing a resin (resist) paste on the surface of the dielectric sheet 18.
  • the bridge conductor 30 is formed on the insulating layer 32 by screen-printing Ag paste on the surface of the dielectric sheet 18. Thereafter, the bridge conductor 30 is dried.
  • the protective layers 14 and 15 are formed on the front and back surfaces of the dielectric sheet 18 by applying a resin (resist) paste.
  • the bridge conductor 30 overlaps the ground conductor 22 and the signal line 20 when viewed in plan from the z-axis direction, and is provided on the insulator layer 32, thereby providing a signal. It is insulated from the line 20. Thereby, a capacitance is formed between the signal line 20 and the bridge conductor 30 in the region A1. On the other hand, the signal line 20 does not overlap the bridge conductor 30 in the region A2. For this reason, no capacitance is formed between the signal line 20 and the bridge conductor 30 in the region A2.
  • the characteristic impedance Z1 of the signal line 20 in the region A1 is smaller than the characteristic impedance Z2 of the signal line 20 in the region A2.
  • the characteristic impedance of the signal line 20 periodically varies between the characteristic impedance Z1 and the characteristic impedance Z2.
  • a standing wave having a short wavelength that is, a high frequency
  • a standing wave having a long wavelength that is, a low frequency
  • the bridge conductor 30 may be provided along the signal line 20 at an interval shorter than half the half wavelength of the high-frequency signal transmitted through the signal line 20.
  • the characteristic impedance Z3 at both ends of the signal line 20 is a magnitude between the characteristic impedance Z1 of the signal line 20 in the region A1 and the characteristic impedance Z2 of the signal line 20 in the region A2. Accordingly, in the signal line 20, a standing wave having a short wavelength is easily generated between the bridge conductors 30, and a standing wave having a long wavelength is hardly generated between both ends of the signal line 20. As a result, in the high frequency signal line 10, the generation of low frequency noise is more effectively suppressed.
  • the main body 12 can be made thin. More specifically, the high-frequency signal transmission line 500 described in Patent Document 1 requires three-layer dielectric sheets 504a to 504c.
  • the bridge conductor 30 is provided on the signal line 20 via an insulator layer 32. Therefore, in the high-frequency signal transmission line 10, the dielectric sheet 18 for forming the bridge conductor 30 is not necessary. Therefore, in the high-frequency signal transmission line 10, only one layer of the dielectric sheet 18 is sufficient. Furthermore, the insulator layer 32 does not cover the entire surface of the dielectric sheet 18. As a result, the main body 12 can be thinned. When the high-frequency signal line 10 is thinned, the high-frequency signal line 10 can be easily bent.
  • the line width W1 of the signal line 20 in the region A1 is smaller than the line width W2 of the signal line 20 in the region A2. Therefore, it is suppressed that the capacity
  • the lines of electric force generated from the signal line 20 are easily absorbed by the ground conductor 22 by reducing the width of the gap between the signal line 20 and the line portions 22 a and 22 b. As a result, noise is suppressed from being radiated from the signal line 20.
  • the high-frequency resistance of the signal line 20 can be reduced without reducing the characteristic impedance Z2 of the signal line 20 in the region A2. More specifically, in order to reduce the high-frequency resistance of the signal line 20, it is conceivable to increase the line width of the signal line 20. Therefore, when the line width W1 of the signal line 20 in the region A1 is increased, the capacitance formed between the signal line 20 and the bridge conductor 30 is increased. For this reason, the characteristic impedance Z1 of the signal line 20 in the region A1 becomes too small.
  • the line width W2 of the signal line 20 in the region A2 is made larger than the line width W1 of the signal line 20 in the region A1.
  • the signal line 20 does not overlap with the bridge conductor 30. Further, the signal line 20 does not face the ground conductor 22. Therefore, in the region A2, no capacitance is formed between the signal line 20 and the bridge conductor 30, and only a small capacitance is formed between the signal line 20 and the ground conductor 22. Therefore, even if the line width W2 of the signal line 20 in the region A2 increases, the amount of increase in the capacitance formed between the signal line 20 and the ground conductor 22 is small. As a result, in the high frequency signal line 10, the high frequency resistance of the signal line 20 can be reduced without reducing the characteristic impedance Z2 of the signal line 20.
  • leakage of magnetic flux from the high-frequency signal line 10 is suppressed. More specifically, when a current i1 (see FIG. 4) flows through the signal line 20, a magnetic flux that circulates around the signal line 20 is generated with the signal line 20 as a central axis. If such a magnetic flux leaks out of the high-frequency signal line 10, the signal lines of other circuits and the signal line 20 may be magnetically coupled. As a result, it is difficult to obtain desired characteristics in the high-frequency signal line 10.
  • the signal line 20 is surrounded by the ground conductor 22.
  • the signal line 20 and the ground conductor 22 come close to each other.
  • a current i1 flows through the signal line 20
  • a feedback current i2 having a direction opposite to that of the current i1 flows through the ground conductor 22. Therefore, the direction of the magnetic flux surrounding the signal line 20 and the direction of the magnetic flux surrounding the ground conductor 22 are opposite to each other.
  • the magnetic flux strengthens in the gap between the signal line 20 and the ground conductor 22, whereas the positive and negative regions in the y-axis direction from the ground conductor 22 (that is, the high-frequency signal line 10 In the outer region, the magnetic flux cancels each other. As a result, the magnetic flux is prevented from leaking out of the high-frequency signal line 10.
  • FIG. 6 is an exploded perspective view of the high-frequency signal transmission line 10a according to the first modification.
  • the high frequency signal line 10a is different from the high frequency signal line 10 in that the ground conductor 24 is not provided. Further, since the ground conductor 24 is not provided, the via-hole conductors b1 to b6 and the protective layer 15 become unnecessary. Since other configurations are the same as those of the high-frequency signal line 10, the description thereof is omitted.
  • the same effect as the high frequency signal line 10 can be obtained. Further, since the ground conductor 24 and the protective layer 15 are not provided in the high-frequency signal line 10a, the main body 12 can be thinned and the high-frequency signal line 10a can be easily bent.
  • FIG. 7 is an exploded perspective view of the high-frequency signal transmission line 10b according to the second modification.
  • the high frequency signal line 10b is different from the high frequency signal line 10 in that the line portions 22a and 22b are not provided. Therefore, in the high-frequency signal line 10b, the ground conductor 24 (first ground conductor) is provided on the back surface of the dielectric sheet 18 provided with the signal line 20, and is in the z-axis direction (the normal direction of the dielectric sheet 18). ) On the both sides of the signal line 20 in the y-axis direction (direction orthogonal to the direction in which the signal line 20 extends). The bridge conductor 30 overlaps the ground conductor 24 when viewed in plan from the z-axis direction, and is connected to the ground conductor 24 by via-hole conductors b1 and b2.
  • the same effect as the high frequency signal line 10 can be obtained. Furthermore, since the high-frequency signal line 10b is not provided with the line portions 22a and 22b, the main body 12 can be thinned and the high-frequency signal line 10b can be easily bent.
  • FIG. 8 is an exploded perspective view of the high-frequency signal transmission line 10c according to the third modification.
  • the high-frequency signal line 10c is different from the high-frequency signal line 10 in that the line widths of the protrusions 23a and 23b become thicker as they approach the line parts 22a and 22b.
  • the width of the gap between the signal line 20 and the line portions 22a and 22b gradually increases or decreases.
  • the magnetic flux generated around the signal line 20 and passing through the gap between the signal line 20 and the line portions 22a and 22b gradually increases or decreases near the boundary between the region A1 and the region A2. It becomes like this. That is, the magnetic field energy is suppressed from greatly fluctuating near the boundary between the region A1 and the region A2. As a result, high-frequency signal reflection is suppressed from occurring in the vicinity of the boundary between the region A1 and the region A2.
  • the line widths of the protrusions 23a and 23b continuously increase as the line parts 22a and 22b are approached, but the line widths of the protrusions 23a and 23b may increase stepwise.
  • FIG. 9 is an exploded perspective view of the high-frequency signal transmission line 10d according to the fourth modification.
  • the high-frequency signal line 10d is different from the high-frequency signal line 10a in that it further includes a bridge conductor 40. More specifically, the plurality of bridge conductors 40 overlap with the ground conductor 22 and the signal line 20 when viewed in plan from the z-axis direction, and are provided on the back surface of the dielectric sheet 18. Both ends of the bridge conductor 40 in the y-axis direction are connected to the ground conductor 22.
  • the bridge conductor 40 is formed, for example, by printing a conductive paste such as Ag.
  • the bridge conductor 40 is H-shaped and has a capacitor portion 40a and connection portions 40b and 40c.
  • the capacitor portion 40a is a linear conductor extending in the y-axis direction, and overlaps the signal line 20 by intersecting the signal line 20 when viewed in plan from the z-axis direction.
  • the dielectric sheet 18 exists between the capacitor portion 40a and the signal line 20, a capacitor is formed.
  • connection part 40b is connected to the end part on the positive side in the y-axis direction of the capacity part 40a and extends in the x-axis direction. And the connection part 40b has overlapped with the track
  • the via-hole conductor b1 connects the connection portion 40b and the ground conductor 22.
  • the connecting portion 40c is connected to the end portion on the negative direction side in the y-axis direction of the capacitor portion 40a, and extends in the x-axis direction. And the connection part 40c has overlapped with the track
  • the via-hole conductor b2 connects the connection portion 40c and the ground conductor 22.
  • the same effect as the high frequency signal line 10 can be obtained. Further, in the high-frequency signal line 10d, the signal line 20 and the bridge conductors 30 and 40 have a stripline structure in the region A1. Therefore, according to the high-frequency signal transmission line 10d, the generation of noise is suppressed in the region A1.
  • FIG. 10 is an exploded perspective view of the high-frequency signal transmission line 10e according to the fifth modification.
  • the high-frequency signal line 10e is different from the high-frequency signal line 10b in that the shape of the bridge conductor 30 and the via-hole conductors b1 and b2 are not provided. More specifically, the via-hole conductors b1 and b2 are not provided in the high-frequency signal line 10e. Therefore, the connection portions 30 b and 30 c of the bridge conductor 30 are not directly connected to the ground conductor 24.
  • connection portions 30b and 30c of the high-frequency signal line 10e are larger than the areas of the connection portions 30b and 30c of the high-frequency signal line 10b.
  • the capacitance formed between the connection portions 30b and 30c and the ground conductor 24 is increased, and the connection portions 30b and 30c and the ground conductor 24 are electrically connected.
  • the potential of the bridge conductor 30 approaches the ground potential. That is, the bridge conductor 30 of the high frequency signal line 10e performs the same function as the bridge conductor 30 of the high frequency signal line 10b.
  • the same effect as the high frequency signal line 10 can be obtained.
  • FIG. 11 is a plan view of the high-frequency signal transmission line 10f according to the sixth modification.
  • the high-frequency signal line 10 f is different from the high-frequency signal line 10 in that the bridge conductor 30 in the high-frequency signal line 10 is cut into the bridge conductors 31 and 33.
  • the bridge conductor 31 is T-shaped and includes a capacitor portion 31a and a connection portion 31b.
  • the capacitive part 31a is a linear conductor extending in the y-axis direction, and overlaps the signal line 20 when viewed in plan from the z-axis direction.
  • the insulator layer 32 exists between the capacitor portion 31a and the signal line 20, a capacitor is formed.
  • the connecting portion 31b is connected to the end portion on the positive direction side in the y-axis direction of the capacitor portion 31a, and extends in the x-axis direction. And the connection part 31b has overlapped with the track
  • the via-hole conductor b1 connects the connection portion 31b and the ground conductor 22.
  • the bridge conductor 33 has a T shape and has a capacitor portion 33a and a connecting portion 33b.
  • the capacitor portion 33a is a linear conductor extending in the y-axis direction, and overlaps the signal line 20 when viewed in plan from the z-axis direction.
  • the bridge conductor 33 is not connected to the bridge conductor 31.
  • the insulator layer 32 exists between the capacitor portion 33a and the signal line 20, a capacitor is formed.
  • the connecting portion 33b is connected to the end portion on the negative direction side in the y-axis direction of the capacitor portion 33a, and extends in the x-axis direction. And the connection part 33b has overlapped with the track
  • the via-hole conductor b2 connects the connecting portion 33b and the ground conductor 22.
  • the same effect as the high frequency signal line 10 can be obtained. Furthermore, the characteristic impedance in the region A1 can also be changed by adjusting the distance between the bridge conductor 31 and the bridge conductor 33.
  • the high-frequency signal line according to the present invention is not limited to the high-frequency signal lines 10, 10a to 10f, and can be applied within the scope of the gist thereof.
  • the present invention is useful for high-frequency signal lines, and is particularly excellent in that it can suppress the generation of low-frequency noise and can be reduced in thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguides (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 低い周波数のノイズの発生を抑制できると共に、薄型化を図ることができる高周波信号線路を提供することである。 信号線路20は、誘電体シート18の表面に設けられている。グランド導体22は、誘電体シート18の表面に設けられており、誘電体シート18の法線方向から平面視したときに、信号線路20が延在している方向に直交する直交方向において信号線路20の両側に存在している。絶縁体層30は、信号線路20上に設けられている。ブリッジ部30は、誘電体シート18の法線方向から平面視したときに、グランド導体22及び信号線路20と重なっており、絶縁体層32上に設けられることによって、信号線路20と絶縁されている。

Description

高周波信号線路
 本発明は、高周波信号線路に関し、より特定的には、高周波信号の伝送に用いられる高周波信号線路に関する。
 従来の高周波信号線路としては、例えば、特許文献1に記載の信号線路が知られている。図12は、特許文献1に記載の高周波信号線路500の分解図である。
 高周波信号線路500は、誘電体素体502、信号線506及びグランド導体508,510を備えている。誘電体素体502は、誘電体シート504a~504cが積層されて構成されている。信号線506は、誘電体シート504bの表面に設けられている。グランド導体508,510はそれぞれ、誘電体シート504a,504cの表面に設けられている。
 また、グランド導体508には、複数の開口520が信号線506に沿って設けられている。これにより、信号線506には、複数の開口520と複数のブリッジ部522とが交互に重なっている。以上のように構成された高周波信号線路500では、開口520と信号線506とが重なっている領域における信号線506の特性インピーダンスが、ブリッジ部522と信号線506とが重なっている領域における信号線506の特性インピーダンスよりも低くなる。これにより、信号線506の特性インピーダンスが周期的に変動するようになる。その結果、高周波信号線路500において、ブリッジ部522の間隔程度の長さを半波長とする高い周波数の定在波が発生し、高周波信号線路500の全長程度の長さを半波長とする低い周波数の定在波が発生しにくくなる。よって、高周波信号線路500では、低い周波数のノイズの発生が抑制されるようになる。
 ところで、高周波信号線路500では、3層の誘電体シート504a~504cが必要となる。そのため、高周波信号線路500の更なる薄型化が求められている。
実用新案登録第3173143号公報
 そこで、本発明の目的は、低い周波数のノイズの発生を抑制できると共に、薄型化を図ることができる高周波信号線路を提供することである。
 本発明の一形態に係る高周波信号線路は、第1の主面及び第2の主面を有する誘電体層と、前記第1の主面に設けられている信号線路と、前記第1の主面又は前記第2の主面に設けられている第1のグランド導体であって、前記誘電体層の法線方向から平面視したときに、前記信号線路が延在している方向に直交する直交方向において該信号線路の両側に存在している第1のグランド導体と、前記誘電体層の法線方向から平面視したときに、該誘電体層の一部と重なる絶縁体層であって、前記信号線路上に設けられている複数の絶縁体層と、前記誘電体層の法線方向から平面視したときに、前記第1のグランド導体及び前記信号線路と重なっている複数のブリッジ導体であって、前記絶縁体層上に設けられることによって、該信号線路と絶縁されている複数のブリッジ導体と、を備えていること、を特徴とする。
 本発明によれば、低い周波数のノイズの発生を抑制できると共に、薄型化を図ることができる。
一実施形態に係る高周波信号線路の外観斜視図である。 一実施形態に係る高周波信号線路の分解斜視図である。 一実施形態に係る高周波信号線路の分解斜視図である。 一実施形態に係る高周波信号線路を平面視した図である。 高周波信号線路のコネクタの外観斜視図及び断面構造図である。 第1の変形例に係る高周波信号線路の分解斜視図である。 第2の変形例に係る高周波信号線路の分解斜視図である。 第3の変形例に係る高周波信号線路の分解斜視図である。 第4の変形例に係る高周波信号線路の分解斜視図である。 第5の変形例に係る高周波信号線路の分解斜視図である。 第6の変形例に係る高周波信号線路を平面視した図である。 特許文献1に記載の高周波信号線路の分解図である。
 以下に、本発明の実施形態に係る高周波信号線路について図面を参照しながら説明する。
(高周波信号線路の構成)
 以下に、本発明の一実施形態に係る高周波信号線路の構成について図面を参照しながら説明する。図1は、一実施形態に係る高周波信号線路10の外観斜視図である。図2及び図3は、一実施形態に係る高周波信号線路10の分解斜視図である。図4は、一実施形態に係る高周波信号線路10を平面視した図である。図1ないし図4において、高周波信号線路10の積層方向をz軸方向と定義する。また、高周波信号線路10の長手方向をx軸方向と定義し、x軸方向及びz軸方向に直交する方向をy軸方向と定義する。
 高周波信号線路10は、図1ないし図3に示すように、本体12、信号線路20、グランド導体22,24、ブリッジ導体30、絶縁体層32、コネクタ100a,100b及びビアホール導体b1~b6を備えている。
 本体12は、z軸方向から平面視したときに、x軸方向に延在しており、線路部12a及び接続部12b,12cを含んでいる。本体12は、図2に示すように、保護層14、誘電体シート18及び保護層15がz軸方向の正方向側から負方向側へとこの順に積層されて構成されている可撓性の積層体である。以下では、本体12のz軸方向の正方向側の主面を表面と称し、本体12のz軸方向の負方向側の主面を裏面と称す。
 線路部12aは、x軸方向に延在している。接続部12bは、線路部12aのx軸方向の負方向側の端部に接続されており、矩形状をなしている。接続部12cは、線路部12aのx軸方向の正方向側の端部に接続されており、矩形状をなしている。接続部12b,12cのy軸方向の幅は、線路部12aのy軸方向の幅と等しい。よって、本体12は、z軸方向から平面視したときに、x軸方向に延在する長方形状をなしている。
 誘電体シート18は、z軸方向から平面視したときに、x軸方向に延在しており、本体12と同じ形状をなしている。誘電体シート18は、ポリイミドや液晶ポリマー等の可撓性を有する熱可塑性樹脂により構成されている。誘電体シート18の積層後の厚さは、例えば、200μmである。以下では、誘電体シート18のz軸方向の正方向側の主面を表面と称し、誘電体シート18のz軸方向の負方向側の主面を裏面と称す。
 また、誘電体シート18は、線路部18a及び接続部18b,18cにより構成されている。線路部18aは、線路部12aを構成している。接続部18bは、接続部12bを構成している。接続部18cは、接続部12cを構成している。
 信号線路20は、図2に示すように、誘電体シート18の表面に設けられている線状導体であり、x軸方向に延在している。信号線路20のx軸方向の負方向側の端部は、接続部18bの表面の中央に位置している。同様に、信号線路20のx軸方向の正方向側の端部は、接続部18cの表面の中央に位置している。信号線路20は、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。信号線路20のx軸方向の負方向側の端部及び信号線路20のx軸方向の正方向側の端部はそれぞれ、外部端子として用いられる。以下では、信号線路20のx軸方向の負方向側の端部及び信号線路20のx軸方向の正方向側の端部を外部端子16a,16bと呼ぶ。外部端子16a,16bの表面には、金めっきが施されている。
 グランド導体22(第1のグランド導体)は、図2及び図3に示すように、信号線路20が設けられている誘電体シート18の表面に設けられ、z軸方向(誘電体シート18の法線方向)から平面視したときに、信号線路20の周囲を囲む長方形状の枠状をなしている。これにより、グランド導体22は、z軸方向(誘電体シート18の法線方向)から平面視したときに、y軸方向(信号線路20が延在する方向に直交する方向)において信号線路20の両側に存在している。グランド導体22は、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。
 グランド導体22は、図2及び図3に示すように、線路部22a,22b、端子部22c,22d及び突起部23a,23bにより構成されている。線路部22aは、線路部18aの表面において信号線路20のy軸方向の正方向側に設けられ、x軸方向に延在している。線路部22bは、線路部18aの表面において信号線路20のy軸方向の負方向側に設けられ、x軸方向に延在している。
 複数の突起部23aは、線路部22aからy軸方向の負方向側に突出するように設けられており、x軸方向に等間隔に並んでいる。ただし、突起部23aは、信号線路20には接続されていない。
 複数の突起部23bは、線路部22bからy軸方向の正方向側に突出するように設けられており、x軸方向に等間隔に並んでいる。ただし、突起部23bは、信号線路20には接続されていない。
 端子部22cは、図2に示すように、接続部18bの表面に設けられ、外部端子16aを囲むコ字型をなしている。端子部22cは、線路部22a,22bのx軸方向の負方向側の端部に接続されている。端子部22dは、接続部18cの表面に設けられ、外部端子16bを囲むコ字型をなしている。端子部22dは、線路部22a,22bのx軸方向の正方向側の端部に接続されている。
 グランド導体24(第2のグランド導体)は、図2及び図3に示すように、誘電体シート18の裏面に設けられ、z軸方向(本体12の法線方向)から平面視したときに、信号線路20と重なる長方形状をなしている。グランド導体24は、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。
 グランド導体24は、図2に示すように、線路部24a及び端子部24b,24cにより構成されている。線路部24aは、線路部18aの裏面に設けられ、x軸方向に延在している。線路部24aは、開口部が設けられていないベタ状の導体である。これにより、線路部24aは、z軸方向から平面視したときに信号線路20と重なっている。
 端子部24bは、接続部18bの裏面に設けられ、矩形状をなしている。端子部24bは、線路部24aのx軸方向の負方向側の端部に接続されている。 端子部24cは、接続部18cの裏面に設けられ、矩形状をなしている。端子部24cは、線路部24aのx軸方向の正方向側の端部に接続されている。
 複数の絶縁体層32は、信号線路20のz軸方向の正方向側においてx軸方向に等間隔に並ぶように設けられており、長方形状をなしている。絶縁体層32は、突起部23a,23bに対応する位置に設けられており、誘電体シート18の一部と重なっており、全面と重なっていない。絶縁体層32の厚さは、例えば、10μmである。絶縁体層32は、例えば、レジスト材が印刷されることにより形成される。
 複数のブリッジ導体30は、z軸方向から平面視したときに、グランド導体22及び信号線路20と重なっており、各絶縁体層32上に設けられることによって、信号線路20と絶縁されている。そして、ブリッジ導体30のy軸方向の両端は、グランド導体22に接続されている。ブリッジ導体30は、例えば、Ag等の導電性ペーストが印刷されることにより形成される。
 より詳細には、ブリッジ導体30は、図2及び図3に示すように、H型をなしており、容量部30a及び接続部30b,30cを有している。容量部30aは、y軸方向に延在している線状の導体であり、z軸方向から平面視したときに、信号線路20と交差することによって、信号線路20と重なっている。ただし、容量部30aと信号線路20との間には、絶縁体層32が存在しているので、容量が形成されている。
 接続部30bは、容量部30aのy軸方向の正方向側の端部に接続されており、x軸方向に延在している。そして、接続部30bは、z軸方向から平面視したときに、線路部22a及び突起部23aに重なることにより、突起部23a及び線路部22aと接続されている。
 接続部30cは、容量部30aのy軸方向の負方向側の端部に接続されており、x軸方向に延在している。そして、接続部30cは、z軸方向から平面視したときに、線路部22b及び突起部23bに重なることにより、突起部23b及び線路部22bと接続されている。
 以上のように、複数のブリッジ導体30及び複数の絶縁体層32は、信号線路20に沿って等間隔に並んでいる。そして、ブリッジ導体30及び絶縁体層32の間隔は、信号線路20を伝送する高周波信号の1/2波長よりも短い。
 ここで、図4に示すように、信号線路20とブリッジ導体30とが重なっている領域を領域A1とする。また、領域A1以外の領域を領域A2とする。領域A1における信号線路20の線幅W1は、領域A2における信号線路20の線幅W2よりも小さい。このように、信号線路20の線幅は、周期的に変動している。
 ビアホール導体b1は、誘電体シート18の線路部18aをz軸方向に貫通しており、信号線路20よりもy軸方向の正方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b1のz軸方向の正方向側の端部は、z軸方向から平面視したときに、ブリッジ導体30の接続部30bと重なっている。ビアホール導体b1は、グランド導体22とグランド導体24とを接続している。
 ビアホール導体b2は、誘電体シート18の線路部18aをz軸方向に貫通しており、信号線路20よりもy軸方向の負方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b2のz軸方向の正方向側の端部は、z軸方向から平面視したときに、ブリッジ導体30の接続部30cと重なっている。ビアホール導体b2は、グランド導体22とグランド導体24とを接続している。
 ビアホール導体b3は、誘電体シート18の接続部18bをz軸方向に貫通しており、外部端子16aよりもy軸方向の正方向側に設けられている。ビアホール導体b3は、グランド導体22とグランド導体24とを接続している。
 ビアホール導体b4は、誘電体シート18の接続部18bをz軸方向に貫通しており、外部端子16aよりもy軸方向の負方向側に設けられている。ビアホール導体b4は、グランド導体22とグランド導体24とを接続している。
 ビアホール導体b5は、誘電体シート18の接続部18cをz軸方向に貫通しており、外部端子16bよりもy軸方向の正方向側に設けられている。ビアホール導体b5は、グランド導体22とグランド導体24とを接続している。
 ビアホール導体b6は、誘電体シート18の接続部18cをz軸方向に貫通しており、外部端子16bよりもy軸方向の負方向側に設けられている。ビアホール導体b6は、グランド導体22とグランド導体24とを接続している。
ビアホール導体b1~b6は、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。なお、ビアホール導体b1~b6の代わりに、貫通孔の内周面にめっき等の導体層が形成されたスルーホールが用いられてもよい。
 以上のように、信号線路20、グランド導体24及びブリッジ導体30では、信号線路20とブリッジ導体30とのz軸方向の間隔は、信号線路20とグランド導体24とのz軸方向の間隔よりも小さい。具体的には、信号線路20とブリッジ導体30とのz軸方向の間隔は、絶縁体層32の厚さと略等しく、例えば、10μmである。一方、信号線路20とグランド導体24とのz軸方向の間隔は、誘電体シート18の厚さと略等しく、例えば、200μmである。すなわち、誘電体シート18の厚さは、絶縁体層32の厚さよりも大きくなるように設計されている。また、グランド導体22,24のy軸方向の幅は、例えば、約800μmである。
 保護層14は、誘電体シート18の表面の略全面を覆っている。これにより、保護層14は、信号線路20、グランド導体22、ブリッジ導体30及び絶縁体層32を覆っている。保護層14は、例えば、レジスト材等の可撓性樹脂からなる。
 また、保護層14は、図2に示すように、線路部14a及び接続部14b,14cにより構成されている。線路部14aは、線路部18aの表面の全面を覆うことにより、線路部22aを覆っている。
 接続部14bは、線路部14aのx軸方向の負方向側の端部に接続されており、接続部18bの表面を覆っている。ただし、接続部14bには、開口Ha~Hdが設けられている。開口Haは、接続部14bの略中央に設けられている矩形状の開口である。外部端子16aは、開口Haを介して外部に露出している。また、開口Hbは、開口Haのy軸方向の正方向側に設けられている矩形状の開口である。開口Hcは、開口Haのx軸方向の負方向側に設けられている矩形状の開口である。開口Hdは、開口Haのy軸方向の負方向側に設けられている矩形状の開口である。端子部22cは、開口Hb~Hdを介して外部に露出することにより、外部端子として機能する。
 接続部14cは、線路部14aのx軸方向の正方向側の端部に接続されており、接続部18cの表面を覆っている。ただし、接続部14cには、開口He~Hhが設けられている。開口Heは、接続部14cの略中央に設けられている矩形状の開口である。外部端子16bは、開口Heを介して外部に露出している。また、開口Hfは、開口Heのy軸方向の正方向側に設けられている矩形状の開口である。開口Hgは、開口Heのx軸方向の正方向側に設けられている矩形状の開口である。開口Hhは、開口Heのy軸方向の負方向側に設けられている矩形状の開口である。端子部22dは、開口Hf~Hhを介して外部に露出することにより、外部端子として機能する。
 保護層15は、誘電体シート18の裏面の略全面を覆っている。これにより、保護層15は、グランド導体24を覆っている。保護層15は、例えば、レジスト材等の可撓性樹脂からなる。
 コネクタ100a,100bはそれぞれ、接続部12b,12cの表面上に実装され、信号線路20及びグランド導体22,24と電気的に接続される。コネクタ100a,100bの構成は同じであるので、以下にコネクタ100bの構成を例に挙げて説明する。図5は、高周波信号線路10のコネクタ100bの外観斜視図及び断面構造図である。
 コネクタ100bは、図1及び図5に示すように、コネクタ本体102、外部端子104,106及び中心導体108及び外部導体110により構成されている。コネクタ本体102は、矩形状の板に円筒が連結された形状をなしており、樹脂等の絶縁材料により作製されている。
 外部端子104は、コネクタ本体102のz軸方向の負方向側の面において、外部端子16bと対向する位置に設けられている。外部端子106は、コネクタ本体102のz軸方向の負方向側の面において、開口Hf~Hhを介して露出している端子部22dに対応する位置に設けられている。
 中心導体108は、コネクタ本体102の円筒の中心に設けられており、外部端子104と接続されている。中心導体108は、高周波信号が入力又は出力する信号端子である。外部導体110は、コネクタ本体102の円筒の内周面に設けられており、外部端子106と接続されている。外部導体110は、接地電位に保たれるグランド端子である。
 以上のように構成されたコネクタ100bは、外部端子104が外部端子16bと接続され、外部端子106が端子部22dと接続されるように、接続部12cの表面上に実装される。これにより、信号線路20は、中心導体108に電気的に接続されている。また、グランド導体22,24は、外部導体110に電気的に接続されている。
 以上のように構成された高周波信号線路10では、領域A1における信号線路20の特性インピーダンスZ1と領域A2における信号線路20の特性インピーダンスZ2とが異なっている。より詳細には、領域A1において信号線路20は、ブリッジ導体30と重なっている。そのため、領域A1において、信号線路20とブリッジ導体30との間には容量が形成されている。一方、領域A2において信号線路20は、ブリッジ導体30と重なっていない。そのため、領域A2において、信号線路20とブリッジ導体30との間には容量が形成されていない。よって、領域A1における信号線路20の特性インピーダンスZ1は、領域A2における信号線路20の特性インピーダンスZ2よりも小さくなる。特性インピーダンスZ1は、例えば、30Ωであり、特性インピーダンスZ2は、例えば、70Ωである。また、信号線路20の全体の特性インピーダンスは、例えば、50Ωである。
 また、高周波信号線路10では、信号線路20の両端(すなわち、外部端子16a,16b)の特性インピーダンスZ3は、特性インピーダンスZ1と特性インピーダンスZ2との間の大きさとなっている。
(高周波信号線路の製造方法)
 以下に、高周波信号線路10の製造方法について図2を参照しながら説明する。以下では、一つの高周波信号線路10が作製される場合を例にとって説明するが、実際には、大判の誘電体シートが積層及びカットされることにより、同時に複数の高周波信号線路10が作製される。
 まず、表面及び裏面の全面に銅箔が形成された熱可塑性樹脂からなる誘電体シート18を準備する。誘電体シート18の銅箔の表面及び裏面は、例えば、防錆のための亜鉛鍍金が施されることにより、平滑化されている。銅箔の厚さは、10μm~20μmである。
 次に、フォトリソグラフィ工程により、図2に示す信号線路20及びグランド導体22を誘電体シート18の表面に形成すると共に、図2に示すグランド導体24を誘電体シート18の裏面に形成する。具体的には、誘電体シート18の表面側の銅箔上に、図2に示す信号線路20及びグランド導体22と同じ形状のレジストを印刷すると共に、誘電体シート18の裏面側の銅箔上に、図2に示すグランド導体24と同じ形状のレジストを印刷する。そして、銅箔に対してエッチング処理を施すことにより、レジストにより覆われていない部分の銅箔を除去する。その後、レジストを除去する。これにより、図2に示すような、信号線路20及びグランド導体22が誘電体シート18の表面に形成されると共に、グランド導体24が誘電体シート18の裏面に形成される。
 次に、誘電体シート18のビアホール導体b1~b6が形成される位置に対して、裏面側からレーザービームを照射して、貫通孔を形成する。その後、誘電体シート18に形成した貫通孔に対して、導電性ペーストを充填する。
 次に、誘電体シート18の表面に樹脂(レジスト)ペーストをスクリーン印刷することによって、絶縁体層32を信号線路20上に形成する。絶縁体層32の乾燥後に、誘電体シート18の表面にAgペーストをスクリーン印刷することによって、ブリッジ導体30を絶縁体層32上に形成する。この後、ブリッジ導体30を乾燥させる。
 最後に、樹脂(レジスト)ペーストを塗布することにより、誘電体シート18の表面及び裏面に保護層14,15を形成する。
(効果)
 以上のように構成された高周波信号線路10によれば、低い周波数のノイズの発生を抑制できる。より詳細には、高周波信号線路10では、ブリッジ導体30は、z軸方向から平面視したときに、グランド導体22及び信号線路20と重なっており、絶縁体層32上に設けられることによって、信号線路20と絶縁されている。これにより、領域A1における信号線路20とブリッジ導体30との間には容量が形成されている。一方、領域A2において信号線路20は、ブリッジ導体30と重なっていない。そのため、領域A2において、信号線路20とブリッジ導体30との間には容量が形成されていない。よって、領域A1における信号線路20の特性インピーダンスZ1は、領域A2における信号線路20の特性インピーダンスZ2よりも小さくなる。これにより、信号線路20の特性インピーダンスは、特性インピーダンスZ1と特性インピーダンスZ2との間を周期的に変動するようになる。その結果、信号線路20では、ブリッジ導体30間において短い波長(すなわち、高い周波数)の定在波が発生するようになる。一方、外部端子16a,16b間に長い波長(すなわち、低い周波数)の定在波が発生しにくくなる。以上より、高周波信号線路10では、低い周波数のノイズの発生が抑制される。
 なお、高周波信号線路10では、ブリッジ導体30間において発生した定在波により高い周波数のノイズが発生する。そこで、ブリッジ導体30間の距離を十分に短く設計することによって、信号線路20を伝送される高周波信号の帯域外にノイズの周波数を設定することが可能である。そのためには、ブリッジ導体30は、信号線路20を伝送される高周波信号の1/2波長の半分より短い間隔で、信号線路20に沿って設けられていればよい。
 また、高周波信号線路10では、信号線路20の両端の特性インピーダンスZ3は、領域A1における信号線路20の特性インピーダンスZ1と領域A2における信号線路20の特性インピーダンスZ2との間の大きさである。これにより、信号線路20では、ブリッジ導体30間において短い波長の定在波が発生しやすくなり、信号線路20の両端間において長い波長の定在波が発生しにくくなる。その結果、高周波信号線路10では、低い周波数のノイズの発生がより効果的に抑制される。
 また、高周波信号線路10では、本体12の薄型化を図ることができる。より詳細には、特許文献1に記載の高周波信号線路500では、3層の誘電体シート504a~504cが必要であった。一方、高周波信号線路10では、ブリッジ導体30は、絶縁体層32を介して信号線路20上に設けられている。そのため、高周波信号線路10では、ブリッジ導体30を形成するための誘電体シート18が不要である。そのため、高周波信号線路10では、誘電体シート18が1層のみで足りる。更に、絶縁体層32は、誘電体シート18の全面を覆っていない。その結果、本体12の薄型化が図られる。高周波信号線路10の薄型化が図られると、高周波信号線路10を容易に曲げることが可能となる。
 また、高周波信号線路10では、領域A1における信号線路20の線幅W1は、領域A2における信号線路20の線幅W2よりも小さい。これにより、領域A1において信号線路20とブリッジ導体30との間に形成される容量が大きくなりすぎることが抑制される。
 また、高周波信号線路10では、信号線路20と線路部22a,22bとの間の隙間の幅を小さくすることによって、信号線路20から出る電気力線がグランド導体22に吸収されやすくなる。その結果、信号線路20からノイズが輻射されることが抑制されるようになる。
 また、高周波信号線路10では、領域A2における信号線路20の特性インピーダンスZ2を低下させることなく、信号線路20の高周波抵抗の低減を図ることができる。より詳細には、信号線路20の高周波抵抗を低減するためには、信号線路20の線幅を大きくすることが考えられる。そこで、領域A1における信号線路20の線幅W1を大きくすると、信号線路20とブリッジ導体30との間に形成されている容量が大きくなってしまう。そのため、領域A1における信号線路20の特性インピーダンスZ1が小さくなりすぎてしまう。
 そこで、高周波信号線路10では、領域A2における信号線路20の線幅W2を領域A1における信号線路20の線幅W1よりも大きくしている。領域A2では、信号線路20は、ブリッジ導体30と重なっていない。更に、信号線路20は、グランド導体22と対向していない。よって、領域A2において、信号線路20とブリッジ導体30との間には容量が形成されておらず、信号線路20とグランド導体22との間には僅かな容量しか形成されていない。そのため、領域A2における信号線路20の線幅W2が大きくなっても、信号線路20とグランド導体22との間に形成されている容量の増加量はわずかである。その結果、高周波信号線路10では、信号線路20の特性インピーダンスZ2を低下させることなく、信号線路20の高周波抵抗の低減が図られる。
 また、高周波信号線路10によれば、高周波信号線路10から磁束が漏れることが抑制される。より詳細には、信号線路20に電流i1(図4参照)が流れると、信号線路20を中心軸として、信号線路20を周回する磁束が発生する。このような磁束が高周波信号線路10外に漏れると、他の回路の信号線と信号線路20とが磁界結合するおそれがある。その結果、高周波信号線路10において、所望の特性を得ることが困難となる。
 そこで、高周波信号線路10では、信号線路20がグランド導体22に囲まれている。これにより、信号線路20とグランド導体22とが近接するようになる。信号線路20に電流i1が流れると、グランド導体22には該電流i1と逆向きの帰還電流i2が流れる。よって、信号線路20の周囲の磁束の周回方向とグランド導体22の周囲の磁束の周回方向とが逆向きになる。この場合、信号線路20とグランド導体22との間の隙間では磁束が強めあうのに対して、グランド導体22よりもy軸方向の正方向側及び負方向側の領域(すなわち、高周波信号線路10外の領域)では磁束が打ち消し合う。その結果、高周波信号線路10外に磁束が漏れることが抑制される。
(第1の変形例)
 以下に、第1の変形例に係る高周波信号線路10aについて図面を参照しながら説明する。図6は、第1の変形例に係る高周波信号線路10aの分解斜視図である。
 高周波信号線路10aは、グランド導体24が設けられていない点において、高周波信号線路10と相違する。また、グランド導体24が設けられていないことにより、ビアホール導体b1~b6及び保護層15が不要となる。その他の構成については、高周波信号線路10と同じであるので説明を省略する。
 高周波信号線路10aによれば、高周波信号線路10と同じ作用効果を奏することができる。更に、高周波信号線路10aでは、グランド導体24及び保護層15が設けられていないので、本体12の薄型化が図られると共に、高周波信号線路10aを容易に曲げることが可能となる。
(第2の変形例)
 以下に、第2の変形例に係る高周波信号線路10bについて図面を参照しながら説明する。図7は、第2の変形例に係る高周波信号線路10bの分解斜視図である。
 高周波信号線路10bは、線路部22a,22bが設けられていない点において、高周波信号線路10と相違する。よって、高周波信号線路10bでは、グランド導体24(第1のグランド導体)は、信号線路20が設けられている誘電体シート18の裏面に設けられ、z軸方向(誘電体シート18の法線方向)から平面視したときに、y軸方向(信号線路20が延在する方向に直交する方向)において信号線路20の両側に存在している。また、ブリッジ導体30は、z軸方向から平面視したときに、グランド導体24と重なっており、ビアホール導体b1,b2によりグランド導体24に接続されている。
 高周波信号線路10bによれば、高周波信号線路10と同じ作用効果を奏することができる。更に、高周波信号線路10bでは、線路部22a,22bが設けられていないので、本体12の薄型化が図られると共に、高周波信号線路10bを容易に曲げることが可能となる。
(第3の変形例)
 以下に、第3の変形例に係る高周波信号線路10cについて図面を参照しながら説明する。図8は、第3の変形例に係る高周波信号線路10cの分解斜視図である。
 高周波信号線路10cは、突起部23a,23bの線幅が線路部22a,22bに近づくにつれて太くなっている点において、高周波信号線路10と相違する。これにより、領域A1と領域A2との境界近傍において、信号線路20と線路部22a,22bとの間の隙間の幅が漸増又は漸減するようになる。これにより、信号線路20の周囲に発生する磁束であって、信号線路20と線路部22a,22bとの間の隙間を通過する磁束は、領域A1と領域A2との境界近傍において漸増又は漸減するようになる。すなわち、領域A1と領域A2との境界近傍において、磁界エネルギーが大きく変動することが抑制される。その結果、領域A1と領域A2との境界近傍において、高周波信号の反射が発生することが抑制されるようになる。
 なお、突起部23a,23bの線幅は線路部22a,22bに近づくにつれて連続的に増加しているが、突起部23a,23bの線幅は段階的に増加してもよい。
(第4の変形例)
 以下に、第4の変形例に係る高周波信号線路10dについて図面を参照しながら説明する。図9は、第4の変形例に係る高周波信号線路10dの分解斜視図である。
 高周波信号線路10dは、ブリッジ導体40を更に備えている点において、高周波信号線路10aと相違する。より詳細には、複数のブリッジ導体40は、z軸方向から平面視したときに、グランド導体22及び信号線路20と重なっており、誘電体シート18の裏面に設けられている。ブリッジ導体40のy軸方向の両端は、グランド導体22に接続されている。ブリッジ導体40は、例えば、Ag等の導電性ペーストが印刷されることにより形成される。
 より詳細には、ブリッジ導体40は、図9に示すように、H型をなしており、容量部40a及び接続部40b,40cを有している。容量部40aは、y軸方向に延在している線状の導体であり、z軸方向から平面視したときに、信号線路20と交差することによって、信号線路20と重なっている。ただし、容量部40aと信号線路20との間には、誘電体シート18が存在しているので、容量が形成されている。
 接続部40bは、容量部40aのy軸方向の正方向側の端部に接続されており、x軸方向に延在している。そして、接続部40bは、z軸方向から平面視したときに、線路部22a及び突起部23aに重なっている。ビアホール導体b1は、接続部40bとグランド導体22とを接続している。
 接続部40cは、容量部40aのy軸方向の負方向側の端部に接続されており、x軸方向に延在している。そして、接続部40cは、z軸方向から平面視したときに、線路部22b及び突起部23bに重なっている。ビアホール導体b2は、接続部40cとグランド導体22とを接続している。
 高周波信号線路10dによれば、高周波信号線路10と同じ作用効果を奏することができる。更に、高周波信号線路10dでは、領域A1において信号線路20及びブリッジ導体30,40がストリップライン構造をなしている。よって、高周波信号線路10dによれば、領域A1においてノイズの発生が抑制される。
(第5の変形例)
 以下に、第5の変形例に係る高周波信号線路10eについて図面を参照しながら説明する。図10は、第5の変形例に係る高周波信号線路10eの分解斜視図である。
 高周波信号線路10eは、ブリッジ導体30の形状及びビアホール導体b1,b2が設けられていない点において、高周波信号線路10bと相違する。より詳細には、高周波信号線路10eでは、ビアホール導体b1,b2が設けられていない。そのため、ブリッジ導体30の接続部30b,30cは、グランド導体24と直接に接続されていない。
 そこで、高周波信号線路10eの接続部30b,30cの面積は、高周波信号線路10bの接続部30b,30cの面積よりも大きくなっている。これにより、接続部30b,30cとグランド導体24との間に形成される容量が大きくなり、接続部30b,30cとグランド導体24とが電気的に接続されるようになる。その結果、ブリッジ導体30の電位が接地電位に近づくようになる。すなわち、高周波信号線路10eのブリッジ導体30は、高周波信号線路10bのブリッジ導体30と同様の機能を果たすようになる。
 高周波信号線路10eによれば、高周波信号線路10と同じ作用効果を奏することができる。
(第6の変形例)
 以下に、第6の変形例に係る高周波信号線路10fについて図面を参照しながら説明する。図11は、第6の変形例に係る高周波信号線路10fを平面視した図である。
 高周波信号線路10fは、高周波信号線路10におけるブリッジ導体30がブリッジ導体31,33に切断されている点において高周波信号線路10と相違している。
 より詳細には、ブリッジ導体31は、図11に示すように、T型をなしており、容量部31a及び接続部31bを有している。容量部31aは、y軸方向に延在している線状の導体であり、z軸方向から平面視したときに、信号線路20と重なっている。ただし、容量部31aと信号線路20との間には、絶縁体層32が存在しているので、容量が形成されている。
 接続部31bは、容量部31aのy軸方向の正方向側の端部に接続されており、x軸方向に延在している。そして、接続部31bは、z軸方向から平面視したときに、線路部22a及び突起部23aに重なっている。ビアホール導体b1は、接続部31bとグランド導体22とを接続している。
 また、ブリッジ導体33は、図11に示すように、T型をなしており、容量部33a及び接続部33bを有している。容量部33aは、y軸方向に延在している線状の導体であり、z軸方向から平面視したときに、信号線路20と重なっている。ただし、ブリッジ導体33は、ブリッジ導体31とは接続されていない。また、容量部33aと信号線路20との間には、絶縁体層32が存在しているので、容量が形成されている。
 接続部33bは、容量部33aのy軸方向の負方向側の端部に接続されており、x軸方向に延在している。そして、接続部33bは、z軸方向から平面視したときに、線路部22b及び突起部23bに重なっている。ビアホール導体b2は、接続部33bとグランド導体22とを接続している。
 高周波信号線路10fによれば、高周波信号線路10と同じ作用効果を奏することができる。更に、ブリッジ導体31とブリッジ導体33との間隔を調整することによっても、領域A1における特性インピーダンスを変化させることができる。
(その他の実施形態)
 本発明に係る高周波信号線路は、前記高周波信号線路10,10a~10fに限らず、その要旨の範囲内において適用可能である。
 なお、高周波信号線路10,10a~10fの構成を組み合わせて用いてもよい。
 本発明は、高周波信号線路に有用であり、特に、低い周波数のノイズの発生を抑制できると共に、薄型化を図ることができる点において優れている。
A1,A2 領域
10,10a~10f 高周波信号線路
12 本体
14,15 保護層
18 誘電体シート
20 信号線路
22,24 グランド導体
30,31,33,40 ブリッジ導体

Claims (10)

  1.  第1の主面及び第2の主面を有する誘電体層と、
     前記第1の主面に設けられている信号線路と、
     前記第1の主面又は前記第2の主面に設けられている第1のグランド導体であって、前記誘電体層の法線方向から平面視したときに、前記信号線路が延在している方向に直交する直交方向において該信号線路の両側に存在している第1のグランド導体と、
     前記誘電体層の法線方向から平面視したときに、該誘電体層の一部と重なる絶縁体層であって、前記信号線路上に設けられている複数の絶縁体層と、
     前記誘電体層の法線方向から平面視したときに、前記第1のグランド導体及び前記信号線路と重なっている複数のブリッジ導体であって、前記絶縁体層上に設けられることによって、該信号線路と絶縁されている複数のブリッジ導体と、
     を備えていること、
     を特徴とする高周波信号線路。
  2.  前記複数のブリッジ導体は、前記信号線路を伝送する高周波信号の1/2波長よりも短い間隔で、該信号線路に沿って設けられていること、
     を特徴とする請求項1に記載の高周波信号線路。
  3.  前記第1のグランド導体は、前記第1の主面に設けられていること、
     を特徴とする請求項1又は請求項2のいずれかに記載の高周波信号線路。
  4.  前記第2の主面に設けられ、かつ、前記誘電体層の法線方向から平面視したときに、前記信号線路と重なっている第2のグランド導体を、
     更に備えていること、
     を特徴とする請求項3に記載の高周波信号線路。
  5.  前記第1のグランド導体は、前記第2の主面に設けられていること、
     を特徴とする請求項1又は請求項2のいずれかに記載の高周波信号線路。
  6.  前記ブリッジ導体は、前記第1のグランド導体に接続されていること、
     を特徴とする請求項1ないし請求項5のいずれかに記載の高周波信号線路。
  7.  前記ブリッジ導体は、前記誘電体層の法線方向から平面視したときに、前記信号線路と交差していること、
     を特徴とする請求項1ないし請求項6のいずれかに記載の高周波信号線路。
  8.  前記ブリッジ導体の両端は、前記第1のグランド導体に接続されていること、
     を特徴とする請求項7に記載の高周波信号線路。
  9.  前記信号線路と前記ブリッジ導体とが重なっている第1の領域における該信号線路の線幅は、該第1の領域以外の第2の領域における該信号線路の線幅よりも小さいこと、
     を特徴とする請求項1ないし請求項8のいずれかに記載の高周波信号線路。
  10.  前記信号線路と前記ブリッジ導体とが重なっている第1の領域における該信号線路の特性インピーダンスは、該第1の領域以外の第2の領域における該信号線路の特性インピーダンスよりも小さいこと、
     を特徴とする請求項1ないし請求項9のいずれかに記載の高周波信号線路。
PCT/JP2013/066373 2012-06-29 2013-06-13 高周波信号線路 WO2014002785A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201390000331.4U CN204257793U (zh) 2012-06-29 2013-06-13 高频信号线路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-147299 2012-06-29
JP2012147299 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002785A1 true WO2014002785A1 (ja) 2014-01-03

Family

ID=49782947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066373 WO2014002785A1 (ja) 2012-06-29 2013-06-13 高周波信号線路

Country Status (2)

Country Link
CN (1) CN204257793U (ja)
WO (1) WO2014002785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564313B2 (en) 2020-08-11 2023-01-24 Nippon Mektron, Ltd. Wiring body and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867226B (zh) * 2019-11-27 2022-12-06 鹏鼎控股(深圳)股份有限公司 高频传输电路板及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346105A (ja) * 1998-05-29 1999-12-14 Ricoh Co Ltd マイクロ波平面回路
JP2000076927A (ja) * 1998-09-01 2000-03-14 Murata Mfg Co Ltd 高周波用低損失電極
JP2001345605A (ja) * 2000-06-06 2001-12-14 Oki Electric Ind Co Ltd 高周波回路
JP2003318610A (ja) * 2002-04-26 2003-11-07 Asahi Glass Co Ltd 高周波平面回路
JP2006024618A (ja) * 2004-07-06 2006-01-26 Toshiba Corp 配線基板
JP2011147083A (ja) * 2010-01-18 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> コプレーナ線路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346105A (ja) * 1998-05-29 1999-12-14 Ricoh Co Ltd マイクロ波平面回路
JP2000076927A (ja) * 1998-09-01 2000-03-14 Murata Mfg Co Ltd 高周波用低損失電極
JP2001345605A (ja) * 2000-06-06 2001-12-14 Oki Electric Ind Co Ltd 高周波回路
JP2003318610A (ja) * 2002-04-26 2003-11-07 Asahi Glass Co Ltd 高周波平面回路
JP2006024618A (ja) * 2004-07-06 2006-01-26 Toshiba Corp 配線基板
JP2011147083A (ja) * 2010-01-18 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> コプレーナ線路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564313B2 (en) 2020-08-11 2023-01-24 Nippon Mektron, Ltd. Wiring body and method for manufacturing same

Also Published As

Publication number Publication date
CN204257793U (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5310949B2 (ja) 高周波信号線路
JP5477422B2 (ja) 高周波信号線路
WO2013190859A1 (ja) 積層型多芯ケーブル
JP5741781B1 (ja) 高周波信号伝送線路及び電子機器
JP5780362B2 (ja) 高周波信号線路
JP6233473B2 (ja) 高周波信号伝送線路及び電子機器
JP5472553B2 (ja) 高周波信号線路及び電子機器
JP5754554B2 (ja) 高周波信号線路の製造方法
JP5472556B2 (ja) 高周波信号線路及び電子機器
JP6044650B2 (ja) 高周波信号伝送線路及び電子機器
JP5472555B2 (ja) 高周波信号伝送線路及び電子機器
JP5765468B2 (ja) 高周波信号線路
JP5472551B2 (ja) 高周波信号線路及び電子機器
WO2014002785A1 (ja) 高周波信号線路
JP5375319B2 (ja) 信号線路及びその製造方法
WO2014115678A1 (ja) 高周波信号伝送線路及び電子機器
JP5720853B2 (ja) 高周波信号線路
JP5655998B1 (ja) 高周波信号伝送線路及び電子機器
JP5737476B2 (ja) 高周波信号線路
JP2013135173A (ja) 高周波信号線路
JP2014003710A (ja) 信号線路及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000331.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP