WO2014000333A1 - 一种石墨膜导热体 - Google Patents

一种石墨膜导热体 Download PDF

Info

Publication number
WO2014000333A1
WO2014000333A1 PCT/CN2012/079652 CN2012079652W WO2014000333A1 WO 2014000333 A1 WO2014000333 A1 WO 2014000333A1 CN 2012079652 W CN2012079652 W CN 2012079652W WO 2014000333 A1 WO2014000333 A1 WO 2014000333A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
graphite film
heat conductor
film
contact member
Prior art date
Application number
PCT/CN2012/079652
Other languages
English (en)
French (fr)
Inventor
吴晓宁
Original Assignee
北京中石伟业科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中石伟业科技股份有限公司 filed Critical 北京中石伟业科技股份有限公司
Priority to DE112012006614.6T priority Critical patent/DE112012006614B4/de
Publication of WO2014000333A1 publication Critical patent/WO2014000333A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a heat conducting device, in particular to a graphite film heat conductor. Background technique
  • Thermal design is a specialized discipline that focuses on the transfer or maintenance of heat in equipment. In the heat transfer design, it is often necessary to select the heat transfer medium reasonably. It is necessary to consider not only the heat transfer efficiency and heat transfer capacity of the heat sink, but also the factors such as optimizing its shape design and outer surface area to improve the overall heat dissipation efficiency of the heat transfer system. .
  • the commonly used heat dissipating method is to connect the heat pipe between the heat generating device and the heat sink member, and transfer heat through evaporation and condensation of the liquid in the fully enclosed vacuum tube.
  • the service life of the heat pipe is limited. If the load of the heat pipe exceeds its working capacity, then the medium inside will be completely vaporized, and its heat conductivity is greatly reduced, thereby entering a vicious cycle; in addition, changing the installation position of the heat pipe will also affect its Thermal conductivity.
  • the allowable thickness is no more than 0.1 mm. Therefore, it is very meaningful to seek an ultra-thin passive type heat pipe-like heat conductor. Summary of the invention
  • the present invention provides a graphite film heat conductor which is wound by a graphite film, the graphite film heat conductor including a heat conductive member disposed in the middle, a heat contact member disposed at one end, and a heat contact member disposed at the other end Cold contact parts.
  • the heat conducting member is formed by winding at least one turn of a graphite film, the heat contact member and the cold contact member are not wound into a crucible; the thermal contact member is for contacting with a heat generating device, and the cold contact member is used for In contact with the heat sink member.
  • the heat conducting component is notched.
  • the notch is a thin and long slit.
  • the graphite film is an artificial graphite film obtained by treating a polymer film.
  • the polymer film is selected from the group consisting of polyoxadiazole, polyimide, polyparaphenylene vinylene, polybenzimidazole, polybenzoxazole, polybenzobisoxazole, polythiazole, poly At least one of a film of benzothiazole, polybenzobisthiazole, and polyamide.
  • the outer layer of the thermally conductive member is covered by an insulating film.
  • the insulating film is an insulating plastic film.
  • the graphite film heat conductor is in the form of a strip.
  • the graphite film heat conductor is bent and placed in a device for heat conduction and insulation.
  • the graphite film thermal conductor provided by the present invention utilizes the high thermal conductivity of the graphite film (planar thermal conductivity of about 1500 W/mK), and increases the ratio between the heat-generating device and the heat sink member by winding.
  • the large heat transfer area allows heat to be quickly transferred from the heat generating device to the heat sink. Thereby, the temperature gradient on the heat conduction path is reduced or eliminated, the temperature of the heat generating device is lowered, the temperature unbalanced hot spot region inside the device is eliminated, and the overall reliability and long-term working ability of the device and the device are improved.
  • the graphite film heat conductor provided by the invention is easy to process, convenient to use, and not limited by the installation position, and is designed for the heat conduction requirement of the device in recent years, and is suitable for various environments and requirements; the heat conduction speed is fast, and the effective heat transfer is shortened.
  • the path length overcomes the internal temperature gradient of the heat sink component caused by the high heat-generating device; it provides a powerful help for the high integration of the device and the development of ultra-small and ultra-thin.
  • DRAWINGS 1 is a schematic view showing a graphite film thermal conductor not completely wound according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a graphite film thermal conductor according to an embodiment of the present invention.
  • FIG. 3 is an incompletely wound view of a notched graphite film thermal conductor according to another embodiment of the present invention.
  • Fig. 4 is a schematic view showing a notched graphite film heat conductor according to another embodiment of the present invention. detailed description
  • the present invention provides a graphite film heat conductor which is formed by winding a graphite film, the heat conductor of the graphite film comprising a heat conducting member disposed in the middle, a heat contact member disposed at one end, and a cold contact member disposed at the other end.
  • the heat conducting member is formed by winding at least one turn of a graphite film, the heat contact member and the cold contact member are not wound into a crucible; the thermal contact member is for contacting with a heat generating device, and the cold contact member is used for In contact with the heat sink member.
  • FIG. 1 is a schematic view showing the graphite film heat conductor not completely wound according to an embodiment of the present invention.
  • both ends of the graphite film are a thermal contact member 101 and a cold contact member 102, respectively, and a heat transfer member 103 is interposed therebetween, wherein the thermal contact member 101 and the cold contact member 102 are respectively connected to the heat transfer member 103.
  • the graphite film is cut into a shape as shown in FIG.
  • the graphite film of the heat conductive member 103 is wound into a ruthenium layer along the winding direction (A direction), and the number of turns of the ruthenium layer is at least one ⁇ , but The thermal contact member 101 and the cold contact member 102 are not wound into a crucible.
  • the graphite film heat conductor includes an intermediate heat conducting member 103, and a heat contact member 101 and a cold contact member 102 respectively disposed at both ends, wherein the heat contact member 101 and the cold contact member 102 are respectively connected to the heat conductive member 103.
  • the heat conducting component 103 is formed by winding at least one turn of the graphite film, and the heat conducting component in this embodiment
  • the graphite film heat conductor of 103 is wound into a plurality of turns, and the heat contact member 101 and the cold contact member 102 are not wound into a crucible.
  • the thermal contact member 101 is in contact with a heat generating device, and the cold contact member 102 is in contact with the heat sink member. Therefore, when any portion of the thermal contact member 101 receives the heat from the heat generating device, the heat is quickly conducted laterally on the thermal contact member 101, and then the cold contact member is directed along the axial direction (B direction) of the heat conducting member 103. 102 transfers heat, and finally heats through cold contact member 102 The amount is transferred to the radiator.
  • the invention can simultaneously increase the speed of heat transfer by the heat generating device to the heat body, and the speed at which the heat conductor transfers heat to the heat sink member, thereby improving the heat dissipation speed of the heat generating device, eliminating the temperature imbalance hot spot inside the device, and improving the device and the device. Overall reliability and long working ability.
  • the space occupied by the device can be reduced.
  • the present invention when the present invention is placed in an apparatus for heat conduction, the present invention can be pressed, covered with an insulating film, bent, or the like according to the structural requirements of the apparatus.
  • the graphite film heat conductor can be pressed into a flat strip shape and then placed in a device for heat conduction. If necessary, the strip-shaped graphite film heat conductor may be bent and placed in a device for heat conduction.
  • the outer layer of the heat conductive member of the graphite film heat conductor is covered with an insulating film and then placed in the device, so that the heat conductive member has both heat conduction and insulation functions.
  • the outer layer of the heat conducting member of the graphite film heat conductor is covered by the insulating film, pressed into a flat strip shape, and then placed in a device having a small space to shape the heat conducting member, and The space occupied by the device is small. Therefore, the heat conductive member also functions as both heat conduction and insulation. If necessary, the strip-shaped graphite film heat conductor may be bent and then placed in an apparatus for use.
  • the insulating film is an insulating plastic film.
  • the graphite film thermal conductor provided by the invention can meet the structural requirements of various devices and can be applied to various ultra-thin or non-flat device structures.
  • the effective heat transfer path can be shortened, and the heat-dissipating speed of the heat-generating device can be further improved.
  • the heat-conducting member 103 should be wound as loosely as possible so that a space is left between the graphite films of adjacent enamel layers, which is advantageous for the radial (C-direction) of the heat-conductive member 3, .
  • the longitudinal thermal conductivity of the graphite film is only 1/100 of its lateral thermal conductivity, it is possible to more or less increase the thermal conductivity of the graphite film by utilizing its longitudinal thermal conductivity. Therefore, a notch 104 may be formed in the heat conductive member 103 before the graphite film is wound.
  • Fig. 3 is a schematic view showing the notched graphite film heat conductor not completely wound according to another embodiment of the present invention.
  • the two ends of the graphite film are a thermal contact member 101 and a cold contact member 102, respectively, and the middle is a heat conductive member 103, wherein the thermal contact member 101 and the cold contact member 102 are respectively connected to the heat conductive member 103.
  • the graphite film is cut into a shape as shown in FIG.
  • the graphite film of the heat conducting member 103 is wound into a layer of bismuth along the winding direction (A direction)
  • the number of turns of the tantalum layer is at least one, but the thermal contact member 101 and the cold contact member 102 are not wound into turns.
  • the graphite film heat conductor includes an intermediate heat conducting member 103, which is respectively disposed at both ends of the thermal contact member 101 and the cold contact member 102, wherein the thermal contact member 101 and the cold contact member 102 are respectively connected to the heat conductive member 103, and the heat conductive member A plurality of notches 104 are opened in the 103.
  • the heat conducting member 103 is formed by winding at least one turn of the graphite film.
  • the graphite film heat conductor of the heat conducting member 103 is wound into a plurality of turns, and the heat contact member 101 and the cold contact member 102 are not wound. Cheng Yu.
  • the heat transfer member 103 transfers heat to the heat sink member in the axial direction (B direction)
  • a small amount of heat is simultaneously radiated to the outside along the radial direction (C direction) of the heat transfer member 103 and through the laminated graphite film.
  • Providing the notch 104 can prevent internal heat accumulation of the heat member 103 due to winding of the multilayer graphite film, contributing to lowering the radial (C-direction) temperature gradient of the heat-conductive member 103.
  • the manner in which the notch 104 is formed in the heat conducting member 103 is not unique.
  • the notch 104 may be formed on the graphite film before the heat conducting member 103 is wound, or may be opened after the heat conducting member 103 is wound up. Notch 104.
  • the shape of the notch 104 is not limited and may be any shape such as a circle, a square, a rectangle, an ellipse or the like.
  • the notch 104 is a thin and long slit.
  • the number of the notches 104 is also not limited and can be determined according to the heat dissipation requirement.
  • each of the notches 104 on the graphite film has a one-to-one correspondence with the opening positions of the notches 104 on the adjacent crotch layer, contributing to the improvement of the radial direction (C direction) of the heat conducting member 103.
  • the heat dissipation effect reduces the radial (C direction) temperature gradient of the heat conductive member 103.
  • the graphite film is an artificial graphite film obtained by heat-treating a polymer film.
  • the thickness of the graphite film is not limited.
  • the polymer film is selected from the group consisting of polyoxadiazole, polyimide, polyparaphenylene vinylene, polybenzimidazole, polybenzoxazole, polybenzobisoxazole, polythiazole, At least one of a film of polybenzothiazole, polybenzobisthiazole, and polyamide.
  • the graphite film heat conductor and the conventional heat conductor provided by the present invention are respectively brought into contact with the heat generating device and the heat sink member to compare the heat conduction speed.
  • the heat generating device used had a power of 2 W, and the conventional heat conductor used was a single-layer graphite film having a thickness of 0.07 mm ; and the heat-conductive member 103 of the present invention was formed by winding a graphite film having a thickness of 0.07 mm. After reaching the thermal equilibrium, the surface temperatures of the heat-generating devices were tested separately.
  • the test results were as follows: The surface temperature of the heat generating device connected to the conventional heat conductor was 54 ° C, and the surface temperature of the heat generating device connected to the graphite film heat conductor provided by the present invention was 45 ° C.
  • the graphite film heat conductor provided by the present invention utilizes a graphite film with high thermal conductivity (planar thermal conductivity of about 1500 W/mK), and increases the heat transfer between the heat generating device and the heat sink member by winding.
  • the area allows heat to be quickly transferred from the heat generating device to the heat sink. Thereby, the temperature gradient on the heat conduction path is reduced or eliminated, the temperature of the heat generating device is lowered, the temperature imbalance inside the device is eliminated, and the overall reliability and long-term working ability of the device and the device are improved.
  • the graphite film thermal conductor provided by the invention is easy to process, convenient to use, and free from the installation position, and is designed in recent years for the heat conduction requirement of the device, and is suitable for various environments and requirements; the heat conduction speed is fast, and the effective heat transfer is shortened.
  • the path length overcomes the internal temperature gradient of the heat sink component caused by the high heat-generating device; it provides a powerful help for the high integration of the device and ultra-small and ultra-thin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Resistance Heating (AREA)

Abstract

一种由石墨膜卷绕制成的石墨膜导热体,该石墨膜导热体包括中间的导热部件(103)以及两端的热接触部件(101)和冷接触部件(102)。导热部件(103)由石墨膜卷绕至少一匝而成,热接触部件(101)和冷接触部件(102)不卷绕成匝。利用石墨膜较高的导热性,通过卷绕增大了其与发热器件和散热器件较大的传热面积,使得热量迅速地从发热器件传递至散热器件,从而降低或消除热传导路径上温度梯度,消除设备内部的温度不平衡热点区域,提高器件和设备的整体可靠性和长时间工作能力。并且加工容易、使用方便、不受安装位置限制,对设备的高度集成以及超小超薄提供了有力的帮助。

Description

一种石墨膜导热体 技术领域
本发明涉及导热设备, 特别涉及石墨膜导热体。 背景技术
热设计作为一个专门的学科, 主要是研究设备中热量的传递或保持问 题。 在热传递设计中往往需要合理选择热传递介质, 不仅要考虑散热器的热 传导效率和热传递能力问题, 还要考虑优化其外形设计、 外表面面积等因 素, 以提高热传递系统的整体散热效率。
同时, 随着科技的日新月异, 电子和光电产品均朝轻、 薄、 短、 小和高 功率的趋势发展, 如此的发展将使得电子和光电产品的发热密度随之提高, 进而导致损耗功率的上升, 因而对散热效率高的电子和光电产品的需求也大 幅增加。
尤其是随着超薄设备和室外设备的普及, 在许多不允许利用风扇进行直 接散热的场合, 例如: 无线通信室外基站、 汽车电子单元和智能手机等, 往 往是多个发热器件共用一个散热器件, 这将造成散热器件内温度梯度的严重 不平衡, 极大地影响了散热器件的效率发挥, 制约着电子设备速度和功率的 提升。
而且, 受电子和光电产品结构和形状的限制, 发热器件与散热器件之间 不能直接接触, 导致散热速度受到一定影响。 目前, 常用的散热手段是将热 管连接于发热器件和散热器件之间, 通过全封闭真空管内液体的蒸发与冷凝 来传递热量。 但是热管的使用寿命有限, 如果热管的负荷超过了它的工作能 力, 那么里面的介质将全部汽化, 其导热能力大大降低, 由此进入一个恶性 循环; 此外, 改变热管的安装位置也会影响其导热能力。
尤其是在智能手机和平板电脑等超薄型电子设备中, 可以允许的厚度不 超过 0.1 毫米, 因此, 寻求一种超薄被动型类似热管功能的导热体就显得十 分有意义。 发明内容
有鉴于此, 本发明的一个目的在于提出一种能够避免上述现有技术中的 问题的石墨膜导热体, 这种石墨膜导热体能够提高导热体的导热速度, 使发 热器件的热量较快地传递给散热器件。
基于上述目的, 本发明提供一种石墨膜导热体, 其由石墨膜卷绕制成, 所述石墨膜导热体包括设置在中间的导热部件、 设置在一端的热接触部件和 设置在另一端的冷接触部件。
其中, 所述导热部件由石墨膜卷绕至少一匝而成, 所述热接触部件和冷 接触部件不卷绕成匝; 所述热接触部件用于与发热器件接触, 所述冷接触部 件用于与散热器件接触。
可选地, 所述导热部件上开有缺口。
较佳地, 所述缺口为细而长的狭缝。
可选地, 所述石墨膜为将高分子膜经处理后得到的人工石墨膜。
优选地, 所述高分子膜选自聚噁二唑、 聚酰亚胺、 聚对亚苯基亚乙烯、 聚苯并咪唑、 聚苯并噁唑、 聚苯并双噁唑、 聚噻唑、 聚苯并噻唑、 聚苯并双 噻唑和聚酰胺的膜中的至少一种。
可选地, 所述导热部件的外层被绝缘膜覆盖。
较佳地, 所述绝缘膜为绝缘塑料膜。
优选地, 所述石墨膜导热体呈条带状。
优选地, 所述石墨膜导热体被弯曲后放入设备中用于导热和绝缘。
从上面所述可以看出, 本发明提供的石墨膜导热体利用石墨膜的高导热 性 (平面导热率约 1500W/mK), 并通过卷绕增大了其与发热器件、 散热器件 之间较大的导热面积, 使得热量迅速地从发热器件传递至散热器。 从而, 降 低或消除热传导路径上温度梯度, 使发热器件的温度下降, 消除设备内部的 温度不平衡热点区域, 提高器件和设备的整体可靠性和长时间工作能力。 而 且, 本发明提供的石墨膜导热体加工容易、 使用方便、 不受安装位置限制, 是针对近年来设备的热传导要求而设计的, 适合各种环境和要求; 导热速度 快, 缩短了有效热传递路径长度, 克服了高发热器件引起的散热器件内部温 度梯度问题; 对设备的高度集成以及超小超薄化的发展提供了有力的帮助。 附图说明 图 1为本发明一个 施例的石墨膜导热体未完全卷绕的示意图; 图 2为本发明一个 施例的石墨膜导热体的示意图;
图 3 为本发明另 ^施例的开有缺口的石墨膜导热体未完全卷绕 图;
图 4为本发明另一 施例的开有缺口的石墨膜导热体的示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体实施 例, 并参照附图, 对本发明进一步详细说明。
本发明提供一种石墨膜导热体, 其由石墨膜卷绕制成, 所述石墨膜导热 体包括设置在中间的导热部件、 设置在一端的热接触部件和设置在另一端的 冷接触部件。
其中, 所述导热部件由石墨膜卷绕至少一匝而成, 所述热接触部件和冷 接触部件不卷绕成匝; 所述热接触部件用于与发热器件接触, 所述冷接触部 件用于与散热器件接触。
图 1 为本发明一个实施例的石墨膜导热体未完全卷绕的示意图。 作为本 发明的一个实施例, 所述石墨膜的两端分别为热接触部件 101 和冷接触部件 102, 中间为导热部件 103, 其中热接触部件 101、 冷接触部件 102分别与导 热部件 103连接。 将石墨膜裁切成如图 1所示形状, 然后将导热部件 103的 石墨膜沿着卷绕方向 (A 方向) 卷绕成匝层, 所述匝层的匝数至少为一匝, 但所述热接触部件 101和冷接触部件 102不卷绕成匝。
图 2 为本发明一个实施例的石墨膜导热体的示意图。 所述石墨膜导热体 包括中间的导热部件 103, 以及分别设置于两端的热接触部件 101 和冷接触 部件 102, 其中热接触部件 101、 冷接触部件 102分别与导热部件 103连接。 其中, 所述导热部件 103 由石墨膜卷绕至少一匝而成, 本实施例中导热部件
103 的石墨膜导热体卷绕成多匝, 所述热接触部件 101 和冷接触部件 102不 卷绕成匝。
所述热接触部件 101 与发热器件接触, 所述冷接触部件 102与散热器件 接触。 因此, 当热接触部件 101 的任何一个部分接收到发热器件传来的热量 后, 热量迅速在热接触部件 101上进行横向传导, 然后沿着导热部件 103 的 轴向 (B方向) 向冷接触部件 102传递热量, 最后通过冷接触部件 102将热 量传递至散热器。
如果没有热接触部件 101、 冷接触部件 102, 即将导热部件 103的两端直 接与发热器件、 散热器件接触, 则由于多层石墨膜垂直方向的热阻增大, 会 严重影响石墨膜与器件的传热速度。
可见, 本发明可以同时提高发热器件向导热体传递热量的速度, 以及导 热体向散热器件传递热量的速度, 从而提高发热器件的散热速度, 消除设备 内部的温度不平衡热点区域, 提高器件和设备的整体可靠性和长时间工作能 力。
通过卷绕的方式将石墨膜与器件接触, 可以减小设备占用的空间。
需要说明的是, 由于石墨膜的柔软性优越, 在将本发明放入设备用于导 热时, 可以根据设备的结构需要对本发明进行压制、 覆绝缘膜、 弯曲等操 作。
由于超薄设备的普及, 可以将所述石墨膜导热体压制成扁平的条带状 后, 再放入设备中用于导热。 如果有需要, 还可以将所述条带状的石墨膜导 热体弯曲后, 再放入设备中用于导热。
优选地, 所述石墨膜导热体的导热部件的外层被绝缘膜覆盖后, 再放入 设备中, 使该导热部件兼具导热和绝缘的功能。
更为优选地, 所述石墨膜导热体的导热部件的外层被绝缘膜覆盖后, 被 压制成扁平的条带状, 然后再放入空间较小的设备中, 使该导热部件定型、 且占用设备的空间较小。 因此, 所述导热部件也兼具导热和绝缘的功能。 如 果有需要, 还可以将所述呈条带状的石墨膜导热体弯曲后, 再放设备中使 用。
较佳地, 所述绝缘膜为绝缘塑料膜。
所以, 本发明提供的石墨膜导热体可以满足各种设备的结构需要, 能应 用于各种超薄或者不平直的设备结构。
减小导热部件 103 的轴向 (B 方向) 长度, 并同时增加其导热部件 103 的卷绕方向 (A 方向) 长度, 可以缩短有效热传递路径, 进一步提高发热器 件的散热速度。
如果设备的空间结构允许, 则应尽量将导热部件 103 卷绕得疏松, 使得 相邻匝层的石墨膜之间留有空间, 有利于导热部件 3 的径向 (C 方向) 散 执、、、。 虽然石墨膜的纵向导热速度仅为其横向导热速度的 1/100, 但是充分利用 其纵向导热也可以或多或少地提高石墨膜的导热速度。 因此, 在石墨膜卷绕 前, 可在所述导热部件 103上开有缺口 104。
图 3 为本发明另一实施例的开有缺口的石墨膜导热体未完全卷绕的示意 图。 作为本发明的另一个实施例, 所述石墨膜的两端分别为热接触部件 101 和冷接触部件 102, 中间为导热部件 103, 其中热接触部件 101、 冷接触部件 102分别与导热部件 103连接。 将石墨膜裁切成如图 3所示形状, 并且在所 述导热部件 103上开有多个缺口 104; 然后将导热部件 103 的石墨膜沿着卷 绕方向 (A 方向) 卷绕成匝层, 所述匝层的匝数至少为一匝, 但所述热接触 部件 101和冷接触部件 102不卷绕成匝。
参考图 4, 其为本发明另一实施例的开有缺口的石墨膜导热体的示意 图。 所述石墨膜导热体包括中间的导热部件 103, 分别设置于两端的热接触 部件 101、 冷接触部件 102, 其中热接触部件 101、 冷接触部件 102分别与导 热部件 103连接, 而且所述导热部件 103上开有多个缺口 104。 其中, 所述 导热部件 103 由石墨膜卷绕至少一匝而成, 本实施例中导热部件 103 的石墨 膜导热体卷绕成多匝, 所述热接触部件 101和冷接触部件 102不卷绕成匝。
因此, 当导热部件 103 沿着轴向 (B 方向) 向散热器件传递热量时, 少 部分的热量也同时沿着导热部件 103的径向 (C方向)、 并经过层叠的石墨膜 向外界散热。 设置缺口 104 可以防止由于卷绕多层石墨膜而导致热部件 103 的内部热量积聚, 有助于降低导热部件 103的径向 (C方向) 温度梯度。
需要指出的是, 在导热部件 103上开设缺口 104的方式并不唯一, 可以 在导热部件 103 卷绕之前在石墨膜上开设缺口 104, 也可以在导热部件 103 卷绕完成后再在其上开设缺口 104。
所述缺口 104 的形状并无限定, 可以是任意形状, 如圆形、 正方形、 长 方形、 椭圆等形状。 优选地, 所述缺口 104为细而长的狭缝。
所述缺口 104的数量也无限定, 可以根据散热需要确定。
更为优选地, 在导热部件 103 中, 石墨膜上每一匝的缺口 104与其相邻 匝层上的缺口 104 的开口位置一一对应, 有助于提高导热部件 103 的径向 (C方向) 散热效果、 降低导热部件 103的径向 (C方向) 温度梯度。
可选地, 所述石墨膜为将高分子膜经热处理后得到的人工石墨膜。 所述 石墨膜的厚度没有限定。 较佳地, 所述高分子膜选自聚噁二唑、 聚酰亚胺、 聚对亚苯基亚乙烯、 聚苯并咪唑、 聚苯并噁唑、 聚苯并双噁唑、 聚噻唑、 聚苯并噻唑、 聚苯并双 噻唑和聚酰胺的膜中的至少一种。
对比试验:
将本发明提供的石墨膜导热体和常规导热体分别与发热器件、 散热器件 接触, 比较其导热速度。
所用发热器件的功率为 2W, 所用常规导热体为单层石墨膜, 其厚度为 0.07mm; 本发明的导热部件 103 由厚度为 0.07mm的石墨膜卷绕 3匝而成。 到达热平衡后, 分别测试发热器件的表面温度。
测试结果如下: 与常规导热体相连的发热器件表面温度为 54°C, 与本发 明提供的石墨膜导热体相连的发热器件表面温度为 45°C。
如上所述, 本发明提供的石墨膜导热体利用石墨膜较高导热性 (平面导 热率约 1500W/mK), 并通过卷绕增大了其与发热器件、 散热器件之间较大的 传热面积, 使得热量迅速地从发热器件传递至散热器。 从而, 降低或消除热 传导路径上温度梯度, 使发热器件的温度变低, 消除设备内部的温度不平衡 热点区域, 提高器件和设备的整体可靠性和长时间工作能力。
而且, 本发明提供的石墨膜导热体加工容易、 使用方便、 不受安装位置 限制, 是近年来针对设备的热传导要求而设计的, 适合各种环境和要求; 导 热速度快, 缩短了有效热传递路径长度, 克服了高发热器件引起的散热器件 内部温度梯度问题; 对设备的高度集成、 以及超小超薄提供了有力的帮助。
所属领域的普通技术人员应当理解: 以上所述仅为本发明的具体实施例 而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的任何修 改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种石墨膜导热体, 其由石墨膜卷绕制成, 其特征在于, 所述石墨膜 导热体包括设置在中间的导热部件、 设置在一端的热接触部件和设置在另一 端冷接触部件, 其中所述热接触部件和所述冷接触部件分别与所述导热部件 连接;
其中, 所述导热部件由石墨膜卷绕至少一匝而成, 所述热接触部件和所 述冷接触部件不卷绕成匝; 并且所述热接触部件用于与发热器件接触, 所述 冷接触部件用于与散热器件接触。
2. 根据权利要求 1所述的石墨膜导热体, 其特征在于, 所述导热部件上 开有缺口。
3. 根据权利要求 2所述的石墨膜导热体, 其特征在于, 所述缺口为细而 长的狭缝。
4. 根据权利要求 2所述的石墨膜导热体, 其特征在于, 所述导热部件的 相邻匝层上的缺口位置一一对应。
5. 根据权利要求 1所述的石墨膜导热体, 其特征在于, 所述石墨膜为将 高分子膜经热处理后得到的人工石墨膜。
6. 根据权利要求 5所述的石墨膜导热体, 其特征在于, 所述高分子膜选 自聚噁二唑、 聚酰亚胺、 聚对亚苯基亚乙烯、 聚苯并咪唑、 聚苯并噁唑、 聚 苯并双噁唑、 聚噻唑、 聚苯并噻唑、 聚苯并双噻唑和聚酰胺的膜中的至少一 种。
7. 根据权利要求 1~6中任意一项所述的石墨膜导热体, 其特征在于, 所 述导热部件的外层被绝缘膜覆盖。
8. 根据权利要求 7所述的石墨膜导热体, 其特征在于, 所述绝缘膜为绝 缘塑料膜。
9. 根据权利要求 1~8 中任意一项所述的石墨膜导热体, 其特征在于, 所 述石墨膜导热体呈条带状。
10. 根据权利要求 1~9 中任意一项所述的石墨膜导热体, 其特征在于, 所述石墨膜导热体被弯曲后放入设备中用于导热和绝缘。
PCT/CN2012/079652 2012-06-25 2012-08-03 一种石墨膜导热体 WO2014000333A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112012006614.6T DE112012006614B4 (de) 2012-06-25 2012-08-03 Graphitfilm-Wärmeleiter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012102142900 2012-06-25
CN201210214290.0A CN103096691B (zh) 2012-06-25 2012-06-25 一种石墨膜导热体

Publications (1)

Publication Number Publication Date
WO2014000333A1 true WO2014000333A1 (zh) 2014-01-03

Family

ID=48208616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079652 WO2014000333A1 (zh) 2012-06-25 2012-08-03 一种石墨膜导热体

Country Status (3)

Country Link
CN (1) CN103096691B (zh)
DE (1) DE112012006614B4 (zh)
WO (1) WO2014000333A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013007178T5 (de) * 2013-06-21 2016-03-24 Jones Tech Plc Wärmeleitungsverfahren eines Graphitfolienwärmeleiters
CN105366669B (zh) * 2015-11-25 2018-01-02 上海弘枫实业有限公司 石墨膜卷材生产治具及石墨膜卷材生产方法
CN105451522B (zh) * 2015-12-23 2018-06-01 联想(北京)有限公司 一种散热工件及电子设备
US10653038B2 (en) 2016-04-14 2020-05-12 Microsoft Technology Licensing, Llc Heat spreader
CN108134158A (zh) * 2017-12-27 2018-06-08 深圳航美新材料科技有限公司 一种热管理组件及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201115224Y (zh) * 2007-05-23 2008-09-10 新高功能医用电子有限公司 散热连接器模组
CN101316496A (zh) * 2007-05-29 2008-12-03 精碟科技股份有限公司 散热片
JP2009295921A (ja) * 2008-06-09 2009-12-17 Kaneka Corp 厚み方向にグラファイトが配向した熱伝導シート
JP2010003981A (ja) * 2008-06-23 2010-01-07 Kaneka Corp 厚み方向にグラファイトが配向した熱伝導シート
JP2010189244A (ja) * 2009-02-20 2010-09-02 Kaneka Corp グラファイトブロック及びグラファイト配向熱伝導シート
CN102149633A (zh) * 2008-09-11 2011-08-10 株式会社钟化 碳质膜的制造方法及由其制得的石墨膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823183A (ja) 1994-07-06 1996-01-23 Matsushita Electric Ind Co Ltd 部材の冷却構造
JP3912382B2 (ja) 1998-12-10 2007-05-09 富士通株式会社 電子機器筐体及びそれに用いる熱伝導パス部材
CN103193222B (zh) * 2007-05-17 2015-08-12 株式会社钟化 石墨膜及石墨复合膜
CN102255031B (zh) * 2011-06-17 2013-03-13 孙伟峰 发光二极管散热装置及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201115224Y (zh) * 2007-05-23 2008-09-10 新高功能医用电子有限公司 散热连接器模组
CN101316496A (zh) * 2007-05-29 2008-12-03 精碟科技股份有限公司 散热片
JP2009295921A (ja) * 2008-06-09 2009-12-17 Kaneka Corp 厚み方向にグラファイトが配向した熱伝導シート
JP2010003981A (ja) * 2008-06-23 2010-01-07 Kaneka Corp 厚み方向にグラファイトが配向した熱伝導シート
CN102149633A (zh) * 2008-09-11 2011-08-10 株式会社钟化 碳质膜的制造方法及由其制得的石墨膜
JP2010189244A (ja) * 2009-02-20 2010-09-02 Kaneka Corp グラファイトブロック及びグラファイト配向熱伝導シート

Also Published As

Publication number Publication date
DE112012006614T5 (de) 2015-03-26
CN103096691B (zh) 2015-04-29
DE112012006614B4 (de) 2018-06-28
CN103096691A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
EP3474647B1 (en) Cooling system of working medium contact type for high-power device, and working method thereof
WO2014000333A1 (zh) 一种石墨膜导热体
US20220256739A1 (en) Heat-Conducting Assembly and Terminal
CN111246706B (zh) 一种双面散热装置
WO2011150798A1 (zh) 一种tec制冷装置及其应用的电器装置
CN110494018B (zh) 一种光模块
TW201143590A (en) Heat dissipation device
WO2014201686A1 (zh) 石墨膜导热体的导热方法
WO2023197733A1 (zh) 电子产品
CN108227350B (zh) 数字微型反射投影机
CN103500733B (zh) 一种隔爆结构绝缘热管散热器
CN210072530U (zh) 一种石墨烯单向导热板
CN209729888U (zh) 可靠性高散热模组
CN105955435A (zh) 一种加固计算机散热方法
TWI761541B (zh) 電子設備的主機板散熱系統
JP2003060141A (ja) 超伝熱部材およびそれを用いた冷却装置
CN209845583U (zh) 一种双面散热装置以及一种逆变器
CN108833646B (zh) 一种保护套
CN210072029U (zh) 一种大屏幕的测试电路板
WO2014134791A1 (zh) 导热垫片及其应用
CN204388670U (zh) 一种新型复合毛细芯热柱的蒸发端
CN115379708A (zh) 一种使用超薄均温板的带式相变散热设备
WO2015085569A1 (zh) 散热结构及具有所述散热结构的电子装置
WO2014036739A1 (zh) 一种导热体
CN218038758U (zh) 一种耐高温扁平式电感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120066146

Country of ref document: DE

Ref document number: 112012006614

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880148

Country of ref document: EP

Kind code of ref document: A1