WO2023197733A1 - 电子产品 - Google Patents

电子产品 Download PDF

Info

Publication number
WO2023197733A1
WO2023197733A1 PCT/CN2023/074912 CN2023074912W WO2023197733A1 WO 2023197733 A1 WO2023197733 A1 WO 2023197733A1 CN 2023074912 W CN2023074912 W CN 2023074912W WO 2023197733 A1 WO2023197733 A1 WO 2023197733A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat
heating element
transfer medium
electronic product
Prior art date
Application number
PCT/CN2023/074912
Other languages
English (en)
French (fr)
Inventor
王博杰
施沙美
孟繁博
陈鹏
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2023197733A1 publication Critical patent/WO2023197733A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This application relates to the technical field of electronic equipment, and specifically relates to an electronic product.
  • the high and low temperature thermal control of batteries will be achieved using some phase change or porous materials.
  • the copper wire in the printed circuit board is used as a heating element to heat the optical device at low temperature; or a thin film resistor is used to heat the optical device at low temperature.
  • Embodiments of the present application provide an electronic product that can solve the problem of performance degradation of internal heating elements of electronic products under extreme ambient temperatures.
  • An embodiment of the present application provides an electronic product, including: a temperature control device, a heat dissipation element, and a heating element;
  • the temperature control device includes a housing, and the housing includes a first outer surface and a second outer surface that are oppositely arranged, so The first outer surface is in thermal contact with the heating element, the second outer surface is in thermal contact with the heat dissipation element, and a sealed cavity is provided inside the housing, and the cavity has a structure with the first a first inner surface corresponding to the outer surface and a second inner surface corresponding to the second outer surface; a heat transfer medium, filled in the cavity; the heating element has an optimal operating temperature range.
  • the heat transfer medium undergoes a phase change to absorb the heat of the first outer surface and transfer the heat to transfer in the direction close to the second outer surface.
  • the heat transfer fluid is filled in the cavity in liquid form; when the ambient temperature is higher than the upper limit of the optimal working temperature range of the heating element, at least part of the heat transfer fluid Convert from liquid to gaseous state.
  • the heat transfer medium converted into a gaseous state is condensed into a condensate on the second inner surface, and the condensate moves closer to the third surface by its own gravity.
  • the direction of the inner surface reflows.
  • a plurality of pits are spaced on the inner wall of the cavity located above the side of the heat transfer medium facing the second inner surface; when the heat transfer medium undergoes a phase change, it transforms into a gaseous state.
  • the heat transfer working fluid is condensed into a condensate on the second inner surface, and the condensate flows back toward the first inner surface through the capillary force of the plurality of pits.
  • At least one side wall of the housing is inclined to form a slope, and the condensate flows back toward the first inner surface through the slope.
  • a gap is left between the side of the heat transfer medium facing the second inner surface and the second inner surface.
  • the heat transfer medium is provided with filler; the filler is mesh or foam metal.
  • the heat transfer medium is water, ammonia or methanol; the housing is made of copper, aluminum or stainless steel.
  • the housing includes an intermediate body with openings at both ends and two cover plates.
  • the two cover plates are provided at the two open ends of the intermediate body to define the cavity internally.
  • the two cover plates It includes a first cover plate and a second cover plate.
  • the first cover plate has the first outer surface and the first inner surface.
  • the second cover plate has the second outer surface and the second inner surface. inner surface; the thermal conductivity of the intermediate body is less than the thermal conductivity of the cover plate, or a heat insulation layer is provided at the connection between the cover plate and the intermediate body.
  • the heat dissipation element is a radiator or a heat sink.
  • the beneficial effect of the present application is to provide an electronic product in which a temperature control device is provided on the heating element of the electronic product.
  • the temperature control device is filled with a heat transfer working fluid in a closed cavity of the housing and the heat transfer working fluid is set On the first inner surface, the first outer surface of the casing is in thermal conductive contact with the heating element.
  • a phase change occurs in the heat transfer medium. to absorb heat from the first outer surface and transfer the absorbed heat in a direction close to the second inner surface to dissipate heat and cool down the components, thereby insulating the components of the electronic product.
  • the temperature control device is cheap. It is easy to implement and can automatically switch between heat dissipation and heat preservation as the temperature changes without adding any active components or control units.
  • Figure 1 is a schematic structural diagram of an electronic product provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a temperature control device provided by an embodiment of the present application.
  • Figure 2a is a cross-sectional view along line A-A of Figure 2;
  • Figure 3 is a schematic diagram of the assembly structure of a temperature control device, a heating element and a heat dissipation element provided by an embodiment of the present application;
  • Figure 4a is a schematic diagram of a diffusion-reflow state of the heat transfer medium in the cavity in the temperature control device provided by an embodiment of the present application when the ambient temperature is higher than the upper limit of the optimal operating temperature range of the heating element;
  • Figure 4b is a schematic diagram of another diffusion-reflow state of the heat transfer medium in the cavity in the temperature control device provided by an embodiment of the present application when the ambient temperature is higher than the upper limit of the optimal operating temperature range of the heating element. ;
  • Figure 5a is a schematic diagram of a state of the heat transfer working fluid in the temperature control device provided by an embodiment of the present application when the ambient temperature is lower than the lower limit of the optimal operating temperature range of the heating element;
  • Figure 5b is a schematic diagram of another state of the heat transfer working fluid in the temperature control device provided by an embodiment of the present application when the ambient temperature is lower than the lower limit of the optimal operating temperature range of the heating element;
  • Figure 6 is a schematic structural diagram of a temperature control device provided by another embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a temperature control device provided by another embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a temperature control device provided by another embodiment of the present application.
  • the white arrows in Figure 4a and Figure 4b indicate the diffusion direction of the gaseous heat transfer medium, and the black arrows indicate the reflux direction of the condensate.
  • Temperature control device 110, 110', 110'', shell, 110a, first outer surface, 110b, second outer surface, 111. Cavity, 111a, first inner surface, 111b, second inner surface , 112. Pits, 113. Intermediate body, 114. First cover plate, 115. Second cover plate, 116. Insulation layer, 120. Heat transfer medium, 130. Filler;
  • a temperature control device is provided on a heating element of the electronic product.
  • the sealed cavity of the housing of the temperature control device is filled with a heat transfer medium and the heat transfer medium is disposed on the first inner surface.
  • the shell The first outer surface of the body is in thermal conductive contact with the heating element.
  • the heat transfer medium undergoes a phase change to absorb the heat on the first inner surface and quickly conduct it to the heating element in thermal contact with the first outer surface. dissipate the heat.
  • the temperature control device is cheap and easy to implement. It does not need to add any active components or control units, and can automatically switch between heat dissipation and heat preservation as the temperature changes.
  • the temperature control device can be applied to heat preservation and heat dissipation of heating elements in electronic products, and is especially suitable for electronic equipment and electronic products used outdoors.
  • components within electronic products include but are not limited to optical modules and chips.
  • an electronic product 1 includes a housing 11 , a temperature control device 100 , a heat dissipation element 200 and a heating element 300 .
  • the heating element 300 is arranged inside the housing 11 of the electronic product 1 , the temperature control device 100 is arranged on the heating element 300 , and the heat dissipation element 200 is arranged on a side of the temperature control device 100 away from the heating element 300 .
  • the heating element 300 includes but is not limited to optical modules, chips and other devices that require temperature control.
  • the temperature control device 100 includes: a housing 110 and a heat transfer medium 120 .
  • the housing 110 includes a first outer surface 110a and a second outer surface 110b that are opposed to each other.
  • a sealed cavity 111 is provided inside the housing 110.
  • the cavity 111 has a first inner surface 111a and a second inner surface 111b that are opposed to each other.
  • the first inner surface 111a corresponds to the first outer surface 110a
  • the second inner surface 111b corresponds to the second outer surface 110b.
  • the shape of the housing 110 is a columnar or sheet-shaped thermal column.
  • the housing 110 can also be in other shapes, as long as it is ensured that the housing 110 has a first outer surface 110a and a second outer surface 110b that are oppositely arranged. That’s it.
  • the heat transfer medium 120 is filled in the cavity 111. Specifically, the heat transfer medium 120 is filled on the first inner surface 111a inside the cavity 111, and the heat transfer medium 120 covers the first inner surface 111a. , the first outer surface 110 a of the housing 110 is in thermal conductive contact with the outer surface of the heating element 300 of the electronic product 1 .
  • the first outer surface 110a of the casing 110 of the temperature control device 100 is in surface contact with the heating element 300, and the second outer surface 110b of the casing 110 may be in direct contact with the inner surface of the casing 11, or the second outer surface 110b of the casing 110 may be in direct contact with the inner surface of the casing 11.
  • the outer surface 110b can be connected to the inner surface of the housing 11 through the heat dissipation element 200.
  • the heat dissipation element 200 is in thermal conductive contact with the second outer surface 110b of the housing 110 to achieve heat dissipation and heat preservation of the heating element 300.
  • the heat transfer fluid 120 is filled in the cavity 111 in a liquid form.
  • the heat transfer fluid 120 is water, ammonia or methanol.
  • the heat transfer fluid 120 undergoes a first phase change from a liquid state to a gaseous first phase.
  • the changing temperature can be determined according to the upper limit of the working temperature range of the heating element 300, that is, when the ambient temperature is higher than or equal to the upper limit of the working temperature range of the heating element, the heat transfer medium 120 undergoes the first phase change. .
  • Select a specific heat transfer fluid to fill the cavity 111 of the housing 110 For example, when the upper limit of the operating temperature of the heating element 300 is about 100°C, water with a boiling point of 100°C can be used as the heat transfer fluid 120 to fill.
  • the upper limit of the operating temperature range of the heating element 300 is about 65°C
  • methanol with a boiling point of 64.7°C can be used as the heat transfer fluid 120 to fill the cavity 111 of the housing 110 .
  • ammonia water can be selected as the heat transfer medium 120 to fill the cavity 111 of the housing 110 .
  • alcohol with a boiling point of 78°C and acetone with a boiling point of 56°C can also be selected as the heat transfer working fluid 120 , depending on the working temperature range of the heating element.
  • the second phase transition temperature at which the heat transfer fluid 120 undergoes a second phase transition from liquid to solid can be determined according to the lower limit of the operating temperature range of the heating element 300, that is, when the ambient temperature is lower than or equal to the heating element 300,
  • the heat transfer medium 120 undergoes a second phase change and releases heat to insulate the heating element through the first outer surface 110a, so that the heating element operates within the operating temperature range.
  • the first phase change temperature at which the heat transfer medium 120 undergoes the first phase change can be limited to the upper limit of the optimal operating temperature range of the heating element 300, that is, when the ambient temperature When the temperature is higher than or equal to the upper limit of the optimal operating temperature range of the heating element 300 , the heat transfer fluid 120 undergoes a first phase change.
  • the upper limit of the optimal operating temperature range of the heating element 300 is less than the upper limit of the operating temperature range of the heating element 300
  • the lower limit of the optimal operating temperature range of the heating element 300 is greater than the lower limit of the operating temperature range of the heating element 300 . value.
  • the operating temperature range of optical modules for industrial-grade applications is -40°C to 85°C.
  • the optimal operating temperature range of the optical module is designed to be 0 ⁇ 70°C. Therefore, when the ambient temperature of the optical module exceeds 70°C, the heat transfer medium 120 undergoes a first phase change and absorbs the heat generated by the optical module through the first outer surface 110a. The heat is conducted in a direction away from the first outer surface 110a, so that the optical module operates within the optimal operating temperature range.
  • the second phase change temperature at which the heat transfer medium 120 undergoes the second phase change is limited to be lower than or equal to the lower limit of the optimal operating temperature range of the heating element 300 , that is, when the ambient temperature is higher than or equal to the heating element 300
  • the heat transfer fluid 120 undergoes a second phase change.
  • the optical module is insulated through the first outer surface 110a, so that the optical module operates within the optimal operating temperature range.
  • the cavity 111 is a sealed cavity, during design and manufacturing, the boiling point of the heat transfer medium 120 in the cavity 111 can be adjusted accordingly by adjusting the pressure in the cavity 111, thereby adapting to the different operations of different heating elements 300.
  • the temperature range is suitable for different optimal working temperature ranges of different heating elements 300 .
  • the boiling point of water is 100°C, which is suitable for the heating element 300 with an upper limit of operating temperature of about 100°C; when the pressure in the cavity 111 is 0.05 bar , the boiling point of water is about 35°C, that is, the heating element 300 is suitable for a heating element 300 with an upper limit of operating temperature of about 35°C.
  • the cavity 111 with different internal pressures can be designed and manufactured according to different types of heat transfer medium 120 to meet the working temperature range requirements of different heating elements 300 .
  • the housing 110 of different materials can be used according to different types of heat transfer medium 120 to ensure the heat dissipation and heat preservation effect of the temperature control device 100 .
  • a copper casing 110 is used.
  • a housing 110 made of aluminum is used.
  • methanol is selected as the heat transfer working fluid 120
  • a stainless steel housing 110 is used.
  • the materials of the heat transfer medium 120 and the housing 110 can also be combined according to usage requirements.
  • the liquid filling rate of the heat transfer medium 120 in the cavity 111 can be determined according to the load or heat dissipation capacity of the temperature control device 100. For example, using water as the heat transfer medium, the liquid filling rate is 20% to 50%. The liquid filling rate is the ratio of the volume of the heat transfer medium 120 to the volume of the cavity 111. The liquid filling rate needs to be less than 100%, that is, the liquid level of the heat transfer medium 120 (toward the second inner surface 111b) must be in contact with the second inner surface 111b. A gap is left between the inner surfaces 111b to ensure a diffusion space for the gaseous heat transfer medium after the liquid heat transfer medium evaporates and turns into a gaseous heat transfer medium.
  • the ambient temperature When the ambient temperature is low, there is a gap between the liquid level of the heat transfer medium 120 and the second inner surface 111b, which can also block the gap between the heat transfer medium 120 and the second inner surface 111b to a certain extent.
  • the heat conduction blocks the heat transfer by the heat transfer medium 120, which is beneficial to the heat preservation of the heating element 300 and facilitates the temperature rise of the contact surface between the heating element 300 and the first outer surface 110a.
  • the filling rate of the heat transfer medium 120 in the cavity 111 can be as high as 100%, that is, the heat transfer medium 120 fills the entire cavity 111.
  • the heat transfer medium 120 When the first phase change occurs, the gaseous heat transfer medium has no diffusion space, which affects the heat transfer effect. However, the heat transfer medium 120 can still undergo the first phase change and absorb heat, so the selection can be made according to actual usage requirements.
  • the temperature control device 100 is used as shown in Figure 3. During use, the temperature control device 100 is placed between the heating element 300 and the heat dissipation element 200, and the first outer surface 110a of the housing 110 serves as a heat absorption surface. The surfaces of the heating element 300 are in contact with each other, and the second outer surface 110b serves as a heat exchange surface and is in contact with the heat dissipation element 200. Wherein, the heat dissipation element 200 is a heat sink or a heat sink.
  • the temperature control device 100 that meets the design can be produced through processes such as chemical cleaning, mechanical processing, heat transfer medium filling, and vacuum treatment.
  • the temperature control device 100 and the heat dissipation element 200 are connected directly or indirectly.
  • the connection method between the second outer surface 110b of the control device 100 and the heat dissipation element 200 includes but is not limited to welding, hard contact, through TIM (silica gel) or liquid Metal and other media connections.
  • the first outer surface 110a of the temperature control device 100 may be directly connected to the heating element 300, such as a chip or other heating element that requires temperature control.
  • the heat transfer medium 120 (water) is disposed in liquid form on the first inner surface 111a inside the cavity 111;
  • the temperature control device 100 is in the "on" state.
  • the heat transfer medium 120 (water) undergoes a first phase change from liquid to gaseous heat transfer medium (forming water vapor) to absorb heat from the surface of the heating element 300 corresponding to the first outer surface 110a to ensure that the heating element 300 The temperature does not exceed the operating temperature range.
  • the gaseous heat transfer medium (water vapor) diffuses in the direction shown by the white arrow in Figure 4a or 4b in the direction close to the second inner surface 111b to conduct the absorbed heat to the second inner surface 111b.
  • the gaseous heat transfer medium ( Water vapor) exchanges heat with the heat dissipation element 200 on the second inner surface 111b to conduct the absorbed heat to the heat dissipation element 200, and the gaseous heat transfer medium (water vapor) is converted into condensation liquid (condensation water).
  • the condensate (condensate water) relies on its own gravity to flow back (fall back) in the direction close to the first inner surface 111a to the heat transfer medium that has not phased into the gaseous heat transfer medium (water vapor).
  • a plurality of pits 112 are spaced on the inner wall of the cavity 111. Specifically, all pits 112 are located above the side of the heat transfer medium 120 facing the second inner surface 111b. A plurality of pits 112 are spaced on the inner wall of the cavity 111.
  • the inner surface of the pits 112 is a curved surface, as shown by the black arrow in Figure 4b.
  • the condensate (condensate water) relies on the capillaries formed by the multiple pits 112.
  • the acting force flows back along the inner wall of the cavity 111 in a direction close to the first inner surface 111a into the heat transfer medium 120 that has not phased into a gaseous heat transfer medium (water vapor).
  • the principle of capillary action is the principle of minimum potential energy, and the liquid molecules in the attached layer (ie, the condensate) tend to stretch.
  • the temperature control device 100 realizes rapid conduction of heat to the surface of the heating element 300 through the cycle of evaporation-condensation phase change of the heat transfer medium 120 in the cavity 111, thereby achieving a heat dissipation effect.
  • the gaseous heat transfer medium diffuses toward the second inner surface 111b, its equivalent thermal conductivity in the normal direction (the direction indicated by the white arrow in Figure 4a and Figure 4b) can reach more than 10000W/(m ⁇ K)
  • the heat dissipation effect is obvious, avoiding the risk of over-temperature burning of the heating element 300 caused by the ambient temperature exceeding the maximum value of the working temperature range.
  • the heat transfer medium 120 (water) is disposed on the first inner surface 111a in a liquid form.
  • the heat transfer medium 120 does not undergo phase change and there is no phase change heat.
  • the equivalent thermal conductivity is less than 1W/(m ⁇ K). At this time, the heat transfer medium 120 does not undergo phase change.
  • the thermal fluid 120 cooperates with the first outer surface 110a of the housing 110 to form a thermal insulation layer, which has a good thermal insulation effect, allowing the heating element 300 to maintain a suitable temperature and avoiding performance degradation of the heating element 300 at low temperatures.
  • a thermal insulation layer which has a good thermal insulation effect, allowing the heating element 300 to maintain a suitable temperature and avoiding performance degradation of the heating element 300 at low temperatures.
  • the ambient temperature is too low, or when the ambient temperature exceeds the minimum value of the optimal operating temperature range of the heating element 300 by a large amount, at least part of the heat transfer fluid 120 will undergo a second phase change from liquid to solid, so as to The solid form is disposed on the first inner surface 111a.
  • the ambient temperature is lower than 0°C
  • water will be disposed on the first inner surface 111a in the form of ice, and the heat transfer medium 120 will release a certain amount of heat, allowing the temperature to be controlled.
  • the device 100 insulates the heating element 300 in the "off" state, thereby allowing the heating element 300 to maintain a suitable temperature and avoid performance degradation of the heating element 300 at low temperatures; when the ambient temperature is 0°C, part of the heat transfer medium 120 changes When ice is formed, part of the heat transfer medium 120 remains in the state of water, forming an ice-water mixture to keep the heating element 300 warm.
  • the temperature control device 100 does not require any active control unit.
  • the temperature control device 100 will realize automatic opening and closing functions according to the working environment temperature, without power consumption loss while taking into account high-temperature heat dissipation capabilities and low-temperature heat preservation capabilities.
  • the shell of the temperature control device 100 can be calculated and determined based on the operating temperature range of the heating element 300, the heat source power consumption of the heating element 300, the heat dissipation area, and the space size between the heating element 300 and the heat dissipation element 200.
  • the working temperature range of the heating element 300 is -40°C ⁇ 85°C.
  • the power consumption of the element 300 is 3W
  • the heat dissipation area of the heating element 300 is 8*8mm 2
  • the height of the space between the heating element 300 and the heat dissipation element 200 is 5mm. It is determined that methanol is used as the heat transfer medium 120, and the casing 110 is
  • the material is stainless steel, the liquid filling rate is 20%, and the housing 110 is a cylinder with a bottom diameter of 10 mm and a height of 3 mm.
  • the temperature control device 100 further includes a filler 130 , the filler 130 is disposed in the heat transfer medium 120 , and the filler 130 is a mesh or foam metal.
  • the filling amount of the internal heat transfer medium 120 is limited.
  • the heat transfer medium 120 will be affected by the boiling limit (for example, the boiling limit of water at 1 bar is 100°C), and may be lower than the upper limit of the optimal operating temperature range of the heating element 300.
  • a filler 130 is added to the heat transfer fluid 120 to increase the boiling limit of the heat transfer fluid 120 and increase the load capacity of the temperature control device 100.
  • water is used as the heat transfer fluid 120.
  • adding screens or foam metal the boiling limit and load capacity of water can be increased by more than 100%.
  • the addition of the filler 130 does not affect the thermal insulation effect of the temperature control device 100 in the low-temperature "off" state.
  • the housing 110' of the temperature control device 100 has a split structure.
  • the housing 110' includes an intermediate body 113 and a first cover plate 114 and a second cover plate 115 provided at both ends of the intermediate body 113.
  • the intermediate body 113 is a tube with both ends open.
  • a first cover plate 114 is provided at one open end, and a second cover plate 115 is provided at the other open end.
  • the first cover plate 114, the intermediate body 113 and the second cover plate 115 are connected in sequence.
  • a cavity 111 is defined inside.
  • the first cover plate 114 has a first outer surface 110a on one side and a first inner surface 111a on the other side.
  • the second cover plate 115 has a second outer surface 110b on one side and a second inner surface on the other side.
  • the heat transfer medium 120 is disposed on the first cover plate 114.
  • the first cover plate 114 and the second cover plate 115 are made of copper, aluminum or stainless steel.
  • the thermal conductivity of the material forming the intermediate body 113 is lower than that of the first cover plate 114 and the second cover plate 115 , so that the heating element 300 generates.
  • the heat will be preferentially conducted from the first cover plate 114, the heat transfer medium 120 and the second cover plate 115 to the heat dissipation element 200, thereby improving the heat dissipation effect of the temperature control device 100.
  • a heat insulation layer 116 such as a gasket or The sealing ring forms a thermal isolation between the first cover plate 114 and the intermediate body 113, and forms a thermal isolation between the second cover plate 115 and the intermediate body 113, so that the heat generated by the heating element 300 is transmitted from the first cover plate 114 to The thermal working medium 120 and the second cover plate 115 are conducted to the heat dissipation element 200 .
  • At least one side wall of the housing 110 ′′ of the temperature control device 100 is inclined to form a slope structure, that is, the orthographic projection of the first inner surface 111 a on the second inner surface 111 b falls on
  • the structural design of the slope in the second inner surface 111b facilitates the condensate to flow back in a direction close to the first inner surface 111a, thereby increasing the return speed, thereby improving the heat exchange effect and improving the heat dissipation efficiency.
  • the housing 110'' can be designed as an integrated structure or as a split structure, as long as the cavity 111 is sealed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请实施例公开了一种电子产品,在电子产品的发热元件上设置温度控制装置,所述温度控制装置通过在壳体的密闭空腔内填充传热工质且传热工质设置于第一内表面,壳体的第一外表面与发热元件相导热接触,当壳体所在环境温度高于或者等于发热元件的最佳工作温度区间的上限值时,传热工质发生相变以吸收第一外表面的热量并将所吸收的热量向靠近第二内表面的方向传递以对元器件进行散热降温,进而对电子产品的元器件进行保温,所述温度控制装置价格便宜,实施方便,无需加任何主动部件和控制单元,即可随温度变化进行散热与保温的自动切换。

Description

电子产品
本申请要求于2022年4月15日提交中国专利局、申请号为202220885272.4、发明名称为“电子产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,具体涉及一种电子产品。
背景技术
很多电子设备工作温度跨度很大,在户外使用时,往往会出现在极端温度条件下性能劣化甚至失效的问题。其原因是为了维持发热元件在合理的温度范围下工作,低温工作时需要保温而高温时需要保证良好的散热,这两者在热设计上是一对实际存在的矛盾。例如在通信领域中实现光电转换和电光转换的光模块,在面对-40℃~85℃的工业级应用时,由于激光器的工作温度范围较窄为0℃~75℃,就需要一个高温工况避免温度过高,低温工况避免温度过低的热控方案。
在某些细分领域中存在一些解决方案。比如电池的高低温热控,会采用一些相变或者多孔材料来实现。在光模块中,通过印刷电路板中铜线作为发热元件在低温时加热光器件;或者采用薄膜电阻在低温时对光器件加热。这些方案有的会额外增加功耗(而很多情况下产品的总功耗需要严格控制),有的采用特殊材料,其环境要求严苛,价格也比较昂贵。
技术问题
本申请实施例提供一种电子产品,可以解决电子产品在极端环境温度下内部发热元件性能劣化的问题。
技术解决方案
本申请实施例提供一种电子产品,包括:温度控制装置、散热元件和发热元件;所述温度控制装置包括壳体,所述壳体包括相对设置的第一外表面和第二外表面,所述第一外表面与所述发热元件相导热接触,所述第二外表面和所述散热元件相导热接触,所述壳体内侧设置有密闭空腔,所述空腔具有与所述第一外表面相对应的第一内表面以及与所述第二外表面相对应的第二内表面; 传热工质,填充于所述空腔;所述发热元件具有最佳工作温度区间,当所述发热元件的工作温度高于或者等于所述最佳工作温度区间的上限值时,至少部分所述传热工质发生相变以吸收所述第一外表面的热量并将所述热量向靠近所述第二外表面方向传递。
可选的,所述传热工质以液态形式填充于所述空腔内;当环境温度高于所述发热元件的最佳工作温度区间的上限值时,至少部分所述传热工质由液态转变成气态。
可选的,当所述传热工质发生相变时,转变成气态的所述传热工质在所述第二内表面冷凝成冷凝液,所述冷凝液通过自身重力向靠近所述第一内表面的方向回流。
可选的,位于所述传热工质朝向所述第二内表面一面上方的所述空腔内壁上间隔开设有多个凹坑;当所述传热工质发生相变时,转变成气态的所述传热工质在所述第二内表面冷凝成冷凝液,所述冷凝液通过多个所述凹坑的毛细作用力向靠近所述第一内表面的方向回流。
可选的,所述壳体的至少一侧侧壁倾斜设置形成坡面,所述冷凝液通过所述坡面向靠近所述第一内表面的方向回流。
可选的,所述传热工质朝向所述第二内表面一面与所述第二内表面之间留有间隙。
可选的,所述传热工质内设置有填料;所述填料为筛网或泡沫金属。
可选的,所述传热工质为水、氨水或者甲醇;所述壳体的材质为铜、铝或者不锈钢。
可选的,所述壳体包括两端开口的中间体和两盖板,所述两盖板设置于所述中间体的两开口端以在内部限定出所述空腔,所述两盖板包括第一盖板和第二盖板,所述第一盖板具有所述第一外表面和所述第一内表面,所述第二盖板具有所述第二外表面和所述第二内表面;所述中间体的导热率小于所述盖板的导热率,或者,所述盖板与所述中间体的连接处设置有隔热层。
可选的,所述散热元件为散热器或散热片。
有益效果
本申请的有益效果在于,提供一种电子产品,在电子产品的发热元件上设置温度控制装置,所述温度控制装置通过在壳体的密闭空腔内填充传热工质且传热工质设置于第一内表面,壳体的第一外表面与发热元件相导热接触,当壳体所在环境温度高于或者等于发热元件的最佳工作温度区间的上限值时,传热工质发生相变以吸收第一外表面的热量并将所吸收的热量向靠近第二内表面的方向传递以对元器件进行散热降温,进而对电子产品的元器件进行保温,所述温度控制装置价格便宜,实施方便,无需加任何主动部件和控制单元,即可随温度变化进行散热与保温的自动切换。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的电子产品的结构示意图;
图2是本申请一实施例提供的温度控制装置的结构示意图;
图2a是图2的A-A向剖视图;
图3是本申请一实施例提供的温度控制装置与发热元件和散热元件的组装结构示意图;
图4a是在环境温度高于发热元件的最佳工作温度区间的上限值时本申请一实施例提供的温度控制装置中的传热工质在空腔内的一种扩散-回流状态示意图;
图4b是在环境温度高于发热元件的最佳工作温度区间的上限值时本申请一实施例提供的温度控制装置中的传热工质在空腔内的另一种扩散-回流状态示意图;
图5a是在环境温度低于发热元件的最佳工作温度区间的下限值时本申请一实施例提供的温度控制装置中的传热工质的一种状态示意图;
图5b是在环境温度低于发热元件的最佳工作温度区间的下限值时本申请一实施例提供的温度控制装置中的传热工质的另一种状态示意图;
图6是本申请另一实施例提供的温度控制装置的结构示意图;
图7是本申请另一实施例提供的温度控制装置的结构示意图;
图8是本申请另一实施例提供的温度控制装置的结构示意图。
其中,图4a和图4b中的白色箭头表示气态传热工质的扩散方向,黑色箭头表示冷凝液的回流方向。
附图标记说明:
1、电子产品,11、外壳。
100、温度控制装置,110、110’、110’’、壳体,110a、第一外表面,110b、第二外表面,111、空腔,111a、第一内表面,111b、第二内表面,112、凹坑,113、中间体,114、第一盖板,115、第二盖板,116、隔热层,120、传热工质,130、填料;
200、散热元件;
300、发热元件。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请提供一种电子产品,在电子产品的发热元件上设置温度控制装置,该温度控制装置的壳体的密闭空腔内填充传热工质且传热工质设置于第一内表面,壳体的第一外表面与发热元件导热接触。当壳体所在环境温度高于发热元件的最佳工作温度区间的上限值时,传热工质发生相变以吸收第一内表面的热量,快速传导与第一外表面相导热接触的发热元件的热量进行散热降温。该温度控制装置价格便宜,实施方便,无需加任何主动部件和控制单元,即可随温度变化进行散热与保温的自动切换。作为典型应用,所述温度控制装置可应用于电子产品内发热元件的保温、散热,尤其适用在户外使用的电子设备、电子产品。其中,电子产品内的然而元件包括但不限于光模块和芯片。
本申请一实施例中,参照图1,电子产品1包括外壳11、温度控制装置100、散热元件200和发热元件300。发热元件300设置于电子产品1的外壳11内侧,温度控制装置100设置于发热元件300上,散热元件200设置于温度控制装置100远离发热元件300一面。其中,所述发热元件300包括但不限于光模块和芯片等需要控制温度的器件。
参照图2和图2a,所述温度控制装置100包括:壳体110和传热工质120。所述壳体110包括相对设置的第一外表面110a和第二外表面110b,壳体110内侧设置有密闭空腔111,空腔111具有相对设置的第一内表面111a和第二内表面111b,第一内表面111a与第一外表面110a相对应,第二内表面111b与第二外表面110b相对应。其中,壳体110的形状为柱状或片状热柱,在其他实现方式中,壳体110也可选用其他形状,只要保证壳体110具有相对设置的第一外表面110a和第二外表面110b即可。所述传热工质120填充于空腔111内,具体地,传热工质120填装于空腔111内侧的第一内表面111a上,传热工质120覆盖所述第一内表面111a,壳体110的第一外表面110a与电子产品1的发热元件300的外表面导热接触。
具体地,温度控制装置100的壳体110的第一外表面110a与发热元件300表面接触,壳体110的第二外表面110b可直接与外壳11内表面相接触,或者壳体110的第二外表面110b可通过散热元件200与外壳11的内表面连接,散热元件200与壳体110的第二外表面110b相导热接触,以实现对发热元件300的散热保温。
其中,所述传热工质120以液态形式填充于空腔111内,传热工质120为水、氨水或甲醇,传热工质120发生第一相变由液态转变成气态的第一相变温度,可根据发热元件300的工作温度范围的上限值进行确定,即,当环境温度高于或者等于发热元件的工作温度范围的上限值时,传热工质120发生第一相变。选择具体的传热工质填充于壳体110的空腔111内,例如,当发热元件300的工作温度的上限为100℃左右时,可选用沸点为100℃的水作为传热工质120填充于壳体110的空腔111内。当发热元件300的工作温度范围的上限为65℃左右时,可选用沸点为64.7℃的甲醇作为传热工质120填充于壳体110的空腔111内。当发热元件300的工作温度的上限为38℃左右时,可选择氨水作为传热工质120填充于壳体110的空腔111内。作为其他实现方式,也可选择沸点为78℃的酒精、沸点为56℃的丙酮作为传热工质120,具体视发热元件的工作温度范围而定。
同时,传热工质120发生第二相变由液态转变成固态的第二相变温度,可根据发热元件300的工作温度范围的下限值进行确定,即,当环境温度低于或者等于发热元件300的工作温度范围的下限值时,传热工质120发生第二相变,释放热量,以通过第一外表面110a对发热元件进行保温,使得发热元件在工作温度范围内工作。
其中,为保证发热元件300的工作效率,可将传热工质120发生第一相变的第一相变温度限定为发热元件300的最佳工作温度区间的上限值,即,当环境温度高于或者等于发热元件300的最佳工作温度区间的上限值时,传热工质120发生第一相变。发热元件300的最佳工作温度区间的上限值小于发热元件300的工作温度区间的上限值,发热元件300的最佳工作温度区间的下限值大于发热元件300的工作温度区间的下限值。
以发热元件300为光模块为例,工业级应用的光模块的工作温度区间是-40℃~85℃,但是,如果环境温度达到85℃,会影响光模块的工作效率和使用寿命,因此,光模块的最佳工作温度区间设计为0~70℃,因此,当光模块所在环境温度超过70℃时,传热工质120发生第一相变,通过第一外表面110a吸收光模块产生的热量并向远离第一外表面110a的方向传导热量,使得光模块在最佳工作温度区间内工作。
另外,将传热工质120发生第二相变的第二相变温度限定为低于或者等于发热元件300的最佳工作温度区间的下限值,即,当环境温度高于或者等于发热元件300的最佳工作温度区间的下限值时,传热工质120发生第二相变,例如,当光模块所在环境温度低于或者等于0℃时,传热工质120发生第二相变以释放热量,通过第一外表面110a对光模块进行保温,使得光模块在最佳工作温度区间内工作。
此外,由于空腔111为密闭空腔,因此在设计制造时,可通过调节空腔111内的压强,相应调节空腔111内传热工质120的沸点,进而适应不同发热元件300的不同工作温度区间、适应不同发热元件300的不同的最佳工作温度区间。以水作为传热工质120为例,当空腔111内的压强1bar时,水的沸点为100℃,即适用工作温度上限为100℃左右的发热元件300;当空腔111内的压强为0.05bar时,水的沸点约为35℃,即适用工作温度上限为35℃左右的发热元件300。在其他实现方式中,可根据传热工质120种类的不同,设计制造不同内部压强的空腔111,以满足不同发热元件300的工作温度区间需求。
另外,可根据传热工质120的种类不同,搭配不同材质的壳体110,以保证所述温度控制装置100的散热保温效果。例如,当选用水作为传热工质120时,搭配铜材质的壳体110。当选用氨水作为传热工质120时,搭配铝材质的壳体110。当选用甲醇作为传热工质120时,搭配不锈钢材质的壳体110。在其他实现方式中,也可根据使用需求进行传热工质120与壳体110材质的组合。
此外,传热工质120在空腔111内的充液率可根据温度控制装置100的负荷或散热能力确定,例如以水作为传热工质,充液率为20%~50%,所述充液率即传热工质120的体积与空腔111容积的比值,充液率需要小于100%,即要在传热工质120的液面(朝向第二内表面111b)一面与第二内表面111b之间留有间隙,以保证液态传热工质蒸发相变成气态传热工质后气态传热工质的扩散空间。而在环境温度较低时,传热工质120的液面与第二内表面111b之间留有间隙,也可在一定程度上阻断了传热工质120与第二内表面111b之间的热传导,形成对传热工质120对热量传递的阻断,利于发热元件300的保温,便于发热元件300与第一外表面110a的接触面的温度的回升。
在其他实现方式中,传热工质120在空腔111内的充液率最高可高达100%,即传热工质120填满整个空腔111,这种填充方式,在传热工质120发生第一相变时,使得气态传热工质没有扩散空间,影响热传递效果,但传热工质120依然可发生第一相变已进行吸热,因此可根据实际使用需求进行选择。
所述温度控制装置100的使用方式如图3所示,在使用时,将温度控制装置100设置于发热元件300和散热元件200之间,壳体110的第一外表面110a作为吸热面与发热元件300表面相接触,第二外表面110b作为换热面与散热元件200相接触。其中,所述散热元件200为散热器或散热片。
可通过化学清洗、机械加工、传热工质填充、真空处理等工序制作出符合设计的温度控制装置100。通过直接或间接的方式连接温度控制装置100与散热元件200,控制装置100的第二外表面110b与散热元件200之间的连接方式包括但不限于焊接、硬接触、通过TIM(硅胶)或液体金属等介质连接。温度控制装置100的第一外表面110a可以直接连接至发热元件300,例如芯片或其它需要控温的发热元件。
以水作为传热工质120、空腔111内部压强为1bar、壳体110材质为铜、传热工质120的充液率为20%~50%为例,对本实施例所提供的温度控制装置100的散热保温原理做出如下说明:
1)在正常工作状态下(或者说在发热元件300的工作温度区间内),参照图2,传热工质120(水)以液态形式设置于空腔111内侧的第一内表面111a上;
2)当环境温度超出发热元件300的最佳工作温度区间的最高值时,需要对发热元件300进行散热,所示温度控制装置100处于“开启”状态,参照图4a,空腔111内的部分传热工质120(水)发生第一相变由液态转变成气态传热工质(形成水蒸气)以吸收与第一外表面110a相对应的发热元件300表面的热量,以保证发热元件300的温度不超出工作温度区间。气态传热工质(水蒸气)如图4a或图4b中白色箭头所示方向向靠近第二内表面111b的方向扩散以将吸收的热量传导至第二内表面111b,气态传热工质(水蒸气)在第二内表面111b与散热元件200发生热交换以将吸收的热量传导至散热元件200,气态传热工质(水蒸气)转变成冷凝液(冷凝水),在本实施例中,如图4a中黑色箭头所示,冷凝液(冷凝水)依靠自身重力向靠近第一内表面111a的方向回流(回落)至未相变成气态传热工质(水蒸气)的传热工质120内。
在其他实现方式中,参照图4b,所述空腔111内壁上间隔开设有多个凹坑112,具体地,在位于所述传热工质120朝向所述第二内表面111b一面上方的所述空腔111内壁上间隔开设有多个凹坑112,凹坑112的内表面为弧面,如图4b中的黑色箭头所示,冷凝液(冷凝水)凭借多个凹坑112形成的毛细作用力,沿空腔111内壁向靠近第一内表面111a的方向回流至未相变成气态传热工质(水蒸气)的传热工质120内。毛细作用的原理是势能最小原理,附着层的液体分子(即冷凝液)有伸展的趋势。
如此,温度控制装置100在“开启”状态下,通过传热工质120在空腔111内的蒸发-冷凝相变转换的循环往复,实现对发热元件300表面热量的迅速传导,起到散热作用,而由于气态传热工质是向第二内表面111b方向扩散,其法向(图4a和图4b中白箭头所示方向)的等效导热系数可达10000W/(m∙K)以上,散热效果明显,避免发热元件300因环境温度超出工作温度区间最大值导致的超温烧毁风险。
3)当环境温度低于或者等于发热元件300的最佳工作温度区间的最低值时,需要对发热元件300进行保温,所述温度控制装置100处于“关闭”状态,参照图5a,传热工质120(水)以液态形式设置于第一内表面111a上,传热工质120不发生相变,无相变换热,等效导热系数小于1W/(m∙K),此时的传热工质120与壳体110的第一外表面110a配合形成一保温层,具有良好的隔热保温作用,使得发热元件300得以保持合适的温度,避免低温时发热元件300性能劣化。而当环境温度过低时,或者说当环境温度超出发热元件300的最佳工作温度区间的最低值很多时,至少部分传热工质120则会发生第二相变由液态转变成固态,以固态形式设置于第一内表面111a上,例如当环境温度低于0℃时,水会以冰的形式设置于第一内表面111a上,传热工质120会释放一定热量,使得所属温度控制装置100在“关闭”状态下对发热元件300进行保温,进而使得发热元件300得以保持合适的温度,避免低温时发热元件300性能劣化;当环境温度为0℃时,部分传热工质120转变成冰,部分传热工质120保持水的状态,形成冰水混合物,对发热元件300进行保温。
因此,所述温度控制装置100不需要任何主动控制单元,温度控制装置100会根据工作环境温度实现自动开启和自动关闭的功能,无功耗损失同时兼顾高温散热能力和低温保温能力。
在其他实现方式中,可根据发热元件300的工作温度区间、发热元件300的热源功耗、散热面积及发热元件300与散热元件200之间的空间尺寸,计算确定所述温度控制装置100的壳体110材料、传热工质120类型、传热工质120在空腔111内的充液率及壳体110的外形尺寸,例如发热元件300的工作温度区间为-40℃~85℃,发热元件300的功耗在3W,发热元件300的散热面积为8*8mm 2,发热元件300与散热元件200之间的空间高度为5mm,则确定采用甲醇作为传热工质120,壳体110的材质为不锈钢,充液率为20%,壳体110为底面直径10mm、高度3mm的圆柱。
在本申请另一实施例中,参照图6,所述温度控制装置100还包括填料130,所述填料130设置于传热工质120内,所述填料130为筛网或泡沫金属。温度控制装置100的壳体110在尺寸较小的情况(实际上电子产品所能提供的空间往往是有限的,导致壳体110尺寸较小)下,内部传热工质120填充量受限,传热工质120会受到沸腾极限的影响(例如水在1bar下的沸腾极限为100℃),有可能会低于发热元件300的最佳工作温度区间的上限值,为保证温度控制装置100在高温时能正常“开启”,在传热工质120内添加了填料130,从而提升传热工质120的沸腾极限,提升温度控制装置100的负荷能力,例如以水为传热工质120,添加筛网或者泡沫金属,则水的沸腾极限及负荷能力能提高100%以上。而且,填料130的添加,并不影响温度控制装置100在低温“关闭”状态下的保温隔热效果。
此外,参照图7,所述温度控制装置100的壳体110’为分体式结构,壳体110’包括中间体113和设置于中间体113两端的第一盖板114和第二盖板115,中间体113为两端开口的管体,一开口端设置第一盖板114,另一开口端设置第二盖板115,第一盖板114、中间体113以及第二盖板115依次连接在内部限定出空腔111,第一盖板114的一面为第一外表面110a、另一面为第一内表面111a,第二盖板115的一面为第二外表面110b、另一面为第二内表面111b,传热工质120设置于第一盖板114上。
第一盖板114和第二盖板115的材质为铜、铝或不锈钢,形成中间体113的材质的导热率低于第一盖板114和第二盖板115,从而使得发热元件300产生的热量,会优先从第一盖板114、传热工质120和第二盖板115传导至散热元件200,提升所述温度控制装置100的散热效果。为进一步提升温度控制装置100的散热效果,在第一盖板114与中间体113的相接处、在第二盖板115与中间体113的相接处分别设置隔热层116,例如垫圈或密封圈,使得第一盖板114与中间体113之间形成热隔断,第二盖板115与中间体113之间形成热隔断,使得发热元件300产生的热量,从第一盖板114、传热工质120和第二盖板115传导至散热元件200。
另外,参照图8,所述温度控制装置100的壳体110’’的至少一侧侧壁倾斜设置,形成坡面结构,即,第一内表面111a在第二内表面111b的正投影落在第二内表面111b内,坡面的结构设计,便于冷凝液向靠近第一内表面111a的方向回流,提升回流速度,进而提升热交换效果,提高散热效率。所述壳体110’’可以设计成一体式结构,也可设计成分体式结构,保证空腔111的密闭即可。
以上对本申请实施例所提供的一种电子产品进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种电子产品,其特征在于,包括:温度控制装置、散热元件和发热元件;
    所述温度控制装置包括壳体,所述壳体包括相对设置的第一外表面和第二外表面,所述第一外表面与所述发热元件相导热接触,所述第二外表面和所述散热元件相导热接触,所述壳体内侧设置有密闭空腔,所述空腔具有与所述第一外表面相对应的第一内表面以及与所述第二外表面相对应的第二内表面;
    传热工质,填充于所述空腔;
    所述发热元件具有最佳工作温度区间,
    当所述发热元件的工作温度高于或者等于所述最佳工作温度区间的上限值时,至少部分所述传热工质发生相变以吸收所述第一外表面的热量并将所述热量向靠近所述第二外表面方向传递。
  2. 如权利要求1所述的电子产品,其特征在于,所述传热工质以液态形式填充于所述空腔内;
    当环境温度高于所述发热元件的最佳工作温度区间的上限值时,至少部分所述传热工质由液态转变成气态。
  3. 如权利要求2所述的电子产品,其特征在于,当所述传热工质发生相变时,转变成气态的所述传热工质在所述第二内表面冷凝成冷凝液,所述冷凝液通过自身重力向靠近所述第一内表面的方向回流。
  4. 如权利要求2所述的电子产品,其特征在于,位于所述传热工质朝向所述第二内表面一面上方的所述空腔内壁上间隔开设有多个凹坑;
    当所述传热工质发生相变时,转变成气态的所述传热工质在所述第二内表面冷凝成冷凝液,所述冷凝液通过多个所述凹坑的毛细作用力向靠近所述第一内表面的方向回流。
  5. 如权利要求3所述的电子产品,其特征在于,所述壳体的至少一侧侧壁倾斜设置形成坡面,所述冷凝液通过所述坡面向靠近所述第一内表面的方向回流。
  6. 如权利要求5所述的电子产品,其特征在于,所述传热工质朝向所述第二内表面一面与所述第二内表面之间留有间隙。
  7. 如权利要求6所述的电子产品,其特征在于,所述传热工质内设置有填料;所述填料为筛网或泡沫金属。
  8. 如权利要求7所述的电子产品,其特征在于,所述传热工质为水、氨水或者甲醇;所述壳体的材质为铜、铝或者不锈钢。
  9. 如权利要求1所述的电子产品,其特征在于,所述壳体包括两端开口的中间体和两盖板,所述两盖板设置于所述中间体的两开口端以在内部限定出所述空腔,所述两盖板包括第一盖板和第二盖板,所述第一盖板具有所述第一外表面和所述第一内表面,所述第二盖板具有所述第二外表面和所述第二内表面;
    所述中间体的导热率小于所述盖板的导热率,或者,所述盖板与所述中间体的连接处设置有隔热层。
  10. 如权利要求1所述的电子产品,其特征在于,所述散热元件为散热器或散热片。
PCT/CN2023/074912 2022-04-15 2023-02-08 电子产品 WO2023197733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220885272.4U CN217217301U (zh) 2022-04-15 2022-04-15 电子产品
CN202220885272.4 2022-04-15

Publications (1)

Publication Number Publication Date
WO2023197733A1 true WO2023197733A1 (zh) 2023-10-19

Family

ID=82774717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074912 WO2023197733A1 (zh) 2022-04-15 2023-02-08 电子产品

Country Status (2)

Country Link
CN (1) CN217217301U (zh)
WO (1) WO2023197733A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117930212A (zh) * 2024-03-21 2024-04-26 成都智芯雷通微系统技术有限公司 一种相控阵雷达模块

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217217301U (zh) * 2022-04-15 2022-08-16 苏州旭创科技有限公司 电子产品
CN117750741B (zh) * 2024-02-21 2024-05-28 成都市卫莱科技有限公司 一种内置式高密度相变热量调控装置、部署系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578029A (zh) * 2009-06-19 2009-11-11 北京航空航天大学 一种集成热管和泡沫金属芯体的相变温控装置
CN203761739U (zh) * 2014-01-13 2014-08-06 潘晨曦 电机控制器
CN104780736A (zh) * 2014-01-13 2015-07-15 潘晨曦 电机控制器
CN105246299A (zh) * 2015-10-27 2016-01-13 航天恒星科技有限公司 散热储能装置
CN205142757U (zh) * 2015-10-27 2016-04-06 航天恒星科技有限公司 散热储能装置
CN108777927A (zh) * 2018-06-26 2018-11-09 联想(北京)有限公司 一种散热装置、方法及电子设备
DE102019103619A1 (de) * 2019-02-13 2020-08-13 Johnson Controls Advanced Power Solutions Gmbh Wärmetransportvorrichtung und energiespeichermodul mit einer solchen wärmetransportvorrichtung
CN111725144A (zh) * 2020-05-22 2020-09-29 上海交通大学 基于气液相变的高温电子封装基板材料器件及其制备方法
CN112399787A (zh) * 2020-11-28 2021-02-23 华为技术有限公司 电源适配器
CN217217301U (zh) * 2022-04-15 2022-08-16 苏州旭创科技有限公司 电子产品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578029A (zh) * 2009-06-19 2009-11-11 北京航空航天大学 一种集成热管和泡沫金属芯体的相变温控装置
CN203761739U (zh) * 2014-01-13 2014-08-06 潘晨曦 电机控制器
CN104780736A (zh) * 2014-01-13 2015-07-15 潘晨曦 电机控制器
CN105246299A (zh) * 2015-10-27 2016-01-13 航天恒星科技有限公司 散热储能装置
CN205142757U (zh) * 2015-10-27 2016-04-06 航天恒星科技有限公司 散热储能装置
CN108777927A (zh) * 2018-06-26 2018-11-09 联想(北京)有限公司 一种散热装置、方法及电子设备
DE102019103619A1 (de) * 2019-02-13 2020-08-13 Johnson Controls Advanced Power Solutions Gmbh Wärmetransportvorrichtung und energiespeichermodul mit einer solchen wärmetransportvorrichtung
CN111725144A (zh) * 2020-05-22 2020-09-29 上海交通大学 基于气液相变的高温电子封装基板材料器件及其制备方法
CN112399787A (zh) * 2020-11-28 2021-02-23 华为技术有限公司 电源适配器
CN217217301U (zh) * 2022-04-15 2022-08-16 苏州旭创科技有限公司 电子产品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117930212A (zh) * 2024-03-21 2024-04-26 成都智芯雷通微系统技术有限公司 一种相控阵雷达模块

Also Published As

Publication number Publication date
CN217217301U (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023197733A1 (zh) 电子产品
JPH11163237A (ja) 複合ヒートシンク
CN111863746B (zh) 一种散热装置、电路板及电子设备
US20110088873A1 (en) Support structure for flat-plate heat pipe
CN209930821U (zh) 一种液冷式导热块及水冷式散热器
WO2008101384A1 (en) Heat transfer device and manufacturing method thereof
WO2016127579A1 (zh) 散热屏蔽装置及终端
CN101510533A (zh) 新型微电子器件散热器
CN111246706B (zh) 一种双面散热装置
CN111681999A (zh) 一种真空导热腔均热板及风冷式散热装置
TWI701991B (zh) 電路板結構
TW202028675A (zh) 相變散熱裝置
CN205623053U (zh) 一种集成一体化冷却装置
CN113985989A (zh) 一种散热设备
CN100557367C (zh) 一种大功率平板整体式相变散热方法及散热器
CN100584167C (zh) 散热模组及其热管
CN114899160A (zh) 一种3d均温板及具有其的散热器
CN113260235A (zh) 浸没冷却系统及电子设备
WO2018137266A1 (zh) 毛细相变冷却器及其安装方法
CN210014478U (zh) 一种散热器、空调室外机和空调器
CN100426493C (zh) 沸腾腔式散热装置
CN216357863U (zh) 浸没冷却系统及电子设备
CN113163672B (zh) 一种利用相变材料热膨胀性的相变储热式散热器
CN209845583U (zh) 一种双面散热装置以及一种逆变器
CN215068111U (zh) 一种用于笔记本电脑的散热底座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787381

Country of ref document: EP

Kind code of ref document: A1