WO2014000860A1 - Polymere enthaltend 2,7-pyren-struktureinheiten - Google Patents

Polymere enthaltend 2,7-pyren-struktureinheiten Download PDF

Info

Publication number
WO2014000860A1
WO2014000860A1 PCT/EP2013/001722 EP2013001722W WO2014000860A1 WO 2014000860 A1 WO2014000860 A1 WO 2014000860A1 EP 2013001722 W EP2013001722 W EP 2013001722W WO 2014000860 A1 WO2014000860 A1 WO 2014000860A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
polymer
polymers
formula
structural units
Prior art date
Application number
PCT/EP2013/001722
Other languages
English (en)
French (fr)
Inventor
Anna Hayer
Niels Schulte
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to EP13728120.0A priority Critical patent/EP2867329A1/de
Priority to US14/409,508 priority patent/US9695274B2/en
Priority to JP2015518881A priority patent/JP6422861B2/ja
Publication of WO2014000860A1 publication Critical patent/WO2014000860A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to polymers containing 2,7-pyrene structural units, processes for their preparation and blends and formulations containing these polymers.
  • the present invention further relates to the use of the polymers according to the invention or
  • Blends in electronic devices and electronic devices, in particular OLEDs, containing the polymers or blends of the invention containing the polymers or blends of the invention.
  • Compounds such as the polymers according to the invention are used for a number of different applications, which in the broadest sense of the
  • OLEDs organic electroluminescent devices
  • polymeric materials suitable for use in organic electroluminescent devices are known in the art.
  • compounds based on monomer units such as spirobifluorene, fluorene, indenofluorene,
  • Devices preferably organic electroluminescent devices, can be used.
  • R 2 in each occurrence, identically or differently H, F, a straight-chain alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a branched or cyclic alkyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, in also one or more H atoms may be replaced by F and in which also one or more non-adjacent CH 2 groups may be replaced by O, CO, COO or O (CO) O, or a mono- or polycyclic, aromatic or heteroaromatic ring system; and
  • the polymers according to the invention preferably contain from 2 to 10 000 repeat units, the term "polymer” being intended to encompass both polymers and dendrimers and oligomers in the present application
  • the oligomeric compounds according to the invention have from 2 to 9 repeat units
  • Preferred polymers and dendrimers according to the invention contain in total 10 to 10,000 repeat units
  • the degree of branching DB of the polymers and dendrimers may be between 0 (linear polymer without branching points) and 1 (fully branched dendrimer).
  • the polymers according to the invention preferably have a molecular weight M w in the range from 1000 to 2,000,000 g / mol, more preferably a molecular weight M w in the range from 10,000 to 1,500,000 g / mol and most preferably a molecular weight M w in the range of 50,000 up to 1,000,000 g / mol.
  • the proportion of the structural units of the formula (I) in the polymer is from 0.01 to 100 mol%, preferably 1 to 95 mol%, particularly preferably 10 to 80 mol% and very particularly preferably 30 to 60 mol%.
  • the term "mono- or polycyclic, aromatic ring system” in the present application means an aromatic ring system having 6 to 60, preferably 6 to 30, more preferably 6 to 14 and most preferably 6 to 10 aromatic ring atoms, which is not necessarily only contains aromatic groups but in which also several aromatic units by a short non-aromatic unit ( ⁇ 0% of the atoms other than H, preferably ⁇ 5% of the atoms other than H), such as sp 3 -hybridized carbon atom or O or N atom, CO group, etc. may be interrupted. for example, systems such as 9,9 'spirobifluorene, 9,9-diarylfluorene, etc. should be understood as aromatic ring systems.
  • the aromatic ring systems can be mono- or polycyclic, ie they may have one ring (eg phenyl) or several rings which may also be condensed (eg naphthyl) or covalently linked (eg biphenyl), or a Combination of condensed and linked rings included.
  • Preferred aromatic ring systems are e.g. Phenyl, biphenyl,
  • Ring system with 5 to 60, preferably 5 to 30, more preferably 5 to 20 and most preferably 5 to 9 understood aromatic ring atoms, wherein one or more of these atoms is / are a heteroatom.
  • the "mono- or polycyclic heteroaromatic ring system” does not necessarily contain only aromatic groups but may also be replaced by a short non-aromatic moiety ( ⁇ 10% of that of H
  • atoms preferably ⁇ 5% of those other than H. Atoms
  • sp 3 -hybridized carbon atom or O or N atom, CO group, etc. be interrupted.
  • heteroaromatic ring systems may be mono- or polycyclic, i. they may have one or more rings, which may also be fused or covalently linked (e.g., pyridylphenyl), or a combination of fused and linked rings. Preference is given to fully conjugated heteroaryl groups.
  • Preferred heteroaromatic ring systems are e.g. 5-membered rings such as pyrrole, pyrazole, imidazole, 1, 2,3-triazole, 1, 2,4-triazole, tetrazole, furan, thiophene, selenophene, oxazole, isoxazole, 1, 2-thiazole, 1, 3-thiazole , 1, 2,3-oxadiazole, 1, 2,4-oxadiazole, 1, 2,5-oxadiazole,, 3,4-oxadiazole, 1, 2,3-thiadiazole, 1, 2,4-thiadiazole, 1, 2,5-thiadiazole, 1,3,4-thiadiazole, 6-membered rings such as pyridine, pyridazine, pyrimidine, pyrazine, 1, 3,5-triazine, 1, 2,4-triazine, 1, 2,3-triazine , 1, 2,4,5-tetrazine, 1, 2,3,4-tetrazine
  • Benzimidazole benzotriazole, purine, naphthimidazole, phenanthrimidazole, pyridimidazole, pyrazine imidazole, quinoxaline imidazole, benzoxazole,
  • Benzocarboline phenanthridine, phenanthroline, thieno [2,3b] thiophene, thieno [3,2b] thiophene, dithienothiophene, isobenzothiophene, dibenzothiophene, benzothiadiazothiophene or combinations of these groups.
  • the mono- or polycyclic, aromatic or heteroaromatic ring system may be unsubstituted or substituted. Substituted means in the present application that the mono- or polycyclic, aromatic or heteroaromatic ring system has one or more substituents R 1 .
  • Preferred structural units of the formula (I) are characterized by those described in the
  • R 1 in the formulas (I), (Ia) and (Ib) at each occurrence, identically or differently, is a straight-chain alkyl or alkoxy group having 1 to 10 C atoms, particularly preferably 1 to 6 C atoms, or a branched alkyl or alkoxy group having 3 to 10 C atoms, particularly preferably having 3 to 6 C atoms, an aromatic ring system having 6 to 30, particularly preferably having 6 to 18 aromatic ring atoms or a heteroaromatic ring system having 5 to 30, especially preferably having 5 to 20 ring atoms, of which at least one ring atom is a heteroatom is.
  • the aromatic or heteroaromatic ring system may either be unsubstituted or substituted by one or more radicals R 3 , where R 3 is the same or different and is a straight-chain alkyl or alkoxy group having 1 to 10 C atoms, particularly preferably having 1 to 6 C atoms, or a branched alkyl or alkoxy group having 3 to 10 C atoms, particularly preferably having 3 to 6 C atoms.
  • the polymer according to the invention in addition to one or more structural units of the formula (I), also contains at least one further structural unit which is different from the structural unit of the formula (I).
  • the polymer according to the invention also contains at least one further structural unit which is different from the structural unit of the formula (I).
  • these are, inter alia, those as disclosed in WO 02/077060 A1 and in WO 2005/014689 A2 and are listed extensively. These are considered via quotation as part of the present application. The others
  • structural units can come from the following classes:
  • Group 1 units containing the hole injection and / or
  • Group 2 units containing the electron injection and / or
  • Group 3 Units that are combinations of individual units of the group
  • Electrofluorescence can be obtained
  • Group 8 units containing the film morphology and / or the
  • Have hole transport properties are, for example, triarylamine, benzidine, tetraaryl-para-phenylenediamine, triarylphosphine,
  • these arylamines and heterocycles result in a HOMO in the polymer of greater than -5.8 eV (at vacuum level), more preferably greater than -5.5 eV.
  • Group 2 structural units which have electron injection and / or electron transport properties are, for example, pyridine, pyrimidine, pyridazine, pyrazine, oxadiazole, quinoline, quinoxaline,
  • LUMO lowest unoccupied molecular orbital
  • these units in the polymer result in a LUMO of less than -1.5 eV (vs. vacuum level), more preferably less than -2.0 eV.
  • the polymers according to the invention may contain units from group 3 in which structures which influence the hole mobility and which electron mobility are involved (ie units from groups 1 and 2) are bonded directly to one another or structures are contained both the hole mobility and the
  • Influence electron mobility Some of these units can serve as emitters and shift the emission color to green, yellow or blue Roie. Their use is thus suitable, for example, for the production of other emission colors from originally blue-emitting polymers.
  • Structural units from group 4 so-called triplet emitter units, are those which can emit light at room temperature with high efficiency from the triplet state, ie
  • a triplet emitter unit is understood in the present application to mean a compound which comprises a triplet emitter.
  • triplet emitters are understood as meaning all compounds which are capable of emitting light in the visible or NIR range by transition from a triplet state into an energetically lower state. This is also called phosphorescence.
  • Compounds which contain heavy atoms with an atomic number of more than 36 are suitable for this purpose.
  • Preference is given to compounds containing d- or f-transition metals, which are the above-mentioned. Fulfill condition.
  • Particular preference is given here to corresponding structural units which contain elements of group 8 to 10 of the periodic table (Ru, Os, Rh, Ir, Pd, Pt).
  • Structural units for the polymers according to the invention can be found here e.g. various complexes, such as e.g. in WO 02/068435 A1, in WO 02/081488 A1 and in EP 1239526 A2. Corresponding monomers are described in WO 02/068435 A1 and in WO 2005/042548 A1. According to the invention, it is preferred to use triplet emitters which emit in the visible spectral range (red, green or blue). The triplet emitter may be part of the backbone of the polymer (i.e., in the backbone of the polymer) or it may be located in a side chain of the polymer.
  • Group 5 structural units are those which improve the transition from the singlet to the triplet state and which, in support of the abovementioned triplet emitter units, use the
  • carbazole and bridged carbazole dimer units are suitable for this purpose, as described, for example, in WO 2004/070772 A2 and in WO 2004/1 3468 A1. Furthermore come for this ketones, Phosphine oxides, sulfoxides, sulfones, silane derivatives and the like
  • Group 6 structural units are, in addition to the above, those having at least one more aromatic or other conjugated structure other than those mentioned above. Groups fall, i. which only slightly affect the charge carrier mobilities, which are not organometallic complexes or which do not affect the
  • Particularly preferred is the incorporation of 1, 4 phenylene, 1, 4-naphthylene, 1, 4 or 9,10-anthrylene, 1, 6, 2,7- or 4,9-pyrenylene, 4th , 4'-biphenylylene, 4.4 "terphenylylene, 4,4'-bi-1, 1'-naphthylylene, 4,4'-tolanylene, 4,4'-stilbenylene, 4,4" bisstyryl arylene, benzothiadiazole and corresponding oxygen derivatives, quinoxaline, phenothiazine, phenoxazine, dihydrophenazine,
  • Pentacene or perylene derivatives which are preferably substituted, or preferably conjugated push-pull systems (systems substituted with donor and acceptor substituents) or systems such as squarins or quinacridones, which are preferably substituted.
  • Group 7 structural units are units having aromatic structures of 6 to 40 carbon atoms, which are typically used as a backbone
  • 4,5-dihydropyrene derivatives 4,5,9,10-tetrahydropyrene derivatives, fluorene derivatives, 9,9'-spirobifluorene derivatives, phenanthrene derivatives, 9,10-dihydrophenanthrene derivatives, 5,7-dihydrodibenzooxepine derivatives and cis- and trans -Indenofluorenderivate, but
  • Group 8 structural units are those which influence the film morphology and / or the rheology of the polymers, e.g. Siloxanes, long alkyl chains or fluorinated groups, but also particularly rigid or flexible units, such as e.g. liquid crystal forming units or
  • Preferred polymers according to the invention are those in which
  • At least one structural unit has charge transport properties, i. Polymers which contain inter alia at least one unit selected from groups 1 and 2.
  • Preferred compounds of the invention are polymers which
  • structural units of the formula (I) additionally contain one or more units selected from groups 1 to 8. It may also be preferred that at the same time more than one structural unit is present in a group. It is likewise preferred if the polymers according to the invention
  • a proportion of 0.5 to 50 mol% of these units is particularly preferred; very particular preference is given to a proportion of from 1 to 30 mol% of these
  • the polymers according to the invention contain structural units from group 7 and units from group 1 and / or 2. It is particularly preferred if the sum of structural units of the formula (I), of units of group 7 and units of group 1 and / or 2 of the polymer is at least 50 mol%, based on all units of the polymer, preferably 0, 5 to 50 mo!% Units from group 1 and / or 2 are.
  • the above-mentioned copolymers can be obtained and which further structural elements are particularly preferred for it, is
  • a polymerization reaction is generally carried out with one or more different monomer units, wherein at least one monomer incorporated in the polymer leads to structural units of the formula (I).
  • dendrimers according to the invention are characterized by being prepared by SUZUKI, YAMAMOTO, STILLE, HECK, NEGISHI, SONOGASHIRA, HIYAMA, ULLMANN, WITTIG, or HARTWIG-BUCHWALD polymerization.
  • the dendrimers according to the invention can be prepared according to methods known to the person skilled in the art or in analogy thereto.
  • Monomers which lead to structural units of the formula (I) in the polymers according to the invention are compounds which are correspondingly substituted and have at two positions suitable functionalities which make it possible to incorporate this monomer unit in the polymer.
  • the symbols R used in formula (II) are defined as described with respect to formula (I).
  • the group X represents, identically or differently, a leaving group suitable for a polymerization reaction, so that the incorporation of the monomer building blocks into polymeric compounds is made possible.
  • X represents a chemical functionality which is identically or differently selected from the class of halogens, O-tosylates, O-triflates, O-sulfonates, boric acid esters, partially fluorinated silyl groups, diazonium groups and organotin compounds.
  • the backbone of the monomer compounds can be functionalized by standard methods, for example by Friedel-Crafts alkylation or acylation.
  • the skeleton can be halogenated according to standard methods of organic chemistry.
  • the halo- genated compounds can optionally be further implemented in additional functionalization steps.
  • the halogenated compounds can be used either directly or after conversion to a boronic acid derivative or organotin derivative as starting materials for the reaction to polymers, oligomers or dendrimers.
  • polymers according to the invention may be preferred not to use as a pure substance but as a mixture (blend) together with further any desired polymeric, oligomeric, dendritic or low molecular weight substances. These may e.g. the electronic
  • a mixture is understood above and below to mean a composition which contains at least one polymeric component.
  • Another object of the present application is thus a mixture (blend) containing one or more polymers of the invention, and one or more other polymeric, oligomeric, dendritic or low molecular weight substances.
  • a mixture contains a polymer according to the invention comprising structural units of the formula (I) and a low molecular weight substance.
  • a mixture contains a polymer according to the invention, an emitter which is either present in the polymer according to the invention or, as in the abovementioned embodiments, mixed as low molecular weight substance, and other low molecular weight substances.
  • These low molecular weight substances can have the same functionalities as have been mentioned for possible monomer units in groups 1 to 8.
  • the present application furthermore relates to formulations comprising one or more polymers according to the invention and
  • Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrole, tetrahydrofuran (THF), methyl THF, tetrahydropyran (THP), chlorobenzene, dioxane, phenoxytoluene, in particular 3 Phenoxytoluene, (-) - fenchone, 1,2,3,5-tetramethylbenzene, 1, 2,4,5-tetramethylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4 Methylanisole, 3,4-dimethylanisole, 3,5-dimethylanisole, acetophenone, terpineol, benzothiazole, butyl benzoate, cumene, cyclohexanol, cycl
  • These solutions can be used to prepare thin polymer layers, for example, by area coating methods (eg, spin-coating) or by printing methods (eg, ink-jet printing).
  • area coating methods eg, spin-coating
  • printing methods eg, ink-jet printing
  • the polymers, mixtures and formulations according to the invention can be used in electronic or optoelectronic devices or for their production.
  • the present application relates to the use of the polymers, mixtures and formulations according to the invention in electronic or optoelectronic devices, preferably in organic electroluminescent devices (OLED), organic light-emitting electrochemical cells (OLEC), organic field-effect transistors (OFETs), organic integrated circuits ( O-ICs), organic thin-film transistors (TFTs), organic solar cells (O-SCs), organic laser diodes (O-lasers), organic photovoltaic elements or devices (OPV) or organic photoreceptors (OPCs), particularly preferably in organic electroluminescent devices ( OLED).
  • OLED organic electroluminescent devices
  • OEC organic light-emitting electrochemical cells
  • OFFETs organic field-effect transistors
  • O-ICs organic integrated circuits
  • TFTs organic thin-film transistors
  • O-SCs organic solar cells
  • O-lasers organic laser diodes
  • O-lasers organic photovoltaic elements or devices
  • OPCs organic photoreceptors
  • OLEDs organic electroluminescent devices
  • Polymer, oligomer or dendrimer according to the invention as a layer (or in a layer) in the electronic device is present.
  • the present application thus also relates to a layer, in particular an organic layer, comprising one or more polymers according to the invention.
  • the compounds are used in organic electronic devices containing at least one layer containing one or more of the polymers of the invention.
  • the use is particularly in organic electroluminescent devices containing anode, cathode and at least one
  • At least one layer contains at least one inventive polymer having structural units of the formula (I).
  • the mixture of the polymer containing structural units of the formula (I) and the emitting compound then contains between 99 and 1% by weight, preferably between 98 and 60% by weight, particularly preferably between 97 and 70% by weight, in particular between 95 and 75 wt .-% of the polymer based on the total mixture of emitter and matrix material. Accordingly, the mixture contains between 1 and 99 wt .-%, preferably between 2 and 40 wt .-%, particularly preferably between 3 and 30 wt .-%, in particular between 5 and 25 wt .-% of the emitter based on the total mixture of Emitter and matrix material.
  • the polymers according to the invention are used as hole transport material or as hole injection material.
  • the polymer is preferably used in a hole transport or in a hole injection layer.
  • these hole injection layers according to the invention are triarylamines, carbazoles, silanes or phosphanes.
  • a hole injection layer in the sense of the present application is a layer which directly adjoins the anode.
  • a hole transport layer in the sense of the present application is a layer that lies between a hole injection layer and an emission layer.
  • TCNQ F 4 -tetracyanoquinodimethane
  • the polymers of the invention can be used in charge blocking layers. These charge blocking layers may consist of various suitable materials,
  • This layer which is generally applied by known coating techniques, may be of any effective thickness, preferably in the range of 0.05 to 0.5 ⁇ m.
  • the present application furthermore relates to electronic or optoelectronic components, preferably organic electroluminescent devices (OLED), organic light-emitting electrochemical cells (OLEC), organic field-effect transistors (OFETs), organic integrated circuits (O-ICs), organic thin film transistors (TFTs), organic solar cells (O-SCs), organic laser diodes (O-lasers), organic photovoltaic elements or devices (OPV) or organic photoreceptors (OPCs), more preferably organic electroluminescent devices with one or more active ones
  • OLED organic electroluminescent devices
  • OEC organic light-emitting electrochemical cells
  • OFFETs organic field-effect transistors
  • O-ICs organic integrated circuits
  • TFTs organic thin film transistors
  • O-SCs organic solar cells
  • O-lasers organic laser diodes
  • O-lasers organic photovoltaic elements or devices
  • OPCs organic photoreceptors
  • the active layer may be, for example, a light-emitting layer, a charge-transport layer and / or a charge-injection layer.
  • OLEDs can be produced is known to the person skilled in the art and is described in detail, for example, as a general method in WO 2004/070772 A2, which is to be adapted accordingly for the individual case.
  • an organic electroluminescent device characterized in that one or more layers of solution, such as by spin coating, or with any printing method, such as roll to roll, screen printing, Fiexotik or offset printing, more preferably, however, LITI (Light Induced Thermal Imaging, Thermal transfer printing), ink-jet printing (ink-jet printing), dipping method or spraying method.
  • LITI Light Induced Thermal Imaging, Thermal transfer printing
  • ink-jet printing ink-jet printing
  • dipping method or spraying method soluble compounds are needed.
  • the organic electroluminescent device may contain further layers. These may be selected, for example, from charge carrier injection, charge carrier transport or carrier blocking layer (T. Matsumoto et al., Multiphoton Organic EL Device Having Charge Generation Layer, IDMC 2003, Taiwan, Session 21 OLED (5)). But be it
  • the organic electroluminescent device comprises a plurality of emitting layers, wherein at least one layer contains at least one inventive polymer.
  • the emission layers preferably have a plurality of emission maxima between 380 nm and 750 nm, so that overall white emission results in this case.
  • three-layer systems wherein at least one of these layers contains at least one polymer according to the invention and wherein the three layers show blue, green and orange or red emission (for the basic structure see for example WO 05/01 1013).
  • the compounds according to the invention preferably have one or more of the following advantageous properties: 1.
  • the polymers of the present invention have a large bandgap to achieve a deep blue singlet emission for large color gamut display applications, and the larger band gaps in the polymers of this invention also allow their use as host materials not only for red but also for green triplet emission.
  • the compounds according to the invention increase the lifetime and the efficiency of, in particular, blue-emitting organic compounds
  • Electroluminescent devices for high-quality applications are Electroluminescent devices for high-quality applications.
  • the monomers used in addition to the 2,7-pyrenebisboron ester M1 and the 6-pyrenebisboron ester M2 are the following monomers whose preparation has already been disclosed in the prior art:
  • the monomers are copolymerized in the composition shown in the following Table 1, whereby the polymers P1 to P4 according to the invention and the comparative polymers V1 to V6 are obtained in the stated compositions [in mol%], the sum always equal to 100% and in equal parts Bromides and boronic esters are used. Table 1
  • OLED organic light-emitting diode
  • substrates of the company Technoprint Sodalimeglas
  • ITO structure indium tin oxide, a transparent, conductive anode
  • PEDOT is a polythiophene derivative (Baytron P VAI 4083sp.) From HC Starck, Goslar, which is supplied as aqueous dispersion) is also applied by spin coating in the clean room as buffer layer.
  • the required spin rate depends on the degree of dilution and the specific spincoater geometry (typically 80 nm: 4500 rpm).
  • an interlayer typically a hole-dominated polymer, here HIL-012 Merck
  • 65 nm of the polymer layers of toluene solutions concentration interlayer 5 g / l, for the polymers P1 to P4 and each 8th g / l for the comparative polymers V1 to V6
  • Both layers are baked at 180 ° C for at least 10 minutes.
  • the Ba / Al cathode is vapor deposited (high purity metals from Aldrich, especially barium 99.99% (stock number 474711); vapor deposition units from Lesker et al., More typically
  • Vapor pressure 5 ⁇ 10 -6 mbar Vapor pressure 5 ⁇ 10 -6 mbar.
  • the devices are clamped in holder specially made for the substrate size and contacted by means of spring contacts.
  • Photodiode with eye-tracking filter can be placed directly on the measuring holder to exclude the influence of extraneous light.
  • the voltages are from 0 to max. 20 V in 0.2 V increments and lowered again. For each measuring point, the current through the device and the photocurrent obtained by the
  • the polymers according to the invention have a deeper blue emission than
  • Table 2 also shows that polymer blends also show a deep blue emission, even if only one component, namely the component containing the emitter, has the structural unit of the formula (I) according to the invention.
  • the polymers according to the invention lead to longer lifetimes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Die vorliegende Erfindung betrifft Polymere, enthaltend 2,7-Pyren- Struktureinheiten, Verfahren zu deren Herstellung sowie Blends und Formulierungen enthaltend diese Polymere. Die vorliegende Erfindung betrifft ferner die Verwendung der erfindungsgemäßen Polymere bzw. Blends in elektronischen Vorrichtungen sowie elektronische Vorrichtungen, insbesondere OLEDs, enthaltend die erfindungsgemäßen Polymere bzw. Blends.

Description

Polymere enthaltend 2,7-Pyren-Struktureinheiten
Die vorliegende Erfindung betrifft Polymere, enthaltend 2,7-Pyren- Struktureinheiten, Verfahren zu deren Herstellung sowie Blends und Formulierungen enthaltend diese Polymere. Die vorliegende Erfindung betrifft ferner die Verwendung der erfindungsgemäßen Polymere bzw.
Blends in elektronischen Vorrichtungen sowie elektronische Vorrichtungen, insbesondere OLEDs, enthaltend die erfindungsgemäßen Polymere bzw. Blends. Verbindungen wie die erfindungsgemäßen Polymere werden für eine Reihe unterschiedlicher Anwendungen, die im weitesten Sinne der
Elektronikindustrie zugerechnet werden können, entwickelt. Der Aufbau organischer Elektrolumineszenzvorrichtungen (OLEDs), in denen diese organischen Halbleiter als funktionelle Materialien unter anderem
vorzugsweise eingesetzt werden, ist beispielsweise in der US 4539507, der US 5151629, der EP 0676461 und der WO 98/27136 beschrieben.
Aus dem Stand der Technik sind verschiedene polymere Materialien bekannt, die sich zur Verwendung in organischen Elektrolumineszenz- Vorrichtungen eignen. So werden zum Beispiel Verbindungen basierend auf Monomereinheiten wie Spirobifluoren, Fluoren, Indenofluoren,
Phenanthren oder Dihydrophenanthren in der WO 04/041901 , der
WO 04/113412 und der WO 05/014689 offenbart. Es besteht jedoch ein kontinuierlicher Bedarf an neuen Materialien zur Verwendung in organischen elektronischen Vorrichtungen, insbesondere im Hinblick auf eine Verbesserung der Vorrichtungen in den folgenden Punkten: 1. Es werden Materialien mit einer größeren Bandlücke („bandgap") benötigt, so dass sich eine tiefer blaue Singulett-Emission für
Displayanwendungen mit großem Farbraum erreichen lässt. Größere Bandlücken in Polymeren würden außerdem ermöglichen, diese als Host-Materialien nicht nur für rote sondern auch für grüne Triplett- Emission zu verwenden.
2. Die Lebensdauer und die Effizienz organischer Elektrolumineszenz- vorrichtungen sollte weiter gesteigert werden, insbesondere bei blau emittierenden Systemen und im Hinblick auf hochwertige Anwendungen.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, neue Materialien für elektronische Vorrichtungen bereitzustellen, die eine größere Bandlücke aufweisen bzw. die Lebensdauer und die Effizienz organischer Elektrolumineszenzvorrichtungen verbessern.
Überraschenderweise wurde gefunden, dass Verbindungen enthaltend 2,7-Pyreneinheiten, erfolgreich als Materialien in elektronischen
Vorrichtungen, vorzugsweise organischen Elektrolumineszenz- Vorrichtungen, eingesetzt werden können.
Gegenstand der vorliegenden Anmeldung ist somit ein Polymer enthaltend eine oder mehrere Struktureinheiten der folgenden Formel (I),
Figure imgf000003_0001
wobei
R1 bei jedem Auftreten, gleich oder verschieden H, D, F, Cl, Br, I, OH, N(R2)2, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, in der auch ein oder mehrere H-Atome durch R2 ersetzt sein können und in der auch eine oder mehrere nicht benachbarte CH2-Gruppen durch O, S, Si(R2)2, Ge(R2)2, BR2, NR2, PR2, CO, C=S, C=Se, C= ik2, PO(R2), PS(R2), R2C=CR2, C=C, SO, SO2, COO, O(CO)O oder CONR2 ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem;
R2 bei jedem Auftreten, gleich oder verschieden H, F, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, in der auch ein oder mehrere H-Atome durch F ersetzt sein können und in der auch eine oder mehrere nicht benachbarte CH2-Gruppen durch O, CO, COO oder O(CO)O ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem; und
die gestrichelten Linien die Bindungen zu den benachbarten
Struktureinheiten im Polymer darstellen. Die erfindungsgemäßen Polymere enthalten vorzugsweise 2 bis 10.000 Wiederholungseinheiten, wobei von dem Begriff„Polymer" in der vorliegenden Anmeldung sowohl Polymere als auch Dendrimere und Oligomere umfasst sein sollen. Die erfindungsgemäßen oligomeren Verbindungen weisen 2 bis 9 Wiederholungseinheiten auf. Bevorzugte erfindungsgemäße Polymere und Dendrimere enthalten insgesamt 10 bis 10.000 Wiederholungseinheiten. Der Verzweigungsgrad DB (degree of branching) der Polymere und Dendrimere kann dabei zwischen 0 (lineares Polymer ohne Verzweigungsstellen) und 1 (vollständig verzweigtes Dendrimer) liegen.
Die erfindungsgemäßen Polymere weisen vorzugsweise ein Molekulargewicht Mw im Bereich von 1.000 bis 2.000.000 g/mol, besonders bevorzugt ein Molekulargewicht Mw im Bereich von 10.000 bis 1.500.000 g/mol und ganz besonders bevorzugt ein Molekulargewicht Mw im Bereich von 50.000 bis 1.000.000 g/mol auf. Die Bestimmung des Molekulargewichts Mw erfolgt mittels GPC (= Gelpermeationschromatographie) gegen einen internen Polystyrolstandard.
In der erfindungsgemäßen Ausführungsform beträgt der Anteil der Struktureinheiten der Formel (I) im Polymer 0,01 bis 100 mol%, vorzugsweise 1 bis 95 mol%, besonders bevorzugt 10 bis 80 mol% und ganz besonders bevorzugt 30 bis 60 mol%.
Unter dem Begriff„mono- oder polycyclisches, aromatisches Ringsystem" wird in der vorliegenden Anmeldung ein aromatisches Ringsystem mit 6 bis 60, vorzugsweise 6 bis 30, besonders bevorzugt 6 bis 14 und ganz besonders bevorzugt 6 bis 10 aromatischen Ringatomen verstanden, das nicht notwendigerweise nur aromatische Gruppen enthält, sondern in dem auch mehrere aromatische Einheiten durch eine kurze nicht-aromatische Einheit (< 0% der von H verschiedenen Atome, vorzugsweise < 5% der von H verschiedenen Atome), wie beispielsweise sp3-hybridisiertes C- Atom bzw. O- oder N-Atom, CO-Gruppe etc., unterbrochen sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9- Diarylfluoren, etc. als aromatische Ringsysteme verstanden werden. Die aromatischen Ringsysteme können mono- oder polycyclisch sein, d.h. sie können einen Ring (z.B. Phenyl) oder mehrere Ringe aufweisen, welche auch kondensiert (z.B. Naphthyl) oder kovalent verknüpft sein können (z.B. Biphenyl), oder eine Kombination von kondensierten und verknüpften Ringen enthalten.
Bevorzugte aromatische Ringsysteme sind z.B. Phenyl, Biphenyl,
Terphenyl, Naphthyl, Binaphthyl, Phenanthren, Dihydrophenanthren, Pyren, Dihydropyren, Chrysen, Fluoren, Inden, Indenofluoren und
Spirobifluoren.
Unter dem Begriff„mono- oder polycyclisches, heteroaromatisches
Ringsystem" wird in der vorliegenden Anmeldung ein aromatisches
Ringsystem mit 5 bis 60, vorzugsweise 5 bis 30, besonders bevorzugt 5 bis 20 und ganz besonders bevorzugt 5 bis 9 aromatischen Ringatomen verstanden, wobei ein oder mehrere dieser Atome ein Heteroatom ist/sind.
Das„mono- oder polycyclische, heteroaromatische Ringsystem" enthält nicht notwendigerweise nur aromatische Gruppen, sondern kann auch durch eine kurze nicht-aromatische Einheit (< 10% der von H
verschiedenen Atome, vorzugsweise < 5% der von H verschiedenen Atome), wie beispielsweise sp3-hybridisiertes C-Atom bzw. O- oder N- Atom, CO-Gruppe etc., unterbrochen sein.
Die heteroaromatischen Ringsysteme können mono- oder polycyclisch sein, d.h. sie können einen Ring oder mehrere Ringe aufweisen, welche auch kondensiert oder kovalent verknüpft sein können (z.B. Pyridylphenyl), oder eine Kombination von kondensierten und verknüpften Ringen enthalten. Bevorzugt sind vollständig konjugierte Heteroarylgruppen.
Bevorzugte heteroaromatische Ringsysteme sind z.B. 5-gliedrige Ringe wie Pyrrol, Pyrazol, Imidazol, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Tetrazol, Furan, Thiophen, Selenophen, Oxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, 1 ,2,3- Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, ,3,4-Oxadiazol, 1 ,2,3- Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5-Thiadiazol, 1,3,4-Thiadiazol, 6-gliedrige Ringe wie Pyridin, Pyridazin, Pyrimidin, Pyrazin, 1 ,3,5-Triazin, 1 ,2,4- Triazin, 1 ,2,3-Triazin, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, oder kondensierte Gruppen wie Indol, Isoindol, Indolizin, Indazol,
Benzimidazol, Benzotriazol, Purin, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Benzoxazol,
Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, Benzothiazol, Benzofuran, Isobenzofuran, Dibenzofuran, Chinolin, Isochinolin, Pteridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin,
Benzoisochinolin, Acridin, Phenothiazin, Phenoxazin, Benzopyridazin, Benzopyrimidin, Chinoxalin, Phenazin, Naphthyridin, Azacarbazol,
Benzocarbolin, Phenanthridin, Phenanthrolin, Thieno[2,3b]thiophen, Thieno[3,2b]thiophen, Dithienothiophen, Isobenzothiophen, Dibenzo- thiophen, Benzothiadiazothiophen oder Kombinationen dieser Gruppen.
Das mono- oder polycyclische, aromatische oder heteroaromatische Ringsystem kann unsubstituiert oder substituiert sein. Substituiert heißt in der vorliegenden Anmeldung, dass das mono- oder polycyclische, aromatische oder heteroaromatische Ringsystem einen oder mehrere Substituenten R1 aufweist. Bevorzugte Struktureinheiten der Formel (I) werden durch die im
Folgenden aufgeführten Formeln (la) bis (Ic) repräsentiert, wobei die Formel (Ic) besonders bevorzugt ist.
Figure imgf000007_0001
Die gestrichelten Linien in den Formeln (la), (Ib) und (Ic) stellen dabei die Bindungen zu den benachbarten Struktureinheiten im Polymer dar. R1 in den Formeln (la) und (Ib) kann dabei die für R1 in Bezug auf Formel (I) angegebenen Bedeutungen annehmen.
Bevorzugt ist R1 in den Formeln (I), (la) und (Ib) bei jedem Auftreten, gleich oder verschieden eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 10 C-Atomen, besonders bevorzugt mit 1 bis 6 C-Atomen, oder eine verzweigte Alkyl- oder Alkoxygruppe mit 3 bis 10 C-Atomen, besonders bevorzugt mit 3 bis 6 C-Atomen, ein aromatisches Ringsystem mit 6 bis 30, besonders bevorzugt mit 6 bis 18 aromatischen Ringatomen oder ein heteroaromatisches Ringsystem mit 5 bis 30, besonders bevorzugt mit 5 bis 20 Ringatomen, von denen mindestens ein Ringatom ein Heteroatom ist. Das aromatische oder heteroaromatische Ringsystem kann dabei entweder unsubstituiert oder mir einem oder mehreren Resten R3 substituiert sein, wobei R3 gleich oder verschieden eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 10 C-Atomen, besonders bevorzugt mit 1 bis 6 C-Atomen, oder eine verzweigte Alkyl- oder Alkoxygruppe mit 3 bis 10 C- Atomen, besonders bevorzugt mit 3 bis 6 C-Atomen, ist.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das erfindungsgemäße Polymer neben einer oder mehrerer Struktureinheiten der Formel (I) noch mindestens eine weitere Struktureinheit, die von der Struktureinheit der Formel (I) verschieden ist. Dies sind unter anderem solche, wie sie in der WO 02/077060 A1 und in der WO 2005/014689 A2 offenbart und umfangreich aufgelistet sind. Diese werden via Zitat als Bestandteil der vorliegenden Anmeldung betrachtet. Die weiteren
Struktureinheiten können beispielsweise aus den folgenden Klassen stammen:
Gruppe 1: Einheiten, welche die Lochinjektions- und/oder
Lochtransporteigenschaften der Polymere beeinflussen;
Gruppe 2: Einheiten, welche die Elektroneninjekttons- und/oder
Elektronentransporteigenschaften der Polymere beeinflussen;
Gruppe 3: Einheiten, die Kombinationen von Einzeleinheiten der Gruppe
1 und Gruppe 2 aufweisen;
Gruppe 4 Einheiten, welche die Emissionscharakteristik insoweit
verändern, dass Elektrophosphoreszenz statt
Elektrofluoreszenz erhalten werden kann;
Gruppe 5 Einheiten, welche den Übergang vom Singulett- Triplettzustand verbessern;
Gruppe 6 Einheiten, welche die Emissionsfarbe der resultierenden
Polymere beeinflussen; Gruppe 7: Einheiten, welche typischerweise als Polymergrundgerüst („backbone") verwendet werden;
Gruppe 8: Einheiten, welche die Filmmorphologie und/oder die
Rheologie der resultierenden Polymere beeinflussen.
Struktureinheiten aus der Gruppe 1 , die Lochinjektions- und/oder
Lochtransporteigenschaften aufweisen, sind beispielsweise Triarylamin-, Benzidin-, Tetraaryl-para-phenylendiamin-, Triarylphosphin-,
Phenothiazin-, Phenoxazin-, Dihydrophenazin-, Thianthren-, Dibenzo-para- dioxin-, Phenoxathiin-, Carbazol-, Azulen-, Thiophen-, Pyrrol- und
Furanderivate und weitere O-, S- oder N-haltige Heterocyden mit hoch liegendem HOMO (HOMO = höchstes besetztes Molekülorbital).
Vorzugsweise führen diese Arylamine und Heterocyden zu einem HOMO im Polymer von mehr als -5,8 eV (gegen Vakuumlevel), besonders bevorzugt von mehr als -5,5 eV.
Struktureinheiten aus der Gruppe 2, die Elektroneninjektions- und/oder Elektronentransporteigenschaften aufweisen, sind beispielsweise Pyridin-, Pyrimidin-, Pyridazin-, Pyrazin-, Oxadiazol-, Chinolin-, Chinoxalin-,
Anthracen-, Benzanthracen-, Pyren-, Benzimidazol-, Triazin-, Keton-, Phosphinoxid- und Phenazinderivate, aber auch Triarylborane und weitere O-, S- oder N-haltige Heterocyden mit niedrig liegendem LUMO (LUMO = niedrigstes unbesetztes Molekülorbital). Vorzugsweise führen diese Einheiten im Polymer zu einem LUMO von weniger als -1 ,5 eV (gegen Vakuumlevel), besonders bevorzugt von weniger als -2,0 eV.
Es kann bevorzugt sein, wenn in den erfindungsgemäßen Polymeren Einheiten aus der Gruppe 3 enthalten sind, in denen Strukturen, welche die Lochmobilität und welche die Elektronenmobilität beeinflussen (also Einheiten aus Gruppe 1 und 2), direkt aneinander gebunden sind oder Strukturen enthalten sind, die sowohl die Lochmobilität als auch die
Elektronenmobilität beeinflussen. Einige dieser Einheiten können als Emitter dienen und verschieben die Emissionsfarbe ins Grüne, Gelbe oder Roie. Ihre Verwendung eignet sich also beispielsweise für die Erzeugung anderer Emissionsfarben aus ursprünglich blau emittierenden Polymeren.
Struktureinheiten aus der Gruppe 4, so genannte Triplett-Emitter- Einheiten, sind solche, welche auch bei Raumtemperatur mit hoher Effizienz aus dem Triplettzustand Licht emittieren können, also
Elektrophosphoreszenz statt Elektrofluoreszenz zeigen, was häufig eine Steigerung der Energieeffizienz bewirkt. Unter einer Triplett-Emitter-Einheit wird in der vorliegenden Anmeldung eine Verbindung verstanden, die einen Triplett-Emitter umfasst. Unter Triplett-Emitter werden in der vorliegenden Anmeldung alle Verbindungen verstanden, die in der Lage sind, durch Übergang aus einem Triplett-Zustand in einen energetisch tieferen Zustand Licht im sichtbaren oder NIR-Bereich auszusenden. Man spricht hier auch von Phosphoreszenz. Hierfür eignen sich zunächst Verbindungen, welche Schweratome mit einer Ordnungszahl von mehr als 36 enthalten. Bevorzugt sind Verbindungen, welche d- oder f-Übergangs- metalle enthalten, die die o.g. Bedingung erfüllen. Besonders bevorzugt sind hier entsprechende Struktureinheiten, welche Elemente der Gruppe 8 bis 10 des Periodensystems (Ru, Os, Rh, Ir, Pd, Pt) enthalten. Als
Struktureinheiten für die erfindungsgemäßen Polymere kommen hier z.B. verschiedene Komplexe in Frage, wie sie z.B. in der WO 02/068435 A1 , in der WO 02/081488 A1 und in der EP 1239526 A2 beschrieben werden. Entsprechende Monomere werden in der WO 02/068435 A1 und in der WO 2005/042548 A1 beschrieben. Erfindungsgemäß ist es bevorzugt, Triplett-Emitter, die im sichtbaren Spektralbereich (Rot, Grün oder Blau) emittieren, einzusetzen. Der Triplett-Emitter kann Teil des Grundgerüsts („backbone") des Polymers sein (d.h. in der Hauptkette des Polymers) oder er kann sich in einer Seitenkette des Polymeren befinden.
Struktureinheiten aus der Gruppe 5 sind solche, die den Übergang vom Singulett- zum Triplettzustand verbessern und welche, unterstützend zu den oben genannten Triplett-Emitter-Einheiten eingesetzt, die
Phosphoreszenzeigenschaften dieser Strukturelemente verbessern.
Hierfür kommen insbesondere Carbazol- und überbrückte Carbazoldimer- einheiten in Frage, wie sie z.B. in der WO 2004/070772 A2 und in der WO 2004/1 3468 A1 beschrieben werden. Weiterhin kommen hierfür Ketone, Phosphinoxide, Sulfoxide, Sulfone, Silan-Derivate und ähnliche
Verbindungen in Frage, wie sie z.B. in der WO 2005/040302 A1
beschrieben werden.
Struktureinheiten aus der Gruppe 6 sind neben den oben genannten solche, die mindestens noch eine weitere aromatische oder eine andere konjugierte Struktur aufweisen, welche nicht unter die o.g. Gruppen fallen, d.h. die die Ladungsträgermobilitäten nur wenig beeinflussen, die keine metallorganischen Komplexe sind oder die keinen Einfluss auf den
Singulett-Triplett-Übergang haben. Derartige Strukturelemente können die Emissionsfarbe der resultierenden Polymere beeinflussen. Je nach Einheit können sie daher auch als Emitter eingesetzt werden. Bevorzugt sind dabei aromatische Strukturen mit 6 bis 40 C-Atomen oder auch Tolan-, Stilben- oder Bisstyrylarylenderivate, die jeweils mit einem oder mehreren Resten R1 substituiert sein können. Besonders bevorzugt ist dabei der Einbau von 1 ,4 Phenylen-, 1 ,4-Naphthylen-, 1 ,4- oder 9,10-Anthrylen-, 1 ,6-, 2,7- oder 4,9-Pyrenylen-, 4,4'-Biphenylylen-, 4,4" Terphenylylen, 4,4'-Bi-1 ,1'-naphthylylen-, 4,4'-Tolanylen-, 4,4'-Stilbenylen-, 4,4" Bisstyryl- arylen-, Benzothiadiazol- und entsprechenden Sauerstoffderivaten, Chinoxalin-, Phenothiazin-, Phenoxazin-, Dihydrophenazin-,
Bis(thiophenyl)arylen-, Oligo(thiophenylen)-, Phenazin-, Rubren-,
Pentacen- oder Perylenderivaten, die vorzugsweise substituiert sind, oder vorzugsweise konjugierte Push-Pull-Systeme (Systeme, die mit Donorund Akzeptorsubstituenten substituiert sind) oder Systeme wie Squarine oder Chinacridone, die vorzugsweise substituiert sind.
Struktureinheiten aus der Gruppe 7 sind Einheiten, die aromatische Strukturen mit 6 bis 40 C-Atomen aufweisen, welche typischerweise als Polymergrundgerüst („backbone") verwendet werden. Dies sind
vorzugsweise 4,5-Dihydropyrenderivate, 4,5,9, 10-Tetrahydropyren- derivate, Fluorenderivate, 9,9'-Spirobifluorenderivate, Phenanthren- derivate, 9,10-Dihydrophenanthrenderivate, 5,7-Dihydrodibenzo- oxepinderivate und eis- und trans-lndenofluorenderivate, aber
grundsätzlich auch alle ähnlichen Strukturen, die nach der Polymerisation zu einem konjugierten, verbrückten oder unverbrückten Polyphenylen- oder Poly-Phenylen-Vinylen-Homopolymer führen würden. Auch hier kann die genannte aromatische Struktur Heteroatome wie O, S oder N im
Grundgerüst oder einer Seitenkette enthalten.
Struktureinheiten aus der Gruppe 8 sind solche, die die Filmmorphologie und/oder die Rheologie der Polymere beeinflussen, wie z.B. Siloxane, lange Alkylketten oder fluorierte Gruppen, aber auch besonders steife oder flexible Einheiten, wie z.B. flüssigkristallbildende Einheiten oder
vernetzbare Gruppen.
Bevorzugte erfindungsgemäße Polymere sind solche, bei denen
mindestens eine Struktureinheit Ladungstransporteigenschaften aufweist, d.h. Polymere, welche unter anderem mindestens eine Einheit ausgewählt aus den Gruppen 1 und 2 enthalten.
Bevorzugte erfindungsgemäße Verbindungen sind Polymere, die
gleichzeitig neben Struktureinheiten der Formel (I) zusätzlich noch eine oder mehrere Einheiten ausgewählt aus den Gruppen 1 bis 8 enthalten. Es kann ferner bevorzugt sein, dass gleichzeitig mehr als eine Struktureinheit aus einer Gruppe vorliegt. Ebenfalls bevorzugt ist es, wenn die erfindungsgemäßen Polymere
Einheiten enthalten, die den Ladungstransport und/oder die Ladungsinjektion verbessern, also Einheiten aus der Gruppe 1 und/oder 2;
besonders bevorzugt ist ein Anteil von 0,5 bis 50 mol% dieser Einheiten; ganz besonders bevorzugt ist ein Anteil von 1 bis 30 mol% dieser
Einheiten.
Besonders bevorzugt ist es weiterhin, wenn die erfindungsgemäßen Polymere Struktureinheiten aus der Gruppe 7 und Einheiten aus der Gruppe 1 und/oder 2 enthalten. Besonders bevorzugt ist es, wenn die Summe aus Struktureinheiten der Formel (I), aus Einheiten der Gruppe 7 und Einheiten aus der Gruppe 1 und/oder 2 des Polymeren mindestens 50 mol% beträgt, bezogen auf alle Einheiten des Polymeren, wobei vorzugsweise 0,5 bis 50 mo!% Einheiten aus der Gruppe 1 und/oder 2 sind. Wie die oben genannten Copolymere erhalten werden können und welche weiteren Strukturelemente dafür besonders bevorzugt sind, ist
beispielsweise ausführlich in der WO 2005/014688 A2 beschrieben. Diese wird durch Zitat Bestandteil der Offenbarung der vorliegenden Anmeldung. Ebenso sei an dieser Stelle hervorgehoben, dass das Polymer auch dendritische Strukturen haben kann.
Die Synthese der oben beschriebenen Einheiten aus den Gruppen 1 bis 8 sowie der weiteren emittierenden Einheiten ist dem Fachmann bekannt und in der Literatur, z.B. in der WO 2005/014689 A2, in der WO
2005/030827 A1 und in der WO 2005/030828 A1 , beschrieben. Diese
Dokumente und die darin zitierte Literatur sind durch Zitat Bestandteil der in der vorliegenden Anmeldung offenbarten technischen Lehre.
Zur Synthese der erfindungsgemäßen Verbindungen wird in der Regel eine Polymerisationsreaktion mit einem oder mehreren verschiedenen Monomerbausteinen durchgeführt, wobei mindestens ein Monomer eingebaut in das Polymer zu Struktureinheiten der Formel (I) führt.
Geeignete Polymerisationsreaktionen sind dem Fachmann bekannt und in der Literatur beschrieben. Besonders geeignete und bevorzugte
Polymerisationsreaktionen, welche zu C-C oder C-N-Verknüpfungen führen, sind folgende: SUZUKI-, YAMAMOTO-, STILLE-, HECK-,
NEGISHI-, SONOGASHIRA-, HIYAMA-, ULLMANN-, WITTIG- oder HARTWIG-BUCHWALD-Polymerisation. Wie die Polymerisation nach diesen Methoden durchgeführt werden kann und wie die Polymere dann vom Reaktionsmedium abgetrennt und aufgereinigt werden können, ist dem Fachmann bekannt und in der Literatur, beispielsweise in der WO 03/048225 A2, in der WO 2004/037887 A2 und in der WO 2004/037887 A2 im Detail beschrieben. Gegenstand der vorliegenden Anmeldung ist somit auch ein Verfahren zur Herstellung der erfindungsgemäßen Polymere, das dadurch
gekennzeichnet ist, dass sie durch SUZUKI-, YAMAMOTO-, STILLE-, HECK-, NEGISHI-, SONOGASHIRA-, HIYAMA-, ULLMANN-, WITTIG- oder HARTWIG-BUCHWALD-Polymerisation hergestellt werden. Die erfindungsgemäßen Dendrimere können gemäß dem Fachmann bekannten Verfahren oder in Analogie dazu hergestellt werden. Geeignete Verfahren sind in der Literatur beschrieben, z.B. in Frechet, Jean M. J.; Hawker, Craig J., "Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers", Reactive & Functional Polymers (1995), 26(1-3), 127-36; Janssen, H. M.; Meijer, E. W., "The synthesis and characterization of dendritic molecules", Materials Science and Technology ( 999), 20 (Synthesis of Polymers), 403-458; Tomalia, Donald A., "Dendrimer molecules", Scientific American (1995), 272(5), 62-6, WO 02/067343 A1 und WO 2005/026144 A1.
Zur Synthese der erfindungsgemäßen Polymere werden die
entsprechenden Monomere der Formel (II) benötigt.
Figure imgf000014_0001
Monomere, die in den erfindungsgemäßen Polymeren zu Struktureinheiten der Formel (I) führen, sind Verbindungen, die entsprechend substituiert sind und an zwei Positionen geeignete Funktionalitäten aufweisen, die es erlauben, diese Monomereinheit in das Polymer einzubauen. Diese
Monomere der Formel (II) sind somit ebenfalls Gegenstand der
vorliegenden Anmeldung. Die verwendeten Symbole R in Formel (II) sind, wie in Bezug auf Formel (I) beschrieben, definiert. Die Gruppe X stellt, gleich oder verschieden, eine für eine Polymerisationsreaktion geeignete Abgangsgruppe dar, so dass der Einbau der Monomerbausteine in polymere Verbindungen ermöglicht wird. Vorzugsweise stellt X eine chemische Funktionalität dar, welche gleich oder verschieden ausgewählt ist aus der Klasse der Halogene, O-Tosylate, O-Triflate, O-Sulfonate, Borsäureester, teilfluorierten Silylgruppen, Diazoniumgruppen und zinnorganischen Verbindungen. Das Grundgerüst der Monomerverbindungen lässt sich nach Standardmethoden funktionaiisieren, beispielsweise durch Friedel-Crafts- Alkylierung oder -Acylierung. Weiterhin lässt sich das Grundgerüst nach Standardmethoden der organischen Chemie halogenieren. Die halo- genierten Verbindungen lassen sich in zusätzlichen Funktionalisierungs- schritten wahlweise weiter umsetzen. Beispielsweise können die halogenierten Verbindungen entweder direkt oder nach Überführung in ein Boronsäurederivat oder zinnorganisches Derivat als Ausgangsstoffe für die Umsetzung zu Polymeren, Oligomeren oder Dendrimeren eingesetzt werden.
Die genannten Methoden stellen lediglich eine Auswahl aus den dem Fachmann bekannten Reaktionen dar, welche dieser, ohne erfinderisch tätig zu werden, zur Synthese der erfindungsgemäßen Verbindungen einsetzen kann.
Es kann bevorzugt sein, die erfindungsgemäßen Polymere nicht als Reinsubstanz, sondern als Mischung (Blend) zusammen mit weiteren beliebigen polymeren, oligomeren, dendritischen oder niedermolekularen Substanzen zu verwenden. Diese können z.B. die elektronischen
Eigenschaften verbessern oder selbst emittieren. Als Mischung wird vor- und nachstehend eine Zusammensetzung verstanden, die mindestens eine polymere Komponente enthält. Ein weiterer Gegenstand der vorliegenden Anmeldung ist somit eine Mischung (Blend), die ein oder mehrere erfindungsgemäße Polymere, sowie eine oder mehrere weitere polymere, oligomere, dendritische oder niedermolekulare Substanzen enthält. In einer weiteren Ausführungsform der vorliegenden Anmeldung ist es bevorzugt, dass eine Mischung ein erfindungsgemäßes Polymer enthaltend Struktureinheiten der Formel (I) sowie eine niedermolekulare Substanz enthält. ln einer weiteren erfindungsgemäßen Ausführungsform ist es bevorzugt, dass eine Mischung ein erfindungsgemäßes Polymer, einen Emitter, der entweder im erfindungsgemäßen Polymer enthalten oder wie in den vorgenannten Ausführungsformen als niedermolekulare Substanz beigemischt ist, und weitere niedermolekulare Substanzen enthält. Diese niedermolekularen Substanzen können über die gleichen Funktionalitäten verfügen, wie sie für mögliche Monomerbausteine in den Gruppen 1 bis 8 genannt wurden.
Gegenstand der vorliegenden Anmeldung sind weiterhin Formulierungen enthaltend ein oder mehrere erfindungsgemäße Polymere sowie
mindestens ein Lösungsmittel. Wie solche Lösungen hergestellt werden können, ist dem Fachmann bekannt und beispielsweise in der WO
02/072714 A1 , in der WO 03/019694 A2 und in der darin zitierten Literatur beschrieben.
Geeignete und bevorzugte Lösungsmittel sind beispielsweise Toluol, Anisol, o-, m- oder p-Xylol, Methylbenzoat, Mesitylen, Tetralin, Veratrol, Tetrahydrofuran (THF), Methyl-THF, Tetrahydropyran (THP), Chlorbenzol, Dioxan, Phenoxytoluol, insbesondere 3-Phenoxytoluol, (-)-Fenchon, 1 ,2,3,5-Tetramethylbenzol, 1 ,2,4,5-tetramethylbenzol, 1-Methylnaphtalin, 2-Methylbenzothiazol, 2-Phenoxyethanol, 2-Pyrrolidinon, 3-Methylanisol, 4- Methylanisol, 3,4-Dimethylanisol, 3,5-Dimethylanisol, Acetophenon, - Terpineol, Benzothiazol, Butylbenzoat, Cumol, Cyclohexanol, Cyclo- hexanon, Cyclohexylbenzol, Decalin, Dodecyibenzol, Ethylbenzoat, Indan, Methylbenzoat, NMP, p-Cymol, Phenetol, 1 ,4-Diisopropylbenzol, Dibenzyl ether, Diethylenglycolbutylmethylether, Triethylenglycolbutylmethylether, Diethylenglycoldibutylether, Triethylenglycoldimethylether, Diethylen- glycolmonobutylether, Tripropylenglycoldimethylether, Tetraethylenglycol- dimethylether, 2-lsopropylnaphthalin, Pentylbenzol, Hexylbenzol,
Heptylbenzol, Octylbenzol, 1 ,1-Bis(3,4-Dimethylphenyl)ethan oder
Mischungen dieser Lösungsmittel.
Diese Lösungen können verwendet werden, um dünne Polymerschichten herzustellen, zum Beispiel durch Flächenbeschichtungsverfahren (z.B. Spin-coating) oder durch Druckverfahren (z.B. Ink-Jet Printing). Die erfindungsgemäßen Polymere, Mischungen und Formulierungen können in elektronischen oder opto-elektronischen Vorrichtungen bzw. zu deren Herstellung verwendet werden. Gegenstand der vorliegenden Anmeldung ist die Verwendung der erfindungsgemäßen Polymere, Mischungen und Formulierungen in elektronischen oder optoelektronischen Vorrichtungen, vorzugsweise in organischen Elektrolumineszenzvorrichtungen (OLED), organischen Lichtemittierenden elektrochemischen Zellen (OLEC), organischen Feld-Effekt- Transistoren (OFETs), organischen integrierten Schaltungen (O-ICs), organischen Dünnfilmtransistoren (TFTs), organischen Solarzellen (O- SCs), organischen Laserdioden (O-Laser), organischen photovoltaischen Elementen oder Vorrichtungen (OPV) oder organischen Photorezeptoren (OPCs), besonders bevorzugt in organischen Elektrolumineszenz- Vorrichtungen (OLED).
Die vorliegende Anmeldung ist auf die Verwendung der erfindungsgemäßen Verbindungen in organischen Elektrolumineszenzvorrichtungen (OLEDs) fokussiert. Es ist jedoch für den Fachmann ohne weiteres erfinderisches Zutun möglich, die erfindungsgemäßen Verbindungen auch für weitere Verwendungen in anderen elektronischen Vorrichtungen einzusetzen.
Im Sinne der vorliegenden Erfindung ist es bevorzugt, dass das
erfindungsgemäße Polymer, Oligomer oder Dendrimer als Schicht (oder in einer Schicht) in der elektronischen Vorrichtung vorliegt.
Gegenstand der vorliegenden Anmeldung ist somit auch eine Schicht, insbesondere eine organische Schicht, enthaltend ein oder mehrere erfindungsgemäße Polymere.
Vorzugsweise werden die Verbindungen in organischen elektronischen Vorrichtungen verwendet, enthaltend mindestens eine Schicht enthaltend eine oder mehrere der erfindungsgemäßen Polymere. Bevorzugt ist die Verwendung insbesondere in organischen Elektrolumineszenz- vorrichtungen, enthaltend Anode, Kathode und mindestens eine
emittierende Schicht, dadurch gekennzeichnet, dass mindestens eine Schicht mindestens ein erfindungsgemäßes Polymer enthält, welches Struktureinheiten der Formel (I) aufweist. In einer weiteren Ausführungsform ist es bevorzugt, dass das Polymer enthaltend Struktureinheiten der Formel (I) zusammen mit einer
emittierenden Verbindung in einer emittierenden Schicht eingesetzt wird. Die Mischung aus dem Polymer enthaltend Struktureinheiten der Formel (I) und der emittierenden Verbindung enthält dann zwischen 99 und 1 Gew.-%, vorzugsweise zwischen 98 und 60 Gew.-%, besonders bevorzugt zwischen 97 und 70 Gew.-%, insbesondere zwischen 95 und 75 Gew.-% des Polymeren bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial. Entsprechend enthält die Mischung zwischen 1 und 99 Gew.-%, vorzugsweise zwischen 2 und 40 Gew.-%, besonders bevorzugt zwischen 3 und 30 Gew.-%, insbesondere zwischen 5 und 25 Gew.-% des Emitters bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial.
In nochmals einer weiteren Ausführungsform der vorliegenden Erfindung werden die erfindungsgemäßen Polymere als Lochtransportmaterial bzw. als Lochinjektionsmaterial eingesetzt. Das Polymer wird vorzugsweise in einer Lochtransport- bzw. in einer Lochinjektionsschicht eingesetzt.
Beispielsweise sind diese erfindungsgemäßen Lochinjektionsschichten Triarylamine, Carbazole, Silane oder Phosphane. Eine Lochinjektionsschicht im Sinne der vorliegenden Anmeldung ist eine Schicht, die direkt an die Anode angrenzt. Eine Lochtransportschicht im Sinne der vorliegenden Anmeldung ist eine Schicht, die zwischen einer Lochinjektionsschicht und einer Emissionsschicht liegt. Wenn erfindungsgemäße Polymere als Lochtransport- bzw. als Lochinjektionsmaterial verwendet werden, kann es bevorzugt sein, wenn sie mit Elektronenakzeptor-Verbindungen dotiert werden, beispielsweise mit F4-Tetracyano- chinodimethan (TCNQ) oder mit Verbindungen wie in der EP 1476881 und in der EP 596445 beschrieben. Darüber hinaus können die erfindungsgemäßen Polymere in Ladungsblockierschichten verwendet werden. Diese Ladungsblockierschichten können aus verschiedenen geeigneten Materialien bestehen,
einschließlich Aluminiumoxid, Polyvinylbutyral, Silan und Mischungen davon. Diese Schicht, welche allgemein durch bekannte Beschichtungs- techniken aufgebracht wird, kann von jeder wirksamen Dicke sein, vorzugsweise im Bereich von 0,05 bis 0,5 pm.
Gegenstand der vorliegenden Anmeldung sind ferner elektronische bzw. optoelektronische Bauteile, vorzugsweise organische Elektrolumineszenz- Vorrichtungen (OLED), organische Licht-emittierende elektrochemische Zellen (OLEC), organische Feld-Effekt-Transistoren (OFETs), organische integrierte Schaltungen (O-ICs), organische Dünnfilmtransistoren (TFTs), organische Solarzellen (O-SCs), organische Laserdioden (O-Laser), organische photovoltaische Elemente oder Vorrichtungen (OPV) oder organische Photorezeptoren (OPCs), besonders bevorzugt organische Elektrolumineszenzvorrichtungen mit einer oder mehreren aktiven
Schichten, wobei mindestens eine dieser aktiven Schichten ein oder mehrere erfindungsgemäße Polymere enthält. Die aktive Schicht kann beispielsweise eine lichtemittierende Schicht, eine Ladungstransport- schicht und/oder eine Ladungsinjektionsschicht sein.
Wie OLEDs hergestellt werden können, ist dem Fachmann bekannt und wird beispielsweise als allgemeines Verfahren ausführlich in der WO 2004/070772 A2 beschrieben, das entsprechend für den Einzelfall anzupassen ist.
Vorzugsweise ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z.B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z.B. Roll to roll, Siebdruck, Fiexodruck oder Offsetdruck, besonders bevorzugt aber LITI (Light Induced Thermal Imaging, Thermotransferdruck), Ink-Jet Druck (Tintenstrahldruck), Dippingverfahren oder Sprühverfahren hergestellt werden. Hierfür sind lösliche Verbindungen nötig. Außer Kathode, Anode und der emittierenden Schicht kann die organische Elektrolumineszenzvorrichtung noch weitere Schichten enthalten. Diese können beispielsweise ausgewählt sein aus Ladungsträgerinjektions-, Ladungsträgertransport- oder Ladungsträgerblockierschicht (T. Matsumoto et al., Multiphoton Organic EL Device Having Charge Generation Layer, IDMC 2003, Taiwan; Session 21 OLED (5)). Es sei aber darauf
hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss und auch mehrere Schichten mit gleicher Funktion vorhanden sein können. In einer weiteren bevorzugten Ausführungsform der vorliegenden
Erfindung enthält die organische Elektrolumineszenzvorrichtung mehrere emittierende Schichten, wobei mindestens eine Schicht mindestens ein erfindungsgemäßes Polymer enthält. Die Emissionsschichten weisen vorzugsweise mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, so dass in diesem Fall insgesamt weiße Emission resultiert.
Insbesondere bevorzugt sind Dreischichtsysteme, wobei mindestens eine dieser Schichten mindestens ein erfindungsgemäßes Polymer enthält und wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z.B. WO 05/01 1013).
Gegenstand der vorliegenden Anmeldung sind somit sowohl die
Vorrichtungen selbst als auch die Verwendung der erfindungsgemäßen Polymere in den entsprechenden Vorrichtungen. Alle bevorzugten und nicht explizit bevorzugten Merkmale der oben genannten erfindungsgemäßen Polymere, ihrer Verwendung in
elektronischen Vorrichtungen und der elektronischen Vorrichtungen selbst können beliebig miteinander kombiniert werden. Alle resultierenden Kombinationen sind ebenfalls Bestandteil der vorliegenden Anmeldung.
Die erfindungsgemäßen Verbindungen weisen bei Verwendung in organischen Elektrolumineszenzvorrichtungen vorzugsweise eine oder mehrere der folgenden vorteilhaften Eigenschaften auf: 1. Die erfindungsgemäßen Polymere weisen eine große Bandlücke („bandgap") auf, so dass eine tiefer blaue Singulett-Emission für Displayanwendungen mit großem Farbraum erreicht wird. Die größeren Bandlücken in den erfindungsgemäßen Polymeren ermöglichen außerdem deren Verwendung als Host-Materialien, und zwar nicht nur für rote sondern auch für grüne Triplett-Emission.
2. Die erfindungsgemäßen Verbindungen steigern die Lebensdauer und die Effizienz insbesondere blau emittierender organischer
Elektrolumineszenzvorrichtungen für hochwertige Anwendungen.
Die folgenden Beispiele sollen die vorliegende Erfindung näher erläutern, ohne sie einzuschränken. Insbesondere sind die darin beschriebenen Merkmale, Eigenschaften und Vorteile der dem betreffenden Beispiel zu Grunde liegenden definierten Verbindungen auch auf andere, nicht im Detail aufgeführte, aber unter den Schutzbereich der Ansprüche fallende Verbindungen anwendbar, sofern an anderer Stelle nichts Gegenteiliges erwähnt wird.
Ausführungsbeispiele
A) Herstellung der Monomere Beispiel 1
Bis-2,7-[1 ,3,2]-dioxaborolanpy
Figure imgf000022_0001
M1
20 g (99 mmol) Pyren, 55 g (217 mmol) Bisborolan und 400 mg (mmol) Ditertbutylbipyridin werden in 300 ml Cyclohexan suspendiert und sorgfältig entgast. Die Reaktionsmischung wird mit 500 mg Dimethoxy- biscyclooctadiendiiridium versetzt und über Nacht auf 80°C erwärmt. Die Lösung wird auf Raumtemperatur abgekühlt, mit 100 ml Wasser und 100 ml Dichlormethan versetzt. Die Phasen werden getrennt, und die wässrige Phase zweimal mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet, filtriert und das
Lösungsmittel im Vakuum abgezogen. Der braune Rückstand wird mehrmals mit Ethanol gewaschen. Man erhält 38,9 g (85,6 mmol) (86%) eines weißen Feststoffes mit einer von Reinheit 99,9 %.
Vergleichsbeispiel 2
Bis-1 ,6-[1 ,3,2]-dioxaborolanpy ren
Figure imgf000022_0002
1. Schritt: Herstellung von 1,4- und 1,6-Dibrompyren
Figure imgf000023_0001
202.26
360.05
In einem 4 I Vierhalskolben, ausgerüstet mit Rückflusskühler,
Gasableitung in eine Waschflasche mit NaOH-Lösung, KPG-Rührer und 500 ml Tropftrichter, werden 58 g (288 mmol) Pyren, gelöst in 1500 ml Dichlormethan, vorgelegt. Diese Lösung wird bis zum Sieden erhitzt. Zu dieser siedenden Lösung werden innerhalb von 6 Stunden (bis die
Gasbildung beendet ist) 31 ,2 ml (600 mmol) Brom, gelöst in 240 ml Dichlormethan, zugetropft. Anschließend wird noch 30 Minuten unter Rückfluss gekocht. Danach läßt man die Lösung abkühlen und über Nacht kristallisieren. Der Niederschlag wird abgesaugt und mit Ethanol und Heptan gewaschen. Die Ausbeute beträgt 74,8 g (72%).
Die beiden enstandenen Isomere, 1 ,6 Dibrompyren und 1 ,8 Dibrompyren, werden in einer Trägergassublimation bei 10~2 mbar und 230 bis 250°C, fraktioniert sublimiert als Trägergas dient Argon, wobei das 1 ,6
Dibrompyren etwas später kondensiert und sich vorne im Sublimationsrohr anreichert. Man erhält 24,9 g (33,3%) eines weißen Feststoffs mit einer Reinheit von 99,9%.
2. Schritt: Umsetzung des Bisbromids zum Bisboronsäureester
15 g (41 ,7 mmol) Dibrompyren werden in 250 ml Dioxan gelöst, und mit 12,7 g (50 mmol) Bis(pinacolato)diboran und 8 g (81 ,5 mmol)
Kaliumacetat versetzt. Anschließend wird 163 mg ( 0,2 mmol) 1 ,1- Bis(diphenylphosphino)-ferrocen-palladium(ll)chlorid (Komplex mit
Dichlormethan (1 :1), Pd 13%) zugegeben und der Ansatz auf 110°C erwärmt. Nach DC-Kontrolle wird der Ansatz auf Raumtemperatur abgekühlt und mit 200 ml Wasser versetzt. Anschließend werden die Phasen getrennt. Die organische Phase wird Wasser gewaschen und die wässrige Phase mit Essigester extrahiert, danach werden die vereinigten organischen Phasen über Magnesiumsulfat getrocknet, filtriert und das Lösungsmittel im Vakuum abgezogen. Der Rückstand wird aus Ethanol umkristallisiert. Man erhält 17,2 g (37,9 mmol) (91%) eines weißen Feststoffes der Reinheit 99,6%.
B) Herstellung der Polymere
Die erfindungsgemäßen Polymere P1 bis P4 sowie die Vergleichspolymere V1 bis V6 werden unter Verwendung der folgenden Monomeren (Prozentangaben = mol%) durch SUZUKI-Kupplung gemäß der WO 03/048225 A2 synthetisiert.
Als Monomere werden neben dem 2,7-Pyrenbisboronester M1 und dem ,6-Pyrenbisboronester M2 die folgenden Monomere eingesetzt, deren Herstellung im Stand der Technik bereits offenbart ist:
Figure imgf000024_0001
Figure imgf000025_0001
Die Monomere werden in der in der folgenden Tabelle 1 dargestellten Zusammensetzung copolymerisiert, wodurch die erfindungsgemäßen Polymere P1 bis P4 sowie die Vergleichspolymere V1 bis V6 in den angegebenen Zusammensetzungen [in mol %] erhalten werden, wobei die Summe immer 100% entspricht und zu gleichen Teilen Bromide und Boronester verwendet werden. Tabelle 1
Figure imgf000026_0001
C) Herstellung der OLEDs
Die Herstellung einer organischen Leuchtdiode (OLED) ist in der Literatur bereits vielfach beschrieben (z.B. in der WO 2004/037887 A2). Um die vorliegende Erfindung beispielhaft zu erläutern, werden OLEDs mit den erfindungsgemäßen Polymeren P1 bis P4 sowie den Vergleichspolymeren V1 bis V6 aus Tabelle 1 (mit unterschiedlichen Anteilen der Monomere) durch Spincoating hergestellt.
Dazu werden Substrate der Firma Technoprint (Sodalimeglas) verwendet, auf weiche die ITO-Struktur (Indium-Zinn-Oxid, eine transparente, leitfähige Anode) aufgebracht wird.
Die Substrate werden im Reinraum mit DI Wasser und einem Detergens (Deconex 15 PF) gereinigt und dann durch eine UV/Ozon-Plasmabehandlung aktiviert. Danach wird ebenfalls im Reinraum als Pufferschicht eine 80 nm Schicht PEDOT (PEDOT ist ein Polythiophen-Derivat (Baytron P VAI 4083sp.) von H.C. Starck, Goslar, das als wässrige Dispersion geliefert wird) durch Spin-Coating aufgebracht. Die benötigte Spinrate hängt vom Verdünnungsgrad und der spezifischen Spincoater-Geometrie ab (typisch für 80 nm: 4500 rpm). Um Restwasser aus der Schicht zu entfernen, werden die Substrate für 10 Minuten bei 180°C auf einer Heizplatte ausgeheizt. Danach werden unter Inertgasatmosphäre
(Stickstoff bzw. Argon) zunächst 20 nm einer Interlayer (typischerweise ein lochdominiertes Polymer, hier HIL-012 von Merck) und dann 65 nm der Polymerschichten aus Toluollösungen (Konzentration Interlayer jeweils 5 g/l, für die Polymere P1 bis P4 sowie jeweils 8 g/l für die Vergleichs- polymere V1 bis V6) aufgebracht. Beide Schichten werden bei 180°C mindestens 10 Minuten ausgeheizt. Danach wird die Ba/Al-Kathode aufgedampft (hochreine Metalle von Aldrich, besonders Barium 99,99% (Best-Nr. 474711); Aufdampfanlagen von Lesker o.a., typischer
Aufdampfdruck 5 x 10~6 mbar). Um vor allem die Kathode vor Luft und Luftfeuchtigkeit zu schützen, wird die Vorrichtung abschließend verkapselt und dann charakterisiert.
Dazu werden die Devices in für die Substratgröße eigens angefertigte Halter eingespannt und mittels Federkontakten kontaktiert. Eine
Photodiode mit Augenverlaufsfilter kann direkt auf den Messhalter aufgesetzt werden, um Einflüsse von Fremdlicht auszuschließen.
Typischerweise werden die Spannungen von 0 bis max. 20 V in 0,2 V- Schritten erhöht und wieder erniedrigt. Für jeden Messpunkt wird der Strom durch die Vorrichtung sowie der erhaltene Photostrom von der
Photodiode gemessen. Auf diese Art und Weise erhält man die IVL-Daten der Testvorrichtungen. Wichtige Kenngrößen sind die gemessene maximale Effizienz („Eff." in cd/A) und die für 000 cd/m2 benötigte
Spannung.
Um außerdem die Farbe und das genaue Elektrolumineszenzspektrum der Testdevices zu kennen, wird nach der ersten Messung nochmals die für 1000 cd/m2 benötigte Spannung angelegt und die Photodiode durch einen Spektrum-Messkopf ersetzt. Dieser ist durch eine Lichtleitfaser mit einem Spektrometer (Ocean Optics) verbunden. Aus dem gemessenen Spektrum können die Farbkoordinaten (CIE: Commission International de l'eclairage, Normalbetrachter von 1931) abgeleitet werden. Die Ergebnisse, die bei Verwendung der erfindungsgemäßen Polymeren P1 bis P4 sowie der Vergleichspolymeren V1 bis V6 in OLEDs erhalten werden, sind in der folgenden Tabelle 2 zusammengefasst.
Tabelle 2
Figure imgf000028_0001
Wie den Ergebnissen der Tabelle 2 zu entnehmen ist, weisen die erfindungsgemäßen Polymere eine tiefere blaue Emission als
vergleichbare Polymere des Standes der Technik auf. Tabelle 2 zeigt ferner, dass auch Polymerblends eine tief blaue Emission zeigen, auch wenn nur eine Komponente, nämlich die Komponente, die den Emitter enthält, die erfindungsgemäße Struktureinheit der Formel (I) aufweist.
Darüber hinaus führen die erfindungsgemäßen Polymere zu höheren Lebensdauern.

Claims

Patentansprüche
Polymer enthaltend eine oder mehrere Struktureinheiten der Formel (I),
Figure imgf000029_0001
wobei
R1 bei jedem Auftreten, gleich oder verschieden H, D, F, Cl, Br, I, OH, N(R2)2, eine geradkettige Alkyl-, Alkoxy- oder Thio- alkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C- Atomen, in der auch ein oder mehrere H-Atome durch R2 ersetzt sein können und in der auch eine oder mehrere nicht benachbarte CH2-Gruppen durch O, S, Si(R2)2, Ge(R2)2, BR2, NR2, PR2, CO, C=S, C=Se, C=NR2, PO(R2), PS(R2), R2C=CR2, CsC, SO, SO2, COO, O(CO)O oder CONR2 ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem;
R2 bei jedem Auftreten, gleich oder verschieden H, F, eine
geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, in der auch ein oder mehrere H-Atome durch F ersetzt sein können und in der auch eine oder mehrere nicht benachbarte CH2-Gruppen durch O, CO, COO oder O(CO)O ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem; und die gestrichelten Linien die Bindungen zu den benachbarten
Struktureinheiten darstellen.
Polymer nach Anspruch 1 , dadurch gekennzeichnet, dass die
Struktureinheit der Formel (I) ausgewählt ist aus den
Struktureinheiten der Formeln (la) bis (Ic)
Figure imgf000030_0001
wobei die gestrichelten Linien in den Formeln (la), (Ib) und (Ic) die Bindungen zu den benachbarten Struktureinheiten im Polymer darstellen und R1 in den Formeln (la) und (Ib) die für R1 in Bezug auf Formel (i) in Anspruch 1 angegebenen Bedeutungen annehmen kann.
3. Polymer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es ein Molekulargewicht Mw im Bereich von 1.000 bis 2.000.000 g/mol aufweist. Polymer nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Anteil der Struktureinheiten der Formel (I) im Polymer 1 bis 95 mol% beträgt. 5. Polymer nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Polymer noch mindestens eine weitere Struktureinheit enthält, die von der Struktureinheit der Formel (I) verschieden ist. 6. Verbindung der Formel (II),
Figure imgf000031_0001
wobei die verwendeten Symbole R die für R in Bezug auf Formel (I) in Anspruch 1 angegebenen Bedeutungen annehmen können und zusätzlich gilt, dass X eine für die Polymerisationsreaktion geeignete Abgangsgruppe darstellt.
Verbindung nach Anspruch 6, dadurch gekennzeichnet, dass X 7
unabhängig voneinander, gleich oder verschieden ausgewählt ist aus Halogen, O-Tosylat, O-Triflat, O-Sulfonat, Borsäureester, teilfluorierten Silylgruppen, Diazoniumgruppen und zinnorganischen Verbindungen.
Figure imgf000031_0002
Mischungen enthaltend mindestens ein Polymer nach einem oder mehreren der Ansprüche 1 bis 5 und zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Klassen der polymeren, oligomeren, dendritischen und niedermolekularen Substanzen. Formulierungen enthaltend mindestens ein Polymer nach einem oder mehreren der Ansprüche 1 bis 5 sowie mindestens ein
Lösungsmittel.
Verwendung eines Polymeren nach einem oder mehreren der Ansprüche 1 bis 5 oder einer Mischung nach Anspruch 8 in
organischen elektronischen Vorrichtungen.
Organische elektronische Vorrichtung mit einer oder mehreren aktiven Schichten, dadurch gekennzeichnet, dass mindestens eine dieser aktiven Schichten ein oder mehrere Polymere nach einem oder mehreren der Ansprüche 1 bis 5 oder eine Mischung nach Anspruch 8 enthält.
Organische elektronische Vorrichtung nach Anspruch 11 , dadurch gekennzeichnet, dass es sich um eine organische
Elektrolumineszenzvorrichtung (OLED), eine organische Lichtemittierende elektrochemische Zelle (OLEC), eine organische integrierte Schaltung (O-IC), einen organischen Feld-Effekt-Transistor (OFET), organischen Dünnfilmtransistor (OTFT), eine organische Solarzelle (O-SC), eine organische Laserdiode (O-Laser), ein organisches photo-voltaisches Element oder eine entsprechende Vorrichtung (OPV) oder einen organischen Photorezeptor (OPC), vorzugsweise um eine organische Elektrolumineszenzvorrichtung (OLED) handelt.
PCT/EP2013/001722 2012-06-29 2013-06-12 Polymere enthaltend 2,7-pyren-struktureinheiten WO2014000860A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13728120.0A EP2867329A1 (de) 2012-06-29 2013-06-12 Polymere enthaltend 2,7-pyren-struktureinheiten
US14/409,508 US9695274B2 (en) 2012-06-29 2013-06-12 Polymers containing 2,7-pyrene structural units
JP2015518881A JP6422861B2 (ja) 2012-06-29 2013-06-12 2,7−ピレン構造単位を含むポリマー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12004858 2012-06-29
EP12004858.2 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014000860A1 true WO2014000860A1 (de) 2014-01-03

Family

ID=48607208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/001722 WO2014000860A1 (de) 2012-06-29 2013-06-12 Polymere enthaltend 2,7-pyren-struktureinheiten

Country Status (4)

Country Link
US (1) US9695274B2 (de)
EP (1) EP2867329A1 (de)
JP (1) JP6422861B2 (de)
WO (1) WO2014000860A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254466A (zh) * 2015-10-27 2016-01-20 南京中电熊猫液晶显示科技有限公司 芘类有机材料、制备方法、及其应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041289A1 (de) * 2009-09-16 2011-03-17 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
TWI766884B (zh) * 2016-09-30 2022-06-11 德商麥克專利有限公司 具有二氮雜二苯并呋喃或二氮雜二苯并噻吩結構的化合物、其製法及其用途
KR102683884B1 (ko) * 2016-11-02 2024-07-11 메르크 파텐트 게엠베하 전자 소자용 재료
TWI756292B (zh) * 2016-11-14 2022-03-01 德商麥克專利有限公司 具有受體基團與供體基團之化合物
US11329233B2 (en) * 2016-12-02 2022-05-10 Merck Patent Gmbh Heterocyclic compounds for use in electronic devices
CN110573515B (zh) * 2017-04-25 2023-07-25 默克专利有限公司 用于电子器件的化合物
JP7413252B2 (ja) * 2017-07-28 2024-01-15 メルク パテント ゲーエムベーハー 電子デバイスに使用するためのスピロビフルオレン誘導体
WO2019101719A1 (de) * 2017-11-23 2019-05-31 Merck Patent Gmbh Materialien für elektronische vorrichtungen
TW202003463A (zh) * 2018-04-04 2020-01-16 德商麥克專利有限公司 用於電子裝置之材料
CA3147931A1 (en) * 2019-08-13 2021-02-18 Exxonmobil Research And Engineering Company Processes for functionalization and polymerization of polyaromatic feedstock
KR20240029426A (ko) 2022-08-26 2024-03-05 국립부경대학교 산학협력단 전자 수송 특성이 개질된 신규 유기 단분자 화합물 및 이를 포함하는 소자
KR20240031733A (ko) 2022-09-01 2024-03-08 국립부경대학교 산학협력단 정공 수송 특성이 개질된 신규 유기 단분자 화합물 및 이를 포함하는 소자

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
EP0964045A1 (de) * 1998-06-10 1999-12-15 Sumitomo Chemical Company, Limited Polymerische fluoreszente Substanz und organische elektrolumineszente Vorrichtungen
WO2002067343A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Aryl-aryl dendrimers
WO2002068435A1 (de) 2001-02-24 2002-09-06 Covion Organic Semiconductors Gmbh Rhodium- und iridium-komplexe
EP1239526A2 (de) 2001-03-08 2002-09-11 Canon Kabushiki Kaisha Metallkomplex, lumineszierende Anordnung und Anzeigevorrichtung
WO2002072714A1 (de) 2001-03-10 2002-09-19 Covion Organic Semiconductors Gmbh Lösung und dispersionen organischer halbleiter
WO2002077060A1 (de) 2001-03-24 2002-10-03 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend spirobifluoren-einheiten und fluoren-einheiten und deren verwendung
WO2002081488A1 (de) 2001-04-05 2002-10-17 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2003019694A2 (de) 2001-08-24 2003-03-06 Covion Organic Semiconductors Gmbh Lösungen polymerer halbleiter
WO2003048225A2 (de) 2001-12-06 2003-06-12 Covion Organic Semiconductors Gmbh Prozess zur herstellung von aryl-aryl gekoppelten verbindungen
WO2004037887A2 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-einheiten enthaltende konjugierte polymere, deren darstellung und verwendung
WO2004041901A1 (en) 2002-11-08 2004-05-21 Covion Organic Semiconductors Gmbh Aryl-substituted polyindenofluorenes for use in organic electroluminiscent devices
WO2004070772A2 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte polymere und blends, deren darstellung und verwendung
EP1476881A2 (de) 2002-02-20 2004-11-17 Novaled GmbH Dotiertes organisches halbleitermaterial sowie verfahren zu dessen herstellung
WO2004113468A1 (de) 2003-06-26 2004-12-29 Covion Organic Semiconductors Gmbh Neue materialien für die elektrolumineszenz
WO2004113412A2 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors Gmbh Polymer
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005014689A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
WO2005014688A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjiugierte block copolymere, deren darstellung und verwendung
WO2005026144A1 (ja) 2003-09-12 2005-03-24 Sumitomo Chemical Company, Limited デンドリマー化合物及びそれを用いた有機発光素子
WO2005030828A1 (de) 2003-09-20 2005-04-07 Covion Organic Semiconductors Gmbh Konjugierte polymere, deren darstellung und verwendung
WO2005030827A1 (de) 2003-09-20 2005-04-07 Covion Organic Semiconductors Gmbh Weiss emittierende copolymere, deren darstellung und verwendung
WO2005040302A1 (de) 2003-10-22 2005-05-06 Merck Patent Gmbh Neue materialien für die elektrolumineszenz und deren verwendung
WO2005042548A1 (de) 2003-10-30 2005-05-12 Merck Patent Gmbh Verfahren zur herstellung von heteroleptischer, ortho-metallierter organometall-verbindungen
EP1596445A1 (de) 2003-12-04 2005-11-16 Novaled GmbH Verfahren zur Dotierung von organischen Halbleitern mit Chinonderivaten
CN1785943A (zh) * 2005-08-25 2006-06-14 复旦大学 9-苯基-9-芘基芴取代的芘的共轭衍生物材料及其制备方法和应用
US20090179196A1 (en) * 2006-03-20 2009-07-16 Chihaya Adachi Pyrene-Based Organic Compound, Transistor Material and Light-Emitting Transistor Device
WO2010006852A1 (en) * 2008-06-23 2010-01-21 Basf Se Novel polymers
DE102008052314A1 (de) * 2008-10-15 2010-04-22 Syntatec Chemicals Gmbh Aromatische und heteroaromatische Poly-trifluoroborate und Verfahren zur Herstellung
WO2010087840A1 (en) * 2009-01-30 2010-08-05 Hewlett-Packard Development Company Uv light-emissive fluorene-based copolymers
WO2010136353A1 (en) * 2009-05-27 2010-12-02 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices
WO2011127301A2 (en) * 2010-04-07 2011-10-13 Cornell University Covalent organic frameworks and methods of making same
WO2011138935A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
WO2012037090A2 (en) * 2010-09-13 2012-03-22 Cornell University Covalent organic framework films, and methods of making and uses of same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823602B2 (ja) * 1998-06-10 2006-09-20 住友化学株式会社 高分子蛍光体および有機エレクトロルミネッセンス素子
CN102762631B (zh) * 2009-12-03 2015-03-11 韩国化学研究院 含芘导电聚合物及包括含芘导电聚合物的有机太阳能电池
CN102933625B (zh) * 2010-06-04 2014-07-02 同济大学 芘和吡咯的共聚物以及制备该共聚物的方法
GB2508409B (en) * 2012-11-30 2015-11-25 Cambridge Display Tech Ltd Organic light-emitting composition, device and method

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
EP0964045A1 (de) * 1998-06-10 1999-12-15 Sumitomo Chemical Company, Limited Polymerische fluoreszente Substanz und organische elektrolumineszente Vorrichtungen
WO2002067343A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Aryl-aryl dendrimers
WO2002068435A1 (de) 2001-02-24 2002-09-06 Covion Organic Semiconductors Gmbh Rhodium- und iridium-komplexe
EP1239526A2 (de) 2001-03-08 2002-09-11 Canon Kabushiki Kaisha Metallkomplex, lumineszierende Anordnung und Anzeigevorrichtung
WO2002072714A1 (de) 2001-03-10 2002-09-19 Covion Organic Semiconductors Gmbh Lösung und dispersionen organischer halbleiter
WO2002077060A1 (de) 2001-03-24 2002-10-03 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend spirobifluoren-einheiten und fluoren-einheiten und deren verwendung
WO2002081488A1 (de) 2001-04-05 2002-10-17 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2003019694A2 (de) 2001-08-24 2003-03-06 Covion Organic Semiconductors Gmbh Lösungen polymerer halbleiter
WO2003048225A2 (de) 2001-12-06 2003-06-12 Covion Organic Semiconductors Gmbh Prozess zur herstellung von aryl-aryl gekoppelten verbindungen
EP1476881A2 (de) 2002-02-20 2004-11-17 Novaled GmbH Dotiertes organisches halbleitermaterial sowie verfahren zu dessen herstellung
WO2004037887A2 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-einheiten enthaltende konjugierte polymere, deren darstellung und verwendung
WO2004041901A1 (en) 2002-11-08 2004-05-21 Covion Organic Semiconductors Gmbh Aryl-substituted polyindenofluorenes for use in organic electroluminiscent devices
WO2004070772A2 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte polymere und blends, deren darstellung und verwendung
WO2004113412A2 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors Gmbh Polymer
WO2004113468A1 (de) 2003-06-26 2004-12-29 Covion Organic Semiconductors Gmbh Neue materialien für die elektrolumineszenz
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005014689A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
WO2005014688A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjiugierte block copolymere, deren darstellung und verwendung
WO2005026144A1 (ja) 2003-09-12 2005-03-24 Sumitomo Chemical Company, Limited デンドリマー化合物及びそれを用いた有機発光素子
WO2005030828A1 (de) 2003-09-20 2005-04-07 Covion Organic Semiconductors Gmbh Konjugierte polymere, deren darstellung und verwendung
WO2005030827A1 (de) 2003-09-20 2005-04-07 Covion Organic Semiconductors Gmbh Weiss emittierende copolymere, deren darstellung und verwendung
WO2005040302A1 (de) 2003-10-22 2005-05-06 Merck Patent Gmbh Neue materialien für die elektrolumineszenz und deren verwendung
WO2005042548A1 (de) 2003-10-30 2005-05-12 Merck Patent Gmbh Verfahren zur herstellung von heteroleptischer, ortho-metallierter organometall-verbindungen
EP1596445A1 (de) 2003-12-04 2005-11-16 Novaled GmbH Verfahren zur Dotierung von organischen Halbleitern mit Chinonderivaten
CN1785943A (zh) * 2005-08-25 2006-06-14 复旦大学 9-苯基-9-芘基芴取代的芘的共轭衍生物材料及其制备方法和应用
US20090179196A1 (en) * 2006-03-20 2009-07-16 Chihaya Adachi Pyrene-Based Organic Compound, Transistor Material and Light-Emitting Transistor Device
WO2010006852A1 (en) * 2008-06-23 2010-01-21 Basf Se Novel polymers
DE102008052314A1 (de) * 2008-10-15 2010-04-22 Syntatec Chemicals Gmbh Aromatische und heteroaromatische Poly-trifluoroborate und Verfahren zur Herstellung
WO2010087840A1 (en) * 2009-01-30 2010-08-05 Hewlett-Packard Development Company Uv light-emissive fluorene-based copolymers
WO2010136353A1 (en) * 2009-05-27 2010-12-02 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices
WO2011127301A2 (en) * 2010-04-07 2011-10-13 Cornell University Covalent organic frameworks and methods of making same
WO2011138935A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
WO2012037090A2 (en) * 2010-09-13 2012-03-22 Cornell University Covalent organic framework films, and methods of making and uses of same

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ANDREW G. CRAWFORD ET AL: "Synthesis of 2- and 2,7-Functionalized Pyrene Derivatives: An Application of Selective C-H Borylation", CHEMISTRY - A EUROPEAN JOURNAL, vol. 18, no. 16, 16 April 2012 (2012-04-16), pages 5022 - 5035, XP055074040, ISSN: 0947-6539, DOI: 10.1002/chem.201103774 *
FRECHET, JEAN M. J.; HAWKER, CRAIG J.: "Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers", REACTIVE & FUNCTIONAL POLYMERS, vol. 26, no. 1-3, 1995, pages 127 - 36, XP004052617, DOI: doi:10.1016/1381-5148(95)00010-D
HONGMEE LEE ET AL: "Synthesis of 2,7-dibromopyrene", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 51, no. 14, 1 July 1986 (1986-07-01), pages 2847 - 2848, XP055073954, ISSN: 0022-3263, DOI: 10.1021/jo00364a054 *
JANSSEN, H. M.; MEIJER, E. W.: "The synthesis and characterization of dendritic molecules", MATERIALS SCIENCE AND TECHNOLOGY, vol. 20, 1999, pages 403 - 458
SHIN-ICHIRO KAWANO ET AL: "Blue-emitting poly(2,7-pyrenylene)s: synthesis and optical properties", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC; US, vol. 41, no. 21, 1 January 2008 (2008-01-01), pages 7933 - 7937, XP002528493, ISSN: 0024-9297, [retrieved on 20081010], DOI: 10.1021/MA8017316 *
SHUN WAN: "A belt-shaped, blue luminescent, and semiconducting covalent organic framework.", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 47, no. 46, 1 January 2008 (2008-01-01), pages 8826 - 8830, XP055033539, ISSN: 1433-7851 *
T. MATSUMOTO ET AL.: "Multiphoton Organic EL Device Having Charge Generation Layer", IDMC, 2003
TOMALIA, DONALD A.: "Dendrimer molecules", SCIENTIFIC AMERICAN, vol. 272, no. 5, 1995, pages 62 - 6, XP009105348
VOLLMANN HEINRICH ET AL: "Pyrene and its derivatives", JUSTUS LIEBIGS ANNALEN DER CHEMIE, VERLAG CHEMIE GMBH, WEINHEIM; DE, vol. 531, no. 1, 1 January 1937 (1937-01-01), pages 1 - 159, XP008163965, ISSN: 0075-4617, [retrieved on 20060124], DOI: 10.1002/JLAC.19375310102 *
WAN SHUN ET AL: "A Photoconductive Covalent Organic Framework: Self-Condensed Arene Cubes Composed of Eclipsed 2D Polypyrene Sheets for Photocurrent Generation", ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, WILEY VCH VERLAG, WEINHEIM, vol. 48, no. 30, 13 July 2009 (2009-07-13), pages 5439 - 5442, XP008163966, ISSN: 1433-7851, [retrieved on 20090511], DOI: 10.1002/ANIE.200900881 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254466A (zh) * 2015-10-27 2016-01-20 南京中电熊猫液晶显示科技有限公司 芘类有机材料、制备方法、及其应用

Also Published As

Publication number Publication date
US20150322198A1 (en) 2015-11-12
JP6422861B2 (ja) 2018-11-14
JP2015531002A (ja) 2015-10-29
US9695274B2 (en) 2017-07-04
EP2867329A1 (de) 2015-05-06

Similar Documents

Publication Publication Date Title
EP2838930B1 (de) Polymere enthaltend substituierte oligo-triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
EP2867329A1 (de) Polymere enthaltend 2,7-pyren-struktureinheiten
EP1819749B1 (de) Teilkonjugierte polymere, deren darstellung und verwendung
EP2315792B1 (de) Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
WO2010136111A1 (de) Zusammensetzung, enthaltend mindestens eine emitterverbindung und mindestens ein polymer mit konjugationsunterbrechenden einheiten
DE102010048498A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
WO2010136110A2 (de) Polymere, die substituierte indenofluorenderivate als struktureinheit enthalten, verfahren zu deren herstellung sowie deren verwendung
WO2011098205A1 (de) Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
WO2005104263A1 (de) Elektrolumineszierende polymere enthaltend planare arylamin-einheiten, deren darstellung und verwendung
EP2603541B1 (de) Polymere mit carbazol-struktureinheiten
WO2012089294A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2010149258A1 (de) Polymere enthaltend substituierte anthracenyleinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
WO2012013310A1 (de) Polymere enthaltend substituierte benzodithiopheneinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
WO2012019724A1 (de) Polymere mit carbazol-struktureinheiten
EP2601237B1 (de) Polymere mit struktureinheiten, die elektronen-transport-eigenschaften aufweisen
EP2328950A1 (de) Neue polymere mit niedriger polydispersität
EP2817350A2 (de) Polymere enthaltend dibenzocycloheptan-struktureinheiten
WO2011009522A2 (de) Materialien für elektronische vorrichtungen
WO2020094537A1 (de) Polymere mit amingruppenhaltigen wiederholungseinheiten
DE102009010713A1 (de) Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13728120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013728120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14409508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015518881

Country of ref document: JP

Kind code of ref document: A