WO2014201686A1 - 石墨膜导热体的导热方法 - Google Patents

石墨膜导热体的导热方法 Download PDF

Info

Publication number
WO2014201686A1
WO2014201686A1 PCT/CN2013/077653 CN2013077653W WO2014201686A1 WO 2014201686 A1 WO2014201686 A1 WO 2014201686A1 CN 2013077653 W CN2013077653 W CN 2013077653W WO 2014201686 A1 WO2014201686 A1 WO 2014201686A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
graphite film
film
graphite
generating device
Prior art date
Application number
PCT/CN2013/077653
Other languages
English (en)
French (fr)
Inventor
吴晓宁
Original Assignee
北京中石伟业科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中石伟业科技股份有限公司 filed Critical 北京中石伟业科技股份有限公司
Priority to PCT/CN2013/077653 priority Critical patent/WO2014201686A1/zh
Priority to DE112013007178.9T priority patent/DE112013007178T5/de
Publication of WO2014201686A1 publication Critical patent/WO2014201686A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to the field of heat conduction, and in particular to a method of heat conduction of a graphite film heat conductor. Background technique
  • Thermal design is a specialized discipline that focuses on the transfer or maintenance of heat in equipment. In the heat transfer design, it is often necessary to select the heat transfer medium reasonably. It is necessary to consider not only the heat transfer efficiency and heat transfer capacity of the heat sink, but also the factors such as optimizing its shape design and outer surface area to improve the overall heat dissipation efficiency of the heat transfer system. .
  • the present invention provides a method of thermally conducting a graphite film heat conductor, wherein the graphite film heat conductor is formed into a flat strip shape from a graphite film, and includes a heat conductive member and a heat contact member disposed at one end of the heat conductive member.
  • the heat contact member is disposed between the heat generating device and the heat sink member such that the surface of the heat contact member is respectively adhered to the surface of the heat generating device and the heat sink member, and the heat conducting member is attached to the surface of the heat sink member;
  • the heat conducting member is formed by winding or bending a graphite film into at least two layers, and the heat contact member is a single layer graphite film.
  • the heat conducting member is closely attached to the surface of the heat sink member by mechanical fixing, so that the heat sink member sufficiently takes away heat from the graphite film heat conductor.
  • the thermally conductive member is intimately attached to the surface of the heat sink member using a non-continuously distributed tape and/or adhesive.
  • the adhesive is discontinuously distributed on the surface of the graphite film to partially bond the graphite film of the adjacent layer.
  • the adhesive is a thermally conductive adhesive.
  • a plurality of thermal contact members of the graphite film thermal conductor are placed between the heat generating device and the heat sink member, and the plurality of thermal contact members are in direct contact with the heat generating device.
  • a plurality of thermal contact members of the graphite film heat conductor are laminated between the heat generating device and the heat sink member.
  • the heat conducting members of the plurality of graphite film heat conductors are closely attached to the surface of the heat sink member, the plurality of heat conducting members are centered on the heat generating device, and the angle between the adjacent heat conducting members is substantially the same .
  • the graphite film is an artificial graphite film obtained by heat-treating a polymer film.
  • the polymer film is selected from the group consisting of polyoxadiazole, polyimide, polyparaphenylene vinylene, polybenzimidazole, polybenzoxazole, polybenzobisoxazole, polythiazole, poly At least one of a film of benzothiazole, polybenzobisthiazole, and polyamide.
  • the heat conduction method of the graphite film heat conductor utilizes the high thermal conductivity of the graphite film and increases the large heat conduction area between the heat generating device and the heat sink member by winding, so that Heat is quickly transferred from the heat generating device to the heat sink member.
  • the temperature gradient on the heat conduction path is reduced or eliminated, the temperature of the heat generating device is lowered, the temperature unbalanced hot spot region inside the device is eliminated, and the overall reliability and long-term working ability of the device and the device are improved.
  • the method is easy to process, flexible in design, convenient in assembly, and free from installation position. It is designed for the heat transfer requirements of equipment in recent years, and is suitable for various environments and requirements.
  • DRAWINGS 1 is a schematic view showing a graphite film thermal conductor not completely wound according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a graphite film thermal conductor after being wound according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a graphite film thermal conductor pressed into a strip shape according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing a graphite film thermal conductor bent according to another embodiment of the present invention
  • FIG. 5 is a plan view of a graphite film heat conductor for heat conduction according to an embodiment of the present invention
  • FIG. 6 is a side view of a graphite film heat conductor for heat conduction according to an embodiment of the present invention
  • Figure 8 is a schematic view showing the distribution of heat conducting members of a plurality of graphite film heat conductors according to another embodiment of the present invention.
  • Figure 9 is a schematic view showing the distribution of eight graphite film thermal conductors on the surface of the heat sink member in the comparative test of the present invention.
  • Figure 10 is a schematic view showing different test points on the surface of the heat sink member in the comparative test of the present invention. detailed description
  • Graphite film is a new type of heat-conducting heat-dissipating material with unique grain orientation and uniform heat conduction in two directions.
  • the layered structure can be well adapted to any surface.
  • a graphite film heat conductor is proposed which is formed by winding a graphite film and increases the thermal conductivity between the graphite film and the heat generating device and the heat sink member by winding. The heat transfer area allows heat to be quickly transferred from the heat generating device to the heat sink.
  • the graphite film heat conductor is formed of a graphite film in a flat strip shape, and includes a heat conductive member 101 and a heat contact member 102 disposed at the end of the heat conductive member 101.
  • the graphite film is cut into a shape as shown in FIG. 1, and then the graphite film of the heat conductive member 101 is wound into a ruthenium layer along the winding direction (A direction), and the number of turns of the ruthenium layer is at least one ⁇ , this embodiment
  • the graphite film of the heat conductive member 101 is wound into a plurality of turns, but the heat contact member 102 is not wound into a crucible.
  • the wound graphite film heat conductor is pressed into a flat strip shape, as shown in Fig. 3, which can reduce the space occupied by the device.
  • the heat conductive member 101 in the present invention is formed by winding a graphite film into at least two layers, and the heat contact member 102 is a single-layer graphite film.
  • the graphite film heat conductor may also be formed by bending a graphite film.
  • the heat conductive member 101 is bent at least once by a graphite film, and the heat conductive member in this embodiment
  • the graphite film of 101 is bent into at least two layers, and the thermal contact member 102 is not bent.
  • the bent graphite film heat conductor is pressed into a flat strip shape, as shown in Fig. 3, which can reduce the space occupied by the device.
  • the heat conductive member 101 in the present invention is formed by bending a graphite film into at least two layers, and the heat contact member 102 is a single layer graphite film.
  • FIG. 5 and FIG. 6 are respectively a plan view and a side view of a graphite film heat conductor for conducting heat, which is used to transfer heat of the heat generating device 201 to a heat sink member, according to an embodiment of the present invention.
  • 202 The thermal contact member 102 of the graphite film thermal conductor is placed between the heat generating device 201 and the heat sink member 202 such that the surface of the thermal contact member 102 is respectively attached to the heat generating device 201 and the heat sink member 202;
  • the component 101 is attached to the surface of the heat sink member 202.
  • the heat conducting member 101 is closely attached to the surface of the heat sink member 202 by mechanical fixing, so that the heat sink member 202 sufficiently takes away heat on the graphite film heat conductor.
  • the heat conductive member 101 is closely attached to the surface of the heat sink member 202 by the tape 103.
  • the tape 103 is discontinuously distributed on the upper surface of the heat conductive member 101, see Fig. 5, that is, the upper surface of the heat conductive member 101 is spaced apart from the tape 103.
  • the tape may be continuously distributed on the upper surface of the heat conductive member 101 such that the entire heat conductive member 101 is closely attached to the surface of the heat radiating member 202.
  • the thermally conductive member 101 may be closely attached to the surface of the heat sink member 202 by a thermally conductive adhesive.
  • the surface of the graphite film directly in contact with the heat sink member 202 is non-continuously provided with an adhesive so that a portion of the graphite film is fixed to the heat sink member 202 by an adhesive.
  • an adhesive may be provided on the surface of the graphite film directly in contact with the heat sink member 202, and the graphite film and the heat sink member 202 may be fixedly connected by an adhesive.
  • an adhesive may be continuously provided inside the heat conductive member 101.
  • a heat conductive adhesive is disposed between the graphite films of the adjacent layers, and the heat conductive adhesive is discontinuously distributed on the surface of the graphite film, and the graphite film of the adjacent layer is partially bonded thereto.
  • the adhesive may be a thermally conductive adhesive or a non-thermally conductive adhesive.
  • the amount of the adhesive should be as small as possible, and the heat transfer member 101 cannot be affected to transfer heat to the heat sink member 202. .
  • the heat is rapidly conducted laterally on the thermal contact member 102 and transferred from the thermal contact member 102 to the heat conductive member 101. Since the heat conductive member 101 is wound or bent into a plurality of layers by the graphite film, if any portion of the heat conductive member 101 receives the heat transferred from the heat contact member 102, the heat is rapidly conducted laterally on the graphite film, so that The heat is simultaneously transmitted along the axial direction (B direction) and the radial direction (C direction) of the heat conducting member 101, and the temperature of the heat conducting member 101 is quickly balanced, and the diffused heat is transferred to the heat sink member 202, so that the heat sink member 202 is The heat is evenly distributed.
  • the heat conduction method of the graphite film heat conductor improves the heat conduction speed of the heat generating device 201, rapidly achieves heat balance inside the body, eliminates the temperature unbalanced hot spot region inside thereof, and also significantly improves the heat dissipation efficiency of the heat sink member 202. .
  • the number of the graphite film heat conductors is four, and the thermal contact members 102 of the four graphite film heat conductors are placed between the heat generating device 201 and the heat sink member 202 while passing through the discontinuously distributed tape. 103 The heat conducting members 101 of the four graphite film heat conductors are closely attached to the surface of the heat sink member 202, as shown in FIG.
  • the thermal contact members 102 of the four graphite film thermal conductors are laminated between the heat generating device 201 and the heat sink member 202, as shown in FIG. 7, and the heat conducting members of the four graphite film thermal conductors 101 is centered on the heat generating device 201, and the angle between the adjacent heat conducting members 101 is substantially the same, that is, about 90 degrees.
  • the thermal contact members 102 of the four graphite film thermal conductors are placed between the heat generating device 201 and the heat sink member 202, and the four thermal contact members 102 are all in direct contact with the heat generating device 201.
  • the heat conducting members 101 of the four graphite film heat conductors are centered on the heat generating device 201, and the angle between the adjacent heat conducting members 101 is substantially the same, that is, about 90 degrees. Due to the mounting position of the heat generating device 201, if the heat conducting member 101 cannot be disposed centering on the heat generating device 201, the heat conducting member 101 should be appropriately distributed in accordance with the mounting position of the heat generating device 201.
  • the distribution manner of the plurality of thermal contact members 102 is not limited to the above embodiment, and the plurality of thermal contact members 102 may adopt a portion partially laminated to each other and partially connected to the heat generating device 201.
  • the distribution is also freely designed according to the surface area of the heat generating device 201.
  • the thermal contact member 102 should not be excessively laminated, and the number of lamination of the thermal contact members 102 can be reduced by reducing the surface area of the thermal contact member 102.
  • the number of the graphite film heat conductors may also be 5, 6, 7, 8, etc., and the graphite film heat conductor may be designed according to the power loss of the heat generating device 201. The number of installations and the length of the thermal parts.
  • the plurality of heat generating devices When a plurality of heat generating devices are mounted on the surface of the heat sink member, due to the limitation of the space structure, the plurality of heat generating devices should correspondingly set the number and length of the graphite film heat conductor according to the respective power loss, the mounting position and other devices around the device.
  • the layout, etc. make the distribution of the graphite film heat conductor on the surface of the heat sink part reasonable, and improve the heat transfer efficiency as much as possible.
  • the graphite film is an artificial graphite film obtained by heat-treating a polymer film.
  • the thickness of the graphite film is not limited.
  • the polymer film is selected from the group consisting of polyoxadiazole, polyimide, polyparaphenylene vinylene, polybenzimidazole, polybenzoxazole, polybenzobisoxazole, polythiazole, At least one of a film of polybenzothiazole, polybenzobisthiazole, and polyamide.
  • the strip-shaped graphite film heat conductor may be bent and then placed in a device for heat conduction to meet the structural requirements of various devices. , can be applied to a variety of ultra-thin or non-straight equipment structures. Comparative Test:
  • the heat conductive part of the graphite film heat conductor has a length of 195 mm, and contains 11 layers of graphite film after winding;
  • the heat conductive part of the graphite film heat conductor has a length of 100 mm, and contains 11 layers of graphite film after winding;
  • the heat conductive part of the graphite film heat conductor has a length of 195 mm, and contains 6 layers of graphite film after winding;
  • the heat generating device was placed on the thermal contact member of the graphite film heat conductor, and 7 test points were taken in the heat sink member, as shown in Fig. 10, and the temperatures of the seven test points were tested respectively.
  • the test results are shown in Table 1. Among them, the room temperature is 25 °C, the power of the heating device is 100W, and the thickness of the single-layer graphite film before unwinding and bending is 0.025mm, the plane thermal conductivity is about 1000 W/mK.
  • the heat conduction method of the present invention can increase the speed of heat transfer from the heat generating device to the heat sink member, reduce or eliminate the temperature gradient on the heat conduction path, thereby improving the heat dissipation speed of the heat generating device, lowering the temperature of the heat generating device, and eliminating the temperature inside the device. Unbalanced hotspot areas improve overall reliability and long-term performance of devices and equipment.
  • the heat conduction method of the graphite film thermal conductor utilizes the high thermal conductivity of the graphite film and increases the large heat conduction area between the heat generating device and the heat sink member by winding, so that the heat is rapidly removed from the heat transfer device.
  • the heat generating device is transferred to the heat sink member.
  • the temperature gradient on the heat conduction path is reduced or eliminated, the temperature of the heat generating device is lowered, the temperature imbalance hot spot inside the device is eliminated, and the overall reliability and long-term working ability of the device and the device are improved.
  • the method is easy to process, flexible in design, convenient in assembly, and free from installation position. It is designed for the heat transfer requirements of equipment in recent years, and is suitable for various environments and requirements.
  • the heat conduction speed is fast, the effective heat transfer path length is shortened, and the method is overcome.
  • the internal temperature gradient of the heat sink is caused by the high heat-generating device; it provides a powerful help for the high integration of the device and the development of ultra-small and ultra-thin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨膜导热体的导热方法,所述石墨膜导热体由石墨膜制成扁平的条带状,包括导热部件和设置在导热部件一端的热接触部件,其特征在于,将所述热接触部件置于发热器件和散热器件之间,使所述热接触部件的表面分别与发热器件和散热器件的表面贴合,并且将导热部件贴合于散热器件的表面。本发明提供的石墨膜导热体的导热方法利用石墨膜的高导热性、并通过卷绕增大了其与发热器件、散热器件之间较大的导热面积,使得热量迅速地从发热器件传递至散热器件。从而,降低或消除热传导路径上温度梯度,使发热器件的温度下降,消除设备内部的温度不平衡热点区域,提高器件和设备的整体可靠性和长时间工作能力。

Description

石墨膜导热体的导热方法 技术领域
本发明涉及导热领域, 特别涉及石墨膜导热体的导热方法。 背景技术
热设计作为一个专门的学科, 主要是研究设备中热量的传递或保持问 题。 在热传递设计中往往需要合理选择热传递介质, 不仅要考虑散热器的热 传导效率和热传递能力问题, 还要考虑优化其外形设计、 外表面面积等因 素, 以提高热传递系统的整体散热效率。
同时, 随着科技的日新月异, 电子和光电产品均朝轻、 薄、 短、 小和高 功率的趋势发展, 如此的发展将使得电子和光电产品的发热密度随之提高, 进而导致损耗功率的上升, 因而对散热效率高的电子和光电产品的需求也大 幅增加。
尤其是随着超薄设备和室外设备的普及, 在许多不允许利用风扇进行直 接散热的场合, 例如: 无线通信室外基站、 汽车电子单元和智能手机等, 往 往是多个发热器件共用一个散热器件, 这将造成散热器件内温度梯度的严重 不平衡, 极大地影响了散热器件的效率发挥, 制约着电子设备速度和功率的 提升。 发明内容
有鉴于此, 本发明的一个目的在于提出一种能够避免上述现有技术中的 问题的导热方法, 这种导热方法能够提高石墨膜导热体的导热速度, 使发热 器件的热量较快地传递给散热器件。
基于上述目的, 本发明提供一种石墨膜导热体的导热方法, 所述石墨膜 导热体由石墨膜制成扁平的条带状, 包括导热部件和设置在导热部件一端的 热接触部件, 将所述热接触部件置于发热器件和散热器件之间, 使所述热接 触部件的表面分别与发热器件和散热器件的表面贴合, 并且将导热部件贴合 于散热器件的表面; 其中, 所述导热部件由石墨膜卷绕或者弯折成至少 2 层而成, 所述热接 触部件为单层石墨膜。
可选地, 通过机械固定的方式将所述导热部件紧密贴合于散热器件的表 面, 使散热器件充分带走石墨膜导热体上的热量。
较佳地, 采用非连续分布的胶带和 /或粘接剂将所述导热部件紧密贴合于 散热器件的表面。
可选地, 在所述导热部件中, 粘接剂非连续地分布于石墨膜的表面, 使 相邻层的石墨膜局部贴合。
优选地, 所述粘接剂为导热粘接剂。
较佳地, 将多个石墨膜导热体的热接触部件置于发热器件和散热器件之 间, 且所述多个热接触部件均与发热器件直接接触。
较佳地, 将多个石墨膜导热体的热接触部件层叠于发热器件和散热器件 之间。
优选地, 将所述多个石墨膜导热体的导热部件均紧密贴合于散热器件的 表面, 所述多个导热部件以发热器件为中心, 且相邻的导热部件之间的夹角 基本相同。
可选地, 所述石墨膜为将高分子膜经热处理后得到的人工石墨膜。
优选地, 所述高分子膜选自聚噁二唑、 聚酰亚胺、 聚对亚苯基亚乙烯、 聚苯并咪唑、 聚苯并噁唑、 聚苯并双噁唑、 聚噻唑、 聚苯并噻唑、 聚苯并双 噻唑和聚酰胺的膜中的至少一种。
从上面所述可以看出, 本发明提供的石墨膜导热体的导热方法利用石墨 膜的高导热性、 并通过卷绕增大了其与发热器件、 散热器件之间较大的导热 面积, 使得热量迅速地从发热器件传递至散热器件。 从而, 降低或消除热传 导路径上温度梯度, 使发热器件的温度下降, 消除设备内部的温度不平衡热 点区域, 提高器件和设备的整体可靠性和长时间工作能力。 而且该方法加工 容易, 设计灵活, 组装方便, 不受安装位置限制, 是针对近年来设备的热传 导要求而设计的, 适合各种环境和要求; 导热速度快, 缩短了有效热传递路 径长度, 克服了高发热器件引起的散热器件内部温度梯度问题; 对设备的高 度集成以及超小超薄化的发展提供了有力的帮助。 附图说明 图 1为本发明一个实施例的石墨膜导热体未完全卷绕的示意图; 图 2为本发明一个实施例的石墨膜导热体卷绕后的示意图;
图 3为本发明一个实施例的石墨膜导热体压制成条带状的示意图; 图 4为本发明另一个实施例的石墨膜导热体弯折的示意图;
图 5为本发明一个实施例的石墨膜导热体的用于导热的俯视图; 图 6为本发明一个实施例的石墨膜导热体的用于导热的侧视图; 图 7 为本发明一个实施例的多个石墨膜导热体的导热部件的分布示意 图;
图 8 为本发明另一个实施例的多个石墨膜导热体的导热部件的分布示意 图;
图 9为本发明对比试验中在散热器件表面分布 8个石墨膜导热体的示意 图;
图 10为本发明对比试验中散热器件表面不同测试点的示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体实施 例, 并参照附图, 对本发明进一步详细说明。
石墨膜是一种全新的导热散热材料, 具有独特的晶粒取向, 沿两个方向 均匀导热, 片层状结构可很好地适应任何表面。 在本申请人未公开的专利 PCT/CN2012/079652 中, 提出一种石墨膜导热体, 其由石墨膜卷绕制成, 通 过卷绕增大了石墨膜导热体与发热器件、 散热器件之间的导热面积, 使得热 量迅速地从发热器件传递至散热器。 作为本发明的一个实施例, 所述石墨膜导热体由石墨膜制成扁平的条带 状, 其包括导热部件 101 和设置在导热部件 101 —端的热接触部件 102。 将 石墨膜裁切成如图 1所示形状, 然后将导热部件 101 的石墨膜沿着卷绕方向 (A 方向) 卷绕成匝层, 所述匝层的匝数至少为一匝, 本实施例中导热部件 101 的石墨膜卷绕成多匝, 但所述热接触部件 102 不卷绕成匝。 然后, 将所 述卷绕后的石墨膜导热体压制成扁平的条带状, 见图 3, 可以减小设备占用 的空间。
需要说明的是, 如果石墨膜卷绕 1 匝, 那么导热部件 101 中石墨膜的层 数为 2 层, 如果石墨膜卷绕 2 匝, 那么导热部件 101 中石墨膜的层数为 4 层, 如果石墨膜卷绕 2.5匝, 那么导热部件 101 中石墨膜的层数为 5层, 依 次类推。 因此, 本发明中的导热部件 101 由石墨膜卷绕成至少 2层而成, 热 接触部件 102为单层石墨膜。
作为本发明的另一个实施例, 所述石墨膜导热体也可以由石墨膜弯折而 成, 参见图 4, 所述导热部件 101 由石墨膜弯折至少一次而成, 本实施例中 导热部件 101 的石墨膜弯折成至少 2层, 所述热接触部件 102 不弯折。 然 后, 将所述弯折后的石墨膜导热体压制成扁平的条带状, 见图 3, 可以减小 设备占用的空间。
需要说明的是, 如果石墨膜弯折 1次, 那么导热部件 101 中石墨膜的层 数为 2 层, 如果石墨膜卷绕 2 次, 那么导热部件 101 中石墨膜的层数为 3 层, 如果石墨膜卷绕 3匝, 那么导热部件 101 中石墨膜的层数为 4层, 依次 类推。 因此, 本发明中的导热部件 101 由石墨膜弯折成至少 2层而成, 热接 触部件 102为单层石墨膜。
图 5和图 6分别为本发明一个实施例的石墨膜导热体的用于导热的俯视 图和侧视图, 所述扁平的条带状石墨膜导热体用于将发热器件 201 的热量传 至散热器件 202。 将所述石墨膜导热体的热接触部件 102 置于发热器件 201 和散热器件 202之间, 使所述热接触部件 102的表面分别与发热器件 201和 散热器件 202贴合; 同时将所述导热部件 101贴合于散热器件 202的表面。 进一步地, 通过机械固定的方式将所述导热部件 101 紧密贴合于散热器件 202的表面, 使散热器件 202充分带走石墨膜导热体上的热量。
优选地, 采用胶带 103将所述导热部件 101紧密贴合于散热器件 202的 表面。 可选地, 所述胶带 103非连续地分布于导热部件 101 的上表面, 参见 图 5, 即导热部件 101的上表面间隔地设置有胶带 103。 或者, 也可以将胶带 连续地分布于导热部件 101 的上表面, 使整个导热部件 101都紧密贴合于散 热器件 202的表面。
可选地, 也可以通过导热粘接剂将所述导热部件 101 紧密贴合于散热器 件 202的表面。 优选地, 在与散热器件 202直接接触的那层石墨膜表面非连 续地设置粘接剂, 使该层石墨膜的局部与散热器件 202 通过粘接剂连接固 定。 可选地, 也可以在与散热器件 202 直接接触的那层石墨膜表面全部设置 粘接剂, 使该层石墨膜与散热器件 202通过粘接剂连接固定。
进一步地, 也可以在导热部件 101 的内部继续设置粘接剂。 具体地, 在 导热部件 101 中, 相邻层的石墨膜之间设置有导热粘接剂, 所述导热粘接剂 非连续地分布于石墨膜的表面, 使相邻层的石墨膜在该处局部贴合。
需要说明的是, 所述粘接剂可以是导热粘接剂, 也可以是不导热粘接 剂, 所述粘接剂的用量应当尽可能地少, 不能影响导热部件 101 向散热器件 202传热。
因此, 当热接触部件 101 的任何一个部分接收到发热器件 201传来的热 量后, 热量迅速在热接触部件 102上进行横向传导, 并从热接触部件 102传 至导热部件 101。 由于导热部件 101 是由石墨膜卷绕或者弯折成多层而成, 因此导热部件 101 的任何一个部分接收到热接触部件 102传来的热量后, 热 量迅速在石墨膜上进行横向传导, 使热量同时沿着导热部件 101 的轴向 (B 方向) 和径向 (C方向) 进行传递, 导热部件 101 的温度快速达到平衡, 同 时扩散开的热量会传递到散热器件 202, 使散热器件 202 的热量均匀分布。 可见, 本发明提供的石墨膜导热体的导热方法提高了发热器件 201 的导热速 度, 使其内部快速达成热平衡, 消除其内部的温度不平衡热点区域, 同时也 显著提高了散热器件 202的散热效率。
在本实施例中, 所述石墨膜导热体的数量为 4条, 将 4条石墨膜导热体 的热接触部件 102均放置于发热器件 201和散热器件 202之间, 同时通过非 连续分布的胶带 103将 4条石墨膜导热体的导热部件 101均紧密贴合于散热 器件 202的表面, 见图 5。
作为本发明的又一个实施例, 所述 4 条石墨膜导热体的热接触部件 102 层叠于发热器件 201和散热器件 202之间, 见图 7, 而且所述 4条石墨膜导 热体的导热部件 101 以发热器件 201为中心, 相邻的导热部件 101之间的夹 角基本相同, 即约 90度。
作为本发明的又一个实施例, 将所述 4 条石墨膜导热体的热接触部件 102置于发热器件 201和散热器件 202之间, 且 4条热接触部件 102均与发 热器件 201直接接触, 见图 8, 所述 4条石墨膜导热体的导热部件 101 以发 热器件 201为中心, 相邻的导热部件 101之间的夹角基本相同, 即约 90度。 由于发热器件 201安装位置的原因, 如果无法以发热器件 201为中心设置导 热部件 101, 那么应当根据发热器件 201的安装位置合理分布导热部件 101。
需要说明的是, 所述多个热接触部件 102 的分布方式并不限于上述实施 例, 多个热接触部件 102可以采用部分互相层叠、 部分与发热器件 201 的方 式进行分布, 也可以根据发热器件 201 的表面积大小自由设计。 但是, 考虑 到热阻问题, 热接触部件 102 不应层叠过多, 可以通过缩小热接触部件 102 的表面积来减少热接触部件 102的层叠数量。
可选地, 为进一步提高传热速度, 所述石墨膜导热体的数量也可以为 5 条、 6条、 7条、 8条等等, 可以根据发热器件 201损耗功率的大小设计石墨 膜导热体的安装数量和导热部件的长度。
当散热器件表面安装有多个发热器件时, 由于空间结构的限制, 多个发 热器件应当根据各自的损耗功率、 安装位置及其周边的其他器件来相应地设 置石墨膜导热体的数量、 长度和布局等, 使石墨膜导热体在散热器件表面的 分布合理, 尽可能地提高传热效率。
可选地, 所述石墨膜为将高分子膜经热处理后得到的人工石墨膜。 所述 石墨膜的厚度没有限定。 较佳地, 所述高分子膜选自聚噁二唑、 聚酰亚胺、 聚对亚苯基亚乙烯、 聚苯并咪唑、 聚苯并噁唑、 聚苯并双噁唑、 聚噻唑、 聚 苯并噻唑、 聚苯并双噻唑和聚酰胺的膜中的至少一种。
需要说明的是, 由于石墨膜的柔软性优越, 如果有需要, 还可以将所述 条带状的石墨膜导热体弯曲后, 再放入设备中用于导热, 以满足各种设备的 结构需要, 能应用于各种超薄或者不平直的设备结构。 对比试验:
试验 1, 不使用石墨膜导热体, 散热器件与发热器件直接接触;
试验 2, 在散热器件表面分布 4条石墨膜导热体, 见图 5, 石墨膜导热体 的导热部件的长度为 195 mm, 卷绕后含有 11层石墨膜;
试验 3, 在散热器件表面分布 8条石墨膜导热体, 见图 9, 石墨膜导热体 的导热部件的长度为 195 mm, 卷绕后含有 11层石墨膜;
试验 4, 在散热器件表面分布 4条石墨膜导热体, 见图 5, 石墨膜导热体 的导热部件的长度为 100mm, 卷绕后含有 11层石墨膜;
试验 5, 在散热器件表面分布 4条石墨膜导热体, 见图 5, 石墨膜导热体 的导热部件的长度为 195 mm, 卷绕后含有 6层石墨膜;
将发热器件放置于石墨膜导热体的热接触部件上, 并在散热器件取 7 个 测试点, 见图 10, 分别测试 7个测试点的温度, 测试结果见表 1。 其中, 室 温为 25 °C, 发热器件的功率为 100W, 未卷绕和弯折前单层石墨膜的厚度为 0.025mm, 平面导热率约 1000 W/mK。
表 1 多个石墨膜导热体用于导热时不同测试点的温度 (T/°C )
Figure imgf000009_0001
从表 1 中可知, 采用本发明的导热方法后, 发热器件的温度明显下降, 而且散热器件各个测试点的温度差也同时减少。 可见, 本发明提供的导热方 法可以提高发热器件向散热器件传递热量的速度, 降低或消除热传导路径上 温度梯度, 从而提高发热器件的散热速度, 使发热器件的温度变低, 消除设 备内部的温度不平衡热点区域, 提高器件和设备的整体可靠性和长时间工作 能力。
由此可见, 本发明提供的石墨膜导热体的导热方法利用石墨膜的高导热 性、 并通过卷绕增大了其与发热器件、 散热器件之间较大的导热面积, 使得 热量迅速地从发热器件传递至散热器件。 从而, 降低或消除热传导路径上温 度梯度, 使发热器件的温度下降, 消除设备内部的温度不平衡热点区域, 提 高器件和设备的整体可靠性和长时间工作能力。
而且该方法加工容易, 设计灵活, 组装方便, 不受安装位置限制, 是针 对近年来设备的热传导要求而设计的, 适合各种环境和要求; 导热速度快, 缩短了有效热传递路径长度, 克服了高发热器件引起的散热器件内部温度梯 度问题; 对设备的高度集成以及超小超薄化的发展提供了有力的帮助。 所属领域的普通技术人员应当理解: 以上所述仅为本发明的具体实施例 而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的任何修 改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种石墨膜导热体的导热方法, 所述石墨膜导热体由石墨膜制成扁平 的条带状, 包括导热部件和设置在导热部件一端的热接触部件, 其特征在 于, 将所述热接触部件置于发热器件和散热器件之间, 使所述热接触部件的 表面分别与发热器件和散热器件的表面贴合, 并且将导热部件贴合于散热器 件的表面;
其中, 所述导热部件由石墨膜卷绕或者弯折成至少 2 层而成, 所述热接 触部件为单层石墨膜。
2. 根据权利要求 1所述的石墨膜导热体的导热方法, 其特征在于, 通过 机械固定的方式将所述导热部件紧密贴合于散热器件的表面, 使散热器件充 分带走石墨膜导热体上的热量。
3. 根据权利要求 2所述的石墨膜导热体的导热方法, 其特征在于, 采用 非连续分布的胶带和 /或粘接剂将所述导热部件紧密贴合于散热器件的表面。
4. 根据权利要求 1所述的石墨膜导热体的导热方法, 其特征在于, 在所 述导热部件中, 粘接剂非连续地分布于石墨膜的表面, 使相邻层的石墨膜局 部贴合。
5. 根据权利要求 4所述的石墨膜导热体的导热方法, 其特征在于, 所述 粘接剂为导热粘接剂。
6. 根据权利要求 1所述的石墨膜导热体的导热方法, 其特征在于, 将多 个石墨膜导热体的热接触部件置于发热器件和散热器件之间, 且所述多个热 接触部件均与发热器件直接接触。
7. 根据权利要求 1所述的石墨膜导热体的导热方法, 其特征在于, 将多 个石墨膜导热体的热接触部件层叠于发热器件和散热器件之间。
8. 根据权利要求 6或 7所述的石墨膜导热体的导热方法, 其特征在于, 将所述多个石墨膜导热体的导热部件均紧密贴合于散热器件的表面, 所述多 个导热部件以发热器件为中心, 且相邻的导热部件之间的夹角基本相同。
9. 根据权利要求 1所述的石墨膜导热体的导热方法, 其特征在于, 所述 石墨膜为将高分子膜经热处理后得到的人工石墨膜。
10. 根据权利要求 9 所述的石墨膜导热体的导热方法, 其特征在于, 所 述高分子膜选自聚噁二唑、 聚酰亚胺、 聚对亚苯基亚乙烯、 聚苯并咪唑、 聚 苯并噁唑、 聚苯并双噁唑、 聚噻唑、 聚苯并噻唑、 聚苯并双噻唑和聚酰胺的 膜中的至少一种。
PCT/CN2013/077653 2013-06-21 2013-06-21 石墨膜导热体的导热方法 WO2014201686A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/077653 WO2014201686A1 (zh) 2013-06-21 2013-06-21 石墨膜导热体的导热方法
DE112013007178.9T DE112013007178T5 (de) 2013-06-21 2013-06-21 Wärmeleitungsverfahren eines Graphitfolienwärmeleiters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/077653 WO2014201686A1 (zh) 2013-06-21 2013-06-21 石墨膜导热体的导热方法

Publications (1)

Publication Number Publication Date
WO2014201686A1 true WO2014201686A1 (zh) 2014-12-24

Family

ID=52103842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077653 WO2014201686A1 (zh) 2013-06-21 2013-06-21 石墨膜导热体的导热方法

Country Status (2)

Country Link
DE (1) DE112013007178T5 (zh)
WO (1) WO2014201686A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551674B (zh) * 2015-09-09 2016-10-01 宏達國際電子股份有限公司 石墨熱導體、電子裝置及石墨熱導體製造方法
CN109397789A (zh) * 2018-11-21 2019-03-01 苏州市达昇电子材料有限公司 一种2层以上的导热石墨膜及其制备方法
US10234915B2 (en) 2015-09-09 2019-03-19 Htc Corporation Graphite thermal conductor, electronic device and method for manufacturing graphite thermal conductor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10653038B2 (en) 2016-04-14 2020-05-12 Microsoft Technology Licensing, Llc Heat spreader
DE102021132731A1 (de) * 2021-12-10 2023-06-15 Connaught Electronics Ltd. Gehäuse für einen elektronischen Schaltkreis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792101A (zh) * 2009-12-31 2012-11-21 西格里碳素欧洲公司 具有加热或冷却调节器的天花板元件或壁元件
CN103096691A (zh) * 2012-06-25 2013-05-08 北京中石伟业科技股份有限公司 一种石墨膜导热体
CN103107147A (zh) * 2012-04-06 2013-05-15 北京中石伟业科技股份有限公司 一种表面覆有石墨烯薄膜的散热器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792101A (zh) * 2009-12-31 2012-11-21 西格里碳素欧洲公司 具有加热或冷却调节器的天花板元件或壁元件
CN103107147A (zh) * 2012-04-06 2013-05-15 北京中石伟业科技股份有限公司 一种表面覆有石墨烯薄膜的散热器
CN103096691A (zh) * 2012-06-25 2013-05-08 北京中石伟业科技股份有限公司 一种石墨膜导热体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551674B (zh) * 2015-09-09 2016-10-01 宏達國際電子股份有限公司 石墨熱導體、電子裝置及石墨熱導體製造方法
US10234915B2 (en) 2015-09-09 2019-03-19 Htc Corporation Graphite thermal conductor, electronic device and method for manufacturing graphite thermal conductor
CN109397789A (zh) * 2018-11-21 2019-03-01 苏州市达昇电子材料有限公司 一种2层以上的导热石墨膜及其制备方法

Also Published As

Publication number Publication date
DE112013007178T5 (de) 2016-03-24

Similar Documents

Publication Publication Date Title
TWI489597B (zh) 服貼性多層熱傳導介面組件和包含其的記憶體模組
WO2014201686A1 (zh) 石墨膜导热体的导热方法
CN106304780B (zh) 用于高导热石墨膜的制造工艺
WO2013149420A1 (zh) 一种高导热金属箔胶带
JP2016207995A (ja) 熱電変換モジュールとその製造方法、ならびに熱電発電システムとその製造方法
US20060005944A1 (en) Thermoelectric heat dissipation device and method for fabricating the same
TWM548416U (zh) 柔性均溫板
CN110494018B (zh) 一种光模块
WO2017206682A1 (zh) 移动显示设备
WO2014000333A1 (zh) 一种石墨膜导热体
JP2006237146A (ja) 熱電変換用カスケードモジュール
CN205266113U (zh) 一种片材制散热片
CN109152277A (zh) 一种新型导热石墨片
JP5920356B2 (ja) 水冷装置、水冷装置を有する電子機器、及び水冷方法
CN213752686U (zh) 电子设备
CN105969224A (zh) 用于电子器件的均热胶带
CN108206164A (zh) 用于微电子散热的散热片
CN104039112A (zh) 散热模块
WO2014036739A1 (zh) 一种导热体
CN111650702A (zh) 光模块结构
JP3988100B2 (ja) 伝熱部材
CN205584618U (zh) 便于散热的pcb电路板
CN213991462U (zh) 温度控制装置及电子设备
CN104302155B (zh) 用于胶带的石墨散热片
CN204167293U (zh) 一种高功率电子开关模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887048

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013007178

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887048

Country of ref document: EP

Kind code of ref document: A1