WO2013191343A1 - 내휨성 있는 투명 도전성 필름 및 그의 제조방법 - Google Patents
내휨성 있는 투명 도전성 필름 및 그의 제조방법 Download PDFInfo
- Publication number
- WO2013191343A1 WO2013191343A1 PCT/KR2012/011231 KR2012011231W WO2013191343A1 WO 2013191343 A1 WO2013191343 A1 WO 2013191343A1 KR 2012011231 W KR2012011231 W KR 2012011231W WO 2013191343 A1 WO2013191343 A1 WO 2013191343A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent conductive
- conductive film
- hard coating
- coating layer
- layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/816—Multilayers, e.g. transparent multilayers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04102—Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
Definitions
- the present invention relates to a transparent conductive film having a warpage resistance, and more particularly, to a transparent conductive film having a limited thickness of a hard coating layer in order to secure the bending resistance of the transparent conductive film and a method of manufacturing the same.
- transparent conductive films used in the touch screen panel industry are mostly manufactured in a capacitive manner, and generally, electrical and optical characteristics of the transparent conductive film are mainly considered.
- all devices used must have durability against warpage resistance, and the same is true of the transparent conductive film.
- Japanese Patent Application Laid-Open No. 1998-114159 describes the structure of a transparent conductive film including a base film and a hard coating layer, but this is to secure a constant hardness and durability of the transparent conductive film, and to secure bending resistance. No configuration for this is described, and still shows the problem of the conventional transparent conductive film exhibiting a large resistance change range against bending.
- an embodiment of the present invention provides a transparent conductive film having improved bend resistance that can be used in a flexible display.
- a transparent substrate In one embodiment of the present invention, a transparent substrate; Hard coating layers formed on both surfaces of the transparent substrate; And it provides a transparent conductive film comprising a transparent conductive layer formed on the hard coating layer.
- the hard coating layer may have a thickness of about 2 ⁇ m to about 4 ⁇ m.
- the hard coating layer may have a thickness of about 3 ⁇ m to about 4 ⁇ m.
- the hard coating layer may have a hardness of about 1H to about 2H.
- the transparent conductive layer may further include at least one undercoat layer on one surface of the transparent substrate side.
- the undercoat layer may include silicon oxide.
- the limit curvature radius of the transparent conductive film may be about 1cm to about 3cm.
- forming a hard coating layer on both sides of the transparent substrate provides a method for producing a transparent conductive film comprising the step of forming a transparent conductive layer on the hard coating layer by a sputtering method.
- the method may further include forming one or more undercoat layers on one surface of the transparent substrate side of the transparent conductive layer.
- the difference in resistance change of the transparent conductive film can be reduced to within 10%.
- FIG. 1 is a cross-sectional view schematically showing the configuration of a transparent conductive film.
- FIG. 2 is a cross-sectional view schematically showing the configuration of a transparent conductive film including an undercoat layer.
- FIG. 3 is a cross-sectional view schematically showing a radius of curvature of a transparent conductive film.
- FIG. 4 is a cross-sectional view showing (a) convex bending and (b) negative bending of the transparent conductive film.
- 5 is a graph showing the experimental results of the change in resistance according to the number of bending.
- One embodiment of the present invention is a transparent substrate; A hard coating layer formed on each of both sides of the transparent substrate; And at least one transparent conductive layer formed on the hard coating layer provides a transparent conductive film.
- the transparent conductive film 100 includes a transparent conductive layer 10, a hard coating layer 20, a transparent substrate 30, and a hard coating layer 20 from above.
- the thickness of the hard coating layer coated on the base film to produce a transparent conductive film varies from about 1 ⁇ m to about 30 ⁇ m.
- the thickness of the hard coat layer was not considered in the bending resistance property of the transparent conductive film, and was adjusted only for the purpose of adjusting the hardness of the hard coat layer.
- one embodiment of the present invention has optimized the thickness of the hard coating layer in order to apply and use the transparent conductive film having a bending resistance to the flexible display.
- the thickness of the hard coating layer formed on both sides of the transparent substrate that is, the seed layer deposited on the transparent conductive layer
- the strength applied to the transparent conductive layer in the bending environment commonly applied to the flexible display can be controlled. Because there is.
- the thicknesses of the two hard coat layers 20 may be the same.
- the strength applied to the transparent conductive layer will be due to the increase in resistance, and will also affect the touch panel module used in the flexible display.
- the increase in resistance due to the strength applied to the transparent conductive layer can be reduced by adjusting the thickness of the hard coating layer. Specifically, by equalizing the thickness of the hard coating layers formed on both surfaces of the transparent substrate, curling is performed. There is an advantage in that it can prevent.
- the transparent substrate 30 may be polyethylen terephthalate (PET), polyether sulfone (PES), polycarbonate (PC), polyimide (PI), or the like, and when PET is used as the material of the transparent substrate 30,
- PET polyethylen terephthalate
- PES polyether sulfone
- PC polycarbonate
- PI polyimide
- the thickness is about 20 ⁇ m to about 100 ⁇ m, more specifically about 20 ⁇ m to 100 ⁇ m. If the thickness of the transparent base material 30 is less than about 20 ⁇ m, the mechanical strength of the transparent base material 30 is insufficient, and the hard coating layer 20 and the transparent conductive layer 10 are continuously made with the transparent base material 30 in a roll shape. The operation to form may become difficult. On the other hand, when thickness exceeds about 100 micrometers, the improvement of the scratch resistance of the transparent conductive layer 10 and the spot property for a touch panel may not be aimed at.
- the transparent substrate 30 is previously subjected to etching or undercoating treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and the like, and the transparent coating of the hard coating layer 20 formed thereon. You may improve adhesiveness to the base material 30. In addition, before forming the hard coat layer 20, you may damp and clean by solvent washing, ultrasonic washing, etc. as needed.
- the constituent material of the transparent conductive layer 10 is not particularly limited, and indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten, and combinations thereof Metal oxides of at least one metal selected from the group consisting of are used.
- the said metal oxide may contain the metal atom shown by the said group further as needed.
- indium oxide containing tin oxide, tin oxide containing antimony and the like can be used.
- the thickness of the transparent conductive layer 10 is not specifically limited, It is preferable to set it as thickness about 10 nm or more. When the thickness of the transparent conductive layer 10 becomes too thick, it will cause transparency fall etc. Specifically, it is about 15 nm-about 35 nm, More specifically, it exists in the range of about 20 nm-about 30 nm. If the thickness is less than about 15 nm, the surface electrical resistance is high, and it is difficult to form a continuous film. Moreover, when it exceeds about 35 nm, transparency fall etc. will be caused.
- the hard coat layer 20 constituting the transparent conductive film may include a photocurable resin composition and a crosslinking agent.
- a photocurable resin composition if it is a photocurable resin composition which has a photosensitive group which can be bridge
- this kind of resin composition may include monomers and prepolymers of compounds having at least one ethylenically unsaturated double bond, oligomers such as dimers, trimers, mixtures thereof, copolymers thereof and the like.
- the kind of the crosslinking agent is not particularly limited, and for example, a general crosslinking agent such as an isocyanate compound, an epoxy compound, an aziridine compound, or a metal chelate compound can be used.
- the hard coating layer 20 may have a thickness of about 2 ⁇ m to about 4 ⁇ m. By maintaining the thickness, the difference in resistance change of the transparent conductive film after the bending test may be reduced to within 10%.
- the thickness of the hard coating layer 20 may be about 3 ⁇ m to about 4 ⁇ m.
- Hardness of the hard coat layer 20 may be about 1H to about 2H.
- the hard coating layer 20 is formed on both sides of the transparent substrate 30 and aims to secure bending resistance by adjusting the thickness, but at the same time serves to supplement the hardness of the transparent substrate 30 and impart stain resistance. Bar hardness should be secured above a certain level.
- the transparent conductive film 100 is from above, the transparent conductive layer 10, the undercoat layer 40, the hard coating layer 20, the transparent substrate 30, hard The coating layer 20 is included. That is, the transparent conductive film may further include at least one undercoat layer on one surface of the transparent substrate side of the transparent conductive layer.
- the undercoat layer 40 serves to improve the insulating properties and transmittance between the transparent substrate 30 and the transparent conductive layer 10, specifically, on one surface of the transparent substrate 30 side of the transparent conductive layer 10 More than one layer can be formed.
- the undercoat 40 may have a refractive index of about 1.0 to about 2.0, and may be formed of silicon oxide (SiO 2 ) having a refractive index of about 1.4.
- the undercoat layer 120 may be formed to a thickness of about 10nm to about 100nm. If the thickness of the undercoating layer 120 exceeds about 100 nm, the film stress may be severe, cracks may occur, optical properties may be degraded, and when the thickness of the under coating layer 120 is less than about 10 nm, problems may occur in transmittance and visibility.
- the limit curvature radius of the transparent conductive film may be about 1cm to about 3cm.
- the radius of curvature refers to the radius of the circle when only a bent portion is removed to form a circle. “Large radius of curvature” means that the degree of bending is gentle, and “small radius of curvature” is sharp. Means.
- FIG. 3 is a cross-sectional view schematically illustrating a radius of curvature of the transparent conductive film.
- the limit curvature radius of the transparent conductive phase film may be about 1 cm to about 3 cm, and maintaining the limit curvature radius in the above range is not limited by bending deformation when applied to various devices for a flexible touch panel. It is preferable in terms of the range, and most specifically, the limit curvature radius of about 1cm to about 1.2cm is excellent in that it is the maximum limit radius of curvature not limited by bending when using the flexible touch panel.
- One embodiment of the present invention comprises the steps of forming a hard coating layer on each of the transparent substrate; And it provides a method for producing a transparent conductive film comprising the step of forming a transparent conductive layer on the hard coating layer by a sputtering method.
- a conventional coating method for example, a bar, a blade, a spin, gravure ( It may be performed by coating such as gravure, spray, or the like.
- the method of forming the transparent conductive layer is not particularly limited, and a conventionally known method may be selected. Specifically, the vacuum vapor deposition method, sputtering method, and ion plating method can be illustrated, for example. Moreover, the appropriate method can also be employ
- a transparent base material may have heat resistance of about 100 degreeC or more, Furthermore, about 150 degreeC or more.
- another embodiment of the present invention may include the step of further forming at least one undercoat layer on one surface of the transparent substrate side of the transparent conductive layer.
- the undercoat layer is an inorganic oxide layer, and may be formed by various methods such as RF magnetron, ion beam deposition, DC magnetron sputtering, and the like.
- This hard coat layer was apply
- an ozone type high pressure mercury lamp energy density 80 W / cm 2, 15 cm condensing type
- nm of thickness is applied to one surface of the hard coat layer by a reactive sputtering method using a sintered body material of 97% by weight of indium oxide and 3% by weight of tin oxide in an atmosphere of 0.4Pa composed of 98% of argon gas and 2% of oxygen gas.
- ITO film (refractive index 2.00 of light) was formed and the transparent conductive film was produced.
- Transparent conductive film in the same manner as in Example 1 except for the thickness of each of the hard coating layer formed on the top and bottom of the PET film in Examples 2 to 4 is 2.5 ⁇ m, 3.1 ⁇ m, 5.3 ⁇ m, 7.2 ⁇ m Was prepared.
- a transparent conductive film was prepared in the same manner as in Example 1 except that the thickness of the hard coating layer formed on the upper portion of the PET film in Comparative Example 1 was 4 ⁇ m, and the thickness of the hard coating layer formed on the lower portion of the PET film was 2 ⁇ m. Prepared.
- a transparent conductive film was prepared in the same manner as in Example 1 except that the thickness of the hard coating layer formed on the upper portion of the PET film in Comparative Example 1 was 2 ⁇ m, and the thickness of the hard coating layer formed on the lower portion of the PET film was 4 ⁇ m. Prepared.
- the curvature radius (cm), the resistance change difference (%), and the recovery rate after bending (%) were measured in order to grasp the warpage resistance of the transparent conductive films of Examples and Comparative Examples.
- the radius of curvature refers to the radius of a circle made by the bent portion when the transparent conductive film is bent, and the curvature is curvature by bending the transparent conductive film using a bending tool (Touch Screen Panel Reliability Measure System, Vitron). The radius was measured.
- FIG. 4 is a cross-sectional view showing (a) convex bending and (b) negative bending of the transparent conductive film. In the present experimental example, the convex bending was performed.
- the resistance change difference (%) can be obtained as (resistance value after the bending test / initial resistance value before the bending test) X100, and after the bending test (50,000 times), the resistance change difference between the transparent conductive films of Examples and Comparative Examples is obtained. Measured.
- the recovery rate after bending (%) can be obtained as (bending radius of curvature-bending radius of curvature) / (initial radius of curvature-bending radius of curvature) X100, after the bending test (50,000 times) of Examples and Comparative Examples
- the recovery rate after bending of the transparent conductive film was measured.
- the recovery rate refers to the ability of the material to recover in deformation of pressure, load, bending, and the like.
- Table 2 describes the radius of curvature, resistance change, and recovery after bending measured for the transparent conductive films of Examples and Comparative Examples.
- the thickness of the hard coating layer that maintains a constant hardness is expected to give a small stress on the transparent conductive film, the change in resistance due to the bending is small, but as can be seen from the above experimental results, the thickness of the hard coating layer at an appropriate level Only when it is maintained, it was found that less stress is applied to the transparent conductive film, and adaptation to deformation of bending is possible.
- Figure 5 shows the experimental results of the resistance change difference according to the bending number of Examples 1 to 4 bar, even in the case of Examples 3 and 4 of the hard coating thickness of 4 ⁇ 8 ⁇ m resistance change of about 10%
- the difference was not measured as high, and in particular, Examples 1 and 2 showed a difference in resistance change of less than 10%.
- Example 2 having a thickness of 3 to 4 ⁇ m of the hard coating layer was most preferable to lower the resistance change. And it was found.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Abstract
투명 기재; 상기 투명기재의 양면 각각에 형성된 하드코팅층; 및 상기 하드코팅층 상에 형성된 적어도 하나의 투명 도전층을 포함하는 투명 도전성 필름을 제공한다. 또한 투명기재 양면 각각에 하드코팅층을 형성하는 단계; 및 상기 하드코팅층 상에 스퍼터링 방법으로 투명 도전층을 형성하는 단계를 포함하는 투명 도전성 필름의 제조방법을 제공한다.
Description
내휨성 있는 투명 도전성 필름에 관한 것으로, 보다 구체적으로, 투명 도전성 필름의 내휨성을 확보하기 위해 하드코팅층의 두께가 한정된 투명 도전성 필름 및 그의 제조방법에 관한 것이다.
현재 터치스크린 패널 산업에서 사용되는 투명 도전성 필름은 정전용량 방식으로 대부분 제작되고 있으며, 일반적으로 투명 도전성 필름의 전기적, 광학적 특성이 주로 고려되었다. 하지만, 향후 사용될 플렉서블 디스플레이 구현을 위해서는 사용되는 모든 소자에서 내휨성에 대한 내구성을 지녀야 하며, 투명 도전성 필름 또한 마찬가지이다.
하지만, 현재까지 투명 도전성의 내휨성 향상시키기 위한 투명 도전성 필름을 제작하기 위해 사용되는 기재필름 및 하드코팅층의 구조에 대해 구체적인 연구는 거의 이루어지지 않았다. 또한 일본특허공개공보 제1998-114159호에서는 기재필름 및 하드코팅층을 포함하는 투명 도전성 필름의 구조를 기재하고 있기는 하나, 이는 투명 도전성필름의 일정한 경도 및 내구성을 확보하기 위함이고, 내휨성 확보를 위한 어떠한 구성도 기재되어 있지 않은바, 굽힘에 대해 큰 저항변화폭을 나타내는 종래 투명 도전성필름의 문제점을 여전히 나타내고 있다.
상기 문제점을 해결하기 위하여, 본 발명의 일 구현예는 플렉서블 디스플레이에 사용 가능한 내휨성이 향상된 투명 도전성 필름을 제공한다.
본 발명의 일 구현예에서, 투명기재; 상기 투명기재의 양면에 형성되는 하드코팅층; 및 상기 하드코팅층 상에 형성되는 투명 도전층을 포함하는 투명 도전성 필름을 제공한다.
상기 하드코팅층의 두께가 약 2 내지 약 4㎛일 수 있다.
상기 하드코팅층의 두께가 약 3 내지 약 4㎛일 수 있다.
상기 하드코팅층의 경도가 약 1H 내지 약 2H일 수 있다.
상기 투명 도전층의 상기 투명기재 쪽 일면에 1층 이상의 언더코팅층을 더 포함할 수 있다.
상기 언더코팅층은 실리콘 산화물을 포함할 수 있다.
상기 투명 도전성 필름의 한계 곡률 반경이 약 1cm 내지 약 3cm일 수 있다.
본 발명의 다른 구현예에서, 투명기재 양면에 하드코팅층을 형성하는 단계; 및 상기 하드코팅층 상에 스퍼터링 방법으로 투명 도전층을 형성하는 단계를 포함하는 투명 도전성 필름의 제조방법을 제공한다.
상기 투명 도전층의 상기 투명기재 쪽 일면에 1층 이상의 언더코팅층을 더 형성하는 단계를 포함할 수 있다.
상기 투명 도전성 필름의 우수한 내휨성을 확보하고 플렉서블 디스플레이용 투명전극 소자로의 사용이 가능할 것이다.
또한, 상기 투명 도전성 필름의 저항변화차를 10% 이내로 줄일 수 있다.
도 1은 투명도전성 필름의 구성을 개략적으로 보여주는 단면도이다.
도 2는 언더코팅층을 포함하는 투명도전성 필름의 구성을 개략적으로 보여주는 단면도이다.
도 3은 투명 도전성필름의 곡률반경을 개략적으로 보여주는 단면도이다.
도 4는 투명 도전성필름의 (a)볼록형 굽힘(positive bending), (b)오목형 굽힘(negative bending)을 보여주는 단면도이다.
도 5는 굽힘횟수에 따른 저항변화차의 실험결과를 나타내는 그래프이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
이하, 본 발명에 대해서 상세히 설명한다.
투명 도전성 필름
본 발명의 일구현예는 투명기재; 상기 투명기재의 양면 각각에 형성된 하드코팅층; 및 상기 하드코팅층 상에 형성된 적어도 하나의 투명 도전층을 포함하는 투명 도전성 필름을 제공한다.
도 1을 참조하면, 투명 도전성 필름(100)은 위로부터, 투명 도전층(10), 하드코팅층(20), 투명기재(30), 하드코팅층(20)을 포함한다.
종래 투명 도전성 필름을 제작하기 위해 기재필름 위에 코팅되고 있는 하드코팅층의 두께는 약 1㎛ 내지 약 30㎛까지 다양하다. 하지만, 지금까지 하드코팅층의 두께는 투명 도전성 필름의 내휨성 특성에 고려되지 않은 것으로 오로지 하드코팅층의 경도를 조절하기 위한 목적으로 조절되었다.
그러나, 본 발명의 일구현예는 플렉서블 디스플레이에 내휨성 있는 투명 도전성 필름을 적용 및 사용하기 위해서 하드코팅층의 두께를 최적화하였다. 투명기재의 양면에 형성되는 하드코팅층, 즉 투명 도전층에 증착되는 시드층(Seed layer)의 두께를 조절함으로써, 플렉서블 디스플레이에 통상적으로 적용되는 굽힘 환경 내에서 투명 도전층에 가해지는 강도를 조절할 수 있기 때문이다. 구체적으로, 상기 두개의 하드코팅층(20)의 두께를 서로 동일하게 할 수 있다.
보다 구체적으로, 상기의 투명 도전층에 가해지는 강도는 저항상승에 기인하게 될 것이며, 플렉서블 디스플레이에 사용되는 터치패널 모듈에도 영향을 미치게 되는 것이다. 이 때, 하드코팅층의 두께를 조절함으로써 투명 도전층에 가해지는 강도로 인한 저항상승을 줄일 수 있는바, 구체적으로, 투명기재의 양면 각각에 형성된 하드코팅층의 두께를 동일하게 함으로써, 컬링(Curling)을 방지할 수 있다는 면에서 장점이 있다.
상기 투명기재(30)은 PET(polyethylen terephthalate), PES(polyether sulfone), PC(polycarbonate), PI(polyimide) 등일 수 있고, 상기 투명기재(30)의 재질로 PET를 사용하는 경우, PET 필름의 두께는 약 20㎛ 내지 약 100㎛이며, 보다 구체적으로는 약 20㎛ 내지 100㎛이내이다. 투명기재(30)의 두께가 약 20㎛ 미만이면 투명기재(30)의 기계적 강도가 부족하고, 이 투명기재(30)를 롤상으로 하여 하드코팅층(20), 투명 도전층(10)을 연속적으로 형성하는 조작이 곤란해지는 경우가 있다. 한편, 두께가 약 100㎛를 초과하면, 투명 도전층(10)의 내찰상성이나 터치 패널용으로서의 타점 특성의 향상이 도모되지 않는 경우가 있다.
상기 투명기재(30)에는, 표면에 미리 스퍼터링, 코로나 방전, 화염, 자외선 조사, 전자선 조사, 화성, 산화 등의 에칭 처리나 하도처리를 실시하여, 이 위에 형성되는 하드코팅층(20)의 상기 투명기재(30)에 대한 밀착성을 향상시키도록 해도 된다. 또한, 하드코팅층(20)을 형성하기 전에, 필요에 따라 용제 세정이나 초음파 세정 등에 의해 제진, 청정화해도 된다.
상기 투명 도전층(10)의 구성 재료로는 특별히 한정되지 않고, 인듐, 주석,아연, 갈륨, 안티몬, 티탄, 규소, 지르코늄, 마그네슘, 알루미늄, 금, 은, 구리, 팔라듐, 텅스텐 및 이들의 조합으로 이루어지는 군에서 선택된 적어도 하나의 금속의 금속 산화물이 사용된다. 당해 금속 산화물에는, 필요에 따라, 추가로 상기 군에 나타난 금속 원자를 포함하고 있어도 된다. 예를 들어 산화 주석을 함유하는 산화 인듐, 안티몬을 함유하는 산화 주석 등이 사용될 수 있다.
투명 도전층(10)의 두께는 특별히 제한되지 않지만, 두께 약 10nm 이상으로 하는 것이 바람직하다. 투명 도전층(10)의 두께가, 지나치게 두꺼워지면 투명성의 저하 등을 초래하기 때문에, 구체적으로는 약 15nm 내지 약 35nm이고, 보다 구체적으로는 약 20nm 내지 약 30nm의 범위 내이다. 두께가 약 15nm 미만이면 표면 전기 저항이 높아지고, 또한 연속 피막이 되기 어려워진다. 또, 약 35nm을 초과하면 투명성의 저하 등을 초래하게 된다.
상기 투명 도전성 필름을 구성하는 하드 코팅층(20)은 광경화성 수지 조성물 및 가교제를 포함할 수 있다. 상기 광경화성 수지 조성물로서는, 일반적으로 사용되고 있는 광조사에 의해 가교할 수 있는 감광성기를 지닌 광경화성 수지 조성물이라면 특별히 제한되는 것은 아니다. 이런 종류의 수지 조성물의 예로서는, 적어도 1개의 에틸렌성 불포화 2중결합을 지닌 화합물의 모노머 및 프레폴리머, 2량체, 3량체 등의 올리고머, 그들의 혼합물 및 그들의 공중합체 등을 포함할 수 있다.
상기 가교제의 종류는 특별히 한정되지 않으며, 예를 들면 이소시아네이트계 화합물, 에폭시계 화합물, 아지리딘계 화합물, 금속 킬레이트계 화합물과 같은 일반적인 가교제를 사용할 수 있다.
상기 하드코팅층(20)의 두께는 약 2㎛ 내지 약 4㎛으로 할 수 있는바, 상기의 두께를 유지함으로써, 굽힘 시험 후 투명 도전성 필름의 저항변화차를 10% 이내로 줄일 수 있다. 상기 범위의 두께를 갖는 하드코팅층(20)의 굽힘변형시 투명 도전성 필름에 가해주는 강도(Stress)를 감소시키는 장점이 있다. 구체적으로, 굽힘 변형시 투명 도전성 필름에 가해주는 강도(Stress)의 최소화라는 면에서 상기 하드코팅층(20)의 두께를 약 3㎛ 내지 약 4㎛로 할 수 있다.
상기 하드코팅층(20)의 경도는 약 1H 내지 약 2H일 수 있다. 상기 하드코팅층(20)은 투명기재(30) 양면에 형성되고 두께를 조절함으로써 내휨성을 확보하는 것을 목적으로 하지만, 투명기재(30)의 경도를 보완하고, 내오염성을 부여하는 역할을 동시에 하는바, 일정수준이상의 경도를 확보하여야 한다.
즉, 상기 하드코팅층(20)의 경도가 상기 범위를 유지하는 경우 플렉서블 터치패널용으로서 타점특성 향상의 장점이 있다.
도 2을 참조하면, 본 발명의 일구현예로서 상기 투명 도전성 필름(100)은 위로부터, 투명 도전층(10), 언더코팅층(40), 하드코팅층(20), 투명기재(30), 하드코팅층(20)을 포함한다. 즉, 상기 투명 도전층의 상기 투명기재 쪽 일면에 1층 이상의 언더코팅층을 더 포함한 투명 도전성 필름을 제공할 수 있다.
상기 언더코팅층(40)은 투명기재(30)와 투명 도전층(10) 사이의 절연특성 및 투과도를 향상시키는 역할을 하는바, 구체적으로 투명 도전층(10)의 투명기재(30)쪽 일면에 1층 이상 형성될 수 있다. 상기 언더코팅층(40) 굴절률은 1.0~2.0인 물질을 선택할 수 있는데, 그 중에서 굴절률이 약 1.4인 실리콘 산화물(SiO2)로 형성될 수 있다.
또한 상기 언더코팅층(120)은 약 10nm 내지 약 100nm두께로 형성될 수 있다. 언더코팅층(120)의 두께가 약 100nm를 초과하면 막 응력이 심해져 크랙이 발생할 수 있고, 광학 특성이 저하될 수 있으며, 약 10nm 미만으로 얇게 형성되면 투과율 및 시인성에 문제가 발생한다.
상기 투명 도전성 필름의 한계 곡률 반경이 약 1cm 내지 약 3cm 일 수 있다. 상기 곡률 반경이란 휘어진 부분만을 떼어내어서 원을 만들 때 그 원의 반지름을 나타내는 것으로, “곡률 반경이 큼”은 굽은 정도가 완만하다는 것을 의미하고, “곡률 반경이 작음”은 굽은 정도가 급격함을 의미한다.
즉, 상기 한계 곡률 반경이란 투명 도전성 필름의 굽은 정도가 최대로 급격해 졌을 때의 곡률 반경을 나타내는바, 도 3은 투명 도전성필름의 곡률반경을 개략적으로 보여주는 단면도이다.
상기 투명 도전상 필름의 한계 곡률반경은 약 1cm 내지 약 3cm으로 할 수 있는바, 한계 곡률반경을 상기 범위로 유지하는 것이 플렉서블 터치패널을 위한 다양한 소자에의 적용시 굽힘 변형등의 제한을 받지 않는 범위라는 점에서 바람직하고, 가장 구체적으로 상기 한계 곡률반경을 약 1cm 내지 약 1.2cm로 하는 것이 플렉서블 터치패널 사용시 굽힘의 제한을 받지 않는 최대의 한계 곡률반경이라는 점에서 우수하다.
투명 도전성 필름의 제조방법
본 발명의 일구현예는 투명기재 양면 각각에 하드코팅층을 형성하는 단계; 및 상기 하드코팅층 상에 스퍼터링 방법으로 투명 도전층을 형성하는 단계를 포함하는 투명 도전성 필름의 제조방법을 제공한다.
상기 투명기재 양면 각각에 하드코팅층을 형성하는 단계에 있어서, 하드코팅 층의 형성방법으로는, 통상의 도공 방법, 예를 들면, 바(bar), 블레이드(blade), 스핀(spin), 그라비아(gravure),스프레이(spray) 등의 코팅(coating)으로 행할 수 있다.
상기 하드코팅층 상에 투명 도전층을 형성하는 단계에 있어서, 투명 도전층의 형성 방법으로는 특별히 한정되지 않고, 종래 공지된 방법을 선택 할 수 있다. 구체적으로는, 예를 들어 진공 증착법, 스퍼터링법, 이온 도금법을 예시할 수 있다. 또, 필요로 하는 투명 도전층의 두께에 따라 적절한 방법을 채용할 수도 있다.
또한, 투명 도전층을 형성한 후, 필요에 따라, 약 100℃ 내지 약 150℃의 범위 내에서 어닐 처리를 실시하여 결정화할 수 있다. 이 때문에, 투명기재는, 약 100℃ 이상, 더욱이 약 150℃ 이상의 내열성을 가질 수 있다.
또한, 본 발명의 또다른 구현예는 상기 투명 도전층의 상기 투명기재쪽 일면에 1층 이상의 언더코팅층을 더 형성하는 단계를 포함할 수 있다. 상기 언더코팅층은 무기산화물층으로, RF마그네트론, 이온빔 증착법, DC 마그네트론 스퍼터링 등 다양한 방법으로 형성할 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
<실시예 및 비교예>
실시예 1
하드코팅층의 형성 재료로서 아크릴ㆍ우레탄계 수지 (다이닛폰잉크 화학(주) 제조의 유니딕 17-806) 100중량부에 대해서, 광중합 개시제로서의 히드록시 시클로헥실 페닐케톤 (치바스페셜티케미컬즈사 제조의 이르가큐어 184) 5중량부를 추가하여, 30중량% 의 농도로 희석하여 이루어지는 톨루엔 용액을 조제하였다.
이 하드코팅층의 형성 재료를, 두께가 125㎛ 인 PET 필름으로 이루어지는 투명 필름의 양면에 도포하여, 100℃ 에서 3분간 건조시켰다. 그 후, 즉시 오존 타입 고압 수은등 (에너지 밀도 80W/㎠, 15cm 집광형) 2등으로 자외선 조사를 실시하여 하드코팅층을 형성하였다.
다음으로, 상기 하드코팅층 일면에, 아르곤 가스 98%와 산소 가스 2%로 이루어지는 0.4Pa 의 분위기 중에서, 산화 인듐 97 중량%, 산화 주석 3 중량%의 소결체 재료를 사용한 반응성 스퍼터링법에 의해, 두께 22nm 의 ITO 막 (광의 굴절률 2.00)을 형성하여, 투명 도전성 필름을 제조하였다.
실시예 2 내지 4
실시예 2 내지 4에서 PET필름의 상부 및 하부에 형성된 각각의 상기 하드코팅층의 두께가 2.5㎛, 3.1㎛, 5.3㎛, 7.2㎛인 점을 제외하고는 실시예 1에서와 동일한 방법으로 투명 도전성 필름을 제조하였다.
비교예 1
비교예 1에서 PET필름의 상부에 형성된 하드코팅층의 두께가 4㎛로, PET필름의 하부에 형성된 하드코팅층의 두께가 2㎛인 점을 제외하고는 실시예 1에서와 동일한 방법으로 투명 도전성 필름을 제조하였다.
비교예 2
비교예 1에서 PET필름의 상부에 형성된 하드코팅층의 두께가 2㎛로, PET필름의 하부에 형성된 하드코팅층의 두께가 4㎛인 점을 제외하고는 실시예 1에서와 동일한 방법으로 투명 도전성 필름을 제조하였다.
표 1
하드코팅층 두께(㎛) | 하드코팅층 경도(H) | 하드코팅층 두께(㎛) | 하드코팅층 경도(H) | |||
실시예1 | 2.5 | 2 | 비교예1 | 기재필름상부 | 4 | 2 |
실시예2 | 3.1 | 1 | 기재필름하부 | 2 | 1 | |
실시예3 | 5.3 | 2 | 비교예2 | 기재필름상부 | 2 | 1 |
실시예4 | 7.2 | 1 | 기재필름하부 | 4 | 2 |
<실험예> - 투명 도전성 필름의 내휨성
상기 실시예 및 비교예의 투명 도전성 필름의 내휨성을 파악하기 위하여 곡률반경(cm), 저항변화차(%), 굽힘 후 회복률(%)을 측정하였다.
상기 곡률반경은 투명 전도성 필름에 휨을 주었을 때, 휘어진 부분이 만드는 원의 반지름을 의미하는바, 굽힘기구(Bending Tool, Touch Screen Panel Reliability Measure System, ㈜Vitron)를 이용하여 투명 전도성 필름에 휨을 줌으로써 곡률반경을 측정하였다. 도 4는 투명 도전성필름의 (a)볼록형 굽힘(positive bending), (b)오목형 굽힘(negative bending)을 보여주는 단면도인바, 본 실험예에서는 볼록형 굽힙(positive bending)에 의하였다.
상기 저항변화차(%)는 (밴딩테스트 후 저항값/밴딩테스트 전 초기 저항값)X100으로 얻을 수 있는바, Bending Test(5만회) 후 상기 실시예 및 비교예의 투명 도전성 필름의 저항변화차를 측정하였다.
상기 굽힘 후 회복률(%)은 (회복후 곡률반경-굽힘후 곡률반경)/(초기 곡률반경-굽힘후 곡률반경)X100으로 얻을 수 있는바, Bending Test(5만회) 후 상기 실시예 및 비교예의 투명 도전성 필름의 굽힘 후의 회복률을 측정하였다. 상기 회복률이란 압력, 하중, 굽힘 등의 변형에 있어서 회복되기 위한 재료의 능력을 일컫는다.
표 2
곡률반경(cm) | 저항변화차(%) | 굽힘 후 회복률(%) | |
실시예1 | 1.1 | 9 | 90 |
실시예2 | 1 | 8.5 | 95 |
실시예3 | 1.2 | 10.5 | 85 |
실시예4 | 1.2 | 11.5 | 85 |
비교예1 | 0.8 | 15 | 60 |
비교예2 | 0.5 | 20 | 65 |
상기 표 2에 실시예 및 비교예의 투명 도전성필름에 대해 측정한 곡률반경, 저항변화차 및 굽힘 후 회복률을 기재하였다. 일반적으로 일정경도를 유지하고 있는 하드코팅층의 두께가 얇으면 투명 도전성 필름에 스트레스를 적게 가해주어 휘어짐에 따른 저항변화가 작을 것이라고 예상하지만, 상기의 실험결과에서 알 수 있듯이 적정 수준의 하드코팅층의 두께를 유지하는 경우에만, 투명 도전성 필름에 보다 적은 스트레스를 가해주게 되고 휘어짐이라는 변형에의 적응이 가능함을 알 수 있었다.
보다 구체적으로, 투명필름 양면에 형성된 하드코팅층의 두께가 동일한 실시예 1 내지 4의 경우가 투명필름 양면에 형성된 하드코팅층의 두께가 상이한 비교예 1 및 2에 비하여 곡률반경이 크게 측정되었다. 실시예 1 내지 4의 경우가 곡률반경이 크게 측정된 것으로 보아, 더 많은 휨의 변형이 있었음에도 불구하고, 굽힘 후 회복률이 더 높았는바 일정수준 이상의 탄성을 가지고 있음을 알 수 있었다. 이로 인하여 하드코팅층의 두께가 내휨성 확보에 가장 중요한 변수 역할을 함을 확인하였다.
또한, 도 5는 실시예 1 내지 4의 굽힘횟수에 따른 저항변화차의 실험결과를 나타내었는바, 하드코팅의 두께가 4~8㎛인 실시예 3 및 4의 경우에도 10%정도의 저항 변화차로 높지 않게 측정되었고, 특히 실시예 1 및 2의 경우 10%미만의 저항 변화차를 보였는바, 그중에서도 하드코팅층의 두께가 3~4㎛인 실시예 2의 경우가 저항변화차를 낮추는데 가장 바람직함을 알 수 있었다.
Claims (7)
- 투명 기재;상기 투명기재의 양면 각각에 형성된 하드코팅층; 및상기 하드코팅층 상에 형성된 적어도 하나의 투명 도전층을 포함하는투명 도전성 필름.
- 제 1항에 있어서,상기 하드코팅층의 두께가 2 내지 4㎛인투명 도전성 필름.
- 제 1항에 있어서,상기 하드코팅층의 두께가 3 내지 4㎛인투명 도전성 필름.
- 제 1항에 있어서,상기 하드코팅층의 경도가 1H 내지 2H인투명 도전성 필름.
- 제 1항에 있어서,상기 투명 도전층의 상기 투명기재 쪽 일면에 1층 이상의 언더코팅층을 더 포함하는투명 도전성 필름.
- 제 5항에 있어서,상기 언더코팅층은 실리콘 산화물을 포함하는투명 도전성 필름.
- 제 1항에 있어서,상기 투명 도전성 필름의 한계 곡률 반경이 1cm 내지 3cm인투명 도전성 필름.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280074019.XA CN104380394A (zh) | 2012-06-18 | 2012-12-21 | 具有耐弯曲性的透明导电膜及其制备方法 |
US14/406,304 US20150302951A1 (en) | 2012-06-18 | 2012-12-21 | Transparent conductive film having bending resistance, and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0064672 | 2012-06-18 | ||
KR20120064672A KR20130141746A (ko) | 2012-06-18 | 2012-06-18 | 내휨성 있는 투명 도전성 필름 및 그의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013191343A1 true WO2013191343A1 (ko) | 2013-12-27 |
Family
ID=49768917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/011231 WO2013191343A1 (ko) | 2012-06-18 | 2012-12-21 | 내휨성 있는 투명 도전성 필름 및 그의 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150302951A1 (ko) |
KR (1) | KR20130141746A (ko) |
CN (1) | CN104380394A (ko) |
TW (1) | TW201401303A (ko) |
WO (1) | WO2013191343A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6639481B2 (ja) * | 2015-04-10 | 2020-02-05 | 富士フイルム株式会社 | 透明フィルム、偏光板、及び画像表示装置 |
KR102159491B1 (ko) * | 2016-05-09 | 2020-09-24 | 주식회사 엘지화학 | 도전성 투광 필름 |
US11367856B2 (en) * | 2017-09-29 | 2022-06-21 | Dai Nippon Printing Co., Ltd. | Optical film and image display device |
JP2020167047A (ja) * | 2019-03-29 | 2020-10-08 | 日東電工株式会社 | ヒータ |
JP7345341B2 (ja) * | 2019-10-01 | 2023-09-15 | 日東電工株式会社 | 導電フィルム、導電フィルム巻回体およびその製造方法、ならびに温度センサフィルム |
CN112562887B (zh) * | 2020-11-18 | 2022-07-15 | 深圳市华科创智技术有限公司 | 一种耐弯曲性能优异的纳米银线透明导电膜 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100905478B1 (ko) * | 2001-10-05 | 2009-07-02 | 가부시키가이샤 브리지스톤 | 투명 전도성 필름 및 터치패널 |
KR20100092795A (ko) * | 2009-02-13 | 2010-08-23 | 서피스텍 주식회사 | 고투명 전도성 적층체 |
KR20110125370A (ko) * | 2010-05-13 | 2011-11-21 | 주식회사 엘지화학 | 다층구조의 투명 전도성 필름 및 이의 제조방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003292828A (ja) * | 2002-03-29 | 2003-10-15 | Lintec Corp | ハードコート剤及びハードコートフィルム |
JP5463678B2 (ja) * | 2009-02-04 | 2014-04-09 | 凸版印刷株式会社 | 透明導電性フィルム |
CN101996698A (zh) * | 2009-08-28 | 2011-03-30 | 嘉威光电股份有限公司 | 透明导电膜的积体层 |
JP5515554B2 (ja) * | 2009-09-18 | 2014-06-11 | 凸版印刷株式会社 | 透明導電性薄膜の製造方法 |
-
2012
- 2012-06-18 KR KR20120064672A patent/KR20130141746A/ko active Search and Examination
- 2012-12-21 WO PCT/KR2012/011231 patent/WO2013191343A1/ko active Application Filing
- 2012-12-21 CN CN201280074019.XA patent/CN104380394A/zh active Pending
- 2012-12-21 US US14/406,304 patent/US20150302951A1/en not_active Abandoned
-
2013
- 2013-06-14 TW TW102121182A patent/TW201401303A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100905478B1 (ko) * | 2001-10-05 | 2009-07-02 | 가부시키가이샤 브리지스톤 | 투명 전도성 필름 및 터치패널 |
KR20100092795A (ko) * | 2009-02-13 | 2010-08-23 | 서피스텍 주식회사 | 고투명 전도성 적층체 |
KR20110125370A (ko) * | 2010-05-13 | 2011-11-21 | 주식회사 엘지화학 | 다층구조의 투명 전도성 필름 및 이의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
TW201401303A (zh) | 2014-01-01 |
US20150302951A1 (en) | 2015-10-22 |
KR20130141746A (ko) | 2013-12-27 |
CN104380394A (zh) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013191343A1 (ko) | 내휨성 있는 투명 도전성 필름 및 그의 제조방법 | |
KR101800495B1 (ko) | 투명 도전성 필름 및 터치 패널 | |
US8003200B2 (en) | Transparent electrically-conductive film | |
US8075948B2 (en) | Transparent conductive film | |
US9164645B2 (en) | Touch panel and manufacturing method thereof | |
TWI543876B (zh) | Resin film with adhesive layer, laminated film and touch panel | |
KR101629060B1 (ko) | 투명 도전성 필름, 그 제조 방법 및 그것을 구비한 터치 패널 | |
US20020158853A1 (en) | Transparent conductive laminated body and touch panel | |
TWI537130B (zh) | The manufacturing method of laminated film | |
KR20160146492A (ko) | 투명 도전성 필름 | |
JP5235315B2 (ja) | 透明電極付き基板の製造方法 | |
JP2014205247A (ja) | 転写用部材 | |
KR20130037925A (ko) | 유기전자소자용 기판 | |
KR102594225B1 (ko) | 투명 도전성 필름 | |
JP2002316378A (ja) | 透明導電性積層体及びそれを用いたタッチパネル | |
KR20180003143A (ko) | 배리어 필름 및 이의 제조방법 | |
KR101243719B1 (ko) | 고내구성 터치 패널 및 이를 포함하는 디스플레이 | |
JP3983366B2 (ja) | 透明導電性フィルム用基板 | |
JP4137222B2 (ja) | 透明導電性基板 | |
JP2003296031A (ja) | タッチパネル用透明導電性フィルム | |
JP2006056117A (ja) | 透明導電性積層体及びこれを用いたタッチパネル | |
JP2016115014A (ja) | 透明導電性フィルムおよびタッチパネル | |
JP4328603B2 (ja) | 電極付き樹脂基板および表示装置 | |
JP7378938B2 (ja) | 光透過性導電フィルム | |
JP6849490B2 (ja) | 光透過性導電フィルム及び光透過性導電フィルムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12879499 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14406304 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12879499 Country of ref document: EP Kind code of ref document: A1 |