WO2013191313A1 - 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템 - Google Patents

멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템 Download PDF

Info

Publication number
WO2013191313A1
WO2013191313A1 PCT/KR2012/004844 KR2012004844W WO2013191313A1 WO 2013191313 A1 WO2013191313 A1 WO 2013191313A1 KR 2012004844 W KR2012004844 W KR 2012004844W WO 2013191313 A1 WO2013191313 A1 WO 2013191313A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
wetland
cell
water purification
pond
Prior art date
Application number
PCT/KR2012/004844
Other languages
English (en)
French (fr)
Inventor
변찬우
Original Assignee
Byeon Chanwoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byeon Chanwoo filed Critical Byeon Chanwoo
Priority to PCT/KR2012/004844 priority Critical patent/WO2013191313A1/ko
Priority to US14/112,925 priority patent/US20140042064A1/en
Priority to KR1020137021999A priority patent/KR101360271B1/ko
Priority to KR1020147000428A priority patent/KR101668095B1/ko
Publication of WO2013191313A1 publication Critical patent/WO2013191313A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • C02F3/046Soil filtration
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B2201/00Devices, constructional details or methods of hydraulic engineering not otherwise provided for
    • E02B2201/02Devices and methods for creating a buffer zone in the water to separate, e.g. salt and sweet water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/60Ecological corridors or buffer zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to an ecological water purification biotop system utilizing wetlands, ponds and sedimentation structures in order to purify wastewater.
  • the present invention relates to an ecological water purification biotop system utilizing wetland, pond and sedimentary structures of multicells and multilanes. will be.
  • the SUSTAINABLE STRUCTURED BIOTOP (SSB) system is a multi-stage cell wetland system for the treatment of point and nonpoint pollution sources occurring in the watershed during the initial rainfall.
  • the wetland treatment system mainly used for treating pollutants among wetlands is natural wetland and artificial wetland. Artificial wetland is divided into free-water wetland and underground flow-type wetland. They mimic the natural wetland treatment system. Otherwise it can be created in almost any place. In both cases, pretreatment is needed to reduce the inflow of solids into the wetland system.
  • Cells in free-surface wetlands are formed in the form of ponds or waterways, which have a media in which soil layers or other plants can grow, and are generally ordered. Treated influent flows shallowly over the soil layer surface. Free-surface wetlands have low construction costs and almost no clogging, making them suitable for most sites.
  • the free-surface artificial wetland system is largely a shallow marsh, pond-marsh, depending on the composition, depth, area, and layout of the wetland. It is divided into three types: pond / wetland system and extended detention wetland. In low-wetland types, most of the flow is stored in wetlands, with deep areas consisting only of forebays and micropools. Low wetlands provide excellent habitats for wild animals and plants, but require more flow and site area than other types. Pond-wetland is the deepest and ponds account for half of the treatment capacity.
  • Extended storage wetland is a modified low-wetland that can store water above the normal level, and has the effect of long-term storage, flow rate reduction, and flood prevention in addition to basic precipitation and biological treatment functions.
  • Mechanism has the ability to convert toxic organic complexes and metals into biologically stable compounds, and can be applied to most pollutants such as urban sewage, industrial wastewater, nonpoint source of heavy rainfall, heavy metals, etc.
  • pollutants such as urban sewage, industrial wastewater, nonpoint source of heavy rainfall, heavy metals, etc.
  • it is ecologically and scenicly harmonious with the surrounding environment, and has a high function as a habitat for a variety of living creatures. Therefore, there is a need for artificial wetlands that can provide ecological environment education and rest spaces for local residents and visitors. It has emerged.
  • Natural purification system using the artificial wetlands such as the Republic of Korea Utility Model Registration No. 220403 and the Patent Publication No. 2000-72363.
  • Flow control tank (2) for adjusting the flow rate so that the amount of water is supplied to the trench (3) by a predetermined amount, a trench (3) for decomposing odorous substances by anaerobic microorganisms under anaerobic conditions, and a tank for decomposing organic matter by aerobic microorganisms living in crushed stone.
  • Figure 2 is a natural purification promoting device using the artificial wetland of the second prior art, artificial wetland to install a storage facility to purify the waste water by a natural purification method to form a wetland and supply air to the wetland to promote natural purification It relates to a method for promoting natural purification using the apparatus and the device.
  • Its constitution is rainwater soil chamber 21 in which the inlet pipe sluice 23 connected to the flow distribution tank inlet pipe 22 at a predetermined position of the existing water channel 11 is formed at a predetermined position on one side wall;
  • a flow distribution tank 24 through which wastewater flows along the flow distribution tank inlet pipe from the rainwater chamber 21;
  • the purified water introduced into the sedimentation basin manhole 25 is discharged into the water channel 11 by using the submersible pump 47, while the unpurified water is pumped out by the water pumped by the submersible pump 47.
  • wetland areas (41a) (41b) (41c) divided into respective sectors flowing through; Mosquitoes such as mosquitoes can be generated in the wetland at a predetermined position in the wetland area, so that the moth larvae eat a loach, a frog, etc., which can be installed;
  • a machine room (44) installed at an outer region of the wetland region and having a blower (44a) installed to blow air into the air discharge pipe (44b) piped at a predetermined interval into the lower filter layer of the wetland region using a blower;
  • the wetland area (41a) (41b) (41c) is a natural purification promoting device using artificial wetlands, characterized in that aquatic
  • the present inventors have applied for and registered a patent invention for the Republic of Korea Patent No. 444972 "A multi-step cell artificial wetland system and method for treating pollutants that can be used as an ecological park.”
  • the third prior art which is intended to solve the above first and second conventional problems, is an artificial wetland system of a completely natural purification type that requires no mechanical device, and is designed in consideration of landscape and maximizes space efficiency.
  • the present invention provides an artificial wetland system and a method for treating a contaminant for contaminant treatment using a multi-stage cell.
  • the present invention provides an artificial wetland system and a method for treating pollutants using multi-stage cells.
  • the marsh is shallow and the plant is grown in high density mainly, and the depth is 10 ⁇ 40cm in which the plant can grow, and as a water treatment function, BOD, SS, metals, pathogens, complex organics, ammonia It can be defined as a space having a chemical action.
  • pond is a submerged plant and ancillary plants grow mainly, and the depth of water is 0.75-1.5m, suitable for further improvement of BOD following the wetland, mainly nitrification and phosphate removal function, reaction with the atmosphere
  • oxygen is supplied by submerged plants and photosynthesis of algae serves to reduce odor and pest generation.
  • the sedimentary reservoir 200 the sedimentary reservoir where the wastewater is temporarily stored in the inlet 100
  • the primary wetland 300 also referred to as the first cell
  • the pond 400 of the open water surface into which the primary purified water of the first wetland flows
  • the pond Secondary wetlands 500 also referred to as second cells
  • purified water from secondary wetlands is temporarily stored in the outlets 700 It consists of a sedimentation basin 600 to outflow the purified water.
  • additional multistage cells such as tertiary and quaternary cells may be added.
  • the sedimentation reservoir 200 is a pretreatment facility before entering the wetland, and the supernatant is discharged by separating the solids by natural gravity sedimentation, and the pollutants to be removed are mainly particulate solids.
  • Temporary storage of influent water such as initial outflow water during rainfall, reduces the flow rate and stays for a certain time.
  • the water depth is 1.2-1.8 m, and the area is suitable for 5-15% of the total wetland surface area, and waterfowl, buddha, hairy bud, wormwood, pussy willow, and kiber are preferred as the introduced plants around the sedimentary reservoir. .
  • the primary wetland 300 is based on the free surface type (FWS) wetland.
  • FWS free surface type
  • the wetland has a long runoff distance, a constant width, and has two or more multistage cells having a flat bottom.
  • the wetlands have a flat bottom structure so that the influent flows uniformly.
  • the slope of the wetlands is more than 1: 2.5, acting as a transition zone to increase the ecological effect, and the bottom is waterproofed if necessary, and excavated to a certain depth to form a wetland and embank with extra soil to increase the ecological effect Or create an artificial island (middle) (800) or land on the road to use some of the planting base.
  • Good quality soil is suitable for planting soil, and it is installed 0.45-0.60 m, wetland bottom slope is 0.05% and depth is 0.2-0.4 m. It is preferable to install the weir 210 at the start or end of the cell to adjust the flow rate and the water level, and to install the flow rate adjusting tank 310 for adjusting the flow rate at the middle part of the cell.
  • Water purifying plants are preferably buttercups, moonroot, reeds, babies, strings and the like.
  • the purified water through the primary marsh reaches pond 400.
  • the role of the pond is to strengthen the nitrification function by providing an open water surface and adjusting the flow rate and smooth oxygen supply.
  • a smooth oxygen supply transforms ammonia into nitrate and precipitates phosphorus. It provides wildlife habitats such as fish and birds to prevent pest breeding such as mosquitoes, and provides a variety of landscapes by adjusting the flow rate and residence time in a hydraulic aspect and mixing them with the vegetation grows.
  • Secondary or more multi-stage cell wetland 500 provides the same function as the primary wetland 300, so that the water passing through the open water reaches the secondary wetland so that the same action as the primary wetland occurs.
  • a second pond 400 ' having the same function as the first pond 400, a third wetland 500' having the same function as the secondary wetland 500, and a third pond 400 ".
  • multistage cell wetlands such as quaternary wetlands, can be added.
  • the purified water passing through the last wetland is discharged to the sedimentation basin 600, which provides a resuspension prevention and oxygen supply function of the suspended matter, and provides a variety of flora and fauna habitat over a depth of 1.0 m. It is desirable to adjust the total residence time of the wetland by installing ware at the end of the sedimentation basin.
  • the area is suitable for 5-15% of the total wetland area, and water peninsula, buddha, hairy buddha, wormwood, mud willow, etc. Keybers and the like are preferred.
  • Reference numerals 510 and 510 are observation decks.
  • FIG. 4 is a cross-sectional view of the standard plant of FIG. 3, wherein (a) and (b) are cross-sectional views of secondary, tertiary or higher multistage cell purification wetland.
  • the types of plants to be planted reeds, babies, strings, moon roots, and buttercups are preferred for artificial vegetation in terms of treatment efficiency and management in artificial wetlands. Since the depth of water is shallow, it is preferable to arrange it in the first stage of shallow water if the composition is composed of multi-stage cells, and the species with the deepest depth of growth can grow up to 70cm as baby parts. . Therefore, the recommended arrangement of vegetation is [root root, buttercup]-[reed, string]-[baby babies].
  • the pest control law uses fish such as 'air-gulping mosquito' and 'Gambusia affinis' as predators of mosquitoes, and manages deep flooding to prevent garbage and debris from floating in the spring. It also prevents stagnant areas in wetlands, lowers the water level repeatedly by dewatering before mosquito larvae escape to adulthood (e.g., every 5 days). Use reluctance to shade the water surface to prevent mosquitoes from laying eggs.
  • the artificial wetland system and pollution source treatment method for the treatment of the pollution source using the multi-stage cell of the third conventional technique is to rectify the non-point pollution source in rural and urban areas as the third treatment of pre-treated living sewage, and utilize the sedimentation site of the river. Purify and re-discharge one stream.
  • the width of the site is narrow.
  • the wetlands, ponds, and sediment can not be formed in proper locations.
  • the width of the site is too wide or the width of the site is inclined so that natural composition is difficult. .
  • the present invention is to solve the above problems, the ecology of the multi-cell and multi-lane which can freely form wetlands, ponds and sedimentation in an appropriate position without considering the width or length, the bend and the slope of the target site to be formed To provide a water purification biotope system.
  • the sedimentary reservoir (200,200 ') that is temporarily stored in the waste water from the inlet (100,100'); At least one consisting of a wetland (300,300 ') into which the supernatant water discharged from the sedimentary reservoir (200,200') is discharged and the open water pond (400,400 ') into which the primary purified water of the wetland flows.
  • Multi-step cell A sedimentation basin (600,600;) for flowing the purified water into the outlet (700,700 ') after the final purified water of the multi-stage cell is temporarily stored; Including, but the multi-stage cell is composed of at least two multi-lane (40, 40 ', 40 "), each lane is characterized in that it is reliably separated by a small bank (900,900').
  • the multi-lane is divided by the small bank (900, 900 ') from the sedimentation reservoir 200 or the single channel 30 by the distribution unit 220.
  • the multi-lane is characterized in that three multi-lane.
  • the multi-lanes are joined by the confluence 620 to be connected to the settling basin 600.
  • the multi-lanes are divided by the small banks 900 and 900 'from the sedimentary reservoirs 200 and 200', respectively.
  • the multi-lane is characterized in that each connected to a separate sedimentation basin 600.
  • the multi-cells of the wetland and the pond are characterized in that it conforms to the terrain by repeating the S-shape.
  • the second or more multi-stage cell wetlands 500 which has the same function as the primary wetland into which the purified water is introduced into the second or more multi-stage connected to the multi-stage cell.
  • the multi-stage cell is characterized in that it comprises at least one ecological water purification media (SSM) (32, 33, 35).
  • SSM ecological water purification media
  • the multi-stage cell is characterized in that it comprises at least one Gabion 38.
  • the multi-stage cell is provided between the Gabion 38, which is provided in pairs in the transverse direction so that one end is overlapped with each other for water purification, and the Gabion 38, which is overlapped with each other, is provided to filter fish and floats. It characterized in that it comprises a screen filtering means (150).
  • the ecological water purification biotope system of the multi-cell and multi-lane of the present invention considering the width, length, curvature, and slope of the target site to be constructed, it is possible to construct wetlands, ponds, and sediments in a suitable position. This allows maximum design flexibility.
  • the purification is performed by separating into two or more lanes, the efficiency of water purification can be maximized compared to the same area, and it is superior to the existing single lanes in terms of management and natural scenery through the road utilization of small levees. Has the advantage.
  • 1 is a sewage treatment apparatus using a conveying wetland of the first prior art.
  • Figure 2 is a natural purification promoting device using the artificial wetland of the second prior art.
  • FIG 3 is a plan view of the artificial wetland having a multi-stage cell according to the third prior art.
  • FIG. 4 is a cross-sectional view of the standard plant of Figure 3, (a) is a cross-sectional view of the secondary purification wetland, (b) is a cross-sectional view of the third purification wetland.
  • 5A and 5B are plan views of an ecological water purification biotope system according to a first embodiment of the present invention.
  • 5A is an upstream plan view of the ecological water purification biotope system
  • 5B is a downstream plan view of the ecological water purification biotope system.
  • 5C is a cross-sectional view taken along the line V-V.
  • Figure 6 is a plan view of the ecological water purification biotop system when the confluence of each lane of the ecological water purification biotop system according to the present invention is different.
  • Figure 7a is a plan view of an ecological water purification biotop system in which each lane of the ecological water purification biotop system according to the present invention has a straight portion and a curved portion.
  • FIG. 7B is a sectional view taken along the line VII-VII.
  • each lane of the ecological water purification biotop system according to the second embodiment of the present invention has a meandering curve shape.
  • FIG. 9 is a bird's eye view of the ecological water purification biotope system of FIG. 8.
  • FIG. 10 is a cross-sectional view taken along the line X-X of FIG. 8.
  • FIG. 11 is a sectional view taken along the line XI-XI of FIG. 8.
  • FIG. 11 is a sectional view taken along the line XI-XI of FIG. 8.
  • FIG. 12 is a plan view of the ecological water purification biotop system when each lane of the ecological water purification biotop system according to the present invention forms a meandering curve and the reservoir and the sedimentation basin are separately formed.
  • FIG. 13 is a plan view of an ecological water purification biotop system in the case of three lanes of the ecological water purification biotop system according to the third embodiment of the present invention.
  • FIG. 14 is a bird's eye view of the ecological water purification biotope system of FIG.
  • 15 is a plan view of ecological homemade A-type.
  • FIG. 16 is a cross-sectional view of the ecological homemade A-type of FIG.
  • 15 is a plan view of ecological homemade A-type.
  • FIG. 16 is a cross-sectional view of the ecological homemade A-type of FIG.
  • 17 is a plan view of ecological homemade B-type.
  • FIG. 18 is a cross-sectional view of the ecological homemade B-type of FIG.
  • 19 is a side view of the gabion and screen filtration device.
  • FIG. 20 is a layout view of the inner wire mesh of the screen filtering device of FIG.
  • 21 is a plan view of the first step of the pond formation method of each lane of the ecological water purification biotope system according to the present invention.
  • FIG. 22 is a plan view of a second step of the pond formation method of each lane of the ecological water purification biotope system according to the present invention.
  • Figure 23 is a plan view of the third step of the pond formation method of each lane of the ecological water purification biotope system according to the present invention.
  • FIG. 24 is a plan view of a fourth step of the pond formation method of each lane of the ecological water purification biotope system according to the present invention.
  • 25 is a plan view of the completion step of the pond formation method of each lane of the ecological water purification biotope system according to the present invention.
  • FIG. 26 is a cross-sectional view taken along the line A-A of FIG. 25; FIG.
  • FIG. 27 is a sectional view taken along the line B-B in FIG. 25;
  • FIGS. 5A to 7B An ecological water purification biotope system of multicells and multilanes according to a first embodiment of the present invention will be described with reference to FIGS. 5A to 7B.
  • FIG. 5A and 5B are plan views of an ecological water purification biotop system according to the first embodiment of the present invention
  • FIG. 5A is an upstream plan view of the ecological water purification biotop system
  • FIG. 5B is a downstream of the ecological water purification biotop system.
  • It is a side plan view.
  • 6 is a plan view of an ecological water purification biotop system when the confluence of each lane of the ecological water purification biotop system according to the first modification of the first embodiment of the present invention is different
  • FIG. 7A is a first embodiment of the present invention.
  • An ecological water purification biotope system in which each lane of the ecological water purification biotope system according to the second modification of the example has a straight portion and a curved portion.
  • the ecological water purification biotope system of the multi-cell and multi-lane according to the present invention, as shown in Figure 5, the reservoir 200 in contact with the inlet 100, the inlet side wetlands 300 and the pond 400 and the outflow It consists of a marsh 300 'and a pond 400', and the sedimentation basin 600 in contact with the outlet 700.
  • movable tongues 36 and fixed tongues may be formed in several places, and gabions 38 in which screen filtering means are placed may be formed therebetween. An embodiment of gabion will be described later.
  • the width of the site becomes considerably wider as it goes downstream, it is distributed through the distribution unit 220 into two or more lanes, that is, the branches 40 and 40 ', and both branches are sufficiently filled with the small bank 900.
  • the distribution unit 220 is composed of an embossed wood plate of the same height, but if the first feeder 40 and the second feeder 40 'has a significant difference in height or shows a difference in width It is also possible to make the height of the distribution towards the feeder on either side higher (or lower) for adjustment.
  • Each lane is divided into appropriate widths according to the overall width of the site, but does not necessarily need to be divided evenly.
  • the first lane is provided with ecological water purification media 33 and 35. Therefore, it is possible to install a relatively wide ponds and streams, and to install a relatively narrow pond and streams in the second lane only with simple gabions.
  • both the first lane 40 and the second lane 40 ′ may be equipped with ecological water purification media 33 and 35 to install relatively wide ponds and streams. Do. Ecological water purification media will be described later.
  • a confluence portion 62 is formed in which both lanes merge, which may be formed similarly to the distribution portion 220. Subsequently, the ordinary water channel 30 is continued, and finally, the outlet 700 and the sedimentation basin 600 are formed.
  • FIG. 5C is a cross-sectional view taken along line VV of FIG. 5B, in which the ecological water purification biotope system of the multicell and the multilane of the present invention is installed to purify rainwater or living water flowing into the river in the middle zone between the main stream and the cilantro site.
  • the river main stream is located on the left side and the cilantro site is located on the right side, and the first tributary 20 as the first lane is located on the middle left side, and the second tributary 20 as the second lane on the middle right side.
  • FIG. 6 shows a first modified example of the first embodiment of the present invention.
  • this modified example when it is inappropriate to place the confluence part 600 due to an altitude difference or other reason between the first lane and the second lane, It is also possible to allow the first and second lanes to join the mainstream through the respective settlers 600, 600 ′ and the outlets 700, 700 ′ via respective separate weirs 610, 610 ′ without joining. Do.
  • Figure 7 shows a second modified example of the first embodiment of the present invention, after the modified sedimentation battery 200 is connected to the channel 30 in the curve through the weir 210, the distribution unit 220 ) Is classified into a first lane 40 and a second lane 40 ′, and is joined to one channel 30 at the confluence unit 620 to be connected to a curved channel.
  • the ecological water purification biotope system of the multicell and the multilane of the present invention may allow the main stream 30 and the tributaries 40 and 40 'to be coupled to each other in a straight line and a curved line according to the topographical structure.
  • FIG. 7B is a cross-sectional view taken along line VII-VII of FIG. 7A, where the flow from the leftmost reservoir 200 is connected to the original channel 30 through the first tributary 40 and the second tributary 40 ′. It is shown.
  • Figure 16 is a cross-sectional view of the ecological homemade A-type.
  • Ecological Water Purification Media Ecological tree type consists of one amber stone layer (A layer; 331) on the outside and four mantle layers (B layer-E layer; 332-335) filled with natural type media inside, total five layers do.
  • the outermost layer (A layer) is composed of amber stones ( ⁇ 150 ⁇ 200mm) stacked, for example, 1: 1 when the wetland width is more than 15M, stacking to form a gentle slope of 1: 1.5 when the wetland width is less than 15M.
  • a gabion frame is made to fill the mantle with natural media.
  • the shape of the mesh is, for example, the angle between the front part and the wetland slope where the channel reaches is 30 °, and the angle between the rear part and the wetland slope is 120 °. To place. The surface touching the wetland slope is produced according to the slope of the wetland (1: 2, 1: 1.5).
  • the height of the mesh is, for example, 50cm for the part placed in the marsh, and 70cm for the part placed in the pond.
  • the natural form filter material filled in the mantle is mixed and filled based on the ratio as shown in ⁇ Table 1> in consideration of water purification efficiency and ecological effects.
  • the size of the filter medium is included as the size goes toward the inner side, and the size of the filter medium is included as the size goes to the outside.
  • the vegetation of water vegetation is formed in the upper part of the mesh formed from layer B to layer E.
  • the calcined ecological water purification media (SSM) 32 Baeseok-type SSM is made by placing natural stone, amber stone, gravel, etc. in the waterway in the wetland to expect the water purification effect by physical and biological action.
  • SSM ecological water purification media
  • the ecological water purification media basin type is formed in ecological bones lacking habitat due to low physical diversity, and large natural stones are placed to withstand scour, and they are continuously installed for structural diversity. Use gravel contact oxidation to remove SS.
  • the ecological water purification media gypsum type uses natural stones (eg, 30 ⁇ 40 ⁇ 50cm), amber stones ( ⁇ 100 ⁇ 200mm), and gravel ( ⁇ 40mm) as main materials.
  • Ecological Water Purification Media As an anaerobic type, the water flows through the gravel, and sand, sludge, etc., which are inorganic components of the river water, are precipitated by the physical action of the gravel pores, and the organic material is purified by the microbial action of the surface of the gravel. .
  • ecological water purification media can be used to create a natural river landscape, improve the water change pipe, prevent erosion by the flow path, and reduce the flow rate to improve the stability of the lake.
  • Figure 17 is a plan view of ecological homemade B-type
  • Figure 18 is a cross-sectional view of the ecological homemade B-type of FIG.
  • ecological handmade B type two pairs of SSMs 33, 35; 43, 45 are formed in both ponds. As shown in FIG. 5, ecological handmade B type is suitable to be applied to a straight stream type.
  • these B-type handmade SSM can be adjusted in consideration of the treatment efficiency according to the material, the width of the wetlands, and basically follows the following criteria.
  • water purification by installing a screen filtering means and a plurality of gabion 38 in the reservoir 200 and / or sedimentation basin 600 And be capable of fishing.
  • Gabion 38 is provided with a pair of transverse ends so that the water of the wetland 300 or the reservoir 200 and / or the sedimentation pond 600 can be purified to the water purification, and the mutual It is provided between the overlapping gabion is formed by screen filtering means 150 which is provided to filter the fish and floats.
  • wetland screen filtering means is provided between the wetland gabion provided with a pair of transverse directions so that one end is overlapped with each other so as to purify the water quality of the wetland and filter fish and floats. It may be further provided.
  • Gabion 38 is installed in the sedimentation basin, as shown in Figure 19, by connecting the amber stone and gravel-filled square wire mesh to each other consisting of a frame having a rectangular cross section a predetermined distance in the width direction of the sedimentation basin It is provided in two rows spaced apart.
  • each end of the gabion 38 is connected to both inner surfaces of the sedimentation basin and the other end is open to secure drainage and fish, but is provided to overlap a portion.
  • a well-known vegetation mat (not shown) may be fixed to the upper surface of the gabion 38 to be more environmentally friendly.
  • the screen filtering means and the Gabion wire mesh is preferably composed of a stainless steel material without rust for water quality protection.
  • the screen filtering means 150 the interval between the gabion 38 is spaced apart from each other by connecting the overlapping portion to each other to form a water purification and the water to form a rectangular screen filtering member of the rectangular portion formed at a predetermined interval, preferably Preferably it is provided with a plurality of spaced apart approximately 10cm intervals to filter the fish and foreign matter.
  • the screen filtering means 150 as shown in Figure 19 and 20, the screen filter frame 1511 formed in a rectangular shape to be installed between the Gabion 38 and the screen filter frame (
  • the screen filtering member has a screen portion 1515 formed of a wire mesh for dividing the inside of the 1511 in a diagonal direction so that one side thereof can move fish and the other side has a wire mesh for filtering foreign substances.
  • 151 and the screen filtration member 151 in each side of the gabion 38 so as to be connected to each side of the gabion 38 on both sides of the slide long, detachable shape '' ' It is composed of a guide bar having a cross section provided by welding.
  • the screen filtration member 151 may be installed such that the screen unit 1515 is not arranged at the same position so as to effectively filter foreign matters as shown in FIG. 20.
  • FIG. 8 is a plan view of an ecological water purification biotop system when each lane of the ecological water purification biotop system according to the second embodiment of the present invention has a meandering curve shape
  • FIG. 9 is a bird's eye view of the ecological water purification biotop system of FIG.
  • FIG. 10 is a cross-sectional view taken along line XX of FIG. 8
  • FIG. 11 is a cross-sectional view taken along line XI-XI of FIG. 8
  • FIG. 12 is a reservoir and a sedimentation basin as each lane of the ecological water purification biotop system according to the present invention forms a meandering curve.
  • Is a plan view of an ecological water purification biotope system when each is made separately.
  • the biggest feature of the present embodiment which is contrasted with the first embodiment, is that the streams in which the wetland and the pond are continuously formed are not a straight line but a meandering stream type.
  • the reservoir 200 in contact with the inlet 100, the inlet side marsh 300 and pond 400, the second marsh and the outlet side marsh 300 ' And the pond 400 ', and consists of a sedimentation basin 600 in contact with the outlet 700.
  • the upstream is distributed to two or more lanes, that is, tributaries 40 and 40 ', through the distribution unit 220 along one channel 30 leading through the reservoir 200 and the wear 210. Both feeders are sufficiently separated into a small bank (900).
  • each lane is alternately formed with a wetland 300 composed of ecological water purification media 33 and 35 or a basalt type Gabion 32, and a pond 400 composed mainly of a stationary 31 or movable saying.
  • Gabions 38 in FIG. 5A may be added between which screen filtering means are placed.
  • the observation deck 510 may be formed in the second wetland 500. Then, the above wetlands and ponds are repeated to the outflow side wetlands 300 'and the pond 400', joined by the confluence 620 in front of the sedimentation basin, and through the one channel 30 to the sedimentation basin 600. It leads.
  • the interval between ecological water purification media is also formed in consideration of the inclination of each lane according to the target site.
  • the confluence 620 is formed in a voting method, and is configured to allow a manager or observer to move on the confluence, and in the case of the fixed word 31, it is formed somewhat lower.
  • the basalt ecological water purification media 32 is connected to the outermost layer of the bush ecological water purification media 33 by an amber stone having a considerable size, and is formed to allow an observer's passage while forming a pond to some extent.
  • wetlands and ponds are not necessarily formed in a one-to-one repetition, and ecological water purification media is not necessarily linked to wetlands.
  • FIG. 10 is a cross-sectional view taken along line XX of FIG. 8, and includes an embankment road 950 formed between the site of the present invention and between rivers, and a small bank 900 formed between the first tributary 40 and the second tributary 40 '. ) Is seen.
  • FIG. 11 is a cross-sectional view taken along line XI-XI of the present invention, and includes an embankment road 950 formed between the site of the present invention and between rivers, and between a first tributary 40 and a second tributary 40 '. 900 is seen.
  • FIG. 12 shows a modification of the second embodiment of the present invention.
  • the inlets 100 and 100 'and the reservoir (the starting point of the first lane 40 and the second lane 40') are shown.
  • 200 and 200 ' are formed at different positions, respectively, and the outlets 700 and 700' and the settling sites 600 and 600 ', respectively, which are the end points of the first lane 40 and the second lane 40', respectively. It is formed separately, it can be seen that the wear (210, 210 '; 610, 610') and the fixed words 31, 31 'are formed separately.
  • the first lane 40 is a main lane formed longer and wider than the second lane 40 ', and thus, the first ecological water quality is on the side of the first lane 40.
  • the purification media 33 and 35 and the basalt ecological water purification media 32 are formed so that wetlands and ponds are formed relatively large and large, and the second lane 40 ', which is an auxiliary lane, is provided with a gabion 38' and a basalt type. It can be seen that wetlands and ponds are formed relatively small by the ecological water purification media 32 '.
  • FIG. 13 is a plan view of the ecological water purification biotop system in the case of three lanes of the ecological water purification biotop system according to the third embodiment of the present invention
  • FIG. 14 is a bird's eye view of the ecological water purification biotop system of FIG.
  • the biggest feature of this embodiment in contrast to the first embodiment, is that it is a three lane system with three branches, as shown in FIG.
  • the reservoir 200 in contact with the inlet 100, the first tributary 40, the second tributary 40 'and the third tributary 40 "are also shown. It is composed of a sedimentation basin 600 in contact with the first fire bank 900 and the second fire bank (900 ′) and the outlet 700 to distinguish them.
  • the upstream is distributed from the reservoir 200 through the distribution unit 220 into three lanes 40, 40 ′, 40 ′′, that is, three tributaries 40, 40 ′, 40 ′′, Both tributaries are sufficiently separated into two small banks 900 and 900 '.
  • a middle road (800, 800 ') is formed in the middle, and is connected to the external embankment road 950 through the observation deck 510.
  • a middle road (800, 800 ') is formed in the middle, and is connected to the external embankment road 950 through the observation deck 510.
  • it is used as a promenade, it is characterized by the characteristics of maintenance, repair and tourism purposes.
  • FIG. 21 to 25 are plan views of the first step, the second step, the third step, the fourth step and the completion step of the pond formation method of each lane of the ecological water purification biotope system according to the present invention, respectively.
  • FIG. 28 is a cross-sectional view taken along line AA, BB and FIG. 28 taken along line CC of FIG.
  • the structure of the foundation mortar layer 420 is formed in an indeterminate shape to fit in consideration of the riverbed structure, slope, drift force, water flow portion of each stream, as a first step, as shown in Figure 27 and 28 Similarly, when viewed from the upstream and downstream directions, the central portion is formed in a form that is deeper than the depth of the original lower bed.
  • variety of the up-down direction of the basic mortar layer 420 may be the same (refer FIG. 25), Preferably it becomes wider toward a lower eye.
  • a natural stone stacking and fixing step is performed on the base mortar layer 420, that is, as shown in FIGS. 27 and 28, the base mortar layer 420.
  • the natural stone 431 is placed on the natural stone 431 and the lower part of the natural stone is fixed by the base mortar layer 420, and then the natural stone layer is further stacked by the upper mortar 432 is fixed to the natural stone fixed layer 430 To form.
  • an SSPC portion 440 is formed upstream of a kind of natural stone-shaped natural stone fixed layer 430, which is unfriendly, such as concrete, upstream of Adobe. This is to form a kind of 'cow' (pond) by forming a waterproofing layer in an extremely natural way, such as planting without roots and with the passage of some river water.
  • SSPC unit 440 as described in detail in Korean Patent No. 1090551 (Ecological Water Purification Permeability Control (SSPC) system) of the inventor,
  • the base layer 410 on the base layer 410, about 10 cm of bentonite and a waterproof sheet are used together for reliable waterproofing.
  • a bento mat may be used, and a soil layer of about 50 cm may be formed on the bento mat to provide a habitat for aquatic plants. More specifically, the bentomat is coated with a fiber layer such as cotton or nonwoven fabric with a predetermined thickness on a thin vinyl sheet of about 2-3 mm, and bentonite is attached between and on the fiber layer, and again thereon a woven fabric.
  • a thin vinyl cloth such as is overlaid.
  • it is a mat-type structure in which natural sodium bentonite is filled between a woven fabric and a nonwoven fabric, and the movement of bentonite powder is fixed by needle punching.
  • the material must be uniform in whole, without deformation of shape and dimensions, and construction at a bent part. Flexibility should be made to facilitate this, and the bentonite consolidation layer should be able to seal the silk racks or voids of the concrete by sufficient hydration expansion action.
  • bentonite expands by about 13-16 times its original volume and absorbs water up to 5 times its weight when reacted with water, thereby forming a strong waterproof layer and at the same time without being affected by changes in the strata due to adhesion.
  • the vinyl woven paper may be considered a woven paper used for tarpaulin woven in a certain width of the vinyl weft and warp, but is not necessarily limited to a vinyl woven paper, and the vinyl sheet has a thickness for a certain waterproof. Should be, but too thick is not desirable to block the growth of the roots of the plant, it can block the contaminants, but it is preferable only to the extent that can be penetrated by the root of the plant.
  • the vinyl is preferably a component that can be decomposed as the settling paper is stabilized using biodegradable vinyl.
  • the vinyl sheet polyethylene sheets (HDPE) suitable for general composite unvulcanized rubber specified in KS F 4911 are used, but rubber asphalt sheets or special sheets of EPDM system may be used.
  • a geocom layer having a thickness of about 50 cm on the base layer 410 is formed. It is also possible to place a 50 cm thick soil layer on it.
  • the geocom used in the geocom layer of the second permeability control layer, cross-beam reinforcement and longitudinal reinforcement to form a mesh sheet having a gap of a certain size and fused connection at a predetermined interval in the width direction after one side direction As a sieve-constrained honeycomb reinforcing material made of a porous cell wall structure, a geocomposite formed by forming a plurality of honeycomb-shaped cell meshes is disclosed in Korean Patent No. 834784.
  • transverse and longitudinal reinforcement yarns of polyethylene material having a predetermined length intersect to form a mesh sheet having a plurality of voids of a predetermined size, and when the sheet is formed, a predetermined distance in the width direction of adjacent sheets and sheets is formed.
  • the fusion is connected by welding, when a plurality of fused sheets are stacked, the sheet is pulled in one direction to form a plurality of honeycomb-shaped cell nets, and aggregates such as sand, soil, and gravel into the space of the cell nets are formed.
  • aggregates such as sand, soil, and gravel into the space of the cell nets are formed.
  • the geocom layer In the construction of the geocom layer, when the geocom is developed and fixed to the ground with a pin or the like, a cell net is formed, and the aggregates such as sand, soil, and gravel are filled in the cell net.
  • the second permeability control layer having high permeability and preventing soil loss and easily sliding of wetland plant roots and reinforcing ground can be easily formed.
  • Bentonite of about 5-10 cm on the base layer 410 as also disclosed as the third permeability control layer in the present inventors Patent No.
  • a layer may be formed, and a soil layer of about 50 cm may be formed thereon, and a gravel layer as a natural filter medium may be formed thereon.
  • the bentonite layer is formed by mixing the bentonite with soil.
  • the material used for this is to use environmentally friendly materials such as mud or paddy soil, and more preferably to use soil collected from existing paddy fields or soils to improve biodiversity, If garbage is included, it may cause water pollution, so remove it before use.
  • Mix bentonite in the mud used for permeability control so that the permeability is less than 10 -6 cm / sec.
  • the mud used for permeation control should be constructed in a water-containing condition to obtain the maximum dry density by compaction test. If there is a risk of ground subsidence, reinforce the nonwoven fabric before laying the mud, which should be able to withstand a tension of 1 ton per meter. After the pitcher's mud is laid, it should be evenly spread over 90% of the maximum dry density.
  • a large stone 451 is stably disposed around the waterway, and a small space is filled with a large gap to form a natural ecological path (airway).
  • This section was to use only part of the mortar and form a kind of natural fisherman 450.
  • the natural section is stacked on the base mortar layer 420 in the central section ('B' section) and The natural stone 431 stacked through the fixing step to form a natural stone fixed layer 430 to be fixed to each other by the upper mortar 432, and the SSPC portion 440 is formed upstream of the natural stone fixed layer 430 25 and 28, in the opposite section (the 'C' section) in which the waterway is formed, the natural stones 431 stacked on the foundation mortar layer 420 through the stacking and fixing of natural stones are also formed in the upper mortar ( By 432 Fixed bed such that the natural stone (430) such that interfitting formation, and then to form an SSPC unit 440 in a fixed bed upstream of the natural stone (430), also to the further upstream side and the downstream is closed by the natural stone pile.
  • the above pond formation method is only an example for forming cattle and streams in a natural form, and the width of the SSPC or the width of the fishes in each lane is variable, and in some cases, a mortar layer for fixing natural stones is used. It may be replaced by a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

본 발명은 조성하고자 하는 대상 부지의 폭이나 길이, 굴곡 및 경사도를 고려하여 자유롭게 습지와 연못 및 침전지를 적당한 위치에 조성할 수 있는 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템을 제공하는 것으로, 유입구(100,100')로부터 폐수가 유입되어 일시 저장되는 침강저류지(200,200'); 상기 침강저류지(200,200')로부터 고형 오염물질이 가라앉아 방류되는 상등수가 유입되는 습지(300,300')와 상기 습지의 1차 정화된 물이 유입되는 개방 수면의 연못(400,400')로 이루어지는 적어도 하나의 다단계셀; 상기 다단계셀의 최종정화된 물이 유입되어 일시저장되었다가 유출구(700,700')로 정화된 물을 유출시키는 침전지(600,600;); 를 포함하되, 상기 다단계셀은 적어도 두 개의 멀티레인(40,40',40")으로 이루어지며, 각 레인은 소제방(900,900')으로 확실하게 분리되어 있는 것을 특징으로 한다. 따라서, 본 발명에 의하면, 조성하고자 하는 대상 부지의 폭이나 길이, 굴곡 및 경사도를 고려하여 거기에 맞는 습지와 연못 및 침전지를 적당한 위치에 조성할 수 있는 장점이 있어, 설계의 융통성을 극대화할 수 있다.

Description

멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템
본 발명은 오폐수를 자연정화하기 위하여 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템에 관한 것으로, 특히 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템에 관한 것이다.
생태적 수질정화 비오톱(SUSTAINABLE STRUCTURED BIOTOP: SSB) 시스템이란, 초기 강우시 유역에서 발생하는 점.비점 오염원 처리를 위한 다단계셀 인공습지 시스템이다.
습지 중에서 오염물질을 처리하는 주로 이용되는 습지처리시스템은 자연습지와 인공습지이며, 인공습지는 자유수면형습지와 지하흐름형 습지로 크게 구분되고, 이들은 자연습지의 처리시스템을 모방하나 자연습지와 달리 거의 모든 장소에서 조성이 가능하다. 두 경우 모두 고형물질이 습지시스템으로의 유입되는 것을 저감하기 위한 전처리과정이 필요하다.
자유수면형 습지의 셀(cell)은 연못이나 수로 형태로 조성되는데 토양층이나 기타 식물이 자랄 수 있는 여재(media)를 갖추고 있으며 일반적으로 차수처리가 되어진다. 처리대상 유입수는 토양층 표면을 얕은 수심을 유지하며 흐른다. 자유수면형 습지는 시공비가 저렴하고 폐색현상(clogging)이 거의 없어 대부분의 대상지에서 적용하기에 적합하다.
국내 농촌유역에 적용성이 높으며 점오염원과 비점오염원을 동시에 처리할 수 있는 자유수면형 인공습지 시스템은 습지의 구성요소와 깊이, 면적, 배치방식에 따라 크게 저습지형(shallow marsh), 연못-습지형(pond/wetland system), 확장저류형습지(extended detention wetland)의 3가지로 나누어진다. 저습지형에서는 대부분의 유량이 습지에서 저류되며 깊은 곳은 저류지(forebay)와 침전지(micropool)만으로 구성된다. 저습지형은 야생동식물의 훌륭한 서식처를 제공하나 다른 유형에 비해 부지 소요면적이 넓고 지속적인 유량공급이 필요하다. 연못-습지형은 가장 깊이가 깊으며 연못이 처리 용량의 절반을 차지한다. 저습지형에 비해 야생동식물 서식처로서의 가치는 떨어지나 다단계 처리로 인해 부지요구도는 낮다. 확장저류형습지는 저습지형을 변형시킨 것으로 평상시 수위이상으로 물을 저류할 수 있어 기본적인 침전 및 생물학적 처리기능 외에 장기적인 저류, 유속저감, 홍수방지 등의 효과를 가진다.
따라서, 경제적이며 유지관리가 용이하면서도 높은 처리효율을 제공하는 수질정화 시설을 제공하고, 경관적으로 양호하고 생물다양성을 증대할 수 있는 수처리 공간을 제공하며, 점오염원 뿐만 아니라 비점오염원까지 정화할 수 있는 효율적인 처리시스템을 제공함과 동시에, 환경생태 교육장소의 제공 및 지역 커뮤니티 공간을 형성하는 인공습지의 필요성이 대두되었다.
더구나, 자력가능한 시스템으로 시공 및 유지관리가 쉽고 경제성이 높고, 태양에너지와 오염물내의 유기물에 포함된 에너지가 정화작용의 주요 에너지원으로 별도의 정화물질의 공급이 필요하지 않으며, 습지의 복합적인 생태기작은 독성이 있는 유기복합물과 금속물질을 생물학적으로 안정된 화합물로 전환할 수 있는 능력이 있으며, 도시의 하수, 산업폐수, 강우시 비점오염원, 중금속 등 대부분의 오염물질을 처리할 수 있어 적용성이 높을 뿐만 아니라, 생태적, 경관적으로 주변환경과 조화되는 공간으로 다양한 생물의 서식공간으로의 기능이 높아, 지역주민과 방문객을 위한 생태환경 교육공간 및 휴게공간을 제공할 수 있는 인공습지의 필요성이 대두되었다.
습지를 이용한 기존 시스템에서는, 식생이 밀식되어 있어 있는 셀을 병렬 또는 직렬로 배치하는 단순한 시스템을 형성하고 있다. 최근에 들어서는 연못과 식생이 있는 습지를 적절하게 혼합배치하여 시스템을 구성하는 방식이 도입되고 있으나, 기존 시스템들은 수처리중심으로 설계 및 시공이 되어 야생동식물의 서식처 제공과 환경교육, 경관적인 측면을 소홀히 하였다는 단점이 있다.
이상의 인공습지를 이용한 자연정화 시스템으로는, 대한민국 등록실용신안 제220403호 및 동 공개특허 제2000-72363호와 같은 것이 있다.
도 1은 제1 종래기술의 반송습지를 이용한 오수처리장치로서, 질소와 인 등의 부영양화물질을 함유한 생활오수를 미생물과 습지식물로 처리하는 고도처리장치로서, 정화조(1)에서 배출된 오수가 일정량씩 트랜치(3)에 공급되도록 유량을 조절하는 유량조정조(2), 혐기성조건 하에서 혐기성 미생물에 의해 악취물질을 분해하는 트랜치(3), 쇄석에 서식하는 호기성 미생물에 의해 유기물을 분해하는 여상조(4), 여상조(4)에서 미분해된 유기물을 미나리에 흡수시켜 제거하는 습지(5), 습지(5)에서 배출된 처리수를 저장하는 연못(6), 연못(6)의 처리수를 유량조정조(2)로 반송시키는 제1반송관(8) 및 제1 반송펌프(7), 연못(6)의 침전물을 정화조(1)로 반송시키는 제2반송관(8') 및 제2 반송펌프(7') 등으로 구성되어 있다. 도면부호 9는 바이패스 관이다.
도 2는 제2 종래기술의 인공습지를 이용한 자연정화 촉진장치로서, 오폐수를 자연 정화방법에 의하여 정화되도록 저류시설을 설치하여 습지를 조성하고 습지에 공기를 공급하여 자연 정화를 촉진되도록 한 인공습지를 이용한 자연정화 촉진방법 및 그 장치에 관한 것이다.
그 구성은 기존 수로(11)의 소정 위치에 유량 분배조 유입관로(22)가 연결된 유입관 수문(23)이 일측벽 소정의 위치에 형성되어 있는 우수토실(21)과; 상기 우수토실(21)에서 유량 분배조 유입관로를 따라 오폐수가 유입되는 유량 분배조(24)와; 상기 유량 분배조(24)로부터 침전지 연결관(26)으로 연결된 침전지 맨홀(25)과; 상기 침전지 맨홀(25)에 유입된 정화된 물을 수중펌프(47)를 이용하여 수로(11)로 방류되도록 하는 한편, 정화되지 않은 물은 수중펌프(47)에 의해 퍼 올려진 물이 펌프 배출수 관로(48)를 타고 다시 유량 분배조(24)로 다시 인입된 다음 습지 유입관로(27)를 타고 양측에 별도로 설치된 습지 유입관로 맨홀(28)로 유입되고 유입된 물은 다시 습지 유입관로(27)를 타고 흘러 들어가는 각 섹터로 분할된 습지지역(41a)(41b)(41c)과; 상기 습지지역 소정 위치에 습지에는 모기 등 해충을 발생할 수 있으므로 모기 유충을 잡아먹는 미꾸라지, 개구리 등이 서식할 수 있게 설치된 폰드(pond)(45a)와; 상기 습지지역 외곽지역에 설치하여 습지지역의 필터층 하부 속으로 소정 간격으로 배관된 공기배출관(44b)으로 송풍기를 이용하여 공기를 인입되도록 송풍기 (44a)가 설치된 기계실(44)과; 상기 습지지역(41a)(41b)(41c)에는 큰 자갈, 작은 자갈, 왕사, 모래를 충진하여 이루어진 필터층(42)에 수생식물을 심어서 이루어지는 지는 것을 특징으로 하는 인공습지를 이용한 자연정화 촉진장치로 된 것이다.
그러나, 이들 방식들은 모두 복잡한 기계 장치를 사용하여야 할 뿐 아니라, 공간의 효율성을 간과하여 기능만을 위주로 하였기 때문에 생태학적 특면을 고려하기 어렵고 경관상 문제가 있었으며, 점.비점 오염원 모두를 처리하기에 부적합하여 실제로 구현되기에 무리가 있다는 문제점이 있었다.
다른 한편, 이상의 문제점들을 해결하기 위하여, 본 발명자는 대한민국 특허 제444972호 "생태공원으로 활용가능한 점.비점 오염원 처리용 다단계셀 인공습지 시스템 및 오염원 처리 방법"에 대한 특허발명을 하여 출원 및 등록받은 바 있다. 즉, 상기 제3 종래기술은, 이상의 제1 및 제2 종래 문제점을 해결하고자 하는 것으로, 기계장치가 전혀 필요없는 완전 자연정화식의 인공습지 시스템으로서, 경관을 고려하여 설계하였으며 공간의 효율성을 최대한 살린 다단계셀을 도입한 오염원 처리를 위한 인공습지 시스템 및 오염원 처리 방법을 제공하는 것이다.
특히, 대상지가 지니고 있는 자연생태적 요소(수문, 수질은 물론 지형, 지질, 식생, 기후 등)를 분석하며, 이들을 최대한 고려하여 공간의 효율성을 높이고 경관과 관리를 동시에 고려하였으며 생태공원의 역할을 겸한 다단계셀을 도입한 인공습지 시스템 및 오염원 처리방법을 제공하는 것이다.
상기 제3 종래기술을 도 3 및 도 4를 참조하여 보다 자세히 설명하면, 도 3에서 보는 바와 같이, 유입구(100)에 접하는 유입측 습지(300)와 유량조절조(310) 연못 및 유출구에 접하는 유출측 습지로 구성된다.
이때 습지(marsh)란 수심이 얕고 정수식물이 주로 높은 밀도로 생육하며, 수심은 정수식물이 생육할 수 있는 10 - 40cm 범위이고, 수처리 기능으로서 BOD, SS, 금속물질, 병원균, 복합유기물, 암모니아화 작용을 갖는 공간으로 정의될 수 있다.
한편, 연못(pond)이란, 침수식물과 부수식물이 주로 생육하고, 수심은 0.75 - 1.5m가 적합하며, 습지에 이어 추가적으로 BOD를 개선하며, 주로 질산화 및 인산염 제거기능을 하며, 대기와의 반응, 침수식물에 의한 산소전달, 조류의 광합성에 의해 산소를 공급하여 악취 및 해충발생을 저감시키는 역할을 하게 된다.
이제 상기 제3 종래기술의 다단계셀을 도입한 오염원 처리를 위한 인공습지 시스템 및 오염원 처리 방법의 실제 개념을 설명하면, 유입구(100)로부터 폐수가 유입되어 일시 저장되는 침강저류지(200), 침강저류지로부터 고형 오염물질이 가라앉아 방류되는 상등수가 유입되는 1차 습지(300) (제1 셀이라고도 함), 제1 습지의 1차 정화된 물이 유입되는 개방 수면의 연못(400), 상기 연못으로부터 2차 정화된 물이 유입되는 1차 습지와 동일한 작용을 하는 2차 습지(500) (제2 셀이라고도 함), 그리고 2차 습지의 최종정화된 물이 유입되어 일시저장되었다가 유출구(700)로 정화된 물을 유출시키는 침전지(600)로 구성된다. 이때 상기 2차 습지 다음에 3차 및 4차 등의 추가의 다단계셀이 추가될 수 있다.
침강저류지(200)는, 습지에 유입되기 전의 전처리시설로 자연중력침전에 의해 고액을 분리하여 상등수가 방류되며 제거대상이 되는 오염물질은 주로 입자성 고형물질이다. 강우시 초기유출수 등 오염부하가 많은 유입수를 일시 저류하여 유속을 저하시키고 일정시간 체류시킨다. 수심은 1.2 - 1.8 m가 적합하며, 면적은 전체 습지 표면적의 5-15%가 적당하고, 침강저류지 주변의 도입식물로는 물억새, 부처꽃, 털부처꽃, 쑥부쟁이, 갯버들, 키버들 등이 바람직하다.
다음, 1차 습지(300)는, 자유수면형(FWS) 습지를 기본으로 한다. 여기서는 식생과 미생물에 의한 오염물의 침전, 흡수, 분해, 탈질화 등이 일어난다. 습지는 유하거리가 길며, 폭이 일정하며 바닥이 평평한 2-3개의 셀 또는 그 이상의 다단계셀(cell)을 다단계적으로 배치하며 유입수가 균일하게 흐르도록 바닥이 평평한 구조를 갖도록 한다. 습지의 사면은 1:2.5이상으로 하여 생태학적 효과를 높이는 추이대 역할을 하고 바닥은 필요시 방수처리를 하며, 일정 깊이로 굴착하여 습지를 조성하고 여분의 토양으로 제방하여 생태적 효과를 높이는 인공언덕이나 인공섬(중도)(800)을 조성하거나 도로에 성토하고 일부는 식재기반으로 활용하도록 한다. 식재를 위한 식재기반토는 양질사토가 적합하며 0.45-0.60 m 정도 포설하고, 습지의 바닥경사는 0.05%가 적합하며 수심은 0.2-0.4 m가 적합하다. 셀의 시작부위나 말단부에 웨어(210)를 설치하여 유량과 수위를 조정하고 셀의 중간부위에 유량조정을 위한 유량조정조(310)를 설치하는 것이 바람직하다. 수질정화용 식물로는 미나리, 달뿌리풀, 갈대, 애기부들, 줄 등이 바람직하다.
이제, 1차 습지를 거쳐 정화된 물은 연못(400)에 이른다. 연못의 역할은 개방수면을 제공함으로써 유량조정 기능 및 원활한 산소공급을 통한 질산화 기능을 강화하는 역할을 한다. 또 원활한 산소공급을 통해 암모니아를 질산염으로 변형시키고 인을 침전시킨다. 어류, 조류 등의 야생동물 서식처를 제공하여 모기 등의 해충 번식을 방지하고, 수리학적인 측면에서 유량조정 및 체류시간 증대하는 기능 및 식생이 자라는 곳과 혼합 배치함으로써 다양한 경관을 제공한다. 습지보다 깊게 굴착하여 조성하며 0.6-0.8 m의 수심을 유지하도록 하며, 연못의 가장자리에는 다양한 식생이 식재될 수 있도록 완만하게 조성한다. 연못가장자리 도입식물로는 세모고랭이, 어리연, 노랑어리연, 노랑꽃창포, 금불초 등이 바람직하고, 연못 주변 도입식물로는 물억새, 부처꽃, 털부처꽃, 쑥부쟁이, 갯버들, 키버들 등이 바람직하다.
2차 이상의 다단계셀 습지(500)는, 1차 습지(300)와 동일한 기능을 제공하는 바, 개방수면을 거친 물은 2차 습지에 도착하여 1차 습지와 같은 작용이 일어나도록 한다.
추가로, 상기 제1 연못(400)과 동일한 기능을 하는 제2 연못(400')과, 상기 2차 습지(500)와 동일한 기능의 3차 습지(500'), 그리고 제3 연못(400")과 4차 습지 등 다단계셀 습지가 추가될 수 있다.
마지막 습지를 통과하여 정화된 물은 침전지(600)로 유출되는 바, 여기서는 부유물의 재부유 방지 및 산소공급 기능을 제공하고 1.0 m 이상의 수심으로 다양한 동식물 서식처를 제공한다. 침전지 말단에는 웨어를 설치하여 습지의 전체적인 체류시간을 조정하는 것이 바람직하며, 면적은 습지 전체면적의 5-15%가 적당하고, 주변 도입식물로는 물억새, 부처꽃, 털부처꽃, 쑥부쟁이, 갯버들, 키버들 등이 바람직하다.
미설명 부호 510 및 510'는 관찰데크이다.
도 4는 상술한 도 3의 표준식재 단면도로서, (a)와 (b)는 2차, 3차 이상 다단계셀 정화습지의 단면도의 예시이다.
식재하여야 할 식물의 종류로는, 국내의 경우 인공습지에서 처리효율, 관리적인 측면에서 적용성이 높은 식생은 갈대, 애기부들, 줄, 달뿌리풀, 미나리가 바람직하며, 달뿌리풀과 미나리는 생육가능한 수심이 얕기 때문에 다단계셀로 조성할 경우 수심이 얕은 1단계에 배치하는 것이 바람직하며, 생육수심이 가장 깊은 수종은 애기부들로 70cm까지 생육이 가능하므로 수심이 깊은 개방수면 근처에 배치하는 것이 바람직하다. 따라서 추천할 수 있는 식생의 배치는 [달뿌리풀, 미나리] - [갈대, 줄] - [애기부들]이다.
해충방지법으로는, 'Air-gulping mosquito', 'Gambusia affinis' 등과 같은 물고기를 모기의 포식자로 활용하고, 봄철에 쓰레기, 협잡물 등이 떠다니지 않도록 수위를 높게(deep flooding) 관리하도록 한다. 또한 습지내에서의 정체구역을 방지하며, 모기의 유충이 탈피하여 성충으로 자라기 전에 반복적으로(예를 들어 5일 간격) 배수(dewatering)를 통해 수위를 낮추어 주며, 모기의 암컷이 음지에서 알 낳는 것을 꺼려하는 것을 이용하여 수면에 그늘을 만들어 모기가 알 낳는 것을 방해하도록 한다.
이상의 제3 종래기술의 다단계셀을 도입한 오염원 처리를 위한 인공습지 시스템 및 오염원 처리 방법은, 전처리한 생활오수의 3차 처리로서 농촌 및 도시지역의 비점오염원을 정류하고, 하천의 고수부지를 활용한 하천수 정화 후 재방류하도록 한다.
그러나, 이상의 제3 종래기술의 경우, 조성하고자 하는 대상 부지의 폭이나 길이, 굴곡 및 경사도를 고려하여야 하는바, 대상 부지의 가변성 때문에 설계상 많은 어려움이 있으며, 경우에 따라서는 부지의 폭이 좁아져서 습지와 연못 및 침전지를 적당한 위치에 조성할 수 없게 될 경우도 있으며, 역으로 반드시 조성하여야 함에도 불구하고 부지의 폭이 너무 넓거나 혹은 부지의 폭 방향 경사도가 커서 자연스러운 조성이 곤란한 경우도 발생하였다.
(선행기술문헌)
(특허문헌)
대한민국 특허 제444972호 "생태공원으로 활용가능한 점.비점 오염원 처리용 다단계셀 인공습지 시스템 및 오염원 처리 방법"
본 발명은 이상의 종래 문제점을 해결하고자 하는 것으로, 조성하고자 하는 대상 부지의 폭이나 길이, 굴곡 및 경사도를 고려하지 않고 자유롭게 습지와 연못 및 침전지를 적당한 위치에 조성할 수 있는 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템을 을 제공하는 것이다.
이상의 본 발명의 목적을 달성하기 위한 본 발명의 제1 측면에 따른 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템은, 유입구(100,100')로부터 폐수가 유입되어 일시 저장되는 침강저류지(200,200'); 상기 침강저류지(200,200')로부터 고형 오염물질이 가라앉아 방류되는 상등수가 유입되는 습지(300,300')와 상기 습지의 1차 정화된 물이 유입되는 개방 수면의 연못(400,400')로 이루어지는 적어도 하나의 다단계셀; 상기 다단계셀의 최종정화된 물이 유입되어 일시저장되었다가 유출구(700,700')로 정화된 물을 유출시키는 침전지(600,600;); 를 포함하되, 상기 다단계셀은 적어도 두 개의 멀티레인(40,40',40")으로 이루어지며, 각 레인은 소제방(900,900')으로 확실하게 분리되어 있는 것을 특징으로 한다.
바람직하게는, 상기 멀티레인은 분배부(220)에 의해 상기 침강저류지(200)나 단일의 수로(30)로부터 상기 소제방(900,900')에 의해 분할되어지는 것을 특징으로 한다.
또한 바람직하게는, 상기 멀티레인은 3개의 멀티레인인 것을 특징으로 한다.
또한 바람직하게는, 상기 멀티레인은 합류부(620)에 의해 합류되어 상기 침전지(600)로 연결되는 것을 특징으로 한다.
또한 바람직하게는, 상기 멀티레인은 각각 별도의 상기 침강저류지(200,200')로부터 상기 소제방(900,900')에 의해 분할되어져 있는 것을 특징으로 한다.
또한 바람직하게는, 상기 멀티레인은 각각 별도의 상기 침전지(600)로 연결되어 있는 것을 특징으로 한다.
또한 바람직하게는, 상기 습지 및 연못의 멀티 셀은 S자 형태를 반복하여 지형에 순응하는 것을 특징으로 한다.
또한 바람직하게는, 상기 다단계셀에 연결된 2차 이상 다단계로 정화된 물이 유입되는 1차 습지와 동일한 작용을 하는 2차 이상 다단계셀 습지(500)를 포함하는 것을 특징으로 한다.
또한 바람직하게는, 상기 다단계셀은 적어도 하나의 생태적 수질정화 미디어(SSM)(32,33,35)를 포함하는 것을 특징으로 한다.
또한 바람직하게는, 상기 다단계셀은 적어도 하나의 개비온(38)을 포함하는 것을 특징으로 한다.
더욱 바람직하게는, 상기 다단계셀은, 수질정화를 위해 일단이 서로 중첩되게 횡방향으로 쌍으로 구비되는 개비온(38)과, 상기 서로 중첩되는 개비온 사이에 설치되어 어로 및 부유물을 여과가능하도록 구비되는 스크린 여과수단(150)을 포함하는 것을 특징으로 한다.
본 발명의 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템에 의하면, 조성하고자 하는 대상 부지의 폭이나 길이, 굴곡 및 경사도를 고려하여 거기에 맞는 습지와 연못 및 침전지를 적당한 위치에 조성할 수 있는 장점이 있어, 설계의 융통성을 극대화할 수 있다.
아울러, 2개 이상의 레인으로 분리하여 정화가 이루어지므로, 동일한 면적에 비해 수질 정화의 효율을 극대화할 수 있고, 소제방의 도로적 활용으로 관리 및 자연경관적 측면에서도 기존의 단일 레인에 비해 더욱 우수하다는 장점이 있다.
더욱이, 각 레인의 식물성 및 동물성 서식처를 달리하여 생태의 다양성을 추구할 수 있으며, 홍수시나 가뭄시에 대비한 각 레인의 특성을 달리하여 형성함으로서, 특수한 환경하에서도 최소한의 수질 정화나 기타 목적을 달성할 수 있는 추가적인 장점이 있다.
상기 목적 외에 본 발명의 다른 목적 및 이점들은 첨부한 도면을 참조한 실시 예에 대한 상세한 설명을 통하여 명백하게 드러나게 될 것이다.
도 1은 제1 종래기술의 반송습지를 이용한 오수처리장치.
도 2는 제2 종래기술의 인공습지를 이용한 자연정화 촉진장치.
도 3은 제3 종래기술에 관한 다단계셀을 갖는 인공습지의 평면도.
도 4는 도 3의 표준식재 단면도로서, (a)는 2차 정화습지의 단면도이고, (b)는 3차 정화습지의 단면도이다.
도 5a 및 도 5b는 본 발명의 제1 실시예에 따른 생태적 수질정화 비오톱 시스템의 평면도로서,
도 5a는 상기 생태적 수질정화 비오톱 시스템의 상류측 평면도이고,
도 5b는 상기 생태적 수질정화 비오톱 시스템의 하류측 평면도이다.
도 5c는 도 5b는 V-V 선 단면도이다.
도 6은 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 합류부가 상이한 경우의 생태적 수질정화 비오톱 시스템의 평면도.
도 7a는 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인이 직선부와 곡선부를 겸비하는 생태적 수질정화 비오톱 시스템의 평면도.
도 7b는 도 7a는 VII-VII 선 단면도이다.
도 8은 본 발명의 제2 실시예에 따른 생태적 수질정화 비오톱 시스템의 각 레인이 사행곡선 형태를 이루는 경우의 생태적 수질정화 비오톱 시스템의 평면도.
도 9는 도 8의 생태적 수질정화 비오톱 시스템의 조감도.
도 10은 도 8의 X-X 선 단면도.
도 11은 도 8의 XI-XI 선 단면도.
도 12는 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인이 사행곡선 형태를 이루면서 저류지와 침전지가 각각 별개로 이루어지는 경우의 생태적 수질정화 비오톱 시스템의 평면도.
도 13은 본 발명의 제3 실시예에 따른 생태적 수질정화 비오톱 시스템의 레인이 3개인 경우의 생태적 수질정화 비오톱 시스템의 평면도.
도 14는 도 13의 생태적 수질정화 비오톱 시스템의 조감도.
도 15는 생태수제 A형의 평면도.
도 16은 도 15의 생태수제 A형의 단면도.
도 15는 생태수제 A형의 평면도.
도 16은 도 15의 생태수제 A형의 단면도.
도 17은 생태수제 B형의 평면도.
도 18은 도 17의 생태수제 B형의 단면도.
도 19는 개비온 및 스크린 여과장치의 측면도.
도 20은 도 19의 스크린 여과장치의 내부 철망의 배치도.
도 21은 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 연못 조성방법 중 제1 단계의 평면도.
도 22는 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 연못 조성방법 중 제2 단계의 평면도.
도 23은 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 연못 조성방법 중 제3 단계의 평면도.
도 24는 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 연못 조성방법 중 제4 단계의 평면도.
도 25는 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 연못 조성방법 중 완공 단계의 평면도.
도 26은 도 25의 A-A 단면도.
도 27은 도 25의 B-B 단면도.
도 28은 도 25의 C-C 단면도.
이하, 상기 본 발명에 따른 실시예들을 첨부 도면을 참조하여 상세히 설명한다.
참고로, 이하에서 설명하는 실시예들은 어디까지나 본 발명의 예시적인 것에 불과하며, 본 발명의 기술적 범위가 하기 실시예들로 한정되는 것으로 해석되어서는 안 된다.
(제1 실시예)
먼저, 도 5a 내지 도 7b를 참조하여 본 발명의 제1 실시예에 따른 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템에 대하여 설명한다.
도 5a 및 도 5b는 본 발명의 제1 실시예에 따른 생태적 수질정화 비오톱 시스템의 평면도로서, 도 5a는 상기 생태적 수질정화 비오톱 시스템의 상류측 평면도이고, 도 5b는 상기 생태적 수질정화 비오톱 시스템의 하류측 평면도이다. 한편, 도 6은 본 발명의 제1 실시예의 제1 변형예에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 합류부가 상이한 경우의 생태적 수질정화 비오톱 시스템의 평면도이고, 도 7a는 본 발명의 제1 실시예의 제2 변형예에 따른 생태적 수질정화 비오톱 시스템의 각 레인이 직선부와 곡선부를 겸비하는 생태적 수질정화 비오톱 시스템의 평면도이다.
먼저, 본 발명에 관한 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템은, 도 5에서 보는 바와 같이, 유입구(100)에 접하는 저류지(200), 유입측 습지(300)와 연못(400) 및 유출측 습지(300')와 연못(400'), 그리고 유출구(700)에 접하는 침전지(600)로 구성된다.
습지나 연못이 형성되어질 부지의 폭이 좁을 경우에는 제3 종래기술의 경우와 같이 저류지(200)와 웨어(210)를 통해 이어지는 하나의 수로(30)를 따라 하나의 습지(300)와 연못(400)이 형성되어진다. 경우에 따라 군데 군데 가동언(36)이나 고정언이 형성되기도 하며, 사이에 스크린 여과수단이 게재되는 개비온(38)들이 형성되기도 한다. 개비온의 일 실시예에 대해서는 후술한다.
그러나, 하류로 가면서 부지의 폭이 상당히 넓어지는 경우에는, 분배부(220)를 통해 2개 이상의 레인, 즉 지류(40, 40')로 분배되어지며, 양 지류는 소제방(900)으로 충분히 분리되어진다. 통상적으로 상기 분배부(220)는 동일한 높이의 방부처리 목재판으로 구성되어지나, 제1 지류(40)와 제2 지류(40')가 현저하게 고도차를 갖거나 폭의 차이를 보이는 경우에는 수량조절을 위해 어느 일측의 지류를 향하는 분배부의 높이를 더 높게 (혹은 더 낮게) 할 수도 있다.
각 레인은, 대상 부지의 전체 폭에 따라 적당한 폭으로 분할되어지되, 반드시 균등 분할되어질 필요는 없고, 도 5b의 좌단에서 보는 바와 같이, 제1 레인은 생태적 수질정화 미디어(33, 35)를 설치하여 상대적으로 폭이 넓은 연못과 여울을 설치하고, 제2 레인에는 간단한 개비온만으로 상대적으로 폭이 좁은 연못과 여울을 설치하는 것도 가능하다. 혹은 도 5b의 중간에서 보는 바와 같이, 제1 레인(40) 및 제2 레인(40') 모두 생태적 수질정화 미디어(33, 35)를 설치하여 상대적으로 폭이 넓은 연못과 여울을 설치하는 것도 가능하다. 생태적 수질정화 미디어에 대해서는 후술한다.
한편, 생태적 수질정화 미디어의 간격에 대해서도, 대상 부지에 따른 각 레인의 경사도를 고려하여, 경사도가 클 경우에는 생태적 수질정화 미디어의 간격을 상대적으로 좁게 설치하는 것도 가능하다.
이제 대상 부지가 좁아지는 하류에는 (도 5b의 우단), 양 레인이 합쳐지는 합류부(62)를 형성하는바, 상기 분배부(220)와 마찬가지로 형성될 수 있다. 계속해서 통상의 수로(30)가 이어지며, 최종적으로 유출구(700)와 이어지는 침전지(600)가 형성되어진다.
도 5c는 도 5b는 V-V 선 단면도인바, 대체로 본 발명의 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템이 하천 본류와 고수 부지 사이의 중간 지대에 하천으로 흘러드는 우수나 생활용수를 정화하기 위해 설치되는 것인바, 도 5c에서 보는 바와 같이, 좌측에 하천 본류가 우측에 고수 부지가 위치하고, 중간 좌측에 제1 레인으로서의 제1 지류(20)가, 중간 우측에 제2 레인으로서의 제2 지류(20')가 소제방(900)을 경계로 형성되어 진다.
한편, 도 6에는 본 발명의 제1 실시예의 제1 변형예가 도시되어 있는바, 본 변형예에서는 제1 레인과 제2 레인의 고도차나 다른 이유로 합류부(600)를 두는 것이 부적합할 때에, 제1 레인과 제2 레인이 합류하지 않고 각각의 분리된 웨어(610, 610')를 통해 각각의 침전지(600, 600') 및 유출구(700, 700')를 통해 본류와 합류되어지도록 하는 것도 가능하다.
다른 한편, 도 7에는 본 발명의 제1 실시예의 제2 변형예가 도시되어 있는바, 본 변형침전지(200)가 웨어(210)를 통해 곡선 상의 수로(30)에 이어지고 난 후에, 분배부(220)에서 제1 레인(40)과 제2 레인(40')으로 분류되며, 다시 합류부(620)에서 하나의 수로(30)로 합류되어 곡선 상의 수로에 연결되어지는 구조이다. 이와 같이, 본 발명의 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템은 본류(30)와 지류(40, 40')가 지형 구조에 따라 직선 및 곡선 상으로 상호 결합되는 것이 가능하다. 그리하여 자연형 토지의 형태를 그대로 살리면서, 토지의 이용 효율을 높이고 오염원 정화를 위한 습지와 연못의 결합이 가장 효율적이고 유기적으로 결합되도록 하는 것이 가능하다.
도 7b는 도 7a는 VII-VII 선 단면도인바, 맨 좌측의 저류지(200)로부터의 유수가 제1 지류(40) 및 제2 지류(40')를 통해 원래의 수로(30)와 연결된 구조를 도시하고 있다.
이제, 상술한 바 있는 생태적 수질정화 미디어(SUSTAINABLE STRUCTURED MEDIA: SSM)에 대하여 도 15 내지 도 18을 참조하여 상술한다.
도 15는 생태수제 A형의 평면도이고, 도 16은 도 15의 생태수제 A형의 단면도이다.
생태적수질정화미디어 생태수재형은 외측에 한 개의 호박돌층(A층; 331)과 내부에 자연형여재가 채워진 네 개의 망태층(B층-E층; 332-335), 총 다섯 개 층으로 구성된다.
가장 외측층(A층)은 호박돌(φ150~200mm) 쌓기로 이루어지며, 일례로 습지 폭이 15M이상인 경우에는 1:2, 습지 폭이 15M미만인 경우에는 1:1.5의 완만한 경사를 이루도록 쌓는다.
내부의 B층부터 E층까지는 돌망태틀을 만들어 망태 안에 자연형여재를 채운다. 망태의 형태는 일례로 유로가 닿는 전면부와 습지사면부 사이의 각도는 30°, 후면부와 습지사면부의 각도는 120°로 제작하며, 각각의 층을 분리시키는 망태의 경우 설계도서에 의거하여 같은 간격으로 배치한다. 습지사면부에 닿는 면은 조성된 습지의 사면경사에 맞추어(1:2, 1:1.5) 제작한다. 망태의 높이는 습지부에 놓이는 부분은 일례로 50cm, 연못부에 놓이는 부분은 일례로 70cm로 제작한다.
망태 안에 채우는 자연형여재는 수질정화효율, 생태적 효과 등을 고려하여 일례로 <표 1>과 같은 비율을 기준으로 혼합하여 채운다. 즉, 내측으로 갈수록 크기가 작은 여재가 많이 포함되며, 외측으로 갈수록 크기가 큰 여재가 많이 포함되도록 한다. B층부터 E층까지 조성된 망태의 상부에는 수변식물류의 식생을 형성시킨다.
표 1
type 자연형여재B층 자연형여재C층 자연형여재D층 자연형여재E층 비고
a 10% 20% 30% 50% 크기 작음
b 40% 30% 50% 40% 크기 중간
c 50% 50% 20% 10% 크기 큼
상기 도 5a를 참조하면, 상기 수제형 SSM(33, 35)에 추가하여, 배석형 생태적수질정화미디어(SSM)(32)를 추가하는 것이 더욱 바람직하다. 배석형 SSM은 물리적 작용 및 생물학적 작용에 의한 수질정화효과를 기대할 수 있도록 습지내 수충부에 자연석, 호박돌, 자갈 등을 배치함으로써 이루어진다. 이는, 다양한 저서성 무척추동물 및 어류의 서식환경을 조성하기 위해 모래에서부터 바위나 큰 암석으로 입자의 크기를 증가시키면서 하상구성물을 다양하게 조성 배치하는 것이 가능하다. 아울러, 생태적수질정화미디어 배석형은 물리적 다양성이 낮아 서식처가 부족한 생태형 물골에 조성하며 세굴에 견딜 수 있도록 대형 자연석을 배치하고, 구조적 다양성을 위해 연속적으로 설치하며, 생태적수질정화미디어 배석형은 BOD, SS제거에 유용한 자갈접촉산화법을 사용한다.
생태적수질정화미디어 배석형의 구조에 대해 설명하면, 생태적수질정화미디어 배석형은 자연석(일례로 30×40×50cm), 호박돌(φ100~200mm), 및 자갈(φ40mm)을 주재료로 사용한다.
일례로 10㎡의 면적에 자연석을 3개 정도 배치하고, 호박돌은 0.4㎥, 자갈은 0.3㎥ 가량 습지 바닥에 깔아준다. 돌을 배석할 때는 생태적인 측면을 고려하여 공극이 많이 발생하도록 하되 유실을 방지하기 위해 포개어 쌓는다.
이렇게 배석형 SSM을 추가함으로써, 수서 곤충의 활동, 휴식 및 은신처로 사용되고 먹이를 제공하는 매개체로 활용되며 성장과 생존에 중요한 요인으로 작용할 수 있도록 다양한 하상조건을 조성하는 것이 가능하다. 또한, 돌의 표면에는 부착조류가 번성하고, 돌의 밑과 공극에는 하루살이류 등의 초식성 수서곤충이 서식하도록, 돌 표면적을 넓게 하고 공극을 늘리는 돌쌓기 방법을 택하는 것이 바람직하다. 아울러, 습지 내부에 거석쌓기를 함으로써, 수심과 유속이 다양하게 되어 생물상이 다양해지는 효과를 갖는다.
생태적수질정화미디어 배석형은 자갈 사이로 하천수가 통과하면서 하천수의 오염물질 중 무기성분인 모래, 슬러지 등이 자갈 공극의 물리적 작용에 의해 침전되고 유기물질은 자갈표면의 미생물 작용에 의해 무기화됨으로써 정화가 이루어진다.
또한, 생태적수질정화미디어 배석형은 자연형하천의 경관을 창출하고, 수변경관을 개선하며, 유로에 의한 호안침식을 방지하고, 유속을 완화하여 호안안정성을 개선시킬 수 있다.
한편, 도 17은 생태수제 B형의 평면도이고, 도 18은 도 16의 생태수제 B형의 단면도이다.
상기 생태수제 B형에서는 하나의 연못에 양쪽 2개 1조의 SSM(33, 35; 43, 45)을 형성하는 것이다. 도 5에서와 같이 생태수제 B형은 직선 하천형에 적용되기에 적합하다.
즉, 가동언에 의해 형성되는 연못의 상부에 제1 수제형 SSM(33) 및 제2 수제형 SSM(35)를 교차되도록 설치함으로써, 일측에만 SSM을 설치할 때 발생할 수 있는 수리적 문제점으로 인한 침식이나 유로의 일측 편중 현상과, 이로 인한 수질정화효율성 저감문제를 해결할 수 있다.
특히, 완전한 직선형도 사행천도 아닌 약간 구부러진 하천의 경우에는 상기 수제형 SSM의 형태를 달리하여 적용하는 것도 가능하다. 즉, 도 15 및 도 16의 A형 수제에 대하여, 도 17 및 도 18의 B형 수제를 고려하는 것도 가능하다. 또한 지형적 특성을 고려하여 호안 접촉부를 수직으로 조성하는 것도 가능하다.
아울러, 이들 B형 수제형 SSM의 규격은 소재, 습지의 폭 등에 따라 처리효율을 고려하여 조정될 수 있으며, 기본적으로 다음의 기준을 따른다. 다만, 이들은 발명의 일 실시 예에 불과하며, 상황에 따라 얼마든지 변형하여 사용하는 것이 가능하다.
한편, 도시된 바와 같이 본 발명에 따른 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템은, 저류지(200) 및/또는 침전지(600)에 스크린 여과수단과 복수개의 개비온(38)을 설치하여 수질정화 및 어로가능하도록 구성된다.
즉, 상기 습지(300)나 저류지(200) 및/또는 침전지(600)의 물을 정화가능하도록, 수질정화를 위해 일단이 서로 중첩되게 횡방향 한 쌍으로 구비되는 개비온(38)과, 상기 서로 중첩되는 개비온 사이에 설치되어 어로 및 부유물을 여과가능하도록 구비되는 스크린 여과수단(150)을 포함하여 이루어진다.
또한, 상기 습지의 수질을 정화함과 아울러 어로 및 부유물을 여과가능하도록 일단이 서로 중첩되게 횡방향 한 쌍으로 구비되는 습지용 개비온과, 상기 서로 중첩되는 습지용 개비온 사이에 습지용 스크린 여과수단을 더 구비할 수도 있다.
상기 침전지에 설치되는 개비온(38)은, 도 19에 도시된 바와 같이 호박돌과 자갈이 충진된 사각형의 철망을 서로 연결시켜 하나의 직사각 형상의 단면을 갖는 틀로 구성하여 상기 침전지의 폭방향으로 소정 거리 이격되게 2열로 구비된다.
여기서, 상기 개비온(38)의 각 일단은 상기 침전지의 양 내측면에 연결되고 타단은 배수 및 어도 확보를 위하여 개방되되, 일정부분 중첩되도록 구비된다.
또한, 상기 개비온(38)의 상면에는 공지의 식생매트(도면부호 생략)를 고정 구비하여 보다 환경친화적으로 구성할 수도 있다.
상기 스크린 여과수단 및 개비온의 철망은 수질보호를 위하여 녹 발생이 없는 스테인레스스틸재로 구성하는 것이 바람직하다.
상기 스크린 여과수단(150)은, 상기 개비온(38) 사이에 서로 이격되어 중첩되는 부분을 서로 연결시켜 수질정화 및 어도를 형성하기 위해 스크린부가 일부분만 형성된 직사각 형상의 스크린 여과부재를 일정 간격, 바람직하게는 어도 및 이물질을 여과시킬 수 있도록 대략 10cm 간격으로 이격되어 다수개 구비된다.
즉, 상기한 스크린 여과수단(150)은, 도 19 및 도 20에 도시된 바와 같이, 상기 개비온(38) 사이에 설치가능하도록 직사각 형상으로 형성된 스크린 여과틀(1511)과, 상기 스크린 여과틀(1511)의 내부를 대각방향으로 2분할 하여 일측은 어류의 이동이 가능하도록 어도용 공간부(1513)를 형성하고, 타측은 이물질을 여과하기 위한 철망으로 형성된 스크린부(1515)를 갖는 스크린 여과부재(151)와, 상기 스크린 여과부재(151)를 상기 개비온(38)의 각 일면에 양측면이 각각 슬라이드 장,탈착가능하게 연결시킬 수 있도록 상기 개비온(38)의 각 일측면에 'ㄷ'자 형상의 단면을 갖추어 용접에 의해 구비되는 가이드바로 구성된다.
이때 상기 스크린 여과부재(151)의 설치는 도 20과 같이 이물질을 효과적으로 여과시킬 수 있도록 스크린부(1515)가 동일 위치로 배열되지 않게 설치하는 것이 바람직하다.
(제2 실시예)
이제, 도 8 내지 도 12를 참조하여 본 발명의 제2 실시예에 따른 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템에 대하여 설명한다.
도 8은 본 발명의 제2 실시예에 따른 생태적 수질정화 비오톱 시스템의 각 레인이 사행곡선 형태를 이루는 경우의 생태적 수질정화 비오톱 시스템의 평면도이고, 도 9는 도 8의 생태적 수질정화 비오톱 시스템의 조감도이고, 도 10은 도 8의 X-X 선 단면도이고, 도 11은 도 8의 XI-XI 선 단면도이며, 도 12는 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인이 사행곡선 형태를 이루면서 저류지와 침전지가 각각 별개로 이루어지는 경우의 생태적 수질정화 비오톱 시스템의 평면도이다.
본 실시예의, 제1 실시예와 대조되는 가장 큰 특징은, 도 8에서 보는 바와 같이, 습지와 연못이 연속하여 형성되는 하천이 직선형이 아니고 사행천 형식이라는 점이다.
역시 본 실시예 역시, 도 8 내지 도 11에서 보는 바와 같이, 유입구(100)에 접하는 저류지(200), 유입측 습지(300)와 연못(400), 제2 습지 및 유출측 습지(300')와 연못(400'), 그리고 유출구(700)에 접하는 침전지(600)로 구성된다.
더 상세히 설명하면, 상류에서는 저류지(200)와 웨어(210)를 통해 이어지는 하나의 수로(30)를 따라 분배부(220)를 통해 2개 이상의 레인, 즉 지류(40, 40')로 분배되어지며, 양 지류는 소제방(900)으로 충분히 분리되어진다.
그리하여 각각의 레인은, 생태적 수질정화 미디어(33, 35)나 배석형 개비온(32)으로 이루어지는 습지(300)와 주로 고정언(31)이나 가동언으로 이루어지는 연못(400)이 교대로 형성되어진다. 경우에 따라 사이에 스크린 여과수단이 게재되는 개비온(도 5a의 38)들이 추가될 수도 있다.
경우에 따라, 제2 습지(500)에는 관찰데크(510)가 형성되기도 한다. 그리고, 이상의 습지와 연못이 유출측 습지(300')와 연못(400')까지 반복되다가, 침전지 바로 앞에서 합류부(620)에 의해 합류되어, 하나의 수로(30)를 통해 침전지(600)로 이어진다.
본 실시예에서는 제1 지류(40)와 제2 지류(40')가 나란히 사행천을 이루므로, 지류의 총 길이에 차이가 있을 수 밖에 없으며, 따라서 생태적 수질정화 미디어의 개수나 기타 미디어 및 개비온의 숫자도 달라질 수 밖에 없으며, 바람직하게는 외측 레인 측에 주로 미디어나 개비온이 형성되어 지도록 한다.
다만, 생태적 수질정화 미디어의 간격에 대해서도, 대상 부지에 따른 각 레인의 경사도를 고려하여 형성되어진다.
도 9의 본 실시예의 실제 조성예에서는, 합류부(620)가 구거 방식으로 형성되어, 관리자나 관찰자가 합류부 상으로 이동을 할 수 있도록 조성되어 있으며, 고정언(31)의 경우 다소 낮게 형성하며 배석형 생태적 수질정화 미디어(32)가 수재형 생태적 수질정화 미디어(33)의 최외층과 상당한 크기를 갖는 호박돌로 연결되어, 어느 정도의 연못을 형성하면서 관찰자의 통행이 가능하도록 조성되어 있다. 따라서 반드시 습지와 연못이 일대일로 반복되면서 형성되는 것은 아니며, 생태적 수질정화 미디어와 습지의 연관성이 반드시 지켜지는 것도 아니다.
도 10은 도 8은 X-X 선 단면도인바, 본 발명의 부지 외측으로 혹은 하천 간에 형성되는 제방도로(950) 및 제1 지류(40)와 제2 지류(40') 사이에 형성되는 소제방(900)이 보인다.
도 11은 도 8는 XI-XI 선 단면도인바, 본 발명의 부지 외측으로 혹은 하천 간에 형성되는 제방도로(950) 및 제1 지류(40)와 제2 지류(40') 사이에 형성되는 소제방(900)이 보인다.
한편, 도 12에는 본 발명의 제2 실시예의 변형예가 도시되어 있는바, 본 변형예에서는 제1 레인(40)과 제2 레인(40')의 시작점인 유입구(100, 100') 및 저류지(200, 200')가 각각 별도로 다른 위치에 형성되고, 제1 레인(40)과 제2 레인(40')의 종결점인 유출구(700, 700') 및 침강지(600, 600')도 각각 별도로 형성되어 있으며, 그에 따른 웨어(210, 210'; 610, 610')와 고정언(31, 31')이 각각 별도로 형성됨을 알 수 있다.
참고로, 도 12의 실시예에서는, 제1 레인(40)이 제2 레인(40')에 비해 보다 길고 폭이 넓게 형성되는 메인 레인인바, 따라서, 제1 레인(40) 측에는 수재형 생태적 수질정화 미디어(33, 35) 및 배석형 생태적 수질정화 미디어(32)가 형성되어 습지와 연못이 상대적으로 넓고 크게 형성되며, 보조 레인인 제2 레인(40')에는 개비온(38') 및 배석형 생태적 수질정화 미디어(32')에 의해 습지와 연못이 상대적으로 작게 형성되어 있음을 알 수 있다.
(제3 실시예)
이제, 도 13 내지 도 14를 참조하여 본 발명의 제3 실시예에 따른 멀티셀 및 멀티레인의 생태적 수질정화 비오톱 시스템에 대하여 설명한다.
도 13은 본 발명의 제3 실시예에 따른 생태적 수질정화 비오톱 시스템의 레인이 3개인 경우의 생태적 수질정화 비오톱 시스템의 평면도이고, 도 14는 도 13의 생태적 수질정화 비오톱 시스템의 조감도이다.
본 실시예의, 제1 실시예와 대조되는 가장 큰 특징은, 도 13에서 보는 바와 같이, 지류가 3개인 3 레인 시스템이다는 점이다.
역시 본 실시예 역시, 도 13 내지 도 14에서 보는 바와 같이, 유입구(100)에 접하는 저류지(200), 제1 지류(40), 제2 지류(40') 및 제3 지류(40")와 이들을 구분짓는 제1 소제방(900)과 제2 소제방(900') 그리고 유출구(700)에 접하는 침전지(600)로 구성된다.
더 상세히 설명하면, 상류에서는 저류지(200)로부터 분배부(220)를 통해 세 개의 레인(40, 40', 40"), 즉 3 개의 지류(40, 40', 40")로 분배되어지며, 양 지류는 두 개의 소제방(900, 900')으로 충분히 분리되어진다.
특히, 제2 레인의 경우, 중간 중간에 중도(800, 800')를 형성하고 관찰데크(510)를 통해 외부의 제방도로(950)와 연결하며, 소제방의 경우에도 어느 정도의 폭을 두고 산책로로 활용할 수 있도록 하고 있어, 유지 및 보수와 관광 목적의 특성을 살리고 있다는 점이 특징이다.
(본 발명에 따른 SSB 시스템의 각 레인의 연못 조성방법)
마지막으로 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 연못 조성방법의 일례를 도 21 내지 도 28을 참조하여 설명한다.
도 21 내지 도 25는 각각, 본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 연못 조성방법 중 제1 단계, 제2 단계, 제3 단계, 제4 단계 및 완공 단계의 평면도이고, 도 26 내지 도 28은 각각, 도 25의 A-A 단면도, B-B 단면도 및 도 28은 C-C 단면도이다.
본 발명에 따른 생태적 수질정화 비오톱 시스템의 각 레인의 연못 조성방법을 도 21 내지 도 25를 참조하여 설명하면, 도 21에서 보는 바와 같이, 하천폭의 일측에 약 20% 정도를 남기고 하상의 원지반층(410) 상에 기초 모르타르층(420)을 형성한다.
이때, 상기 기초 모르타르층(420)의 구조는 각 하천의 하상구조, 경사, 소류력, 수충부 등을 고려하여 거기에 맞도록 부정형으로 조성되며, 제1 단계로, 도 27 및 도 28에서 보는 바와 같이, 상하류 방향에서 보았을 때에 중심부가 원래의 하상의 깊이보다 더 깊게 움푹 파여지는 형태로 형성되어지도록 한다. 기초 모르타르층(420)의 상하류 방향 폭은 동일하게 할 수도 있으나 (도 25 참조), 바람직하게는 하안으로 갈수록 넓어지는 것이 바람직하다.
다음 제2 단계로, 도 22에서 보는 바와 같이, 상기 기초 모르타르층(420) 상에 자연석 쌓기 및 고정 단계가 진행되는바, 즉, 도 27 및 도 28에서 보는 바와 같이, 상기 기초 모르타르층(420) 상에 자연석(431)을 놓고 자연석의 하부가 상기 기초 모르타르층(420)에 의해 고정되도록 하며, 이후 추가적으로 쌓여지는 자연석들 역시 상부 모르타르(432)에 의해 상호 고정되도록 하는 자연석 고정층(430)이 형성되도록 한다.
계속해서 제3 단계로, 도 23에서 보는 바와 같이, 일종의 자연형 어도보인 자연석 고정층(430)의 상류에 SSPC부(440)가 형성되는바, 이는 어도보의 상류 하상에 콘크리트와 같은 비친화적인 구조물을 형성하지 않고도 그리고 약간의 하천수가 통과되면서도 식물이 뿌리내림을 할 수 있는 등, 극히 자연친화적인 방법으로 방수층을 형성하여, 일종의 '소'(연못)를 형성하기 위함이다.
SSPC부(440)는, 본 발명자의 대한민국 특허 제1079051호 (생태적 수질정화 투수조절(SSPC) 시스템)에서 자세히 설명하고 있는바,
제1 실시형태로는, 상기 본 발명자의 대한민국 특허 제1079051호에 제1 투수조절층으로 개시된 바와 같이, 원지반층(410) 상에, 확실한 방수를 위해 벤토나이트와 방수시트가 같이 사용되는 10cm 정도의 벤토매트가 사용될 수 있으며 이때 상기 벤토매트 상에는 다시 수생식물의 서식처를 제공하기 위해 50cm 정도의 토양층이 형성되기도 한다. 상기 벤토매트에 대해, 더 상술하면, 2-3mm 정도의 얇은 비닐시트 상에 솜이나 부직포와 같은 섬유층이 소정 두께로 입혀지고, 상기 섬유층의 사이 및 그 위에 벤토나이트가 부착되어 지며, 다시 그 위에는 직포와 같은 얇은 비닐 직물지가 덧씌워진다. 즉, 천연산 소디움 벤토나이트를 직포와 부직포 사이에 충진하고 니들펀칭으로 벤토나이트 분말의 이동을 고정시킨 매트형 구조로 하며, 재질은 전체가 균일하며, 형태·치수의 변형이 없어야 하며, 굴곡 부위에도 시공이 용이하도록 유연성이 있어야 하며, 벤토나이트 압밀층은 충분한 수화팽창 작용에 의해 콘크리트의 실크랙이나 공극을 실링(Sealing)할 수 있어야 한다. 참고로, 벤토나이트는 물과 반응시 원래의 체적보다 약 13-16 배가 팽창하여 무게의 5배까지 물을 흡수하며, 그렇게 함으로써 튼튼한 방수층을 형성함과 동시에 점착성으로 인하여 지층의 변화에 영향을 받지 않고도 확실한 방수층을 형성하며 토양에 아무런 화학적 악영향을 끼치지 않으면서 식물의 뿌리 자람을 억제하지도 않는다는 장점이 있다. 방수재에 사용된 고성능 소디움 벤토나이트 알갱이와 동일 재료로서 최소한 85% 이상의 몬모릴로나이트(Montmorillonite)를 포함하도록 한다. 참고로, 상기 비닐 직물지는 일정 폭의 비닐로 된 씨실과 날실로 짜인 타포린에 사용되는 직물지를 생각하면 되나, 반드시 비닐로 된 직물지에 한정되는 것은 아니며, 상기 비닐 시트는 어느 정도 확실한 방수를 위한 두께는 가져야 되나, 너무 두꺼우면 식물의 뿌리 자람을 차단하여 바람직하지 않으므로, 오염물질은 차단할 수 있으나, 식물의 뿌리에 의해서는 침투가 가능한 정도라야 바람직하다. 아울러, 상기 비닐은 생분해성 비닐을 사용하여 침강지가 안정되어 감에 따라 분해될 수 있는 성분으로 하는 것이 바람직하다. 상기 비닐 시트로는 KS F 4911에 규정된 일반 복합 비가황 고무에 적합한 폴리에틸렌 시트(HDPE)가 사용되나, 고무아스팔트 시트나 EPDM계의 특수시트 등이 사용될 수도 있다.
상기 SSPC부(440)의 또다른 제2 실시형태로는, 역시 상기 본 발명자의 특허 제1079051호에 제2 투수조절층으로 개시된 바와 같이, 원지반층(410) 상에 50cm 정도 두께의 지오콤층이 위치하고, 그 위에 역시 50cm정도 두께의 토양층이 위치하도록 할 수도 있다. 상기 제2 투수조절층의 지오콤층에 사용되는 지오콤은, 가로보강사와 세로보강사가 교차하면서 일정크기의 공극을 갖는 망상의 시트를 형성하고 이 시트를 폭 방향으로 일정간격으로 융착 연결 후 일측방향으로 당기면 다수의 벌집형태의 셀망부를 형성하여 이루어진 지오콤포지트를 다공성 셀벽 구조로 만든 토립자 구속 벌집형 보강재로서, 대한민국 특허 제 834784 호에 개시되어 있다. 상기 지오콤에 대하여, 소정 길이를 갖는 폴리에틸렌재의 가로보강사와 세로보강사가 교차하면서 일정크기의 공극을 다수로 갖는 망상의 시트를 형성하며 상기 시트가 형성되면 인접하는 시트와 시트의 폭 방향으로 일정간격으로 웰딩에 의해 융착 연결하는 바, 융착된 시트가 다수로 적층되면서 시트를 일측 방향으로 당기면 다수의 벌집형태의 셀망부를 형성하게 되며, 상기 셀망부의 공간으로 모래, 흙 및 자갈 등의 골재를 채워 메우면 별도의 후속 공정 없이 시트의 전면에 균일하게 매우 많은 공극이 형성되어 있기 때문에 마찰특성이 상승하게 되고 재료 절감효과와 중량저감 효과가 있으며, 뿌리 활착이 용이한 이점 등이 있다. 지오콤층의 시공은, 지오콤을 전개하여 핀 등으로 지면에 고정하면 셀망부가 형성되는바, 상기 셀망부 내에 모래, 흙 및 자갈 등의 골재를 채워 메우게 된다. 이와 같이, 지오콤층을 형성하게 되면, 투수성이 높고 토양의 유실을 막을 수 있을 뿐더러 습지식물 뿌리의 활착이 용이하며 지반보강이 가능한 제2 투수조절층이 용이하게 형성될 수 있다.
상기 SSPC부(440)의 또다른 제3 실시형태로는, 역시 상기 본 발명자의 특허 제1079051호에 제3 투수조절층으로 개시된 바와 같이, 원지반층(410) 상에, 5-10cm정도의 벤토나이트층을 형성하고, 그 위에 50cm정도의 토양층을 형성하며, 경우에 따라 그 위에 자연형 여재로서의 자갈층을 형성할 수도 있다. 벤토나이트층은 상기 벤토나이트를 흙과 혼합하여 형성한다. 이에 사용되는 재료는 진흙이나, 논흙 등 친환경적 재료를 사용하도록 하며, 더욱 바람직하게는 생물다양성을 증진시킬 수 있도록, 기존의 논이나 뻘에서 수집한 흙을 사용하도록 하되, 진흙이나 논흙에 많은 유기물이나 쓰레기가 포함될 경우 수질오염을 유발할 수 있으므로 사용 전에 제거하도록 한다. 투수조절용으로 사용되는 진흙에 벤토나이트를 혼합하여 투수계수가 10-6cm/sec 이하가 되도록 한다. 투수조절용으로 쓰이는 진흙은 다짐시험을 하여 최대 건조밀도를 얻을 수 있는 함수상태에서 시공하여야 한다. 지반이 침하될 우려가 있을 때에는 진흙을 깔기 전에 보강용 부직포를 까는데, 부직포는 1m당 1ton의 인장력에 견딜 수 있는 것이어야 한다. 투수조절용 진흙 포설 후 최대 건조밀도의 90% 이상이 나오도록 골고루 다지며, 포설두께는 15cm 이상으로 한다.
계속해서 제4 단계로, 도 24에서 보는 바와 같이, 물길 주변에 큰 돌(451)을 안정적으로 배치하고 일부 작은 돌들로 공극이 큰 곳을 매워 자연형 생태통로(어도)를 형성하는바, 물길이 있던 구간은 모르타르를 일부만 활용하고 일종의 자연형 어도부(450)를 형성하기 위함이다.
마지막 단계로, 도 25에서 보는 바와 같이, 물길의 모르타르를 친 구간 및 전체적으로 모르타르를 친 자연석 구간 상류쪽 및 하류쪽에도 자연스러운 돌쌓기를 하여 마감한다.
즉, 도 25 및 도 26에서 보는 바와 같이, 물길이 형성되는 구간('A' 구간)에는 기초 모르타르층(420) 상에 큰 돌을 안정적으로 배치하여 자연형 물길 및 어도를 확보하고 상류쪽 및 하류쪽에도 자연스러운 돌쌓기를 하여 마감하며 (이 구간에는 SSPC는 형성하지 않음), 도 25 및 도 27에서 보는 바와 같이, 중앙부 구간('B' 구간)에는 기초 모르타르층(420) 상에 자연석 쌓기 및 고정 단계를 통해 쌓여지는 자연석(431)들을 상부 모르타르(432)에 의해 상호 고정되도록 하는 자연석 고정층(430)이 형성되도록 하고, 상기 자연석 고정층(430)의 상류에 SSPC부(440)가 형성되도록 하며, 도 25 및 도 28에서 보는 바와 같이, 물길이 형성되는 반대쪽 구간('C' 구간)에는 역시 기초 모르타르층(420) 상에 자연석 쌓기 및 고정 단계를 통해 쌓여지는 자연석(431)들을 상부 모르타르(432)에 의해 상호 고정되도록 하는 자연석 고정층(430)이 형성되도록 하고, 상기 자연석 고정층(430)의 상류에 SSPC부(440)가 형성되도록 한 후, 추가적으로 상류쪽 및 하류쪽에도 자연스러운 돌쌓기를 하여 마감하게 된다.
따라서, 이와 같은 방법으로 어도 여울을 갖는 생태하천을 조성하는 경우, 하천의 물길을 막지 않고도 시공이 가능하며, 상기 'A' 구간을 통해 자연형 생태 통로(어도)를 간단히 형성하는 것이 가능하며, 반면 상기 'B' 및 'C' 구간을 통해 하천의 하상에 대한 어느 정도의 차수가 자연친화적으로 가능하여 자연형 어도보의 상류에 '소'를 형성가능하면서, 강수량이 많을 경우에는 자연형 어도보로 하천수가 넘치면서 여울을 형성하게 되는 자연형 어도 여울을 갖는 생태하천이 아주 간단한 방법으로 조성될 수 있다.
다만, 이상의 연못 조성방법은, 소와 여울을 자연형으로 조성하기 위한 일례에 지나지 않으며, SSPC의 폭이나 각 레인의 어도의 폭이 가변적이며, 경우에 따라서는 자연석을 고정하기 위한 몰탈층이 여타 방법으로 대체될 수도 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.

Claims (11)

  1. 유입구(100,100')로부터 폐수가 유입되어 일시 저장되는 침강저류지(200,200');
    상기 침강저류지(200,200')로부터 고형 오염물질이 가라앉아 방류되는 상등수가 유입되는 습지(300,300')와 상기 습지의 1차 정화된 물이 유입되는 개방 수면의 연못(400,400')로 이루어지는 적어도 하나의 다단계셀;
    상기 다단계셀의 최종정화된 물이 유입되어 일시저장되었다가 유출구(700,700')로 정화된 물을 유출시키는 침전지(600,600;);
    를 포함하되,
    상기 다단계셀은 적어도 두 개의 멀티레인(40,40',40")으로 이루어지며, 각 레인은 소제방(900,900')으로 확실하게 분리되어 있는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  2. 제 1 항에 있어서,
    상기 멀티레인은 분배부(220)에 의해 상기 침강저류지(200)나 단일의 수로(30)로부터 상기 소제방(900,900')에 의해 분할되어지는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  3. 제 1 항에 있어서,
    상기 멀티레인은 3개의 멀티레인인 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  4. 제 1 항에 있어서,
    상기 멀티레인은 합류부(620)에 의해 합류되어 상기 침전지(600)로 연결되는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  5. 제 1 항에 있어서,
    상기 멀티레인은 각각 별도의 상기 침강저류지(200,200')로부터 상기 소제방(900,900')에 의해 분할되어져 있는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  6. 제 1 항에 있어서,
    상기 멀티레인은 각각 별도의 상기 침전지(600)로 연결되어 있는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  7. 제 1 항에 있어서,
    상기 습지 및 연못의 멀티 셀은 S자 형태를 반복하여 지형에 순응하는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  8. 제 1 항에 있어서,
    상기 다단계셀에 연결된 2차 이상 다단계로 정화된 물이 유입되는 1차 습지와 동일한 작용을 하는 2차 이상 다단계셀 습지(500)를 포함하는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  9. 제 1 항에 있어서,
    상기 다단계셀은 적어도 하나의 생태적 수질정화 미디어(SSM)(32,33,35)를 포함하는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  10. 제 1 항에 있어서,
    상기 다단계셀은 적어도 하나의 개비온(38)을 포함하는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
  11. 제 10 항에 있어서,
    상기 다단계셀은, 수질정화를 위해 일단이 서로 중첩되게 횡방향으로 쌍으로 구비되는 개비온(38)과, 상기 서로 중첩되는 개비온 사이에 설치되어 어로 및 부유물을 여과가능하도록 구비되는 스크린 여과수단(150)을 포함하는 것을 특징으로 하는 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템.
PCT/KR2012/004844 2012-06-19 2012-06-19 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템 WO2013191313A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/KR2012/004844 WO2013191313A1 (ko) 2012-06-19 2012-06-19 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템
US14/112,925 US20140042064A1 (en) 2012-06-19 2012-06-19 Ecological Biotope Water Purification System Utilizing a Multi-Cell and Multi-Lane Structure of a Constructed Wetland and Sedimentation Pond
KR1020137021999A KR101360271B1 (ko) 2012-06-19 2012-06-19 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템
KR1020147000428A KR101668095B1 (ko) 2012-06-19 2012-06-19 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/004844 WO2013191313A1 (ko) 2012-06-19 2012-06-19 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/112,925 Continuation US20140042064A1 (en) 2012-06-19 2012-06-19 Ecological Biotope Water Purification System Utilizing a Multi-Cell and Multi-Lane Structure of a Constructed Wetland and Sedimentation Pond

Publications (1)

Publication Number Publication Date
WO2013191313A1 true WO2013191313A1 (ko) 2013-12-27

Family

ID=49768894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004844 WO2013191313A1 (ko) 2012-06-19 2012-06-19 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템

Country Status (3)

Country Link
US (1) US20140042064A1 (ko)
KR (2) KR101668095B1 (ko)
WO (1) WO2013191313A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880153A (zh) * 2014-04-11 2014-06-25 江苏省农业科学院 一种用于农村污水处理的高水力负荷园林地渗滤系统及处理方法
CN104176827A (zh) * 2014-07-22 2014-12-03 北京林业大学 高寒区城市水源地消减水体氮磷的河岸缓冲带灌木配置
CN105850261A (zh) * 2016-04-28 2016-08-17 上海市环境工程设计科学研究院有限公司 一种坡地型盐碱地集雨洗盐系统
CN106006992A (zh) * 2016-08-05 2016-10-12 武汉中科水生环境工程股份有限公司 一种硬质坡面池底富营养化水体的综合型生态治理系统
CN106396286A (zh) * 2016-11-29 2017-02-15 中冶华天工程技术有限公司 多级生态水槽和生态水塘组合系统
CN106430807A (zh) * 2016-07-26 2017-02-22 岭南新科生态科技研究院(北京)有限公司 用于改善受纳水体面源污染治理的生态沟渠系统
CN108083449A (zh) * 2018-02-07 2018-05-29 桂林理工大学 一种模拟表面流湿地反应器
CN108086460A (zh) * 2017-12-26 2018-05-29 广州地理研究所 一种用于雨水进入人工湿地的多维生态污染物截控系统
CN108487189A (zh) * 2018-06-01 2018-09-04 中国电建集团贵阳勘测设计研究院有限公司 一种坝身过滤结合坝顶溢流的生态蓄水坝结构
CN108862599A (zh) * 2018-06-19 2018-11-23 江苏东珠景观股份有限公司 一种湿地净化动态调控系统
CN111533369A (zh) * 2020-04-24 2020-08-14 北京土人城市规划设计股份有限公司 湿地污水净化系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104058507B (zh) * 2014-07-10 2015-07-01 草都毕力格 一种强化复合型人工湿地污水处理系统
CN105800866B (zh) * 2016-03-09 2019-11-01 北京师范大学 一种面向人类与环境需求的滨海湿地生态护岸技术系统
KR101704529B1 (ko) * 2016-03-18 2017-02-10 일송환경복원 주식회사 비점오염원 처리를 위한 인공습지시스템
CN105668801B (zh) * 2016-04-05 2018-07-20 湖南艾布鲁环保科技股份有限公司 一种应用于黑臭水体治理的水质改善与生态修复方法
CN105850264B (zh) * 2016-04-06 2017-09-22 天津绿茵景观生态建设股份有限公司 适合盐碱地雨水收集和排盐的植被恢复方法
CN105858903A (zh) * 2016-05-26 2016-08-17 安徽师范大学 一种以无纺布铺设的生态渠与污水处理方法
CN107410140B (zh) * 2017-05-03 2023-06-23 江苏省淡水水产研究所 一种池塘生态工业化循环水养殖与净化系统
WO2019018930A1 (en) * 2017-07-28 2019-01-31 Nautilus Ventures Ipco Inc. A SYSTEM FOR THE TREATMENT OF WATER
JP7045154B2 (ja) * 2017-09-13 2022-03-31 株式会社竹中工務店 人工河川の改修方法
CN108862861B (zh) * 2018-07-09 2020-01-10 长江水资源保护科学研究所 一种农村面源污染的复合生态阻控系统及方法
CN109137940B (zh) * 2018-09-07 2019-10-29 中国地质大学(武汉) 一种适用于松散堆填边坡的立体排水系统
CN110512563A (zh) * 2019-08-22 2019-11-29 上海勘测设计研究院有限公司 一种针对山溪性河流洪水生态调蓄系统
CN110803773A (zh) * 2019-12-03 2020-02-18 中冶京诚工程技术有限公司 一种封闭及半封闭性水体水质净化方法及系统
US11685682B1 (en) * 2020-02-28 2023-06-27 Ian L. Roback Systems and processes for removing pollutants from water, reducing greenhouse gas emissions, and reducing aquatic ecosystem destruction
CN111727923A (zh) * 2020-07-02 2020-10-02 盐城师范学院 一种池塘养殖循环水处理设备
CN112093900A (zh) * 2020-08-28 2020-12-18 中国冶金科工股份有限公司 湖泊外源污水净化系统
CN113415953A (zh) * 2021-07-14 2021-09-21 贵州大学 一种山区坡地流水养殖尾水处理系统
CN113683200B (zh) * 2021-09-02 2023-04-18 北京七星文旅生态科技有限责任公司 一种复合型往复式人工湿地水体净化系统及水体净化方法
CN113756253A (zh) * 2021-09-08 2021-12-07 云南师范大学 一种河流湿地的生态环境立体优化提升方法
CN113697965A (zh) * 2021-10-08 2021-11-26 辽宁大学 一种梯级河流湿地生态修复方法
CN114349170B (zh) * 2021-12-28 2023-02-10 南大(常熟)研究院有限公司 河口区行蓄洪约束下的湿地功能修复系统及方法
CN115490400B (zh) * 2022-10-11 2023-06-27 长江生态环保集团有限公司 一种适用于山地的人工湿地净化系统
KR102492986B1 (ko) * 2022-10-14 2023-01-27 윤성덕 수경시설을 활용한 미세먼지개선용 수공간 시공방법
CN115852893B (zh) * 2022-12-06 2023-08-15 广东生太修复科技有限公司 一种河涌流域治理系统及治理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444972B1 (ko) * 2003-02-26 2004-08-21 변우일 생태공원으로 활용가능한 점.비점 오염원 처리용 다단계셀인공습지 시스템 및 오염원 처리 방법
KR100746245B1 (ko) * 2006-03-03 2007-08-06 변우일 생태적수질정화미디어 및 이를 갖는 수제 배석형 시스템
KR101005069B1 (ko) * 2008-04-22 2010-12-30 변찬우 어도를 갖는 수질정화시스템
KR101079051B1 (ko) * 2009-02-04 2011-11-02 주식회사 골든포우 생태적 수질정화 투수조절 시스템
KR101080088B1 (ko) * 2008-11-27 2011-11-04 주식회사 뉴보텍 생태환경을 고려한 저류지 시스템 및 그 시공 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424289B1 (ko) * 2001-05-11 2004-03-24 정재수 정화처리용 자연평형 수직흐름형 인공습지 설비
KR100561171B1 (ko) * 2004-03-20 2006-03-15 한국과학기술연구원 무동력 수로형 인공습지 및 이를 이용한 자연형하천정화공법
JP5011668B2 (ja) * 2005-07-22 2012-08-29 東洋紡績株式会社 水性樹脂組成物およびその製造方法
KR20090001575A (ko) * 2007-04-27 2009-01-09 스타워너비(주) 디지털 컨텐츠 제작자 확인 인증시스템 및 인증방법
KR100888277B1 (ko) * 2007-07-18 2009-03-11 금호타이어 주식회사 코어 드럼 및 코어 드럼 조립 분해 장치
KR100834784B1 (ko) * 2007-12-20 2008-06-10 주식회사 골든포우 토립자 구속 벌집형 보강재
KR100959915B1 (ko) * 2008-04-22 2010-05-26 변찬우 수질정화 및 수위조절가능한 어도보 시스템
KR101175305B1 (ko) 2010-11-12 2012-08-20 이문기 비점오염물질처리를 위한 친환경 인공습지시스템
KR101065814B1 (ko) 2011-05-03 2011-09-19 청호환경개발주식회사 생태복원형 고효율자연정화습지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444972B1 (ko) * 2003-02-26 2004-08-21 변우일 생태공원으로 활용가능한 점.비점 오염원 처리용 다단계셀인공습지 시스템 및 오염원 처리 방법
KR100746245B1 (ko) * 2006-03-03 2007-08-06 변우일 생태적수질정화미디어 및 이를 갖는 수제 배석형 시스템
KR101005069B1 (ko) * 2008-04-22 2010-12-30 변찬우 어도를 갖는 수질정화시스템
KR101080088B1 (ko) * 2008-11-27 2011-11-04 주식회사 뉴보텍 생태환경을 고려한 저류지 시스템 및 그 시공 방법
KR101079051B1 (ko) * 2009-02-04 2011-11-02 주식회사 골든포우 생태적 수질정화 투수조절 시스템

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880153A (zh) * 2014-04-11 2014-06-25 江苏省农业科学院 一种用于农村污水处理的高水力负荷园林地渗滤系统及处理方法
CN103880153B (zh) * 2014-04-11 2016-02-10 江苏省农业科学院 一种用于农村污水处理的高水力负荷园林地渗滤系统及处理方法
CN104176827A (zh) * 2014-07-22 2014-12-03 北京林业大学 高寒区城市水源地消减水体氮磷的河岸缓冲带灌木配置
CN105850261A (zh) * 2016-04-28 2016-08-17 上海市环境工程设计科学研究院有限公司 一种坡地型盐碱地集雨洗盐系统
CN105850261B (zh) * 2016-04-28 2018-05-04 上海市环境工程设计科学研究院有限公司 一种坡地型盐碱地集雨洗盐系统
CN106430807A (zh) * 2016-07-26 2017-02-22 岭南新科生态科技研究院(北京)有限公司 用于改善受纳水体面源污染治理的生态沟渠系统
CN106006992A (zh) * 2016-08-05 2016-10-12 武汉中科水生环境工程股份有限公司 一种硬质坡面池底富营养化水体的综合型生态治理系统
CN106396286A (zh) * 2016-11-29 2017-02-15 中冶华天工程技术有限公司 多级生态水槽和生态水塘组合系统
CN108086460A (zh) * 2017-12-26 2018-05-29 广州地理研究所 一种用于雨水进入人工湿地的多维生态污染物截控系统
CN108083449A (zh) * 2018-02-07 2018-05-29 桂林理工大学 一种模拟表面流湿地反应器
CN108487189A (zh) * 2018-06-01 2018-09-04 中国电建集团贵阳勘测设计研究院有限公司 一种坝身过滤结合坝顶溢流的生态蓄水坝结构
CN108487189B (zh) * 2018-06-01 2023-10-03 中国电建集团贵阳勘测设计研究院有限公司 一种坝身过滤结合坝顶溢流的生态蓄水坝结构
CN108862599A (zh) * 2018-06-19 2018-11-23 江苏东珠景观股份有限公司 一种湿地净化动态调控系统
CN111533369A (zh) * 2020-04-24 2020-08-14 北京土人城市规划设计股份有限公司 湿地污水净化系统

Also Published As

Publication number Publication date
KR101668095B1 (ko) 2016-10-20
KR20140010047A (ko) 2014-01-23
KR20140010200A (ko) 2014-01-23
KR101360271B1 (ko) 2014-02-11
US20140042064A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2013191313A1 (ko) 멀티셀 및 멀티레인의 습지와 연못 및 침전지 구조를 활용한 생태적 수질정화 비오톱 시스템
CN207671771U (zh) 一种污水处理厂尾水分散式处理排放系统
CN204151144U (zh) 改善河道水质的人工湿地处理系统
CN106517530B (zh) 一种用于水体净化与生态恢复的河道系统结构
CN1752035A (zh) 一种城市水体污染净化型生态岸边带构建技术
CN109399800B (zh) 一种河流湖泊径流污染梯级控制系统
CN111592175A (zh) 一种农业面源污染控制生态治理系统及治理方法
CN112158958B (zh) 一种强化污染物去除的海绵城市建设用人工雨水湿地系统
KR20160139594A (ko) 생태적 추이대 기능 및 수질환경 정화효율을 극대화한 순환형 생태환경복원 시스템
CN110092480A (zh) 一种采煤沉陷区治理方法及水污染控制系统
KR101079051B1 (ko) 생태적 수질정화 투수조절 시스템
CN114772739A (zh) 沙滩地的河流水质改善与生态修复方法
KR100444972B1 (ko) 생태공원으로 활용가능한 점.비점 오염원 처리용 다단계셀인공습지 시스템 및 오염원 처리 방법
CN107190832A (zh) 一种农村生活污水排放口的改造方法
KR100746245B1 (ko) 생태적수질정화미디어 및 이를 갖는 수제 배석형 시스템
CN109252487B (zh) 一种用于生态恢复和防护的工字坝及其生态工法
CN116332346A (zh) 适用于小微水体之间连通净化水质的砾石基质生态排水沟
CN214883415U (zh) 基于既有直立式挡墙的景观栈道型生态护岸结构
CN105130090A (zh) 一种河流沟渠污水生态强化自净方法
CN108483797A (zh) 污染河流修复与维护系统
KR100515189B1 (ko) 도심지 하천설비와 도심지 하천 복원 공법
CN210103671U (zh) 一种用于河道排污口的生态围挡装置
CN211141814U (zh) 一种堤岸式河道修复系统
KR101350359B1 (ko) 자연형 어도 여울을 갖는 생태하천 및 그 조성방법
CN112047481A (zh) 一种河道人工湿地

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137021999

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14112925

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879372

Country of ref document: EP

Kind code of ref document: A1