WO2013191177A1 - 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子 - Google Patents

環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子 Download PDF

Info

Publication number
WO2013191177A1
WO2013191177A1 PCT/JP2013/066739 JP2013066739W WO2013191177A1 WO 2013191177 A1 WO2013191177 A1 WO 2013191177A1 JP 2013066739 W JP2013066739 W JP 2013066739W WO 2013191177 A1 WO2013191177 A1 WO 2013191177A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
fluorine atom
aromatic
independently
Prior art date
Application number
PCT/JP2013/066739
Other languages
English (en)
French (fr)
Inventor
内田 直樹
田中 剛
陽子 本間
尚志 飯田
桂甫 野村
恵理子 太田
華奈 藤田
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to KR1020147029251A priority Critical patent/KR102148539B1/ko
Priority to CN201380030110.6A priority patent/CN104507927A/zh
Publication of WO2013191177A1 publication Critical patent/WO2013191177A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a cyclic azine compound having a carbazolyl group substituted with a nitrogen-containing heteroaryl group useful as a component of an organic electroluminescent element, a method for producing the same, and an organic electroluminescent element containing the same.
  • An organic electroluminescent element has a basic structure in which a light-emitting layer containing a light-emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to the outside of the light-emitting layer.
  • This element utilizes light emission (fluorescence or phosphorescence) accompanying exciton deactivation caused by recombination of holes and electrons, and is applied to displays and the like.
  • the hole transport layer is divided into a hole transport layer and a hole injection layer, the light emitting layer is divided into an electron blocking layer, a light emitting layer and a hole blocking layer, and the electron transport layer is divided into an electron transport layer and an electron injection layer. May be configured.
  • Organic electroluminescence devices have begun to be used in various display devices, but further improvements in device performance are required, such as longer life, higher luminous efficiency, and lower drive voltage. More specifically, development of a carrier transport material that achieves a long life, high luminous efficiency, and low driving voltage is required.
  • a carrier transport material that achieves a long life, high luminous efficiency, and low driving voltage is required.
  • an electron injection material and an electron transport material there is a demand for a new material that can drive an element at a low voltage due to excellent electron injectability and electron transport characteristics, has high light emission efficiency, and can drive the element for a long time.
  • An object of the present invention is to provide an electron injecting material and an electron transporting material for achieving long life, high luminous efficiency, and low driving voltage.
  • the present inventors have included a nitrogen-containing heteroaryl group on the carbazolyl group in a cyclic azine compound substituted with a carbazolyl group via a conventionally known arylene group. It has been found that the electron injecting property and the electron transporting property of the cyclic azine compound are remarkably improved by providing the substituent. Further, when such a compound (cyclic azine compound represented by the general formula (1) of the present invention) is used as an electron transport layer in an organic electroluminescence device, compared to the case where a known or general-purpose electron transport material is used. Thus, the present inventors have found that the organic electroluminescent device driving voltage is significantly reduced, the luminous efficiency is improved, and the organic electroluminescent device has a long life, and the present invention has been completed.
  • cyclic azine compound (1) a cyclic azine compound represented by the following general formula (1) (hereinafter referred to as “cyclic azine compound (1)”), a production method thereof, and an organic electroluminescent device containing the same. is there.
  • Cz is an (n + 1) -valent carbazole group or an (n + 1) -valent carboline group (these groups are each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an aromatic hydrocarbon having 6 to 18 carbon atoms).
  • Ar 1 and Ar 2 are each independently an aromatic hydrocarbon group having 6 to 30 carbon atoms (each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms) And an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an aromatic group having 3 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms may be used as a substituent.
  • Ar 3 is an arylene group having 6 to 30 carbon atoms (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or carbon An aromatic group having 3 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms may be substituted).
  • Ar 4 each independently represents a nitrogen-containing heteroaryl group having 3 to 30 carbon atoms (each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, a fluorine atom) An aromatic group having 3 to 18 carbon atoms, or an aromatic group having 3 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms), or a general formula (A) The substituent shown by is represented.
  • Y and Z each independently represent a nitrogen atom or CH. However, at least one of Y and Z is a nitrogen atom.
  • n represents an integer of 1 to [the maximum number of bonds -1 that can be formed on Cz-1].
  • Ar 5 is each independently an (m + 1) -valent aryl group having 6 to 30 carbon atoms (each independently having a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an optionally substituted fluorine atom having 3 carbon atoms). Or an aromatic group having 3 to 18 carbon atoms, which may be substituted by an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms, may be substituted.
  • Ar 6 is each independently a nitrogen-containing heteroaryl group having 3 to 30 carbon atoms (each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, a fluorine atom Or an aromatic group having 3 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms may be used as a substituent.
  • Each m independently represents an integer of 1 to [the maximum number of bonds that can be formed on Ar 5 ⁇ 1].
  • the organic electroluminescence device can be driven at a lower voltage, has a higher luminous efficiency, and has a longer life than an organic electroluminescence device using a conventionally known electron transport material. Can be provided.
  • FIG. 46 is a schematic cross-sectional view of a single-layer element manufactured in Example-45.
  • FIG. 46 is a schematic cross-sectional view of a single-layer element manufactured in Example-50 or the like.
  • the present invention relates to the above cyclic azine compound (1), a method for producing the same, and an organic electroluminescent device containing the same.
  • the cyclic azine compound (1) of the present invention is a cyclic azine compound represented by the following general formula (B), (C), or (D) in that the performance as a material for an organic electroluminescent element is good. It is preferable.
  • the substituents in the cyclic azine compound (1) of the present invention are defined as follows, respectively.
  • the alkyl group having 1 to 4 carbon atoms is not particularly limited, and examples thereof include a methyl group, a trifluoromethyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, A tert-butyl group may be mentioned.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a biphenylyl group, a naphthyl group, an anthryl group, a pyrenyl group, a terphenyl group, a phenanthryl group, a perylenyl group, or A triphenylenyl group etc. can be mentioned.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms having a fluorine atom is not particularly limited, and examples thereof include 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,3- Difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl group, 3,5-difluorophenyl group, 2,3,4- Trifluorophenyl group, 2,3,5-trifluorophenyl group, 2,3,6-trifluorophenyl group, 2,4,5-trifluorophenyl group, 2,4,6-trifluorophenyl group, 3 , 4,5-trifluorophenyl group, 2,3,4,5-tetrafluorophenyl group, 2,3,4,6-tetrafluorophenyl group, 2,3,5,6- Trifluoropheny
  • the above-described alkyl group having 1 to 4 carbon atoms is the same aromatic hydrocarbon having 6 to 18 carbon atoms as described above.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a biphenylyl group, a naphthyl group, an anthryl group, a pyrenyl group, a terphenyl group, a phenanthryl group, a perenylenyl group, and a triphenylenyl group. Groups and the like.
  • the aromatic group having 3 to 18 carbon atoms is not particularly limited, and examples thereof include furanyl group, benzofuranyl group, dibenzofuranyl group, thienyl group, benzothienyl group, dibenzothienyl group, 2-pyridyl group, 3 -Pyridyl group, 4-pyridyl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 2-pyrazyl group, 4-pyrazyl group, 5-pyrazyl group, 2-quinolyl group, 3-quinolyl group, 4 -Quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7 -Isoquinolyl group, 8-isoquinolyl group, 9-acridyl group, 2-thi
  • the aromatic group having 3 to 18 carbon atoms having a fluorine atom is not particularly limited, and examples thereof include a fluorofuranyl group, a fluorobenzofuranyl group, a fluorodibenzofuranyl group, a fluorothienyl group, and a fluorobenzothienyl.
  • the above-described alkyl group having 1 to 4 carbon atoms is substituted on the above-described aromatic group having 3 to 18 carbon atoms.
  • methylfuranyl group methylbenzofuranyl group, methyldibenzofuranyl group, methylthienyl group, methylbenzothienyl group, methyldibenzothienyl group, 3-methyl-2-pyridyl group Group, 4-methyl-2-pyridyl group, 5-methyl-2-pyridyl group, 6-methyl-2-pyridyl group, 2-methyl-3-pyridyl group, 4-methyl-3-pyridyl group, 5-methyl -3-pyridyl group, 6-methyl-3-pyridyl group, 2-methyl-4-pyridyl group, 3-methyl-4-pyridyl group, 3,4-dimethyl-2-pyridyl group, 3,5-dimethyl- -Pyridyl group, 3,6-dimethyl-2-pyridyl group, 2,4-dimethyl-3-pyridyl group, 2,5-dimethyl-3-pyridyl group, 2,6-dimethyl-3-
  • the arylene group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a phenylene group, a biphenylylene group, a naphthalene diyl group, an anthracenediyl group, a pyrenediyl group, a terphenylylene group, a phenanthracenediyl group, a perylene diyl group, A triphenylenediyl group etc. can be mentioned.
  • the nitrogen-containing heteroaryl group having 3 to 30 carbon atoms is not particularly limited, and examples thereof include 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-pyrimidyl group, 4-pyrimidyl group, 5 -Pyrimidyl group, 2-pyrazyl group, 4-pyrazyl group, 5-pyrazyl group, 2-quinolyl group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8 -Quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 9-acridyl group, 2-benzothiazolyl group, 4 -Benzothiazolyl group, 5-benzothiazolyl group, 6-benzothiazolyl group, 7-benzo
  • the (m + 1) -valent aryl group having 6 to 30 carbon atoms (where m is an integer from 1 to [the maximum number of bonds that can be formed on Ar 5 ⁇ 1]) is not particularly limited Examples thereof include an arylene group having 6 to 30 carbon atoms, an aryltriyl group having 6 to 30 carbon atoms, and an aryltetrayl group having 6 to 30 carbon atoms.
  • Ar 5- (Ar 6 ) m represents that m Ar 6 substituents are bonded to Ar 5 . That is, although not particularly limited, for example, when Ar 5 is a phenylene group, m represents an integer of 1 to 5. In addition, m is preferably 1 or 2 and more preferably 1 in terms of good performance as a material for an organic electroluminescent element.
  • Examples of the arylene group having 6 to 30 carbon atoms include the same substituents as the specific examples represented by the arylene group having 6 to 30 carbon atoms.
  • the aryltriyl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include benzenetriyl group, biphenyltriyl group, naphthalenetriyl group, anthracentriyl group, pyrenetriyl group, and terphenyl.
  • a triyl group, a phenanthracenyl group, a perylenetriyl group, a triphenylenetriyl group, and the like can be given.
  • the aryltetrayl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a benzenetetrayl group, a biphenyltetrayl group, a naphthalenetetrayl group, an anthracenetetrayl group, and a pyrenetetrayl group.
  • (N + 1) -valent carbazole group in Cz (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms having a fluorine atom, Or an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms as a substituent), but is not particularly limited.
  • (N + 1) -valent carboline group in Cz (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms having a fluorine atom, Or an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms may be used as a substituent), but is not particularly limited, but includes a carboline diyl group, carboline tri Yl group, carboline tetrayl group and the like.
  • N represents an integer of 1 to [the maximum number of bonds that can be formed on Cz-1], and in the cyclic azine compound (1), Cz- (Ar 4 ) n represents n Ar 4 substituents represented by Cz Indicates that it is bound to.
  • n is preferably 1, 2, or 3, more preferably 1 or 2, and even more preferably 1 in terms of good performance as a material for an organic electroluminescent element.
  • Cz is not particularly limited, and examples thereof include carbazole-1,9-diyl group, carbazole-2,9-diyl group, carbazole-1,3-diyl group, carbazole-2,7-diyl group, N-phenylcarbazole-2,7-diyl group, N-phenylcarbazole-3,6-diyl group, ⁇ -carboline-2,9-diyl group, ⁇ -carboline-3,9-diyl group, ⁇ -carboline- 4,9-diyl group, ⁇ -carboline-5,9-diyl group, ⁇ -carboline-6,9-diyl group, ⁇ -carboline-7,9-diyl group, ⁇ -carboline-8,9-diyl group , ⁇ -carboline-1,9-diyl group, ⁇ -carboline-3,9-diyl group, ⁇ -carboline-4,
  • Cz is a carbazole-2,9-diyl group, carbazole-3,9-diyl group, carbazole-4,9-diyl group, carbazole-3,6-, because it has good performance as a material for an organic electroluminescent device.
  • Ar 1 or Ar 2 is not particularly limited, but each independently includes, for example, a phenyl group, a biphenylyl group, a naphthyl group, an anthryl group, a pyrenyl group, a terphenyl group, Phenanthryl group, perylenyl group, triphenylenyl group, methylphenyl group, methylbiphenylyl group, methylnaphthyl group, methylanthryl group, methylterphenyl group, methylphenanthryl group, methylperenylenyl group, methyltriphenylenyl group, fluorophenyl group , Fluorobiphenylyl group, fluoronaphthyl group, fluoroanthryl group, fluoroterphenyl group, fluorophenanthryl group, fluoroperenylenyl group, fluorotriphenylenyl group and
  • Ar 1 and Ar 2 are each independently a phenyl group, a biphenylyl group, a naphthyl group, an anthryl group, a pyrenyl group, a terphenyl group, or a phenanthryl group (these are those that have good performance as a material for an organic electroluminescent device.
  • the group is a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an alkyl group having 1 to 4 carbon atoms.
  • a substituted aromatic group having 3 to 18 carbon atoms may be used as a substituent, and each independently represents a phenyl group, a naphthyl group or a biphenylyl group (these groups are a fluorine atom, a carbon atom, An alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an alkyl group having 1 to 4 carbon atoms substituted with 3 to 18 carbon atoms.
  • Replace aromatic group More preferably to also be) have a, each independently, a phenyl group, methylphenyl group, more preferably a naphthyl group, or a biphenylyl group.
  • phenyl group, biphenylyl group, naphthyl group, anthryl group, pyrenyl group, terphenyl group, or phenanthryl group (these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms) Group, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an aromatic group having 3 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms may be used as a substituent.
  • substituents include, but are not particularly limited to, for example, phenyl group, biphenylyl group, naphthyl group, anthryl group, pyrenyl group, terphenyl group, phenanthryl group, perylenyl group, methylphenyl group, methylbiphenylyl group, Methyl naphthyl group, methyl anthryl group, methyl terphenyl group, methyl phenanthryl group, methyl perylenyl group, fluorophenyl group, Orobifeniriru group, fluoro naphthyl group, fluoro anthryl group, fluorophenyl terphenyl group, fluoro phenanthryl group, and a fluoro peri Les sulfonyl group.
  • phenyl group or biphenylyl group (these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom) Or an aromatic group having 3 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms as a substituent) is not particularly limited, And phenyl group, biphenylyl group, methylphenyl group, methylbiphenylyl group, fluorophenyl group, fluorobiphenylyl group and the like.
  • Ar 3 is not particularly limited.
  • phenylene group, biphenylylene group, naphthalene diyl group, anthracenediyl group, pyrenediyl group, terphenylylene group, fluorophenylene group, fluorophenyl biphenyl examples thereof include a rylene group, a fluoronaphthalene dil group, a phenyl phenylene group, a phenyl biphenylylene group, a phenyl naphthalene dil group, a naphthyl phenylene group, a naphthyl biphenylylene group, and a naphthyl naphthalene dil group.
  • Ar 3 is a phenylene group or a biphenylylene group (these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms) in terms of good performance as a material for an organic electroluminescent device. Or an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an aromatic group having 3 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, as a substituent.
  • each independently, a phenylene group, a biphenylylene group, or a fluorophenylene group is more preferable.
  • phenylene group or biphenylylene group (however, these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom) Or an aromatic group having 3 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms as a substituent) is not particularly limited, Phenylene group, biphenylylene group, naphthalene dil group, terphenylylene group, fluorophenylene group, fluoro naphthalene dil group, phenylphenylene group, phenyl naphthalene dil group, naphthyl phenylene group, naphthyl naphthalene dil group and the like.
  • Ar 5 is not particularly limited.
  • benzenetriyl group methylbenzenetriyl group, biphenyltriyl group, naphthalenetriyl group, anthracentriyl group, pyrenetriyl group, terphenyltriyl group, fluorobenzenetriyl Group, fluorophenylbiphenyltriyl group, fluoronaphthalenetriyl group, phenylbiphenyltriyl group, phenylnaphthalenetriyl group, naphthylbenzenetriyl group, naphthylbiphenyltriyl group, naphthylnaphthalenetriyl group, and the like.
  • Ar 5 is a (m + 1) -valent benzene group or a (m + 1) -valent biphenyl group (these groups are each independently a fluorine atom, carbon number 1 in that the performance as an organic electroluminescent device material is good.
  • An alkyl group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an aromatic group having 3 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms Group may be present as a substituent).
  • an (m + 1) -valent benzene group (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or 1 carbon atom)
  • a benzenetriyl group, a methylbenzenetriyl group, a fluorobenzenetriyl group, and a naphthylbenzenetriyl group are preferable, and a benzenetriyl group is more preferable.
  • an (m + 1) -valent biphenyl group (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or 1 carbon atom)
  • a biphenyltriyl group, a terphenyltriyl group, a fluorophenylbiphenyltriyl group, and a naphthylbiphenyltriyl group are preferable, and a biphenyltriyl group is more preferable.
  • a nitrogen-containing heteroaryl group having 3 to 30 carbon atoms represented by Ar 4 and Ar 6 (each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or 3 to 18 carbon atoms) Or a C 3-18 aromatic group substituted with a C 1-4 alkyl group having a fluorine atom, or a C 3-18 aromatic group substituted with a C 1-4 alkyl group as a substituent.
  • substituent represented by is not particularly limited, for example, each independently, pyridyl group, pyrimidyl group, pyrazyl group, quinolyl group, isoquinolyl group, acridyl group, thiazolyl group, benzothiazolyl group, quinazolyl group Quinoxalyl group, naphthyridyl group, thiantenyl group, indolizyl group, azaindolidyl group, fluoropyridyl group, fluoropyrimidyl group, fluoropyrazyl group, full Loquinolyl group, fluoroisoquinolyl group, fluoroacridyl group, fluorothiazolyl group, fluorobenzothiazolyl group, fluoroquinazolyl group, fluoroquinoxalyl group, fluoronaphthylidyl group, fluorothiantenyl group, Fluoroindolidyl group, fluoroazaind
  • Ar 4 and Ar 6 are each independently a nitrogen-containing heteroaryl group having 3 to 30 carbon atoms consisting of carbon, hydrogen, and nitrogen (independently from the viewpoint of good performance as a material for an organic electroluminescent device.
  • An aromatic group having 3 to 18 carbon atoms as a substituent), or a nitrogen-containing heteroaryl group having 3 to 30 carbon atoms composed of only carbon, hydrogen, nitrogen, and sulfur (each independently fluorine 3 carbon atoms substituted by an atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an alkyl group having 1 to 4 carbon atoms To 18 aromatic groups as substituents). It is preferable.
  • An aromatic group having 18 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an aromatic group having 3 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms may be used as a substituent. ) Is more preferable.
  • Ar 4 and Ar 6 are each independently a pyridyl group, a pyrimidyl group, a quinolyl group, an isoquinolyl group, a pyridylphenyl group, or a compound that is easy to synthesize and has good performance as a material for an organic electroluminescent device.
  • phenyl group (these groups are each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, or a carbon number having a fluorine atom)
  • An aromatic group having 3 to 18 carbon atoms or an aromatic group having 3 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms may be preferably used as a substituent.
  • a pyridyl group, a pyrimidyl group, a quinolyl group, an isoquinolyl group, a pyridylphenyl group, or a 1- (3,5-dipyridyl) phenyl group is more preferable, and a pyridyl group is still more preferable.
  • the aforementioned nitrogen-containing heteroaryl group having 3 to 30 carbon atoms (only having a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, or a fluorine atom) consisting of only carbon, hydrogen, and nitrogen
  • a nitrogen-containing heteroaryl group having 3 to 30 carbon atoms (only a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 3 to 18 carbon atoms, an aromatic group having 3 to 18 carbon atoms having a fluorine atom)
  • a substituent represented by a group or an aromatic group having 3 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms) is not particularly limited, For example, pyridyl group,
  • substituents include, but are not limited to, for example, pyridyl group, pyrimidyl group, pyrazyl group, quinolyl group, isoquinolyl group, fluoropyridyl group, fluoropyrimidyl group, fluoropyrazyl group, fluoroquinolyl group , Fluoroisoquinolyl group, methylpyridyl group, methylpyrimidyl group, methylpyrazyl group, methylquinolyl group, methylisoquinolyl group, phenylpyridyl group, phenylpyrimidi Group, phenylpyrazyl group, phenylquinolyl group, phenylisoquinolyl group, pyridylphenyl group, 1- (3,5-dipyridyl) phenyl group, pyrimidylphenyl group, pyrazylphenyl group, quinolylphenyl group, An isoquinolylpheny
  • Y and Z each independently represent a nitrogen atom or CH. However, at least one of Y and Z is a nitrogen atom. Y and Z are preferably nitrogen atoms, or Y is CH and Z is a nitrogen atom in terms of good performance as a material for an organic electroluminescent element.
  • any hydrogen atom in the cyclic azine compound (1) of the present invention may be substituted with a deuterium atom.
  • the cyclic azine compound (1) of the present invention is prepared by the following reaction formula (1), reaction formula (2), reaction formula (3), or reaction formula in the presence of a metal catalyst or a base and a metal catalyst. It can be produced by the method shown in (4).
  • the compound represented by the general formula (2) is referred to as a compound (2).
  • X 1, X 2, X 3 , and examples of the leaving group represented by X 4 is not particularly limited, for example, a chlorine atom, a bromine atom, and an triflate or iodine atom.
  • a bromine atom or a chlorine atom is preferable in that the reaction yield is good.
  • the leaving group represented by M is not particularly limited, but for example, a chlorine atom, a bromine atom, a triflate, an iodine atom, a metal-containing group (for example, Li, Na, MgCl, MgBr, MgI, CuCl, CuBr, CuI, AlCl 2 , AlBr 2 , Al (Me) 2 , Al (Et) 2 , Al ( i Bu) 2 , Sn (Me) 3 , Sn (Bu) 3 , SnF 3 , ZnR 3 (R 3 is , Etc.), Si (R 4 ) 3 , BF 3 K, B (OR 1 ) 2 , B (OR 2 ) 3 and the like.
  • a metal-containing group for example, Li, Na, MgCl, MgBr, MgI, CuCl, CuBr, CuI, AlCl 2 , AlBr 2 , Al (Me) 2 , Al (Et
  • Examples of the metal-containing group represented by M include B (OR 1 ) 2 , B (OR 2 ) 3 , ZnR 3 , Si (R 4 ) 3, etc.
  • Examples of ZnR 3 include ZnCl, ZnBr, and ZnI. Can be illustrated.
  • ligands such as ethers and amines may be coordinated with these metal-containing groups, and the type of ligand is not limited as long as it does not inhibit the reaction formula (1). Absent.
  • Si (R 4 ) 3 examples include SiMe 3 , SiPh 3 , SiMePh 2 , SiCl 3 , SiF 3 , Si (OMe) 3 , Si (OEt) 3 , and Si (OMe) 2 OH.
  • B (OR 1 ) 2 examples include B (OH) 2 , B (OMe) 2 , B (O i Pr) 2 , B (OBu) 2 , and B (OPh) 2 .
  • B (OR 1 ) 2 in the case where two R 1 are combined to form a ring containing an oxygen atom and a boron atom can be exemplified by the following (I) to (VII):
  • the compound represented by (II) is preferable in that the yield is good.
  • Examples of B (OR 2 ) 3 include those represented by the following (I) to (III).
  • the cyclic azine compound (1) of the present invention is prepared by reacting the compound (2) and the compound in the presence of a metal catalyst or in the presence of a base and a metal catalyst. (3), or compound (6) and compound (7) can be synthesized by carrying out a coupling reaction as described in each reaction formula.
  • a metal catalyst is a palladium catalyst or a copper catalyst in the reaction of Reaction Formula (1) and Reaction Formula (3) in that the efficiency of the coupling reaction is excellent.
  • reaction of Reaction formula (1) and Reaction formula (3) it is also possible to react by adding a base, and it is preferable to add a base from the point which the reaction yield improves.
  • M is a chlorine atom, bromine atom, triflate, iodine atom, B (OR 1 ) 2 or Si (R 4 ) 3 , it is essential to add a base.
  • the cyclic azine compound (1) of the present invention is compound (4) in the presence of a metal catalyst or in the presence of a base and a metal catalyst.
  • compound (5), or compound (8) and compound (9) can be synthesized by performing a coupling reaction as described in each reaction formula.
  • the metal catalyst is preferably a palladium catalyst or a nickel catalyst in that the efficiency of the coupling reaction is excellent.
  • reaction of Reaction formula (2) and Reaction formula (4) it is also possible to react by adding a base, and it is preferable to add a base from the point which the reaction yield improves.
  • M is a chlorine atom, bromine atom, triflate, iodine atom, B (OR 1 ) 2 or Si (R 4 ) 3 , it is essential to add a base.
  • a phase transfer catalyst may be added in the reactions of the reaction formulas (1) to (4).
  • the phase transfer catalyst is not particularly limited. For example, 18-crown-6-ether or the like can be used. The amount added is an arbitrary amount within a range that does not significantly inhibit the reaction.
  • the metal catalyst used in the reactions of the reaction formulas (1) to (4) is not particularly limited, and examples thereof include a palladium catalyst, a copper catalyst, and a nickel catalyst. Although it does not specifically limit as a palladium catalyst, For example, salts, such as palladium chloride, palladium acetate, trifluoroacetate palladium, palladium nitrate, can be illustrated.
  • ⁇ -allyl palladium chloride dimer palladium acetylacetonato, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert -Butyl) phosphine palladium, dichloro (1,1'-bis (diphenylphosphino) ferrocene) palladium and the like.
  • a palladium complex having a tertiary phosphine as a ligand such as dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert-butyl) phosphinepalladium, is preferable in terms of high yield, and is available. In terms of ease, tri (tert-butyl) phosphine palladium is more preferable.
  • the copper catalyst is not particularly limited, and examples thereof include copper chloride, copper bromide, copper iodide, copper oxide, and copper triflate. Among these, copper oxide and copper iodide are preferable from the viewpoint of excellent coupling reaction efficiency and the like, and copper oxide is more preferable from the viewpoint of easy availability.
  • the nickel catalyst is not particularly limited.
  • nickel chloride nickel bromide, nickel chloride hydrate, dichloro (dimethoxyethane) nickel, dichloro [1,2-bis (diphenylphosphino) ethane] nickel
  • Dichloro [1,3-bis (diphenylphosphino) propane] nickel
  • dichloro 1,4-bis (diphenylphosphino) butane] nickel
  • dichloro 1,1′-bis (diphenylphosphino) ferrocene] nickel
  • the four include nickel complexes having tertiary phosphine as a ligand) and dichloro (N, N, N ′, N′-tetramethylethylenediamine) nickel.
  • dichloro (dimethoxyethane) nickel, dichloro [1,4-bis (diphenylphosphino) butane] nickel, dichloro (N, N, N ′, N′-tetramethylethylenediamine) nickel are effective in coupling reaction, etc. Is preferable from the viewpoint of superiority, and dichloro [dimethoxyethane) nickel and dichloro [1,4-bis (diphenylphosphino) butane] nickel are more preferable from the viewpoint of availability.
  • tertiary phosphine is added to palladium salt, nickel salt or their complex compounds.
  • the preparation can be performed separately from the reaction and then added to the reaction system, or can be performed in the reaction system.
  • the tertiary phosphine is not particularly limited.
  • triphenylphosphine trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl -4,5-bis (diphenylphosphino) xanthene, 2- (diphenylphosphino) -2 '-(N, N-dimethylamino) biphenyl, 2- (di-tert-butylphosphino) biphenyl, 2- ( Dicyclohexylphosphino) biphenyl, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,1'-bis (diphenylphos Fino)
  • (tert-butyl) phosphine or 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl is preferred because it is readily available and yields are good.
  • the addition amount of the tertiary phosphine is 1 mol of palladium salt, nickel salt or complex thereof (in terms of palladium or nickel atom).
  • the amount is preferably 0.1 to 10 times mol, and more preferably 0.3 to 5 times mol in terms of good yield.
  • a ligand separately to said copper catalyst.
  • the ligand added to the copper catalyst is not particularly limited.
  • 2,2′-bipyridine, 1,10-phenanthroline, N, N, N ′, N′-tetramethylethylenediamine, triphenyl Examples include phosphine, 2- (dicyclohexylphosphino) biphenyl, and the like. Of these, 1,10-phenanthroline is preferred because it is readily available and yields are good.
  • the base that can be used in the reactions of the reaction formulas (1) to (4) is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, and cesium carbonate. , Potassium acetate, sodium acetate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, cesium fluoride and the like. Among these, potassium carbonate, potassium phosphate, or sodium hydroxide is preferable in terms of a good yield.
  • reaction formulas (1) to (4) are preferably carried out in a solvent.
  • the solvent include, but are not limited to, water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, toluene, benzene, diethyl ether, 1,4-dioxane, ethanol, butanol, xylene, and the like. You may use it combining suitably.
  • a mixed solvent of 1,4-dioxane, xylene, toluene and butanol or a mixed solvent of xylene and butanol is preferable in terms of a good yield.
  • the purity of the cyclic azine compound (1) of the present invention can be increased by carrying out treatments such as reprecipitation, concentration, filtration, and purification after completion of the reactions of the reaction formulas (1) to (4).
  • purification by recrystallization, silica gel column chromatography, sublimation, or the like may be performed as necessary.
  • the compound (2) can be produced, for example, using the method disclosed in Hiroshi Yamanaka, “New edition of heterocyclic compounds”, Kodansha, 2004. Arbitrary hydrogen atoms in compound (2) may be substituted with deuterium atoms.
  • the compound (3) is not particularly limited, but for example, the following 3-1 to 3-17 (each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or a carbon atom having 6 to 18 carbon atoms)
  • substituents are the same as those described above.).
  • Compound (3) is, for example, J.I. Tsuji, "Palladium Reagents and Catalysts", John Wiley & Sons, 2004, Journal of Organic Chemistry, 60, 7508-7510, 1995, Journal of Organic, 16th. 10, 941-944, 2008, or Chemistry of Materials, 20, 5951-5953, 2008.
  • any hydrogen atom in compound (3) may be substituted with a deuterium atom.
  • the amount of the palladium catalyst used in the reaction formula (1) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (2) in terms of good yield. It is preferably a double mole (in terms of palladium atom).
  • the amount of the base used in the reaction formula (1) is not particularly limited, but is preferably 1 to 10 times mol per mol of the compound (3), and 1 to 3 in terms of good yield. More preferably, it is a double mole.
  • There is no particular limitation on the molar ratio of the compound (2) and the compound (3) used in the reaction formula (1) but it is preferably 0.2 to 5 times mol per mol of the compound (2). From the viewpoint of good yield, it is more preferably 1 to 3 moles.
  • Compound (4) can be produced, for example, according to the method shown in Synthesis Example-1 in the Examples.
  • any hydrogen atom in the compound (4) may be substituted with a deuterium atom.
  • the compound (5) is not particularly limited, but for example, the following 5-1 to 5-15 (each independently, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or a group having 3 to 18 carbon atoms)
  • An aromatic group, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an aromatic group having 3 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms may be used as a substituent.
  • the compound of can be illustrated.
  • M has the same definition as M in the general formula (5).
  • Compound (5) is described in, for example, J. Org. Tsuji, "Palladium Reagents and Catalysts", John Wiley & Sons, 2004, Journal of Organic Chemistry, 60, 7508-7510, 1995, Journal of Organic, 16th. 10, 941-944, 2008, or Chemistry of Materials, 20, 5951-5953, 2008.
  • any hydrogen atom in the compound (5) may be substituted with a deuterium atom.
  • Reaction formula (2) is a method for producing the cyclic azine compound (1) of the present invention by reacting the compound (4) with the compound (5) in the presence of a palladium catalyst in the presence of a base. Yes, by applying the reaction conditions of the Suzuki-Miyaura reaction, the target product can be obtained in good yield.
  • the amount of the palladium catalyst used in the reaction formula (2) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (5) in terms of good yield. It is preferable that it is a double mole (palladium atom conversion).
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times mol for 1 mol of compound (5), and 1 to 3 times mol for a good yield. Is more preferable.
  • the molar ratio of the compound (4) and the compound (5) used in the reaction formula (2) is preferably 0.2 to 5 times moles with respect to 1 mole of the compound (2). More preferably, the molar ratio is 0.3 to 3 times in terms of good yield.
  • Compound (6) can be produced, for example, according to the method shown in Synthesis Example-2 in the Examples.
  • any hydrogen atom in the compound (6) may be substituted with a deuterium atom.
  • the compound (7) is not particularly limited, but for example, the following 7-1 to 7-21 (each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or a group having 3 to 18 carbon atoms)
  • An aromatic group, an aromatic group having 3 to 18 carbon atoms having a fluorine atom, or an aromatic group having 3 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms may be used as a substituent.
  • the compound of can be illustrated.
  • X 3 has the same definition as X 3 in the general formula (7).
  • Reaction formula (3) is a method of obtaining the cyclic azine compound (1) of the present invention by reacting the compound (6) with the compound (7) in the presence of a palladium catalyst and a base. be able to.
  • the amount of the palladium catalyst used in the reaction formula (3) is not particularly limited as long as it is a so-called catalyst amount, but is 0.01 to 0.1 to 1 mol of the compound (6) in terms of a good yield.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times mol and more preferably 1 to 3 times mol for 1 mol of the compound (6).
  • reaction formula (3) a phase transfer catalyst represented by 18-crown-6-ether may be added.
  • the reaction of reaction formula (3) is preferably carried out in a solvent in terms of good yield.
  • Compound (8) can be produced, for example, according to the method shown in Synthesis Example 1 in the Examples.
  • any hydrogen atom in compound (8) may be substituted with a deuterium atom.
  • the compound (9) is not particularly limited.
  • the compound (9) includes the following 9-1 to 9-12 (each independently a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 6 to 18 carbon atoms).
  • An aromatic hydrocarbon group an aromatic hydrocarbon group having 6 to 18 carbon atoms having a fluorine atom, an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted by an alkyl group having 1 to 4 carbon atoms, and 3 to 18 carbon atoms Or a C 3-18 aromatic group substituted with an alkyl group having 1 to 4 carbon atoms or a C 3-18 aromatic group having a fluorine atom.
  • substituents are the same as those described above.).
  • X 4 has the same definition as X 4 in the general formula (7).
  • Compound (9) is described in, for example, J. Org. Tsuji, "Palladium Reagents and Catalysts", John Wiley & Sons, 2004, Journal of Organic Chemistry, 60, 7508-7510, 1995, Journal of Organic, 16th. 10, 941-944, 2008, or Chemistry of Materials, 20, 5951-5953, 2008.
  • any hydrogen atom in the compound (9) may be substituted with a deuterium atom.
  • Reaction formula (4) is a method for producing the cyclic azine compound (1) of the present invention by reacting compound (8) with compound (9) in the presence of a palladium catalyst, optionally in the presence of a base. Yes, by applying the reaction conditions of the Suzuki-Miyaura reaction, the target product can be obtained in high yield.
  • the amount of the palladium catalyst used in the reaction formula (4) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (9) in terms of a good yield. It is preferably a double mole (in terms of palladium atom).
  • the amount of the base used is not particularly limited, but it is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (9), and 1 to 3 times by mole in terms of good yield. Is more preferable.
  • the molar ratio of the compound (8) and the compound (9) used in the reaction formula (4) is preferably 0.2 to 5 times mol per mol of the compound (8). More preferably, it is 0.3 to 3 moles in terms of good yield.
  • the film-forming by a vacuum evaporation method can be mentioned as a preferable example.
  • Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus.
  • the vacuum degree of the vacuum chamber when forming a film by the vacuum evaporation method is a diffusion pump and a turbo molecular pump that are generally used in that the production tact time in the production of the organic electroluminescent device is short and the production cost is superior. It is preferably about 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 6 Pa that can be reached by a cryopump or the like. Further, the deposition rate is preferably 0.005 to 10 nm / second depending on the thickness of the film to be formed.
  • a thin film for an organic electroluminescence device comprising the 1,3,5-triazine compound (1) can also be produced by a solution coating method.
  • the cyclic azine compound (1) is dissolved in an organic solvent such as chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate or tetrahydrofuran, and a spin coating method, an inkjet method, a cast using a general-purpose apparatus. Film formation by a method, a dip method or the like is also possible.
  • Example 1 Under an argon stream, 2- (3-bromophenyl) -4,6-diphenyl-1,3,5-triazine (500 mg), 3- [4- (2-pyridyl) phenyl] carbazole (606 mg), palladium acetate ( 7.0 mg), 1M-tri (tert-butyl) phosphine in toluene (94 ⁇ L), potassium carbonate (431 mg), and 18-crown-6-ether (82.5 mg) suspended in xylene (7.8 mL). It became cloudy and heated to reflux for 4 hours. The reaction mixture was allowed to cool and water was added.
  • Example-2 Under an argon stream, 2- (4-bromophenyl) -4,6-diphenyl-1,3,5-triazine (700 mg), 3- [4- (2-pyridyl) phenyl] carbazole (635 mg), palladium acetate ( 8.1 mg), 1M-tri (tert-butyl) phosphine in toluene (108 ⁇ L), potassium carbonate (498 mg), and 18-crown-6 ether (105 mg) were suspended in xylene (9.0 mL). Heated to reflux for 5 hours. The reaction mixture was allowed to cool and water was added.
  • Example-3 Under an argon stream, 2- (5-chlorobiphenyl-3-yl) -4,6-diphenyl-1,3,5-triazine (500 mg), 3- [4- (2-pyridyl) phenyl] carbazole (420 mg) , Palladium acetate (5.3 mg), 1M-tri (tert-butyl) phosphine in toluene (71 ⁇ L), potassium carbonate (329 mg), and 18-crown-6 ether (69 mg) were suspended in xylene (6 mL). The mixture was heated to reflux for 21.5 hours. The reaction mixture was allowed to cool and water was added.
  • Example-4 Under an argon stream, 2- (4′-chlorobiphenyl-4-yl) -4,6-diphenyl-1,3,5-triazine (770 mg), 3- [4- (2-pyridyl) phenyl] carbazole (646 mg) ), Palladium acetate (8.2 mg), 1M-tri (tert-butyl) phosphine in toluene (110 ⁇ L), potassium carbonate (507 mg), and 18-crown-6 ether (97 mg) suspended in xylene (9 mL). It became cloudy and heated to reflux for 4 hours. The reaction mixture was allowed to cool and water was added.
  • Example-5 Under a stream of argon, 2-chloro-9- [4- (4,6-diphenyltriazin-2-yl) phenyl] carbazole (715 mg), 4- (2-pyridyl) phenylboronic acid synthesized in Synthesis Example 1 ( 336 mg), palladium acetate (6.3 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (40 mg), 3M-potassium phosphate aqueous solution (1.3 mL) and 1,4- It was suspended in a mixed solution of dioxane (7 mL) and heated to reflux for 16 hours. The reaction mixture was allowed to cool and water was added.
  • Example-6 Under a stream of argon, 4-chloro-9- [4- (4,6-diphenyltriazin-2-yl) phenyl] carbazole (675 mg), 4- (2-pyridyl) phenylboronic acid (317 mg), palladium acetate (6 0.0 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (38 mg) in a mixed solution of 3M aqueous potassium phosphate (1.1 mL) and 1,4-dioxane (13 mL) And heated to reflux for 18 hours. The reaction mixture was allowed to cool and water was added.
  • Example-7 Under an argon stream, 2- (4-bromophenyl) -4,6-di (biphenyl-4-yl) -1,3,5-triazine (500 mg), 3- [4- (2-pyridyl) phenyl] carbazole (326 mg), palladium acetate (4.2 mg), 1M-tri (tert-butyl) phosphine in toluene (56 ⁇ L), potassium carbonate (256 mg), and 18-crown-6 ether (49 mg) were added to xylene (4. 6 mL) and heated to reflux for 3 hours. The reaction mixture was allowed to cool and water was added.
  • Example-8 Under an argon stream, 2- (3,5-dibromophenyl) -4,6-di (4-methylphenyl) -1,3,5-triazine (1000 mg), 4-methyl-1-naphthaleneboronic acid (486 mg) And tetrakis (triphenylphosphine) palladium (47 mg) were suspended in a mixed solvent of 3M aqueous potassium phosphate (1 mL), THF (8 mL) and ethanol (2 mL), and the mixture was stirred at 40 ° C. for 72 hours. The reaction mixture was allowed to cool, and the precipitated solid was filtered.
  • the obtained solid was washed with water, then with methanol, and then with hexane to obtain 978 mg of a pale yellow solid.
  • the obtained yellowish white solid (950 mg), 3- [4- (2-pyridyl) phenyl] carbazole (602 mg), palladium acetate (7.7 mg), toluene solution of 1M-tri (tert-butyl) phosphine (103 ⁇ L) , Potassium carbonate (473 mg) and 18-crown-6-ether (90 mg) were suspended in xylene (8.6 mL) and heated to reflux for 4.5 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was separated by filtration.
  • Example-9 3- [4- (4,6-diphenyltriazin-2-yl) phenyl] carbazole (650 mg), 3,5-di (2-pyridyl) bromobenzene (469 mg) synthesized in Synthesis Example 2 under an argon stream , Palladium acetate (6.2 mg), 1M-tri (tert-butyl) phosphine in toluene (82 ⁇ L), potassium carbonate (379 mg), and 18-crown-6-ether (72 mg) in xylene (6.9 mL) And heated to reflux for 5.5 hours. The reaction mixture was allowed to cool and water was added.
  • Example-10 Under an argon stream, 2- (4-bromophenyl) -4,6-diphenyl-1,3,5-triazine (660 mg), 3- (2-pyridyl) carbazole (457 mg), palladium acetate (7.6 mg), 1M-tri (tert-butyl) phosphine in toluene (102 ⁇ L), potassium carbonate (470 mg), and 18-crown-6-ether (90 mg) were suspended in xylene (8.5 mL) and heated to reflux for 2 hours. . The reaction mixture was allowed to cool and extracted with chloroform. After the organic layer was distilled off under reduced pressure, methanol was added to precipitate a solid.
  • Example-11 Under an argon stream, 3- [3- (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl] carbazole (1.19 g), 2-bromopyridine (474 mg), copper oxide (36 mg) 1,10-phenanthroline (45 mg), 18-crown-6-ether (132 mg), and potassium carbonate (864 mg) were suspended in xylene (12.5 mL) and heated to reflux for 15 hours. The reaction mixture was allowed to cool and water was added.
  • Example-12 Under an argon stream, 2- [5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) biphenyl] -4,6-diphenyl-1,3,5-triazine ( 1.08 g), 3-bromo-9- (2-pyridyl) carbazole (570 mg), and tetrakis (triphenylphosphine) palladium (102 mg) were suspended in 1,4-dioxane (9.0 mL), and 3M aqueous potassium phosphate solution (1.8 mL) was added, and the mixture was heated to reflux for 27 hours. The reaction mixture was allowed to cool and water was added.
  • Example-13 Under an argon stream, 3- [1-chloro-5- (4,6-diphenyl-1,3,5-triazin-2-yl) -3-yl] -9- (2-pyridyl) carbazole (1.47 g ), 4- (2-pyridyl) phenylboronic acid (597 mg), palladium acetate (11 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (72 mg) were added to xylene (22.
  • Example-14 Under an argon stream, 6- [3-chloro-5- (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl] -9- (2-pyridyl) - ⁇ -carboline (845 mg), 4- (2-pyridyl) phenylboronic acid (873 mg), palladium acetate (9.7 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (61.7 mg) were added to THF ( 30 mL), 3M aqueous potassium carbonate solution (1.5 mL) was added, and the mixture was heated to reflux for 60 hours. The reaction mixture was allowed to cool and water was added.
  • Example-15 3- [3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -5- (4,6-diphenyl-1,3,5-triazine under argon flow -2-yl) phenyl] -9- (2-pyridyl) carbazole (1.98 g), 2-bromopyridine (0.56 g), tetrakis (triphenylphosphine) palladium (101.5 mg), -Suspended in dioxane (15 mL), further added 3M aqueous potassium carbonate solution (3 mL), and heated to reflux for 17 hours. The reaction mixture was allowed to cool and water was added.
  • Example-16 Under an argon stream, 3- [3-chloro-5- (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl] -9-phenyl-6- (2-pyridyl) carbazole (754 mg) , Phenylboronic acid (167 mg), palladium acetate (5.1 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (32.6 mg) were suspended in xylene (9 mL), Further, 3M-potassium carbonate aqueous solution (1.2 mL) was added, and the mixture was heated to reflux for 48 hours. The reaction mixture was allowed to cool and water was added.
  • Example-17 Under an argon stream, 3- [5- (4,6-diphenyl-1,3,5-triazin-2-yl) -biphenyl-3-yl] carbazole (1.50 g), 2-bromopyridine (515 mg), Copper (I) oxide (20 mg), 1,10-phenanthroline (49 mg), 18-crown-6-ether (143 mg) and potassium carbonate (752 mg) were suspended in xylene (14 mL) and heated to reflux for 15 hours. . The reaction mixture was allowed to cool and water was added.
  • Example-18 Under an argon stream, compound (E-1) (1.13 g), 6-bromo-9- (2-pyridyl) - ⁇ -carboline (749 mg), and bis (triphenylphosphine) palladium dichloride (31 mg) , 4-Dioxane (11 mL), 3M aqueous potassium carbonate solution (1.5 mL) was added, and the mixture was heated to reflux for 18 hours. The reaction mixture was allowed to cool and water was added. The precipitated solid was filtered off and washed with water, then methanol, and then hexane.
  • Example-19 Under an argon stream, compound (E-1) (418 mg), 3-chloro-9- (2-pyridyl) - ⁇ -carboline (240 mg), palladium acetate (3.7 mg), and 2-dicyclohexylphosphino-2 ′ , 4 ′, 6′-triisopropylbiphenyl (22.9 mg) is suspended in 1,4-dioxane (4.1 mL), 3M aqueous potassium carbonate solution (0.54 mL) is added, and the mixture is heated under reflux for 2 hours. did. The reaction mixture was allowed to cool and water was added. The precipitated solid was filtered off and washed with water, then methanol, and then hexane.
  • Example-20 Under an argon stream, compound (E-1) (1.02 g), 3-bromo-6-phenyl-9- (2-pyridyl) carbazole (839 g), and bis (triphenylphosphine) palladium dichloride (28 mg) were The suspension was suspended in 1,4-dioxane (10 mL), 3M-potassium carbonate aqueous solution (1.3 mL) was further added, and the mixture was heated to reflux for 5 hours. The reaction mixture was allowed to cool and water was added. The precipitated solid was filtered off and washed with water, then methanol, and then hexane.
  • Example-21 Under an argon stream, compound (E-1) (1.34 g), 6-bromo-3-phenyl-9- (2-pyridyl) - ⁇ -carboline (1.00 g), and bis (triphenylphosphine) palladium dichloride (35.1 mg) was suspended in 1,4-dioxane (16.7 mL), 3M-potassium carbonate aqueous solution (1.8 mL) was further added, and the mixture was heated to reflux for 19 hours. The reaction mixture was allowed to cool and water was added. The precipitated solid was separated by filtration, washed with water, then methanol, and then hexane, and the solvent was distilled off under reduced pressure.
  • Example-22 Under an argon stream, compound (E-1) (701 mg), 6-bromo-9-phenyl-3- (2-pyridyl) - ⁇ -carboline (550 mg), and bis (triphenylphosphine) palladium dichloride (19 mg) were added. The suspension was suspended in 1,4-dioxane (7 mL), 3M aqueous potassium carbonate solution (1 mL) was added, and the mixture was heated to reflux for 40 hours. The reaction mixture was allowed to cool and water was added. The precipitated solid was separated by filtration, washed with water, then methanol, and then hexane, and the solvent was distilled off under reduced pressure.
  • Example-23 Under an argon stream, compound (E-1) (1.02 g), 3-bromo-9-phenyl-6- (2-pyridyl) carbazole (839 g), and bis (triphenylphosphine) palladium dichloride (28 mg) The suspension was suspended in 1,4-dioxane (10 mL), 3M-potassium carbonate aqueous solution (1.3 mL) was further added, and the mixture was heated to reflux for 5 hours. The reaction mixture was allowed to cool and water was added. The precipitated solid was separated by filtration, washed with water, then methanol, and then hexane, and the solvent was distilled off under reduced pressure.
  • Example-24 Under an argon stream, compound (E-1) (1.53 g), 3-bromo-9-phenyl-6- (pyrazinyl) carbazole (1.20 g), and bis (triphenylphosphine) palladium dichloride (42.1 mg) was suspended in 1,4-dioxane (15 mL), 3M-potassium carbonate aqueous solution (2.0 mL) was further added, and the mixture was heated to reflux for 7 hours. The reaction mixture was allowed to cool and water was added. The precipitated solid was separated by filtration, washed with water, then methanol, and then hexane, and the solvent was distilled off under reduced pressure.
  • the obtained solid was purified by silica gel column chromatography (eluent: chloroform), and the target 3- [5- (4,6-diphenyl-1,3,5-triazin-2-yl) biphenyl-3 was obtained.
  • a gray powder yield 1.59 g, yield 75%) of -yl] -9-phenyl-6- (pyrazinyl) carbazole (A-22) was obtained.
  • Example-25 Under an argon stream, the compound (E-2) (628 mg), iodopyrazine (309 mg), copper (I) oxide (7.2 mg), 1,10-phenanthroline (18 mg), 18-crown-6-ether (53 mg) ), Potassium carbonate (276 mg) was suspended in xylene (5.0 mL) and heated to reflux for 18 hours. After allowing the reaction mixture to cool, water and methanol were added.
  • Example-26 Under an argon stream, the compound (E-2) (628 mg), 2-bromopyrimidine (238 mg), copper (I) oxide (7.2 mg), 1,10-phenanthroline (18.0 mg), potassium carbonate (276 mg) , 18-crown-6 (52.9 mg) was suspended in xylene (5.0 mL) and heated at 150 ° C. for 60 hours. The reaction mixture was allowed to cool, methanol was added, and the precipitated solid was collected by filtration.
  • Example-29 N- (2-pyridyl) -3- [3-chloro-5- (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl] carbazole (586 mg), 9 -Phenanthreneboronic acid (267 mg), palladium acetate (2.3 mg), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (9.5 mg) in toluene (20.0 mL) and 1-butanol Suspended in a mixed solvent (0.6 mL), 3M aqueous potassium carbonate solution (0.6 mL) was added, and the mixture was heated to reflux for 5 hours.
  • Example-30 N- (2-pyridyl) -3- [3-chloro-5- (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl] carbazole (586 mg), 9 Anthraceneboronic acid (666 mg), palladium acetate (2.3 mg), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (9.5 mg) in toluene (20.0 mL) and 1-butanol The mixture was suspended in a mixed solvent (0.6 mL), 3M-potassium carbonate aqueous solution (0.6 mL) was added, and the mixture was heated to reflux for 3.5 hours.
  • Example-31 N- (2-pyridyl) -3- [3-chloro-5- (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl] carbazole (586 mg), 4 -Dibenzothiopheneboronic acid (274 mg), palladium acetate (2.3 mg), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (9.5 mg) in toluene (20.0 mL) and 1- The mixture was suspended in a mixed solvent of butanol (0.6 mL), 3M-potassium carbonate aqueous solution (0.6 mL) was added, and the mixture was heated to reflux for 5 hours.
  • Example-32 N- (2-pyridyl) -3- [3-chloro-5- (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl] carbazole (586 mg), 3 -Quinolineboronic acid (346 mg), palladium acetate (2.3 mg), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (9.5 mg) in toluene (20.0 mL) and 1-butanol The mixture was suspended in a mixed solvent (0.6 mL), 3M-potassium carbonate aqueous solution (0.6 mL) was added, and the mixture was heated to reflux for 9 hours.
  • Example-33 Under the argon stream, the above 3- [3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -5- (4,6-diphenyl-1,3,5) -Triazin-2-yl) phenyl] -9- (2-pyridyl) carbazole (339 mg), 3-bromo-6-phenylpyridine (129 mg), tetrakis (triphenylphosphine) palladium (11.6 mg) -Suspended in dioxane (2.5 mL), added with 3M aqueous potassium carbonate solution (0.33 mL), and heated to reflux for 20 hours. The reaction mixture was allowed to cool and water was added.
  • Example-34 Under the argon stream, the above 3- [3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -5- (4,6-diphenyl-1,3,5) -Triazin-2-yl) phenyl] -9- (2-pyridyl) carbazole (678 mg), 2-bromodibenzothiophene (316 mg), palladium acetate (2.3 mg), 2-dicyclohexylphosphino-2 ', 4' , 6′-triisopropylbiphenyl (9.5 mg) is suspended in a mixed solvent of toluene (20.0 mL) and 1-butanol (0.6 mL), and 3M aqueous potassium carbonate solution (0.6 mL) is added.
  • Example-35 Under an argon stream, the compound (E-1) (1.02 g), 3-bromo-9- (2-pyridyl) -6- (quinolin-8-yl) carbazole (946 mg) synthesized in Synthesis Example-17, Tetrakis (triphenylphosphine) palladium (46.2 mg) was suspended in 1,4-dioxane (10 mL), 3M aqueous potassium carbonate solution (1.3 mL) was added, and the mixture was heated to reflux for 13 hours. After allowing the reaction mixture to cool, water and methanol were added. The precipitated solid was collected by filtration, washed with water, methanol, and hexane, and the filtered product was dried by heating under reduced pressure.
  • Example-36 Under an argon stream, 2- [4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -4,6-diphenyl-1,3,5-triazine ( 1.31 g), 3-bromo-9- (2-pyridyl) -6- [4- (2-pyridyl) phenyl] carbazole (1.57 g), tetrakis (triphenylphosphine) palladium (69.3 mg) , 4-Dioxane (20 mL) and a 3M-potassium carbonate aqueous solution (2.0 mL) were suspended in a mixed solvent and heated to reflux for 13 hours.
  • Example-37 Under an argon stream, the compound (E-1) (1.02 g), 3-bromo-6,9-di (2-pyridyl) carbazole (961 mg), palladium acetate (4.5 mg), 2-dicyclohexylphosphino- 2 ′, 4 ′, 6′-triisopropylbiphenyl (19.0 mg) was suspended in 1,4-dioxane (40.0 mL), 3M aqueous potassium carbonate solution (1.3 mL) was added, and the mixture was added at 95 ° C. for 4 hours. Heated for hours. The reaction mixture was allowed to cool, methanol was added, and the precipitated solid was collected by filtration.
  • Example-38 Under an argon stream, 2- (3,5-dibromophenyl) -4,6-diphenylpyrimidine (466 mg), 9-anthraceneboronic acid (233 mg), and tetrakis (triphenylphosphine) palladium (23 mg) were added to 4N-water. The mixture was suspended in a mixed solvent of an aqueous sodium oxide solution (0.5 mL) and THF (2.0 mL), and stirred at 30 ° C. for 3 hours. Thereafter, water was added, and the precipitated solid was filtered, washed with water, then methanol, and then hexane to obtain 500 mg of a yellowish white solid.
  • the organic layer was purified by silica gel chromatography (developing solvent; chloroform), and 3- [4- (2-pyridyl) phenyl] -9- [3- (4,6-diphenylpyrimidin-2-yl) -5- ( An anthracen-9-yl)] phenylcarbazole (B-1) was obtained as a yellow solid (yield 580 mg, yield 72%).
  • Example-40 Under an argon stream, 2- (5-chlorobiphenyl-3-yl) -4,6-diphenylpyrimidine (1.20 g), 3- (2-pyridyl) carbazole (770 mg), palladium acetate (12.8 mg), 1M -Toluene solution of tri (tert-butyl) phosphine (172 ⁇ L), potassium carbonate (791 mg), and 18-crown-6-ether (151 mg) were suspended in xylene (14 mL) and heated to reflux for 44 hours. The reaction mixture was allowed to cool and extracted with chloroform.
  • the organic layer was purified by silica gel chromatography (developing solvent; chloroform), and the target product 3- (2-pyridyl) -9- [5- (4,6-diphenylpyrimidin-2-yl) biphenyl-3-yl was obtained.
  • a brown powder of carbazole (B-3) (yield 949 mg, yield 53%) was obtained.
  • Example-42 Under an argon stream, 9- (2-pyridyl) -9- [3-chloro-5- (4,6-diphenylpyrimidin-2-yl) phenyl] carbazole (585 mg), 4- (2-pyridyl) phenylboronic acid (239 mg), palladium acetate (4.5 mg), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (29 mg), and 3M aqueous potassium carbonate solution (0.8 mL) were added to toluene (4 mL). 0.5 mL) and n-butanol (0.5 mL), and the mixture was heated to reflux for 3 hours.
  • Example-44 Under an argon stream, 4- (4-bromophenyl) -6- (1-naphthyl) -2-phenylpyrimidine (219 mg) synthesized in Synthesis Example-20, 3- (quinoline-8-) synthesized in Synthesis Example-15 Yl) carbazole (162 mg), palladium acetate (2.2 mg), toluene solution (30 ⁇ L) of 1M-tri (tert-butyl) phosphine, potassium carbonate (152 mg), 18-crown-6-ether (26 mg) in xylene ( 2.5 mL) and heated to reflux for 20 hours. The reaction mixture was allowed to cool and then filtered to remove unnecessary substances.
  • Example-45 As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG. First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
  • ITO indium-tin oxide
  • a hole injection layer 2 a hole transport layer 3, a light emitting layer 4, and an electron transport layer 5 are sequentially formed as an organic compound layer on the glass substrate with an ITO transparent electrode shown by 1 in FIG. Layer 6 was deposited.
  • the material which comprises each layer of an organic electroluminescent element was vacuum-deposited by the resistance heating system.
  • As the hole injection layer 2, sublimated and purified CuPc was vacuum-deposited at a film thickness of 25 nm with a film formation rate of 0.06 nm / second.
  • NPD was vacuum-deposited with a film thickness of 45 nm at a film formation rate of 0.30 nm / second.
  • A-1 synthesized in Example 1 of the present invention was vacuum-deposited with a film thickness of 20 nm at a film formation rate of 0.25 nm / second.
  • a metal mask was disposed so as to be orthogonal to the ITO stripe, and the cathode layer 6 was formed.
  • the cathode layer 6 is formed by vacuum deposition of lithium fluoride and aluminum in this order at a film thickness of 1.0 nm and 100 nm at a film formation rate of 0.1 nm / second and 0.25 nm / second, respectively. did.
  • Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
  • DEKTAK stylus type film thickness meter
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation were used.
  • Example-46 An organic electroluminescent device was produced in the same manner as in Example-45, except that A-3 synthesized in Example 3 was used in place of A-1 in the electron transport layer 5 of Example-45.
  • Example-47 An organic electroluminescent device was produced in the same manner as in Example-45, except that A-6 synthesized in Example 6 was used instead of A-1 in the electron transport layer 5 of Example-45.
  • Reference example-1 In the electron transport layer 5 of Example-31, an organic electroluminescent element was produced in the same manner as in Example-45, except that ETL-1 which is a known electron transport material was used instead of A-1.
  • a direct current was applied to the produced organic electroluminescent device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • BM-9 luminance meter of LUMINANCE METER
  • organic electroluminescence was produced in the same manner as in Example 45 except that A-2 was vacuum-deposited at a film formation rate of 0.25 nm / second and a film pressure of 20 nm instead of A-1. An element was produced.
  • Example-49 An organic electroluminescent device was produced in the same manner as in Example-48 except that A-10 synthesized in Example 10 was used in place of A-2 in the electron transport layer 5 of Example-48.
  • Comparative Example-1 An organic electroluminescent device was produced in the same manner as in Example-48 except that ETL-2 described in Patent Document 4 was used in place of A-2 in the electron transport layer 5 of Example-48.
  • a direct current was applied to the produced organic electroluminescent device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. The time when the luminance (cd / m 2 ) is reduced by 20%, and the voltage and efficiency when a current is passed through the element at a density of 20 mA / cm 2 are shown below.
  • the cyclic azine compound (1) of the present invention has an electron injection property, electron transport property, driving voltage (voltage [V]), current efficiency (efficiency [efficiency [ cd / A]), and the device lifetime was significantly improved.
  • Example-50 As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used.
  • the substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning.
  • Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG.
  • the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
  • a hole injection layer 12, a first hole transport layer 13, a second hole transport layer 14, a light emitting layer 15, and an electron transport are formed as an organic compound layer on the glass substrate with an ITO transparent electrode indicated by 11 in FIG.
  • the layer 16 was sequentially formed, and then the cathode layer 17 was formed.
  • the material which comprises each layer of an organic electroluminescent element was vacuum-deposited by the resistance heating system.
  • HTL-1 was vacuum-deposited with a film thickness of 40 nm at a film formation rate of 0.15 nm / second.
  • HAT-CN was vacuum-deposited with a film thickness of 0.025 nm / second and a film thickness of 5 nm.
  • HTL-2 was vacuum-deposited with a film thickness of 25 nm at a film formation rate of 0.15 nm / second.
  • B-2 synthesized in Example 39 of the present invention was vacuum-deposited with a film thickness of 30 nm at a film formation rate of 0.15 nm / second.
  • the cathode layer 17 is composed of Liq, magnesium / silver (weight ratio 80/20), and silver in this order at a film formation rate of 0.005 nm / second, 0.5 nm / second, and 0.2 nm / second, respectively.
  • Vacuum deposition was performed with film thicknesses of 5 nm, 80 nm, and 20 nm to form a three-layer structure. Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation
  • Example-51 An organic electroluminescent device was produced in the same manner as in Example-50 except that B-3 synthesized in Example 40 was used in place of B-2 in the electron transport layer 16 of Example-50.
  • Example-52 An organic electroluminescent device was produced in the same manner as in Example-50 except that B-4 synthesized in Example 41 was used instead of B-2 in the electron transport layer 16 of Example-50.
  • Example-53 An organic electroluminescent element was produced in the same manner as in Example 50 except that B-5 synthesized in Example 42 was used in place of B-2 in the electron transport layer 16 of Example-50.
  • Example-54 In the electron transport layer 16 of Example-50, an organic electroluminescent device was produced in the same manner as in Example-50 except that B-6 synthesized in Example 43 was used instead of B-2.
  • Comparative Example-2 An organic electroluminescent device was produced in the same manner as in Example-50 except that ETL-3 was used in place of B-2 in the electron transport layer 16 of Example-50.
  • a direct current was applied to the produced organic electroluminescent device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • BM-9 luminance meter
  • TOPCON LUMINANCE METER
  • the luminance decay time during continuous lighting when a current density of 20 mA / cm 2 was passed was measured.
  • the time when the luminance (cd / m 2 ) is reduced by 10%, and the voltage and efficiency when a current is passed through the device at a density of 20 mA / cm 2 are shown below.
  • the cyclic azine compound (1) of the present invention has an electron injection property, electron transport property, driving voltage (voltage [V]), current efficiency (efficiency [efficiency [ cd / A]), and the device lifetime was significantly improved.
  • Example-55 As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG. First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
  • ITO indium-tin oxide
  • a hole injection layer 12, a first hole transport layer 13, a second hole transport layer 14, a light emitting layer 15, and an electron transport are formed as an organic compound layer on the glass substrate with an ITO transparent electrode indicated by 11 in FIG.
  • the layer 16 was sequentially formed, and then the cathode layer 17 was formed.
  • the material which comprises each layer of an organic electroluminescent element was vacuum-deposited by the resistance heating system.
  • HTL-1 was vacuum-deposited with a film thickness of 45 nm at a film formation rate of 0.15 nm / second.
  • HAT-CN was vacuum-deposited with a film thickness of 0.025 nm / second and a film thickness of 5 nm.
  • HTL-2 was vacuum-deposited with a film thickness of 30 nm at a film formation rate of 0.15 nm / second.
  • A-3 synthesized in Example 3 of the present invention was vacuum-deposited with a film thickness of 30 nm at a film formation rate of 0.15 nm / second.
  • the cathode layer 17 is composed of lithium fluoride, magnesium / silver (weight ratio 80/20), and silver in this order at a film formation rate of 0.005 nm / second, 0.5 nm / second, and 0.2 nm / second, respectively.
  • Vacuum deposition was performed with a film thickness of 0.5 nm, 80 nm, and 20 nm to form a three-layer structure. Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation were used.
  • Example-56 An organic electroluminescent device was produced in the same manner as in Example 55 except that A-13 synthesized in Example 13 was used in place of A-3 in the electron transport layer 16 of Example-55.
  • Example-57 An organic electroluminescent element was produced in the same manner as in Example 55 except that B-5 synthesized in Example 42 was used in place of A-3 in the electron transport layer 16 of Example-55.
  • Reference example-2 An organic electroluminescent element was produced in the same manner as in Example 55 except that ETL-1 was used in place of A-3 in the electron transport layer 16 of Example-55.
  • a direct current was applied to the produced organic electroluminescent device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • BM-9 luminance meter
  • TOPCON TOPCON
  • the luminance decay time during continuous lighting when a current density of 20 mA / cm 2 was passed was measured.
  • the time when the luminance (cd / m 2 ) is reduced by 20% and the voltage and efficiency when a current is passed through the element at a density of 10 mA / cm 2 are shown below.
  • the cyclic azine compound (1) of the present invention has a driving voltage (voltage [V]), current efficiency (efficiency [cd / A]), and lifetime of the organic electroluminescence device, as compared with conventionally known compounds. It was shown that the properties are excellent.
  • Example-58 As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG. First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
  • ITO indium-tin oxide
  • a hole injection layer 12, a first hole transport layer 13, a second hole transport layer 14, a light emitting layer 15, and an electron transport are formed as an organic compound layer on the glass substrate with an ITO transparent electrode indicated by 11 in FIG.
  • the layer 16 was sequentially formed, and then the cathode layer 17 was formed.
  • the material which comprises each layer of an organic electroluminescent element was vacuum-deposited by the resistance heating system.
  • HTL-1 was vacuum-deposited with a film thickness of 65 nm at a film formation rate of 0.15 nm / second.
  • HAT-CN was vacuum-deposited with a film thickness of 0.025 nm / second and a film thickness of 5 nm.
  • HTL-2 was vacuum-deposited at a film formation rate of 0.15 nm / second to a film thickness of 10 nm.
  • A-12 synthesized in Example 12 of the present invention was vacuum-deposited with a film thickness of 30 nm at a film formation rate of 0.15 nm / second. Each organic material was formed into a film by a resistance heating method, and the heated compound was vacuum-deposited at a film formation rate of 0.3 to 0.5 nm / second.
  • the cathode layer 7 contains Liq, magnesium / silver (weight ratio 80/20), and silver in this order at a film formation rate of 0.005 nm / second, 0.5 nm / second, and 0.2 nm / second, respectively.
  • Vacuum deposition was performed with film thicknesses of 5 nm, 80 nm, and 20 nm to form a three-layer structure. Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation
  • Example-59 An organic electroluminescent device was produced in the same manner as in Example 58 except that A-16 synthesized in Example 16 was used in place of A-12 in the electron transport layer 16 of Example-58.
  • Example-60 An organic electroluminescent device was produced in the same manner as in Example 58 except that A-17 synthesized in Example 18 was used in place of A-12 in the electron transport layer 16 of Example-58.
  • Example-61 An organic electroluminescent element was produced in the same manner as in Example 58 except that A-18 synthesized in Example 19 was used in place of A-12 in the electron transport layer 16 of Example-58.
  • Example-62 An organic electroluminescent device was produced in the same manner as in Example 58 except that A-19 synthesized in Example 20 was used in place of A-12 in the electron transport layer 16 of Example-58.
  • Example-63 An organic electroluminescent device was produced in the same manner as in Example 58 except that A-20 synthesized in Example 21 was used in place of A-12 in the electron transport layer 16 of Example-58.
  • Example-64 In the electron transport layer 16 of Example-58, an organic electroluminescent element was produced in the same manner as in Example 58 except that A-22 synthesized in Example 24 was used instead of A-12.
  • Comparative Example-3 An organic electroluminescent element was produced in the same manner as in Example 58 except that ETL-4 synthesized in Synthesis Example-21 was used in place of A-12 in the electron transport layer 16 of Example-58.
  • a direct current was applied to the produced organic electroluminescent device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • BM-9 luminance meter of LUMINANCE METER
  • the cyclic azine compound (1) of the present invention is superior in the driving voltage (voltage [V]) and life characteristics of the organic electroluminescence device as compared with the conventionally known compounds.
  • the organic electroluminescent device using the cyclic azine compound (1) of the present invention is more remarkable in device characteristics such as driving voltage, current efficiency, and device lifetime of the organic electroluminescent device than the conventionally known compounds. It turns out that it is exceptional.
  • the organic electroluminescent element using the cyclic azine compound of the present invention can be driven for a long time compared to the organic electroluminescent element using the existing material, not only the element using the fluorescent light emitting material,
  • the present invention is extremely useful industrially because it can be applied to various organic electroluminescent devices using phosphorescent materials.
  • the cyclic azine compound of the present invention has high solubility, and it is possible to produce a device using a coating method as well as a vacuum deposition method, and it can be applied as a light emitting host layer in addition to an electron transport layer, In addition to applications such as flat panel displays, it is also useful in lighting applications that require low power consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 下記式(1)で示される1,3,5-トリ環状アジン化合物、それを電子輸送材料とする長時間駆動を可能にする有機電界発光素子、及び該化合物の有機電界発光素子の構成成分としての使用を提供する。(式中、Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子等を置換基として有してもよい)を、Ar1 及びAr2 は、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子等を置換基として有してもよい)を、Ar3 は炭素数6~30のアリーレン基(フッ素原子等を置換基として有してもよい)を、Ar4 は、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子等を置換基として有してもよい)、又は一般式(A)で示される置換基を、Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)(式中、Ar5 は、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子等を置換基として有してもよい)を、Ar6 は、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子等を置換基として有してもよい)を、mは、1~[Ar5 上に形成できる最大の結合数-1]の整数を表す。)

Description

環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
 本発明は、有機電界発光素子の構成成分として有用な含窒素ヘテロアリール基が置換したカルバゾリル基を有する環状アジン化合物とその製造方法、及びそれを含有する有機電界発光素子に関するものである。
 有機電界発光素子は、発光材料を含有する発光層を正孔輸送層と電子輸送層で挟み、さらにその外側に陽極と陰極を取付けたものを基本的な構成とし、発光層に注入された正孔及び電子の再結合により生ずる励起子失活に伴う光の放出(蛍光又は燐光)を利用する素子であり、ディスプレー等へ応用されている。なお、正孔輸送層は正孔輸送層と正孔注入層に、発光層は、電子ブロック層と発光層と正孔ブロック層に、電子輸送層は電子輸送層と電子注入層に分割して構成される場合もある。
 近年、トリアジン及びピリミジン化合物を発光層及び電子輸送層等に用いた有機電界発光素子が多数報告されているが、発光効率特性、駆動電圧特性、長寿命特性において、完全に市場要求を満たしているとは言えず、更に優れた材料が求められている。
 電子輸送材料等としては、アリーレン基を介してカルバゾリル基が置換した環状アジン化合物が開示(例えば、特許文献1~4を参照)されており、これらを用いて素子の寿命を改善する提案がされている。しかし、素子が高駆動電圧化する点、及び更なる長寿命化が求められている点で改善が望まれている。
 また、カルバゾリル基を有する1,3,5-トリアジン化合物を有機電界発光素子に用いる例(例えば、特許文献5を参照)が開示されているが、当該化合物はトリアジン環の2位にカルバゾリル基の窒素原子が直接結合している。このため、電子輸送材料として使用した場合、電子輸送材料に必要不可欠な電子受容性を低下させ、素子が高駆動電圧化する傾向が有り、改善が求められている。
国際公開第2003/078541号パンフレット 国際公開第2003/080760号パンフレット 日本特開2009-21336号公報 日本特開2002-193952号公報 国際公開第2008/123189号パンフレット
 有機電界発光素子は様々な表示機器への利用が始まっているが、長寿命化、高発光効率化、低駆動電圧化等、更なる素子の高性能化が要求されている。より具体的には、長寿命、高発光効率、低駆動電圧化を達成するキャリア輸送材料の開発が要求されている。
 特に電子注入材料及び電子輸送材料については、優れた電子注入性及び電子輸送特性により素子を低電圧で駆動させると共に、発光効率が高く、素子を長時間駆動させる新たな材料が望まれている。
 本発明の目的は、長寿命、高発光効率、低駆動電圧化を達成するための電子注入材料及び電子輸送材料を提供することである。
 本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、従来公知のアリーレン基を介してカルバゾリル基が置換した環状アジン化合物において、当該カルバゾリル基上に含窒素ヘテロアリール基を含有する置換基を持たせることによって、当該環状アジン化合物の電子注入性及び電子輸送特性が顕著に向上することを見いだした。
 また、このような化合物(本発明の一般式(1)で表される環状アジン化合物)を有機電界発光素子における電子輸送層として用いた場合、公知又は汎用の電子輸送材料を用いた場合に比べて、有機電界発光素子駆動電圧が顕著に低減し、発光効率が向上し、且つ有機電界発光素子が長寿命化することを見出し、本発明を完成するに至った。
 すなわち本発明は、下記の一般式(1)で表される環状アジン化合物(以下、「環状アジン化合物(1)」と称する)、その製造方法、及びそれを含有する有機電界発光素子に関するものである。
Figure JPOXMLDOC01-appb-C000019
(式中、
Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)
Figure JPOXMLDOC01-appb-C000020
(式中、
Arは、各々独立して(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、フッ素原子を有してもよい炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換してもよい炭素数3~18の芳香族基を置換基として有してもよい)を表す。
Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
mは、各々独立して、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
 本発明の環状アジン化合物を用いることで、従来公知の電子輸送材料を用いた有機電界発光素子にくらべて、より低電圧で駆動し、発光効率がより高く、又長寿命により優れる有機電界発光素子を提供することができる。
実施例-45等で作製する単層素子の模式断面図である。 実施例-50等で作製する単層素子の模式断面図である。
 以下、本発明を詳細に説明する。
 本発明は、上記の環状アジン化合物(1)、その製造方法、及びそれを含有する有機電界発光素子に関するものである。
 本発明の環状アジン化合物(1)は、有機電界発光素子用材料としての性能がよい点で、以下の一般式(B)、(C)、又は(D)で表される環状アジン化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
(一般式(B)、(C)、及び(D)中、Ar、Ar、Ar、Ar、Y、Z、及びnは、各々独立して、一般式(1)と同じ定義の置換基を示す。一般式(D)中、Cbは(n+1)価のカルボリン基を表す。)
 本発明の環状アジン化合物(1)における置換基は、それぞれ以下のように定義される。
 炭素数1~4のアルキル基としては、特に限定するものではないが、例えば、メチル基、トリフルオロメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が挙げられる。
 炭素数6~18の芳香族炭化水素基としては、特に限定するものではないが、例えば、フェニル基、ビフェニリル基、ナフチル基、アントリル基、ピレニル基、ターフェニル基、フェナントリル基、ペリレニル基、又はトリフェニレニル基等を挙げることができる。
 フッ素原子を有する炭素数6~18の芳香族炭化水素基としては、特に限定するものではないが、例えば、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,3,4-トリフルオロフェニル基、2,3,5-トリフルオロフェニル基、2,3,6-トリフルオロフェニル基、2,4,5-トリフルオロフェニル基、2,4,6-トリフルオロフェニル基、3,4,5-トリフルオロフェニル基、2,3,4,5-テトラフルオロフェニル基、2,3,4,6-テトラフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、ペンタフルオロフェニル基、4-フルオロナフタレン-1-イル基、5-フルオロナフタレン-1-イル基、6-フルオロナフタレン-1-イル基、7-フルオロナフタレン-1-イル基、4-フルオロナフタレン-2-イル基、5-フルオロナフタレン-2-イル基、6-フルオロナフタレン-2-イル基、7-フルオロナフタレン-2-イル基、アントリル基、ピレニル基、フェナントリル基、ペリレニル基、トリフェニレニル基等を挙げることが出来る。
 炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基としては、前述した炭素数1~4のアルキル基が、同じく前述した炭素数6~18の芳香族炭化水素基上に置換したものを表し、特に限定するものではないが、例えば、p-トリル基、m-トリル基、o-トリル基、4-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、2-トリフルオロメチルフェニル基、2,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,6-ジメチルフェニル基、メシチル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2,4-ジエチルフェニル基、3,5-ジエチルフェニル基、2-プロピルフェニル基、3-プロピルフェニル基、4-プロピルフェニル基、2,4-ジプロピルフェニル基、3,5-ジプロピルフェニル基、2-イソプロピルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、2,4-ジイソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2-ブチルフェニル基、3-ブチルフェニル基、4-ブチルフェニル基、2,4-ジブチルフェニル基、3,5-ジブチルフェニル基、2-tert-ブチルフェニル基、3-tert-ブチルフェニル基、4-tert-ブチルフェニル基、2,4-ジ-tert-ブチルフェニル基、3,5-ジ-tert-ブチルフェニル基、4-メチルナフタレン-1-イル基、4-トリフルオロメチルナフタレン-1-イル基、4-エチルナフタレン-1-イル基、4-プロピルナフタレン-1-イル基、4-ブチルナフタレン-1-イル基、4-tert-ブチルナフタレン-1-イル基、5-メチルナフタレン-1-イル基、5-トリフルオロメチルナフタレン-1-イル基、5-エチルナフタレン-1-イル基、5-プロピルナフタレン-1-イル基、5-ブチルナフタレン-1-イル基、5-tert-ブチルナフタレン-1-イル基、6-メチルナフタレン-2-イル基、6-トリフルオロメチルナフタレン-2-イル基、6-エチルナフタレン-2-イル基、6-プロピルナフタレン-2-イル基、6-ブチルナフタレン-2-イル基、6-tert-ブチルナフタレン-2-イル基、7-メチルナフタレン-2-イル基、7-トリフルオロメチルナフタレン-2-イル基、7-エチルナフタレン-2-イル基、7-プロピルナフタレン-2-イル基、7-ブチルナフタレン-2-イル基、7-tert-ブチルナフタレン-2-イル基、アントリル基、ピレニル基、フェナントリル基、ペリレニル基、トリフェニレニル基等を挙げることが出来る。
 炭素数6~30の芳香族炭化水素基としては、特に限定するものではないが、例えば、フェニル基、ビフェニリル基、ナフチル基、アントリル基、ピレニル基、ターフェニル基、フェナントリル基、ペリレニル基、トリフェニレニル基等を挙げることができる。
 炭素数3~18の芳香族基としては、特に限定するものではないが、例えば、フラニル基、ベンゾフラニル基、ジベンゾフラニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、2-ピラジル基、4-ピラジル基、5-ピラジル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、9-アクリジル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、2-ベンゾチアゾリル基、4-ベンゾチアゾリル基、5-ベンゾチアゾリル基、6-ベンゾチアゾリル基、7-ベンゾチアゾリル基、キナゾリル基、キノキサリル基、1,6-ナフチリジン-2-イル基、1,8-ナフチリジン-2-イル基、4-チアゾリル基、5-チアゾリル基、イミダゾ[1,2-a]ピリジン-2-イル基、2-チアゾリル基、インドリジル基、アザインドリジル基等を挙げることができる。
 フッ素原子を有する炭素数3~18の芳香族基としては、特に限定するものではないが、例えば、フルオロフラニル基、フルオロベンゾフラニル基、フルオロジベンゾフラニル基、フルオロチエニル基、フルオロベンゾチエニル基、フルオロジベンゾチエニル基、3-フルオロ-2-ピリジル基、4-フルオロ-2-ピリジル基、5-フルオロ-2-ピリジル基、6-フルオロ-2-ピリジル基、2-フルオロ-3-ピリジル基、4-フルオロ-3-ピリジル基、5-フルオロ-3-ピリジル基、6-フルオロ-3-ピリジル基、2-フルオロ-4-ピリジル基、3-フルオロ-4-ピリジル基、3,4-ジフルオロ-2-ピリジル基、3,5-ジフルオロ-2-ピリジル基、3,6-ジフルオロ-2-ピリジル基、2,4-ジフルオロ-3-ピリジル基、2,5-ジフルオロ-3-ピリジル基、2,6-ジフルオロ-3-ピリジル基、4,5-ジフルオロ-3-ピリジル基、4,6-ジフルオロ-3-ピリジル基、5,6-ジフルオロ-3-ピリジル基、2,3-ジフルオロ-4-ピリジル基、2,5-ジフルオロ-4-ピリジル基、2,6-ジフルオロ-4-ピリジル基、3,5-ジフルオロ-4-ピリジル基、3,6-ジフルオロ-4-ピリジル基、3,4,5-トリフルオロ-2-ピリジル基、3,4,6-トリフルオロ-2-ピリジル基、3,5,6-トリフルオロ-2-ピリジル基、4,5,6-トリフルオロ-2-ピリジル基、テトラフルオロ-2-ピリジル基、2,4,5-トリフルオロ-3-ピリジル基、2,4,6-トリフルオロ-3-ピリジル基、2,5,6-トリフルオロ-3-ピリジル基、4,5,6-トリフルオロ-3-ピリジル基、テトラフルオロ-3-ピリジル基、2,3,5-トリフルオロ-4-ピリジル基、2,3,6-トリフルオロ-4-ピリジル基、テトラフルオロ-4-ピリジル基、4-フルオロ-2-ピリミジル基、5-フルオロ-2-ピリミジル基、2-フルオロ-4-ピリミジル基、5-フルオロ-4-ピリミジル基、6-フルオロ-4-ピリミジル基、2-フルオロ-5-ピリミジル基、4-フルオロ-5-ピリミジル基、2-フルオロピラジル基、4-フルオロピラジル基、5-フルオロピラジル基、3-フルオロ-2-キノリル基、4-フルオロ-2-キノリル基、5-フルオロ-2-キノリル基、6-フルオロ-2-キノリル基、7-フルオロ-2-キノリル基、8-フルオロ-2-キノリル基、2-フルオロ-3-キノリル基、4-フルオロ-3-キノリル基、5-フルオロ-3-キノリル基、6-フルオロ-3-キノリル基、7-フルオロ-3-キノリル基、8-フルオロ-3-キノリル基、2-フルオロ-4-キノリル基、3-フルオロ-4-キノリル基、5-フルオロ-4-キノリル基、6-フルオロ-4-キノリル基、7-フルオロ-4-キノリル基、8-フルオロ-4-キノリル基、3-フルオロ-1-イソキノリル基、4-フルオロ-1-イソキノリル基、5-フルオロ-1-イソキノリル基、6-フルオロ-1-イソキノリル基、7-フルオロ-1-イソキノリル基、8-フルオロ-1-イソキノリル基、1-フルオロ-3-イソキノリル基、4-フルオロ-3-イソキノリル基、5-フルオロ-3-イソキノリル基、6-フルオロ-3-イソキノリル基、7-フルオロ-3-イソキノリル基、8-フルオロ-3-イソキノリル基、1-フルオロ-4-イソキノリル基、3-フルオロ-4-イソキノリル基、5-フルオロ-4-イソキノリル基、6-フルオロ-4-イソキノリル基、7-フルオロ-4-イソキノリル基、8-フルオロ-4-イソキノリル基、フルオロアクリジル基、フルオロチアゾリル基、フルオロベンゾチアゾリル基、フルオロキナゾリル基、フルオロキノキサリル基、フルオロナフチリジル基、フルオロチアントレニル基、フルオロインドリジル基、フルオロアザインドリジル基等を挙げることができる。
 炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基は、前述した炭素数1~4のアルキル基が、同じく前述した炭素数3~18の芳香族基上に置換したものを表し、特に限定するものではないが、例えば、メチルフラニル基、メチルベンゾフラニル基、メチルジベンゾフラニル基、メチルチエニル基、メチルベンゾチエニル基、メチルジベンゾチエニル基、3-メチル-2-ピリジル基、4-メチル-2-ピリジル基、5-メチル-2-ピリジル基、6-メチル-2-ピリジル基、2-メチル-3-ピリジル基、4-メチル-3-ピリジル基、5-メチル-3-ピリジル基、6-メチル-3-ピリジル基、2-メチル-4-ピリジル基、3-メチル-4-ピリジル基、3,4-ジメチル-2-ピリジル基、3,5-ジメチル-2-ピリジル基、3,6-ジメチル-2-ピリジル基、2,4-ジメチル-3-ピリジル基、2,5-ジメチル-3-ピリジル基、2,6-ジメチル-3-ピリジル基、4,5-ジメチル-3-ピリジル基、4,6-ジメチル-3-ピリジル基、5,6-ジメチル-3-ピリジル基、2,3-ジメチル-4-ピリジル基、2,5-ジメチル-4-ピリジル基、2,6-ジメチル-4-ピリジル基、3,5-ジメチル-4-ピリジル基、3,6-ジメチル-4-ピリジル基、4-メチル-2-ピリミジル基、5-メチル-2-ピリミジル基、2-メチル-4-ピリミジル基、5-メチル-4-ピリミジル基、6-メチル-4-ピリミジル基、2-メチル-5-ピリミジル基、4-メチル-5-ピリミジル基、2-メチルピラジル基、4-メチルピラジル基、5-メチルピラジル基、3-メチル-2-キノリル基、4-メチル-2-キノリル基、5-メチル-2-キノリル基、6-メチル-2-キノリル基、7-メチル-2-キノリル基、8-メチル-2-キノリル基、2-メチル-3-キノリル基、4-メチル-3-キノリル基、5-メチル-3-キノリル基、6-メチル-3-キノリル基、7-メチル-3-キノリル基、8-メチル-3-キノリル基、2-メチル-4-キノリル基、3-メチル-4-キノリル基、5-メチル-4-キノリル基、6-メチル-4-キノリル基、7-メチル-4-キノリル基、8-メチル-4-キノリル基、2-メチル-5-キノリル基、3-メチル-5-キノリル基、4-メチル-5-キノリル基、6-メチル-5-キノリル基、7-メチル-5-キノリル基、8-メチル-5-キノリル基、2-メチル-6-キノリル基、3-メチル-6-キノリル基、4-メチル-6-キノリル基、5-メチル-6-キノリル基、7-メチル-6-キノリル基、8-メチル-6-キノリル基、2-メチル-7-キノリル基、3-メチル-7-キノリル基、4-メチル-7-キノリル基、5-メチル-7-キノリル基、6-メチル-7-キノリル基、8-メチル-7-キノリル基、2-メチル-8-キノリル基、3-メチル-8-キノリル基、4-メチル-8-キノリル基、5-メチル-8-キノリル基、6-メチル-8-キノリル基、7-メチル-8-キノリル基、3-メチル-1-イソキノリル基、4-メチル-1-イソキノリル基、5-メチル-1-イソキノリル基、6-メチル-1-イソキノリル基、7-メチル-1-イソキノリル基、8-メチル-1-イソキノリル基、1-メチル-3-イソキノリル基、4-メチル-3-イソキノリル基、5-メチル-3-イソキノリル基、6-メチル-3-イソキノリル基、7-メチル-3-イソキノリル基、8-メチル-3-イソキノリル基、1-メチル-4-イソキノリル基、3-メチル-4-イソキノリル基、5-メチル-4-イソキノリル基、6-メチル-4-イソキノリル基、7-メチル-4-イソキノリル基、8-メチル-4-イソキノリル基、メチルアクリジル基、メチルチアゾリル基、メチルベンゾチアゾリル基、メチルキナゾリル基、メチルキノキサリル基、メチルナフチリジル基、メチルチアントレニル基、メチルインドリジル基、メチルアザインドリジル基等を挙げることができる。
 炭素数6~30のアリーレン基としては、特に限定するものではないが、例えば、フェニレン基、ビフェニリレン基、ナフタレンジル基、アントラセンジイル基、ピレンジイル基、ターフェニリレン基、フェナントラセンジイル基、ペリレンジイル基、トリフェニレンジイル基等を挙げることができる。
 炭素数3~30の含窒素ヘテロアリール基としては、特に限定するものではないが、例えば、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、2-ピラジル基、4-ピラジル基、5-ピラジル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、9-アクリジル基、2-ベンゾチアゾリル基、4-ベンゾチアゾリル基、5-ベンゾチアゾリル基、6-ベンゾチアゾリル基、7-ベンゾチアゾリル基、キナゾリル基、キノキサリル基、ナフチリジル基、チアントレニル基、インドリジル基、アザインドリジル基等を挙げることができる。
 (m+1)価の炭素数6~30のアリール基(ただし、mは1~[Ar上に形成できる最大の結合数-1]の整数を表す。)としては、特に限定するものではないが、例えば、炭素数6~30のアリーレン基、炭素数6~30のアリールトリイル基、炭素数6~30のアリールテトライル基等が挙げられる。
 環状アジン化合物(1)中、Ar-(Arは、m個のAr置換基がArに結合していることを表す。すなわち、特に限定するものではないが、例えばArがフェニレン基の場合、mは1~5の整数を表す。
 なお、mは、有機電界発光素子用材料としての性能がよい点で、1又は2であることが好ましく、1であることがより好ましい。
 前述の炭素数6~30のアリーレン基としては、例えば、前述の炭素数6~30のアリーレン基で表した具体例と同じ置換基を例示することができる。
 前述の炭素数6~30のアリールトリイル基としては、特に限定するものではないが、例えば、ベンゼントリイル基、ビフェニルトリイル基、ナフタレントリイル基、アントラセントリイル基、ピレントリイル基、ターフェニルトリイル基、フェナントラセントリイル基、ペリレントリイル基、トリフェニレントリイル基等を挙げることができる。
 また、前述の炭素数6~30のアリールテトライル基としては、特に限定するものではないが、例えば、ベンゼンテトライル基、ビフェニルテトライル基、ナフタレンテトライル基、アントラセンテトライル基、ピレンテトライル基、ターフェニルテトライル基、フェナントラセンテトライル基、ペリレンテトライル基、トリフェニレンテトライル基等を挙げることができる。
 Czにおける(n+1)価のカルバゾール基(フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)としては、特に限定するものではないが、カルバゾールジイル基、カルバゾールトリイル基、カルバゾールテトライル基等が挙げられる。
 Czにおける(n+1)価のカルボリン基(フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)としては、特に限定するものではないが、カルボリンジイル基、カルボリントリイル基、カルボリンテトライル基等が挙げられる。
 なお、nは1~[Cz上に形成できる最大の結合数-1]の整数を表し、環状アジン化合物(1)中、Cz-(Arは、n個のAr置換基がCzに結合していることを表す。nは、有機電界発光素子用材料としての性能がよい点で、1、2、又は3であることが好ましく、1又は2であることがより好ましく、1であることがさらに好ましい。
 Czとしては、特に限定するものではないが、例えば、カルバゾール-1,9-ジイル基、カルバゾール-2,9-ジイル基、カルバゾール-1,3-ジイル基、カルバゾール-2,7-ジイル基、N-フェニルカルバゾール-2,7-ジイル基、N-フェニルカルバゾール-3,6-ジイル基、α-カルボリン-2,9-ジイル基、α-カルボリン-3,9-ジイル基、α-カルボリン-4,9-ジイル基、α-カルボリン-5,9-ジイル基、α-カルボリン-6,9-ジイル基、α-カルボリン-7,9-ジイル基、α-カルボリン-8,9-ジイル基、β-カルボリン-1,9-ジイル基、β-カルボリン-3,9-ジイル基、β-カルボリン-4,9-ジイル基、β-カルボリン-5,9-ジイル基、β-カルボリン-6,9-ジイル基、β-カルボリン-7,9-ジイル基、β-カルボリン-8,9-ジイル基、γ-カルボリン-1,9-ジイル基、γ-カルボリン-2,9-ジイル基、γ-カルボリン-4,9-ジイル基、γ-カルボリン-5,9-ジイル基、γ-カルボリン-6,9-ジイル基、γ-カルボリン-7,9-ジイル基、γ-カルボリン-8,9-ジイル基、δ-カルボリン-1,9-ジイル基、δ-カルボリン-2,9-ジイル基、δ-カルボリン-3,9-ジイル基、δ-カルボリン-5,9-ジイル基、δ-カルボリン-6,9-ジイル基、δ-カルボリン-7,9-ジイル基、δ-カルボリン-8,9-ジイル基等が挙げられる。
 Czは、有機電界発光素子用材料としての性能がよい点で、カルバゾール-2,9-ジイル基、カルバゾール-3,9-ジイル基、カルバゾール-4,9-ジイル基、カルバゾール-3,6-ジイル基、カルバゾール-3,6,9-トリイル基、α-カルボリン-7,9-ジイル基、β-カルボリン-6,9-ジイル基、β-カルボリン-7,9-ジイル基、δ-カルボリン-3,6-ジイル基、δ-カルボリン-3,9-ジイル基、又はδ-カルボリン-6,9-ジイル基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)であることが好ましく、カルバゾール-2,9-ジイル基、カルバゾール-3,9-ジイル基、カルバゾール-4,9-ジイル基、カルバゾール-3,6-ジイル基、β-カルボリン-6,9-ジイル基、δ-カルボリン-3,9-ジイル基、又はδ-カルボリン-6,9-ジイル基(これらの基は、各々独立して、炭素数6~18の芳香族炭化水素基を置換基として有してもよい)であることがさらに好ましい。
 環状アジン化合物(1)において、Ar又はArとしては、特に限定するものではないが、各々独立して、例えば、フェニル基、ビフェニリル基、ナフチル基、アントリル基、ピレニル基、ターフェニル基、フェナントリル基、ペリレニル基、トリフェニレニル基、メチルフェニル基、メチルビフェニリル基、メチルナフチル基、メチルアントリル基、メチルターフェニル基、メチルフェナントリル基、メチルペリレニル基、メチルトリフェニレニル基、フルオロフェニル基、フルオロビフェニリル基、フルオロナフチル基、フルオロアントリル基、フルオロターフェニル基、フルオロフェナントリル基、フルオロペリレニル基、フルオロトリフェニレニル基等を挙げることができる。
 Ar又はArは、有機電界発光素子用材料としての性能がよい点で、各々独立して、フェニル基、ビフェニリル基、ナフチル基、アントリル基、ピレニル基、ターフェニル基、又はフェナントリル基(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)であることが好ましく、各々独立して、フェニル基、ナフチル基又はビフェニリル基(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)であることがより好ましく、各々独立して、フェニル基、メチルフェニル基、ナフチル基、又はビフェニリル基であることがさらに好ましい。
 前記のフェニル基、ビフェニリル基、ナフチル基、アントリル基、ピレニル基、ターフェニル基、又はフェナントリル基(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)で表される置換基としては、特に限定するものではないが、例えば、フェニル基、ビフェニリル基、ナフチル基、アントリル基、ピレニル基、ターフェニル基、フェナントリル基、ペリレニル基、メチルフェニル基、メチルビフェニリル基、メチルナフチル基、メチルアントリル基、メチルターフェニル基、メチルフェナントリル基、メチルペリレニル基、フルオロフェニル基、フルオロビフェニリル基、フルオロナフチル基、フルオロアントリル基、フルオロターフェニル基、フルオロフェナントリル基、フルオロペリレニル基等を挙げることができる。
 また、前記のフェニル基又はビフェニリル基(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)で表される置換基としては、特に限定するものではないが、例えば、フェニル基、ビフェニリル基、メチルフェニル基、メチルビフェニリル基、フルオロフェニル基、フルオロビフェニリル基等を挙げることができる。
 環状アジン化合物(1)において、Arとしては、特に限定するものではないが、例えば、フェニレン基、ビフェニリレン基、ナフタレンジル基、アントラセンジイル基、ピレンジイル基、ターフェニリレン基、フルオロフェニレン基、フルオロフェニルビフェニリレン基、フルオロナフタレンジル基、フェニルフェニレン基、フェニルビフェニリレン基、フェニルナフタレンジル基、ナフチルフェニレン基、ナフチルビフェニリレン基、ナフチルナフタレンジル基等を挙げることができる。
 Arは、有機電界発光素子用材料としての性能がよい点で、フェニレン基又はビフェニリレン基(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)であることが好ましく、各々独立して、フェニレン基、ビフェニリレン基、又はフルオロフェニレン基であることがより好ましい。
 前記のフェニレン基又はビフェニリレン基(ただし、これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)で表される置換基としては、特に限定するものではないが、例えば、フェニレン基、ビフェニリレン基、ナフタレンジル基、ターフェニリレン基、フルオロフェニレン基、フルオロナフタレンジル基、フェニルフェニレン基、フェニルナフタレンジル基、ナフチルフェニレン基、ナフチルナフタレンジル基等が挙げられる。
 環状アジン化合物(1)において、Arとしては、特に限定するものではないが、例えば、(m+1)価のベンゼン基、(m+1)価のビフェニル基、(m+1)価のナフタレン基、(m+1)価のアントラセン基、(m+1)価のピレン基、(m+1)価のターフェニル基、(m+1)価のフルオロベンゼン基、(m+1)価のフルオロフェニルビフェニリル基、(m+1)価のフルオロナフタレン基、(m+1)価のフェニルビフェニル基、(m+1)価のフェニルナフタレン基、(m+1)価のナフチルベンゼン基、(m+1)価のナフチルビフェニル基、(m+1)価のナフチルナフタレン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)等が挙げられる。
 Arとしては、m=1のとき、フェニレン基、メチルフェニレン基、ビフェニリレン基、ナフチレン基、アントラセンジイル基、ピレンジイル基、ターフェニルジイル基、フルオロフェニレン基、フルオロフェニルビフェニリレン基、フルオロナフチレン基、フェニルビフェニリレン基、フェニルナフチレン基、ナフチルフェニレン基、ナフチルビフェニリレン基、ナフチルナフチレン基等が挙げられる。
 m=2のとき、各々独立して、ベンゼントリイル基、メチルベンゼントリイル基、ビフェニルトリイル基、ナフタレントリイル基、アントラセントリイル基、ピレントリイル基、ターフェニルトリイル基、フルオロベンゼントリイル基、フルオロフェニルビフェニルトリイル基、フルオロナフタレントリイル基、フェニルビフェニルトリイル基、フェニルナフタレントリイル基、ナフチルベンゼントリイル基、ナフチルビフェニルトリイル基、ナフチルナフタレントリイル基等が挙げられる。
 Arは、有機電界発光素子用材料としての性能がよい点で、(m+1)価のベンゼン基又は(m+1)価のビフェニル基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)であることが好ましい。なお、(m+1)価のベンゼン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)としては、m=1のとき、フェニレン基、メチルフェニレン基、フルオロフェニレン基、ナフチルフェニレン基が好ましく、フェニレン基がより好ましい。m=2のとき、ベンゼントリイル基、メチルベンゼントリイル基、フルオロベンゼントリイル基、ナフチルベンゼントリイル基が好ましく、ベンゼントリイル基がより好ましい。また、(m+1)価のビフェニル基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)としては、m=1のとき、ビフェニリレン基、ターフェニルジイル基、フルオロフェニルビフェニリレン基、ナフチルビフェニリレン基が好ましく、ビフェニリレン基がより好ましい。m=2のとき、ビフェニルトリイル基、ターフェニルトリイル基、フルオロフェニルビフェニルトリイル基、ナフチルビフェニルトリイル基が好ましく、ビフェニルトリイル基がより好ましい。
 環状アジン化合物(1)において、Ar及びArで示した炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)で表される置換基としては、特に限定するものではないが、例えば、各々独立して、ピリジル基、ピリミジル基、ピラジル基、キノリル基、イソキノリル基、アクリジル基、チアゾリル基、ベンゾチアゾリル基、キナゾリル基、キノキサリル基、ナフチリジル基、チアントレニル基、インドリジル基、アザインドリジル基、フルオロピリジル基、フルオロピリミジル基、フルオロピラジル基、フルオロキノリル基、フルオロイソキノリル基、フルオロアクリジル基、フルオロチアゾリル基、フルオロベンゾチアゾリル基、フルオロキナゾリル基、フルオロキノキサリル基、フルオロナフチリジル基、フルオロチアントレニル基、フルオロインドリジル基、フルオロアザインドリジル基、メチルピリジル基、メチルピリミジル基、メチルピラジル基、メチルキノリル基、メチルイソキノリル基、メチルアクリジル基、メチルチアゾリル基、メチルベンゾチアゾリル基、メチルキナゾリル基、メチルキノキサリル基、メチルナフチリジル基、メチルチアントレニル基、メチルインドリジル基、メチルアザインドリジル基、フェニルピリジル基、フェニルピリミジル基、フェニルピラジル基、フェニルキノリル基、フェニルイソキノリル基、フェニルアクリジル基、フェニルチアゾリル基、フェニルベンゾチアゾリル基、フェニルキナゾリル基、フェニルキノキサリル基、フェニルナフチリジル基、フェニルチアントレニル基、フェニルインドリジル基、フェニルアザインドリジル基、フェニルピリジル基、フェニルピリミジル基、フェニルピラジル基、フェニルキノリル基、フェニルイソキノリル基、フェニルアクリジル基、フェニルチアゾリル基、フェニルベンゾチアゾリル基、フェニルキナゾリル基、フェニルキノキサリル基、フェニルナフチリジル基、フェニルチアントレニル基、フェニルインドリジル基、フェニルアザインドリジル基、ピリジルフェニル基、1-(3,5-ジピリジル)フェニル基、ピリミジルフェニル基、ピラジルフェニル基、ピリジルビフェニリル基、ピリミジルビフェニリル基、ピラジルビフェニリル基、キノリルビフェニリル基、イソキノリルビフェニリル基、アクリジルビフェニリル基、チアゾリルビフェニリル基、ベンゾチアゾリルビフェニリル基、キナゾリルビフェニリル基、キノキサリルビフェニリル基、ナフチリジルビフェニリル基、チアントレニルビフェニリル基、インドリジルビフェニリル基、アザインドリジルビフェニリル基等を挙げることができる。
 Ar及びArは、有機電界発光素子用材料としての性能がよい点で、各々独立して、炭素、水素、及び窒素のみからなる炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は炭素、水素、窒素、及び硫黄のみからなる炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)であることが好ましい。このうち、各々独立して、炭素、水素、及び窒素のみからなる炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)であることがより好ましい。
 さらに、Ar及びArは、合成容易であり且つ有機電界発光素子用材料としての性能がよい点で、各々独立して、ピリジル基、ピリミジル基、キノリル基、イソキノリル基、ピリジルフェニル基、又は1-(3,5-ジピリジル)フェニル基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)であることが好ましく、各々独立して、ピリジル基、ピリミジル基、キノリル基、イソキノリル基、ピリジルフェニル基、又は1-(3,5-ジピリジル)フェニル基であることがより好ましく、ピリジル基であることがさらに好ましい。
 前述の、炭素、水素、及び窒素のみからなる炭素数3~30の含窒素ヘテロアリール基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は炭素、水素、窒素、及び硫黄のみからなる炭素数3~30の含窒素ヘテロアリール基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)で表される置換基としては、特に限定するものではないが、例えば、ピリジル基、ピリミジル基、ピラジル基、キノリル基、イソキノリル基、アクリジル基、チアゾリル基、ベンゾチアゾリル基、キナゾリル基、キノキサリル基、ナフチリジル基、チアントレニル基、インドリジル基、アザインドリジル基、フルオロピリジル基、フルオロピリミジル基、フルオロピラジル基、フルオロキノリル基、フルオロイソキノリル基、フルオロアクリジル基、フルオロチアゾリル基、フルオロベンゾチアゾリル基、フルオロキナゾリル基、フルオロキノキサリル基、フルオロナフチリジル基、フルオロチアントレニル基、フルオロインドリジル基、フルオロアザインドリジル基、メチルピリジル基、メチルピリミジル基、メチルピラジル基、メチルキノリル基、メチルイソキノリル基、メチルアクリジル基、メチルチアゾリル基、メチルベンゾチアゾリル基、メチルキナゾリル基、メチルキノキサリル基、メチルナフチリジル基、メチルチアントレニル基、メチルインドリジル基、メチルアザインドリジル基、フェニルピリジル基、フェニルピリミジル基、フェニルピラジル基、フェニルキノリル基、フェニルイソキノリル基、フェニルアクリジル基、フェニルチアゾリル基、フェニルベンゾチアゾリル基、フェニルキナゾリル基、フェニルキノキサリル基、フェニルナフチリジル基、フェニルチアントレニル基、フェニルインドリジル基、フェニルアザインドリジル基、フェニルピリジル基、フェニルピリミジル基、フェニルピラジル基、フェニルキノリル基、フェニルイソキノリル基、フェニルアクリジル基、フェニルチアゾリル基、フェニルベンゾチアゾリル基、フェニルキナゾリル基、フェニルキノキサリル基、フェニルナフチリジル基、フェニルチアントレニル基、フェニルインドリジル基、フェニルアザインドリジル基、ピリジルフェニル基、1-(3,5-ジピリジル)フェニル基、ピリミジルフェニル基、ピラジルフェニル基、ピリジルビフェニリル基、ピリミジルビフェニリル基、ピラジルビフェニリル基、キノリルビフェニリル基、イソキノリルビフェニリル基、アクリジルビフェニリル基、チアゾリルビフェニリル基、ベンゾチアゾリルビフェニリル基、キナゾリルビフェニリル基、キノキサリルビフェニリル基、ナフチリジルビフェニリル基、チアントレニルビフェニリル基、インドリジルビフェニリル基、アザインドリジルビフェニリル基等を挙げることができる。
 前記の炭素、水素、及び窒素のみからなる炭素数3~30の含窒素ヘテロアリール基(ただし、これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)で表される置換基としては、特に限定するものではないが、例えば、ピリジル基、ピリミジル基、ピラジル基、キノリル基、イソキノリル基、フルオロピリジル基、フルオロピリミジル基、フルオロピラジル基、フルオロキノリル基、フルオロイソキノリル基、メチルピリジル基、メチルピリミジル基、メチルピラジル基、メチルキノリル基、メチルイソキノリル基、フェニルピリジル基、フェニルピリミジル基、フェニルピラジル基、フェニルキノリル基、フェニルイソキノリル基、ピリジルフェニル基、1-(3,5-ジピリジル)フェニル基、ピリミジルフェニル基、ピラジルフェニル基、キノリルフェニル基、イソキノリルフェニル基が挙げられる。
 Y及びZは各々独立して、窒素原子またはCHを現す。但し、Y及びZのうち少なくとも一方は窒素原子である。なお、有機電界発光素子用材料としての性能がよい点で、Y及びZが窒素原子であること、又はYがCHでありZが窒素原子であることが好ましい。
 また、本発明の環状アジン化合物(1)中の任意の水素原子は重水素原子に置換されてもよい。
 次に、本発明の環状アジン化合物の製造方法について説明する。
 本発明の環状アジン化合物(1)は、金属触媒の存在下、又は塩基及び金属触媒の存在下に、次の反応式(1)、反応式(2)、反応式(3)、又は反応式(4)で示される方法により製造することができる。
 また、以降、一般式(2)で表される化合物については化合物(2)と称する。なお、化合物(3)~化合物(9)についても同義とする。
Figure JPOXMLDOC01-appb-C000022
(一般式(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、及び(9)中、Cz、Ar、Ar、Ar、Ar、n、Y、及びZは、各々独立して、前記の一般式(1)と同じ定義を表す。X、X、X、X、及びMは、各々独立して、脱離基を表す。HはCzにおける窒素原子上の水素原子を表す。)
 X、X、X、及びXで表される脱離基としては、特に限定するものではないが、例えば、塩素原子、臭素原子、トリフラート又はヨウ素原子が挙げられる。このうち、反応収率がよい点で、臭素原子又は塩素原子が好ましい。
 Mで表される脱離基としては、特に限定するものではないが、例えば、塩素原子、臭素原子、トリフラート、ヨウ素原子、金属含有基(例えば、Li、Na、MgCl、MgBr、MgI、CuCl、CuBr、CuI、AlCl、AlBr、Al(Me)、Al(Et)、Al(Bu)、Sn(Me)、Sn(Bu)、SnF、ZnR(Rは、ハロゲン原子を表す。)等)、Si(R、BFK、B(OR、B(OR等、が例示できる。
 Mで表される金属含有基としては、B(OR、B(OR、ZnR、Si(R等が例示でき、ZnRとしては、ZnCl、ZnBr、ZnI等が例示できる。また、これらの金属含有基には、エーテル類やアミン類などの配位子が配位していても良く、配位子の種類としては反応式(1)を阻害しないものであれば制限はない。
 また、前記Si(RとしてはSiMe、SiPh、SiMePh、SiCl、SiF、Si(OMe)、Si(OEt)、Si(OMe)OH等を例示できる。
 また、前記B(ORとしては、B(OH)、B(OMe)、B(OPr)、B(OBu)、B(OPh)等が例示できる。
 また、2つのRが一体となって酸素原子及びホウ素原子を含んで環を形成した場合のB(ORとしては、次の(I)から(VII)で示されるものが例示でき、収率がよい点で(II)で示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000023
 前記B(ORとしては次の(I)から(III)で示されるものが例示できる。
Figure JPOXMLDOC01-appb-C000024
 これらの脱離基のうち、反応後の処理の容易性、原料調達の容易さ等の点で、塩素原子、臭素原子、トリフラート、ヨウ素原子、B(OR、又はB(ORが好ましい。
 反応式(1)及び反応式(3)の反応に示すように、本発明の環状アジン化合物(1)は、金属触媒の存在下、又は塩基及び金属触媒の存在下、化合物(2)と化合物(3)、又は化合物(6)と化合物(7)を用いて、それぞれの反応式に記載したように、カップリング反応を行うことで合成することが出来る。
 なお、カップリング反応の効率等が優れる点で、反応式(1)及び反応式(3)の反応において、金属触媒は、パラジウム触媒又は銅触媒であることが好ましい。
 なお、反応式(1)及び反応式(3)の反応において、塩基を加えて反応を行うことも可能であり、反応収率が向上する点で、塩基を添加することが好ましい。特に、Mが塩素原子、臭素原子、トリフラート、ヨウ素原子、B(OR、又はSi(Rの場合は、塩基を加えることを必須とする。
 また、反応式(2)及び反応式(4)の反応に示すように、本発明の環状アジン化合物(1)は、金属触媒の存在下、又は塩基及び金属触媒の存在下、化合物(4)と化合物(5)、又は化合物(8)と化合物(9)を用いて、それぞれの反応式に記載したように、カップリング反応を行うことで合成することが出来る。
 なお、カップリング反応の効率等が優れる点で、反応式(2)及び反応式(4)の反応において、金属触媒は、パラジウム触媒又はニッケル触媒であることが好ましい。
 なお、反応式(2)及び反応式(4)の反応において、塩基を加えて反応を行うことも可能であり、反応収率が向上する点で、塩基を添加することが好ましい。特に、Mが塩素原子、臭素原子、トリフラート、ヨウ素原子、B(OR、又はSi(Rの場合は、塩基を加えることを必須とする。
 また、反応式(1)~(4)の反応において、相関移動触媒を添加することもできる。相関移動触媒としては、特に限定するものではないが、例えば、18-クラウン-6-エーテル等を用いることができる。なお、その添加量としては、反応を著しく阻害しない範囲の任意の量である。
 反応式(1)~(4)の反応に用いる金属触媒としては、特に限定するものではないが、例えば、パラジウム触媒、銅触媒、ニッケル触媒が挙げられる。
 パラジウム触媒としては、特に限定するものではないが、例えば、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、硝酸パラジウム等の塩を例示することができる。さらに、π-アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、トリ(tert-ブチル)ホスフィンパラジウム、ジクロロ(1,1’-ビス(ジフェニルホスフィノ)フェロセン)パラジウム等を例示することができる。中でも、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、トリ(tert-ブチル)ホスフィンパラジウム等の第三級ホスフィンを配位子として有するパラジウム錯体は収率がよい点で好ましく、入手容易である点で、トリ(tert-ブチル)ホスフィンパラジウムがさらに好ましい。
 銅触媒としては、特に限定するものではないが、例えば、塩化銅、臭化銅、ヨウ化銅、酸化銅、銅トリフラートが挙げられる。中でも、酸化銅、ヨウ化銅が、カップリング反応の効率等が優れる点で好ましく、入手容易である点で、酸化銅が更に好ましい。
 ニッケル触媒としては、特に限定するものではないが、例えば、塩化ニッケル、臭化ニッケル、塩化ニッケル水和物、ジクロロ(ジメトキシエタン)ニッケル、ジクロロ[1,2-ビス(ジフェニルホスフィノ)エタン]ニッケル、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]ニッケル、ジクロロ[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ニッケル(前記4つは、第三級ホスフィンを配位子として有するニッケル錯体の一例)、ジクロロ(N,N,N’,N’-テトラメチルエチレンジアミン)ニッケルがあげられる。中でも、ジクロロ(ジメトキシエタン)ニッケル、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]ニッケル、ジクロロ(N,N,N’,N’-テトラメチルエチレンジアミン)ニッケルが、カップリング反応の効率等が優れる点で好ましく、入手容易である点で、ジクロロ(ジメトキシエタン)ニッケル、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]ニッケルがさらに好ましい。
 なお、上記の第三級ホスフィンを配位子として有するパラジウム錯体、及び第三級ホスフィンを配位子として有するニッケル錯体については、パラジウム塩、ニッケル塩又はそれらの錯化合物に第三級ホスフィンを添加して調製することができる。なお、当該調製は、反応とは別に行ったうえで反応系中に加えることもできるし、反応系中で行うこともできる。
 第三級ホスフィンとしては、特に限定するものではないが、例えば、トリフェニルホスフィン、トリメチルホスフィン、トリブチルホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、tert-ブチルジフェニルホスフィン、9,9-ジメチル-4,5-ビス(ジフェニルホスフィノ)キサンテン、2-(ジフェニルホスフィノ)-2’-(N,N-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリ(2-フリル)ホスフィン、トリ(o-トリル)ホスフィン、トリス(2,5-キシリル)ホスフィン、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル等を例示することができる。このうち、入手容易であり、収率がよい点で、(tert-ブチル)ホスフィン又は2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルが好ましい。
 パラジウム塩、ニッケル塩又はそれらの錯化合物に第三級ホスフィンを添加する場合、第三級ホスフィンの添加量は、パラジウム塩、ニッケル塩又はそれらの錯化合物の1モル(パラジウム若しくはニッケル原子換算)に対して0.1~10倍モルであることが好ましく、収率がよい点で0.3~5倍モルであることがさらに好ましい。
 なお、上記の銅触媒には、別途、配位子を添加することも可能である。銅触媒に添加する配位子としては、特に限定するものではないが、例えば、2,2’-ビピリジン、1,10-フェナントロリン、N,N,N’,N’-テトラメチルエチレンジアミン、トリフェニルホスフィン、2-(ジシクロヘキシルホスフィノ)ビフェニル等を例示することができる。このうち、入手容易であり、収率がよい点で、1,10-フェナントロリンが好ましい。
 反応式(1)~(4)の反応において、用いることのできる塩基としては、特に限定するものではないが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができる。このうち、収率がよい点で、炭酸カリウム、リン酸カリウム又は水酸化ナトリウムが好ましい。
 反応式(1)~(4)の反応は、溶媒中で実施することが好ましい。溶媒としては、特に制限はないが、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、トルエン、ベンゼン、ジエチルエーテル、1,4-ジオキサン、エタノール、ブタノール、キシレン等を例示することができ、これらを適宜組み合わせて用いてもよい。このうち、収率がよい点で、1,4-ジオキサン、キシレン、トルエン及びブタノールの混合溶媒、又はキシレン及びブタノールの混合溶媒が好ましい。
 本発明の環状アジン化合物(1)については、反応式(1)~(4)の反応終了後に再沈殿、濃縮、ろ過、精製等の処理を行うことで純度を高めることができる。さらに高純度化するために、必要に応じて、再結晶、シリカゲルカラムクロマトグラフィー、昇華等で精製してもよい。
 以下、反応式(1)の反応について説明する。
 化合物(2)は、例えば、山中宏著、「新編 ヘテロ環化合物 基礎編」,講談社,2004年に開示されている方法を用いて製造することができる。
 化合物(2)中の任意の水素原子は重水素原子に置換されていてもよい。
 化合物(3)としては、特に限定するものではないが、例えば、次の3-1~3-17(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい。なお、これらの置換基は前述したものと同じである。)で表されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000025
 化合物(3)は、例えば、J.Tsuji著、「Palladium Reagents and Catalysts」,John Wiley & Sons,2004年、Journal of Organic Chemistry,60巻,7508-7510,1995年、Journal of Organic Chemistry,65巻,164-168,2000年、Organic Letters,10巻,941-944,2008年、又はChemistry of Materials,20巻,5951-5953,2008年に開示されている方法を用いて製造することができる。
 また、化合物(3)中の任意の水素原子は重水素原子に置換されていてもよい。
 反応式(1)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(2)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(1)における塩基の使用量は、特に制限はないが、化合物(3)の1モルに対して、1~10倍モルであることが好ましく、収率がよい点で、1~3倍モルであることがさらに好ましい。
 反応式(1)で用いる化合物(2)と化合物(3)とのモル比に特に制限はないが、化合物(2)の1モルに対して、0.2~5倍モルであることが好ましく、収率がよい点で1~3倍モルであることがさらに好ましい。
 以下に、反応式(2)について説明する。
 化合物(4)は、例えば、実施例中の合成例-1に示した方法に準じて製造することができる。
 また、化合物(4)中の任意の水素原子は重水素原子に置換されていてもよい。
 化合物(5)としては、特に限定するものではないが、例えば、次の5-1~5-15(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい。)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000026
(例示式(5-1)~(5-15)中、Mは、上記一般式(5)におけるMと同じ定義である。)
 化合物(5)は、例えば、J.Tsuji著、「Palladium Reagents and Catalysts」,John Wiley & Sons,2004年、Journal of Organic Chemistry,60巻,7508-7510,1995年、Journal of Organic Chemistry,65巻,164-168,2000年、Organic Letters,10巻,941-944,2008年、又はChemistry of Materials,20巻,5951-5953,2008年に開示されている方法を用いて製造することができる。
 また、化合物(5)中の任意の水素原子は重水素原子に置換されていてもよい。
 反応式(2)は、化合物(4)を、場合によっては塩基の存在下で、パラジウム触媒の存在下に化合物(5)と反応させ、本発明の環状アジン化合物(1)を製造する方法であり、鈴木-宮浦反応の反応条件を適用することにより、収率よく目的物を得ることができる。
 反応式(2)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(5)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好まし。
 塩基の使用量は特に制限はないが、化合物(5)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1~3倍モルであることがさらに好ましい。
 反応式(2)で用いる化合物(4)と化合物(5)とのモル比に特に制限はないが、化合物(2)の1モルに対して、0.2~5倍モルであることが好ましく、収率がよい点で0.3~3倍モルであることがさらに好ましい。
 以下に、反応式(3)について、説明する。 
 化合物(6)は、例えば、実施例中の合成例-2に示した方法に準じて製造することができる。
 また、化合物(6)中の任意の水素原子は重水素原子に置換されていてもよい。
 化合物(7)としては、特に限定するものではないが、例えば、次の7-1~7-21(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい。)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000027
(例示式(7-1)~(7-21)中、Xは、上記一般式(7)におけるXと同じ定義である。)
 化合物(7)は、例えば、J.Org.Chem.48巻,1064-1069,1983年に開示されている方法を用いて製造することができる。
 また、化合物(7)中の任意の水素原子は重水素原子に置換されていてもよい。
 反応式(3)は化合物(6)を、パラジウム触媒及び塩基の存在下に化合物(7)と反応させ、本発明の環状アジン化合物(1)を得る方法であり、収率よく目的物を得ることができる。
 反応式(3)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(6)の1モルに対して、0.01~0.1倍モル(パラジウム原子換算)であることが好まし。塩基の使用量としては、特に制限はないが、化合物(6)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~3倍モルがさらに好ましい。
 また、反応式(3)においては、18-クラウン-6-エーテルに代表される相間移動触媒を添加してもよい。
 反応式(3)の反応は、収率が良い点で、溶媒中で実施することが好ましい。
 以下に、反応式(4)について説明する。
 化合物(8)は、例えば、実施例中の合成例-1に示した方法に準じて製造することができる。
 また、化合物(8)中の任意の水素原子は重水素原子に置換されていてもよい。
 化合物(9)としては、特に限定するものではないが、例えば、次の9-1~9-12(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい。なお、これらの置換基は前述したものと同じである。)で表されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000028
(例示式(9-1)~(9-12)中、Xは、上記一般式(7)におけるXと同じ定義である。)
 化合物(9)は、例えば、J.Tsuji著、「Palladium Reagents and Catalysts」,John Wiley & Sons,2004年、Journal of Organic Chemistry,60巻,7508-7510,1995年、Journal of Organic Chemistry,65巻,164-168,2000年、Organic Letters,10巻,941-944,2008年、又はChemistry of Materials,20巻,5951-5953,2008年に開示されている方法を用いて製造することができる。
 また、化合物(9)中の任意の水素原子は重水素原子に置換されていてもよい。
 反応式(4)は、化合物(8)を、場合によっては塩基の存在下で、パラジウム触媒の存在下に化合物(9)と反応させ、本発明の環状アジン化合物(1)を製造する方法であり、鈴木-宮浦反応の反応条件を適用することにより、収率よく目的物を得ることができる。
 反応式(4)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(9)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 塩基の使用量は特に制限はないが、化合物(9)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1~3倍モルであることがさらに好ましい。
 反応式(4)で用いる化合物(8)と化合物(9)とのモル比に特に制限はないが、化合物(8)の1モルに対して、0.2~5倍モルであることが好ましく、収率がよい点で0.3~3倍モルであることがさらに好ましい。
 本発明の環状アジン化合物(1)から成る有機電界発光素子用薄膜の製造方法に特に限定はないが、好ましい例としては真空蒸着法による成膜を挙げることができる。
 真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子の作製における製造タクトタイムが短く、製造コストが優位である点で、一般的に用いられる拡散ポンプ、ターボ分子ポンプ、クライオポンプ等により到達し得る1×10-2~1×10-6Pa程度が好ましい。
 また、蒸着速度は、形成する膜の厚さによるが0.005~10nm/秒が好ましい。
 また、溶液塗布法によっても1,3,5-トリアジン化合物(1)から成る有機電界発光素子用薄膜を製造することが出来る。例えば、環状アジン化合物(1)を、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、トルエン、酢酸エチル又はテトラヒドロフラン等の有機溶媒に溶解し、汎用の装置を用いたスピンコート法、インクジェット法、キャスト法、ディップ法等による成膜も可能である。
 以下、合成例、実施例、比較例及び参考例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。
 合成例-1
Figure JPOXMLDOC01-appb-C000029
 アルゴン気流下、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(621mg)、2-クロロカルバゾール(339mg)、酢酸パラジウム(7.2mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(96μL)、炭酸カリウム(332mg)、及び18-クラウン-6-エーテル(84.6mg)を、キシレン(8.0mL)に懸濁し、120℃で21時間撹拌した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物である2-クロロ-9-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾールの白色粉末(収量729mg,収率90%)を得た。
 H-NMR(CDCl):δ7.32(d,J=8.4Hz,1H),7.37(t,J=7.4Hz,1H),7.49(t,J=7.6Hz,1H),7.55-7.57(m,2H),7.62-7.68(m,6H),7.82(d,J=8.4Hz,2H),8.09(d,J=8.4Hz,1H),8.16(d,J=7.6Hz,1H),8.85(d,J=6.4Hz,4H),9.06(d,J=8.4Hz,2H).
 合成例-2
Figure JPOXMLDOC01-appb-C000030
 アルゴン気流下、2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(1.0g)、3-ブロモカルバゾール(622mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(238mg)を、1,4-ジオキサン(12mL)及び3M-リン酸カリウム水溶液(1.1mL)の混合溶媒に懸濁し、20時間加熱還流した。室温まで冷却後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物である3-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾールの褐色固体(収量794mg,収率70%)を得た。
 H-NMR(DMSO-d):δ7.23(t,J=7.4Hz,1H),7.44(t,J=7.6Hz,1H),7.54(d,J=8.1Hz,1H),7.64(d,J=8.4Hz,1H),7.63-7.75(m、6H),7.89(d,J=8.5Hz,1H),8.10(d,J=8.3Hz,2H),8.29(d,J=7.8Hz,1H),8.65(s,1H),8.79(d,J=7.0Hz,4H),8.85(d,J=8.3Hz,2H),11.45(s,1H).
 合成例-3
Figure JPOXMLDOC01-appb-C000031
 アルゴン気流下、3-ブロモカルバゾール(4.92g)、ビスピナコラートジボロン(10.2g)、酢酸カリウム(7.85g)、及びジクロロビストリフェニルホスフィンパラジウム(281mg)を、1,4-ジオキサン(100mL)に懸濁し、2時間加熱還流した。室温まで冷却後、不溶物をろ別した。次いで、ろ液をシリカゲルクロマトグラフィー(展開溶媒;クロロホルム)で精製し、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-カルバゾールの白色固体(収量3.94g,収率67%)を得た。
 H-NMR(DMSO-d):δ1.17(s,12H),7.18(t,J=7.4Hz,1H),7.40(t,J=7.6Hz,1H),7.46-7.51(m,2H),7.70(d,J=8.2Hz,1H),8.20(d,J=7.8Hz,1H),8.46(s,1H),11.43(s,1H).
 合成例-4
Figure JPOXMLDOC01-appb-C000032
 アルゴン気流下、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-カルバゾール(586mg)、2-ブロモピリジン(348mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(46mg)を、THF(10mL)及び4N-水酸化ナトリウム水溶液(1.0mL)の混合溶媒に懸濁し、23時間加熱還流した。室温まで冷却後、クロロホルムで抽出した。有機層をシリカゲルクロマトグラフィー(展開溶媒;トルエン、次いでクロロホルム、その後メタノール)で精製し、3-(2-ピリジル)カルバゾールの黄色固体(収量474mg,収率97%)を得た。
 H-NMR(DMSO-d):δ7.20(t,J=7.4Hz,1H),7.29(dd,J=7.4,4.8Hz,1H),7.41(t,J=7.6Hz,1H),7.50(d,J=8.1Hz,1H),7.56(d、J=8.5Hz,1H),7.87(t,J=7.7Hz,1H),8.05(d,J=8.1Hz,1H),8.18(d,J=8.6Hz,1H),8.22(d,J=7.8Hz,1H),8.66(d,J=4.8Hz,1H),8.88(s,1H),11.41(s,1H).
 合成例-5
Figure JPOXMLDOC01-appb-C000033
 アルゴン気流下、2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.17g)、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)カルバゾール(967mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(104mg)を、1,4-ジオキサン(15mL)に懸濁し、3M-炭酸カリウム水溶液(2.5mL)を添加し、17時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物である3-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾールの白色粉末(収量1.37g,収率96%)を得た。
 H-NMR(CDCl):δ,7.29(t,J=7.0Hz,1H),7.43-7.50(m,2H),7.55-7.61(m,7H),7.66(t,J=7.8Hz,1H),7.81(d,J=8.4Hz,1H),7.94(d,J=7.8Hz,1H),8.15(bs,1H),8.17(d,J=7.8Hz,1H),8.41(s,1H),8.75(d,J=7.8Hz,1H),8.80(d,J=7.8Hz,4H),9.07(s,1H).
 合成例-6
Figure JPOXMLDOC01-appb-C000034
 アルゴン気流下、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(2.00g)、2-ブロモピリジン(745mg)、酸化銅(56.23mg)、1,10-フェナントロリン(70.82mg)、18-クラウン-6-エーテル(207.76mg)、及び炭酸カリウム(1358mg)を、キシレン(20mL)に懸濁し、16時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物であるN-(2-ピリジル)-3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾールの黄色粉末(収量2110mg,収率92%)を得た。
 H-NMR(CDCl):δ7.33-7.39(m,2H),7.48(t,J=7.2Hz,1H),7.56-7.64(m,6H),7.69(d,J=8.0Hz,1H),7.80(d,J=8.0Hz,1H),7.86(d,J=7.6Hz,1H),7.92(s,1H),7.95-8.00(m,2H),8.22(d,J=7.6Hz,1H),8.41(s,1H),8.71(s,1H),8.78-8.80(m,5H),8.97(s,1H).
 合成例-7
Figure JPOXMLDOC01-appb-C000035
 アルゴン気流下、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(1.90g)、ビスピナコラートジボロン(0.90g)、トリス(ジベンジリデンアセトン)ジパラジウム(29.7mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(30.9mg)、及び酢酸カリウム(0.95g)を、1,4-ジオキサン(24mL)に懸濁し、5時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体をろ別し、水、次いでメタノールで洗浄した。減圧下において溶媒を留去し、目的物である3-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾールの白色粉末(収量1.98g,収率90%)を得た。
 H-NMR(CDCl):δ,1.45(s,12H),7.31-7.37(m,2H),7.47(t,J=7.4Hz,1H),7.56-7.61(m,6H),7.70(d,J=8.2Hz,1H),7.85-7.89(m,2H),7.96(t,J=8.2Hz,2H),8.24(d,J=7.4Hz,1H),8.40(s,1H),8.48(s,1H)、8.75-8.83(m,5H),9.13(s,1H),9.18(s,1H).
 合成例-8
Figure JPOXMLDOC01-appb-C000036
 アルゴン気流下、2-[3-クロロ-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(93mg)、6-ブロモ-9-(2-ピリジル)-β-カルボリン(54mg)、テトラキス(トリフェニルホスフィン)パラジウム(5.7mg)、及び炭酸カリウム(57mg)を、1,4-ジオキサン(3.3mL)に懸濁し、水(150μL)を添加し、14時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、減圧下において溶媒を留去した。シリカゲルカラムクロマトグラフィー(溶離液;酢酸エチル)による精製を行い、目的物である9-(2-ピリジル)-6-[3-クロロ-5-(4,6-ジフェニルトリアジン-2-イル)フェニル]-β-カルボリンの白色粉末(収量70mg,収率71%)を得た。
 H-NMR(CDCl):δ,7.39(dd,J=7.4、5.0Hz,1H),7.55-7.62(m,6H),7.72(d,J=7.4Hz,1H),7.89(s,1H),7.92(d,J=8.4Hz,1H),8.01(t,J=7.8Hz,1H),
8.06-8.09(m,2H),8.45(s,1H),8.60(d,J=5.2Hz,1H),8.72(s,1H),8.76-8.78(m,5H),8.93(s,1H),9.32(s,1H).
 合成例-9
Figure JPOXMLDOC01-appb-C000037
 アルゴン気流下、2-[3-クロロ-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(706mg)、3-ブロモ-9-フェニル-6-(2-ピリジル)カルバゾール(500mg)、テトラキス(トリフェニルホスフィン)パラジウム(28.9mg)、及び炭酸カリウム(57mg)を、1,4-ジオキサン(6.5mL)に懸濁し、水(1.3mL)を添加し、20時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体をろ別し、水、次いでメタノール、その後ヘキサンで洗浄した。減圧下において溶媒を留去し、目的物である3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-フェニル-6-(2-ピリジル)カルバゾールの白色粉末(収量754mg,収率91%)を得た。
 H-NMR(CDCl):δ,7.21(t,J=7.4Hz,1H),7.52(t,J=8.4Hz,2H),7.55-7.69(m,11H),7.76(t,J=8.4Hz,2H),7.88(d,J=8.4Hz,1H),7.92(s,1H),8.11(d,J=8.4Hz,1H),8.54(s,1H),8.71-8.73(m,2H),8.75-8.80(m,4H),8.91(s,1H),8.96(s,1H).
 合成例-10
Figure JPOXMLDOC01-appb-C000038
 アルゴン気流下、2-(5-クロロビフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジン(12.6g)、ビスピナコラートジボロン(8.4g)、トリス(ジベンジリデンアセトン)ジパラジウム(824mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(1.3g)、及び酢酸カリウム(6.5g)を、1,4-ジオキサン(150mL)に懸濁し、3.5時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体をろ別し、水、次いでメタノールで洗浄した。減圧下において溶媒を留去し、目的物である2-[5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-ビフェニル-3-イル-4,6-ジフェニル-1,3,5-トリアジン(以下、化合物(E-1))の白色粉末(収量14.8g,収率96%)を得た。
 H-NMR(CDCl):δ,1.47(s,12H),7.45(t,J=7.4Hz,1H),7.55(t,J=7.4Hz,2H),7.60-7.68(m,6H),7.82(d,J=8.1Hz,2H),8.33(s,1H),8.85(d,J=7.9Hz,4H),9.12(s,1H),9.16(s,1H).
 合成例-11
Figure JPOXMLDOC01-appb-C000039
 アルゴン気流下、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(4.00g)、フェニルボロン酸(1.25g)、酢酸パラジウム(53mg)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(225mg)を、1,4-ジオキサン(80mL)に懸濁し、3M-炭酸カリウム水溶液(6.8mL)を添加し、27時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体をろ別し、水、次いでメタノール、その後ヘキサンで洗浄した。減圧下において溶媒を留去し、目的物である3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-ビフェニル-3-イル]カルバゾールの白色粉末(収量3.27g,収率76%)を得た。
 H-NMR(CDCl):δ7.32(dd,J=7.9,6.2Hz,1H),7.47-7.51(m,2H),7.59-7.68(m,10H),7.87-7.91(m,3H),8.18(s,1H),8.19(s,1H),8.22(d,J=7.7Hz,1H),8.50(s,1H),8.84-8.87(m,4H),9.00(s,1H),9.09(s,1H).
 合成例-12
Figure JPOXMLDOC01-appb-C000040
 アルゴン気流下、9-(2-ピリジル)-δ-カルボリン(700mg)、及びN-ブロモスクシンイミド(559mg)を、DMF(5.7mL)に懸濁し、30℃で10時間撹拌した。その後、水を加え、析出した固体をろ別し、水、次いでヘキサンで洗浄した。減圧下において溶媒を留去し、目的物である6-ブロモ-9-(2-ピリジル)-δ-カルボリンの褐色粉末(収量761mg,収率82%)を得た。
 H-NMR(CDCl):δ,7.38(dd,J=7.5,4.9Hz,1H),7.42(dd,J=8.4,4.7Hz,1H),7.62(d,J=8.2Hz,1H),7.65(d,J=8.8Hz,1H),7.80(d,J=8.8Hz,1H),7.80(t,J=7.6Hz,1H),8.22(d,J=8.4Hz,1H),8.59(s,1H),8.66(d,J=4.7Hz,1H),8.75(d,J=4.9Hz,1H).
 合成例-13
Figure JPOXMLDOC01-appb-C000041
 アルゴン気流下、9-フェニル-3-(2-ピリジル)カルバゾール(757mg)、及びN-ブロモスクシンイミド(463mg)を、DMF(4.7mL)に懸濁し、30℃で7時間撹拌した。その後、水を加え、析出した固体をろ別し、水、次いでヘキサンで洗浄した。減圧下において溶媒を留去し、目的物である3-ブロモ-9-フェニル-6-(2-ピリジル)カルバゾールの褐色粉末(収量852mg,収率90%)を得た。
 H-NMR(CDCl):δ,7.27-7.30(m,1H),7.317.131(d,J=8.5Hz,1H),7.49(d,J=8.6Hz,1H),7.51-7.55(m,2H),7.57-7.60(m,2H),7.64-7.68(m,2H),7.84(t,J=7.6Hz,1H),7.89(d,J=8.0Hz,1H),8.14(d,J=8.5Hz,1H),8.37(s,1H),8.77(d,J=4.8Hz,1H),8.80(s,1H).
 合成例-14
Figure JPOXMLDOC01-appb-C000042
 アルゴン気流下、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(2.55g)、4-(2-ピリジル)フェニルボロン酸(1.19g)、酢酸パラジウム(22.5mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(143mg)を1,4-ジオキサン(25mL)に懸濁し、次いで3M-炭酸カリウム水溶液(4.0mL)を添加し、14時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体をろ別し、水、メタノール、ヘキサンで洗浄した。得られた固体をo-キシレンで再結晶することで、目的の3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]カルバゾール(以下、化合物(E-2))の白色粉末(収量2.31g,収率74%)を得た。
 H-NMR(DMSO-d):δ7.21(t,J=7.4Hz,1H),7.41(dd,J=7.4,4.7Hz,1H),7.44(t,J=7.6Hz,1H),7.55(d,J=8.1Hz,1H),7.66-7.76(m,7H),7.92-7.97(m,2H),8.07-8.10(m,3H),8.30-8.32(m,3H),8.48(s,1H),8.71(s,1H),8.74(d,J=4.7Hz,1H),8.77-8.80(m,4H),8.94(s,1H),9.00(s,1H),11.43(s,1H).
 合成例-15
Figure JPOXMLDOC01-appb-C000043
 アルゴン気流下、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)カルバゾール(1.17g)、8-クロロキノリン(720mg)、酢酸パラジウム(18.0mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(114mg)をTHF(10mL)に懸濁し、3M-炭酸カリウム水溶液(2.7mL)を添加し、15時間加熱還流した。反応混合物を放冷後、水を加えクロロホルムで抽出した。有機層を硫酸マグネシウムで乾燥したのち、ろ過した。溶媒を減圧留去することで析出した固体をろ取することで、目的の3-(キノリン-8-イル)カルバゾールの黄色粉末(収量780mg,収率66%)を得た。
 H-NMR(CDCl):δ7.22(dd,J=7.9,6.6Hz,1H),7.36(d,J=8.0Hz,1H),7.40(dd,J=8.1,6.6Hz,1H),7.44(dd,J=8.4Hz,1H),7.46(dd,J=8.3,4.2Hz,1H),7.67(dd,J=8.2,7.0Hz,1H),7.76(d,8.3Hz,1H),7.86(d,J=4.3Hz,1H),7.88(d,J=4.3Hz,1H),8.05(d,J=7.8Hz,1H),8.27(d,J=8.3Hz,1H),8.35(s,1H),8.45(s,1H),9.02(d,J=4.2Hz,1H).
 合成例-16
Figure JPOXMLDOC01-appb-C000044
 アルゴン気流下、3-(キノリン-8-イル)カルバゾール(736mg)、2-ブロモピリジン(474mg)、酸化銅(I)(17.9mg)、1,10-フェナントロリン(45mg)、18-クラウン-6-エーテル(132mg)、炭酸カリウム(691mg)をキシレン(6.2mL)に懸濁し、15時間加熱還流した。反応混合物を放冷後、不要物をセライトでろ過することで除去した。濾液を減圧留去し、カラムクロマトグラフィー(展開溶媒:クロロホルム)で精製することで、目的の9-(2-ピリジル)-3-(キノリン-8-イル)カルバゾールの黄色粉末(収量929mg,収率100%)を得た。
 H-NMR(CDCl):δ7.32-7.36(m,2H),7.46-7.50(m,2H),7.69(dd,J=8.1,7.1Hz,1H),7.74(d,J=8.1Hz,1H),7.82(d,J=8.5Hz,1H),7.87-7.92(m,2H),7.93(d,J=8.4Hz,1H),7,97(dd,J=8.0,7.5Hz,1H),7.97(d,J=8.5Hz,1H),8,16(d,J=7.7Hz,1H),8.29(d,J=8.3Hz,1H),8.44(s,1H),8.78(d,J=4.7Hz,1H),9.04(d,J=4.1Hz,1H).
 合成例-17
Figure JPOXMLDOC01-appb-C000045
 アルゴン気流下、9-(2-ピリジル)-3-(キノリン-8-イル)カルバゾール(929mg)、N-ブロモスクシンイミド(467mg)をDMF(10mL)に懸濁し、60℃で3時間撹拌した。その後、水を加え析出した固体をろ別し、水、ヘキサンで洗浄した。減圧下において溶媒を留去し、目的の3-ブロモ-9-(2-ピリジル)-6-(キノリン-8-イル)カルバゾールの褐色粉末(収量986mg,収率88%)を得た。
 H-NMR(CDCl):δ,7.35(dd,J=7.4,4.9Hz,1H),7.48(dd,J=8.3,4.2Hz,1H),7.55(d,J=8.8Hz,1H),7.69(dd,J=7.8,7.5Hz,1H),7.70(d,J=8.1Hz,1H),7.82(d,J=8.5Hz,1H),7.83-7.90(m,3H),7.93(d,J=8.5Hz,1H),7.98(dd,J=8.0,7.5Hz,1H),8.27(s,1H),8.29(d,J=8.3Hz,1H),8.40(s,1H),8.76(d,J=4.9Hz,1H),9.02(d,J=4.2Hz,1H).
 合成例-18
Figure JPOXMLDOC01-appb-C000046
 アルゴン気流下、3-[4-(2-ピリジル)フェニル]カルバゾール(3.20g)、2-ブロモピリジン(1.90g)、酸化銅(I)(71.5mg)、1,10-フェナントロリン(180mg)、18-クラウン-6-エーテル(529mg)、炭酸カリウム(2.76g)をキシレン(25mL)に懸濁し、15時間加熱還流した。反応混合物を放冷後、水及びメタノールを加え、不要物をろ過することで除去した。濾液をクロロホルムで抽出し、有機層を硫酸ナトリウムで乾燥した後、ろ過した。溶媒を減圧留去し、カラムクロマトグラフィー(展開溶媒:クロロホルム)で精製することで、目的の9-(2-ピリジル)-3-[4-(2-ピリジル)フェニル]カルバゾールの黄色粉末(収量3.62g,収率91%)を得た。
 H-NMR(CDCl):δ7.26-7.30(m,1H),7.35(dd,J=7.4,4.9Hz,1H),7.38(t,J=7.5Hz,1H),7.50(t,J=7.7Hz,1H),7.70(d,J=8.1Hz,1H),7.78(d,J=8.6Hz,1H),7.81-7.91(m,5H),7.95(d,J=8.6Hz,1H),7.98(t,J=7.8Hz,1H),8.16(d,J=8.5Hz,2H),8.22(d,J=7.5Hz,1H),8.42(s,1H),8.75-8.79(m,2H).
 合成例-19
Figure JPOXMLDOC01-appb-C000047
 アルゴン気流下、9-(2-ピリジル)-3-[4-(2-ピリジル)フェニル]カルバゾール(1.99g)、N-ブロモスクシンイミド(979mg)をDMF(20mL)に懸濁し、60℃で4時間撹拌した。その後、水を加え析出した固体をろ別し、水、メタノール、ヘキサンで洗浄することで、目的の3-ブロモ-9-(2-ピリジル)-6-[4-(2-ピリジル)フェニル]カルバゾールの褐色粉末(収量2.12g,収率89%)を得た。
 H-NMR(CDCl):δ7.26-7.30(m,1H),7.36(dd,J=7.4,4.9Hz,1H),7.56(d,J=8.8Hz,1H),7.66(d,J=8.1Hz,1H),7.78-7.83(m,4H),7.85(d,J=8.5Hz,2H),7.91(d,J=8.5Hz,1H),7.98(dd,J=8.0,7.5Hz,1H),8.15(d,J=8.5Hz,2H),8.32(s,1H),8.35(s,1H),8.75-8.77(m,2H).
 合成例-20
Figure JPOXMLDOC01-appb-C000048
 アルゴン気流下、ベンズアミジン塩酸塩(313mg)、1-(4-ブロモフェニル)-3-(1-ナフチル)-2-プロペン-1-オン(1.42g)を2M-水酸化カリウムのエタノール溶液(2.0mL)及びエタノール(4.0mL)の混合溶液に懸濁し、17時間還流した。放冷後、水を加え、クロロホルムで抽出した。有機層をカラムクロマトグラフィー(展開溶媒:クロロホルム、ヘキサン)で精製することで、目的の4-(4-ブロモフェニル)-6-(1-ナフチル)-2-フェニルピリミジンの黄色粉末(収量459mg,収率52%)を得た。
 H-NMR(CDCl):δ7.53-7.61(m,5H),7.65(dd,J=8.2,7.2Hz,1H),7.72(d,J=8.6Hz,2H),7.82(d,J=7.1Hz,1H),7.89(s,1H),7.98-8.00(m,1H),8.03(d,J=8.2Hz,1H),8.21(d,J=8.6Hz,2H),8.36-8.38(m,1H),8.69-8.72(m,2H).
 合成例-21
Figure JPOXMLDOC01-appb-C000049
 アルゴン気流下、3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-ビフェニル-3-イル]カルバゾール(1.10g)、ブロモベンゼン(377mg)、酢酸パラジウム(9.0mg)、トリ(tert-ブチルホスフィン)1M-トルエン溶液)(120μL)、18-クラウン-6-エーテル(106mg)、炭酸カリウム(553mg)をキシレン(10mL)に懸濁し、15時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、メタノール、ヘキサンで洗浄し、目的の9-フェニル-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-ビフェニル-3-イル]カルバゾール(以下、ETL-4)の黄色粉末(収量1.21g,収率97%)を得た。
 H-NMR(CDCl):δ7.34-7.38(m,1H),7.47-7.56(m,4H),7.58-7.69(m,13H),7.87-7.89(m,3H),8.19(s,1H),8.29(d,J=7.7Hz,1H),8.56(s,1H),8.84(d,J=8.0Hz,4H),9.00(s,1H),9.10(s,1H).
 実施例-1
Figure JPOXMLDOC01-appb-C000050
 アルゴン気流下、2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(500mg)、3-[4-(2-ピリジル)フェニル]カルバゾール(606mg)、酢酸パラジウム(7.0mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(94μL)、炭酸カリウム(431mg)、及び18-クラウン-6-エーテル(82.5mg)を、キシレン(7.8mL)に懸濁し、4時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物である3-[4-(2-ピリジル)フェニル]-9-[3-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾール(A-1)の黄色粉末(収量867mg,収率88%)を得た。
 H-NMR(DMSO-d):δ7.36-7.39(m,2H),7.48-7.53(m,2H),7.57(d,J=8.8Hz,1H),7.64(t,J=7.4Hz,4H),7.69-7.73(m,2H),7.88-7.94(m,2H),7.97(d,J=8.5Hz,2H),8.01-8.06(m,3H),8.24(d,J=8.4Hz,2H),8.45(d,J=7.9Hz,1H),8.71(m,6H),8.91-8.93(m,2H).
 実施例-2
Figure JPOXMLDOC01-appb-C000051
 アルゴン気流下、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(700mg)、3-[4-(2-ピリジル)フェニル]カルバゾール(635mg)、酢酸パラジウム(8.1mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(108μL)、炭酸カリウム(498mg)、及び18-クラウン-6エーテル(105mg)を、キシレン(9.0mL)に懸濁し、2.5時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物である3-[4-(2-ピリジル)フェニル]-9-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾール(A-2)の黄色粉末(収量1108mg,収率98%)を得た。
 H-NMR(CDCl):δ7.26-7.30(m,1H),7.40(t,J=7.8Hz,1H),7.51(t,J=7.7Hz,1H),7.61-7.68(m,8H),7.79-7.84(m,3H),7.87-7.91(m,4H),8.17(d,J=8.4Hz,2H),8.27(d,J=7.6Hz,1H),8.48(s,1H),8.76(d,J=4.7Hz,1H),8.86(d,J=6.4Hz,4H),9.08(d,J=8.6Hz,2H).
 実施例-3
Figure JPOXMLDOC01-appb-C000052
 アルゴン気流下、2-(5-クロロビフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジン(500mg)、3-[4-(2-ピリジル)フェニル]カルバゾール(420mg)、酢酸パラジウム(5.3mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(71μL)、炭酸カリウム(329mg)、及び18-クラウン-6エーテル(69mg)を、キシレン(6mL)に懸濁し、21.5時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物である3-[4-(2-ピリジル)フェニル]-9-[5-(4,6-ジフェニルトリアジン-2-イル)ビフェニル-3-イル]カルバゾール(A-3)の黄色粉末(収量800mg,収率95%)を得た。
 H-NMR(CDCl):δ7.28(t,J=6.2Hz,1H),7.41(t,J=7.3Hz,1H),7.48-7.53(m,2H),7.57-7.66(m,10H),7.78-7.86(m,5H),7.90(d,J=8.4Hz,2H),8.08(s,1H),8.17(d,J=8.3Hz,2H),8.30(d,J=7.7Hz,1H),8.51(s,1H),8.78(d,J=4.7Hz,1H),8.81(d,J=6.7Hz,4H),9.02(s,1H),9.14(s,1H).
 実施例-4
Figure JPOXMLDOC01-appb-C000053
 アルゴン気流下、2-(4’-クロロビフェニル-4-イル)-4,6-ジフェニル-1,3,5-トリアジン(770mg)、3-[4-(2-ピリジル)フェニル]カルバゾール(646mg)、酢酸パラジウム(8.2mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(110μL)、炭酸カリウム(507mg)、及び18-クラウン-6エーテル(97mg)を、キシレン(9mL)に懸濁し、4時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物である3-[4-(2-ピリジル)フェニル]-9-[4’-(4,6-ジフェニルトリアジン-2-イル)ビフェニル-4-イル]カルバゾール(A-4)の黄色粉末(収量1140mg,収率88%)を得た。
 H-NMR(CDCl):δ7.26-7.29(m,1H),7.38(t,J=7.4Hz,1H),7.51(t,J=7.1Hz,1H),7.57(d,J=8.2Hz,1H),7.61-7.69(m,7H),7.76-7.86(m,5H),7.89(d,J=8.4Hz,2H),7.95(d,J=8.4Hz,2H),8.00(d,J=8.4Hz,2H),8.17(d,J=8.4Hz,2H),8.27(d,J=7.7Hz,1H),8.48(s,1H),8.77(d,J=4.7Hz,1H),8.86(d,J=7.7Hz,4H),8.95(d,J=8.4Hz,2H).
 実施例-5
Figure JPOXMLDOC01-appb-C000054
 アルゴン気流下、合成例-1で合成した2-クロロ-9-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾール(715mg)、4-(2-ピリジル)フェニルボロン酸(336mg)、酢酸パラジウム(6.3mg)及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(40mg)を、3M-リン酸カリウム水溶液(1.3mL)及び1,4-ジオキサン(7mL)の混合溶液に懸濁し、16時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体をろ別し、水、次いでメタノール、その後ヘキサンで洗浄し、目的物である2-[4-(2-ピリジル)フェニル]-9-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾール(A-5)の白色粉末(収量842mg,収率96%)を得た。
 H-NMR(CDCl):δ7.24-7.27(m,1H),7.38(t,J=7.4Hz,1H),7.50(t,J=7.4Hz,1H),7.59-7.69(m,8H),7.78-7.84(m,5H),7.90(d,J=8.6Hz,2H),8.12(d,J=8.5Hz,2H),8.23(d,J=7.6Hz,1H),8.27(d,J=8.1Hz,1H),8.74(d,J=4.6Hz,1H),8.86(d,J=8.0Hz,4H),9.09(d,J=8.6Hz,2H).
 実施例-6
Figure JPOXMLDOC01-appb-C000055
 アルゴン気流下、4-クロロ-9-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾール(675mg)、4-(2-ピリジル)フェニルボロン酸(317mg)、酢酸パラジウム(6.0mg)及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(38mg)を、3M-リン酸カリウム水溶液(1.1mL)及び1,4-ジオキサン(13mL)の混合溶液に懸濁し、18時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体をろ別し、水、次いでメタノール、その後ヘキサンで洗浄し、目的物である4-[4-(2-ピリジル)フェニル]-9-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾール(A-6)の白色粉末(収量830mg,収率100%)を得た。
 H-NMR(CDCl):δ7.10(t,J=7.6Hz,1H),7.28(d,J=7.5Hz,1H),7.31-7.34(m,1H),7.42(d,J=7.7Hz,1H),7.51-7.71(m,10H),7.84-7.89(m,5H),7.93(d,J=8.0Hz,1H),8.25(d,J=8.3Hz,2H),8.81(d,J=4.4Hz,1H),8.87(d,J=8.0Hz,4H),9.08(d,J=8.6Hz,2H).
 実施例-7
Figure JPOXMLDOC01-appb-C000056
 アルゴン気流下、2-(4-ブロモフェニル)-4,6-ジ(ビフェニル-4-イル)-1,3,5-トリアジン(500mg)、3-[4-(2-ピリジル)フェニル]カルバゾール(326mg)、酢酸パラジウム(4.2mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(56μL)、炭酸カリウム(256mg)、及び18-クラウン-6エーテル(49mg)を、キシレン(4.6mL)に懸濁し、3時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、次いでメタノール、その後ヘキサンで洗浄し、目的物である3-[4-(2-ピリジル)フェニル]-9-[4-(4,6-ジ(ビフェニル-4-イル)フェニルトリアジン-2-イル)フェニル]カルバゾール(A-7)の黄色粉末(収量673mg,収率93%)を得た。
 H-NMR(CDCl):δ7.28(t,J=5.9Hz,1H),7.40(t,J=7.6Hz,1H),7.46(t,J=7.4Hz,2H),7.51(d,J=8.4Hz,1H),7.55(t,J=7.5Hz,4H),7.63(d,J=8.2Hz,1H),7.68(d,J=8.5Hz,1H),7.77(d,J=7.2Hz,4H),7.79-7.91(m,11H),8.17(d,J=8.4Hz,2H),8.28(d,J=7.7Hz,1H),8.48(s,1H),8.77(d,J=4.6Hz,1H),8.94(d,J=8.4Hz,4H),9.10(d,J=8.5Hz,2H).
 実施例-8
Figure JPOXMLDOC01-appb-C000057
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジ(4-メチルフェニル)-1,3,5-トリアジン(1000mg)、4-メチル-1-ナフタレンボロン酸(486mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(47mg)を、3M-リン酸カリウム水溶液(1mL)、THF(8mL)及びエタノール(2mL)の混合溶媒に懸濁し、72時間40℃で撹拌した。反応混合物を放冷後、析出した固体をろ過した。得られた固体を水、次いでメタノール、その後ヘキサンで洗浄し、黄白色固体を978mg得た。
 得られた黄白色固体(950mg)、3-[4-(2-ピリジル)フェニル]カルバゾール(602mg)、酢酸パラジウム(7.7mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(103μL)、炭酸カリウム(473mg)、及び18-クラウン-6-エーテル(90mg)をキシレン(8.6mL)に懸濁し、4.5時間加熱還流した。反応混合物を放冷後、水を加え、析出した固体濾別した。次いで、濾液をクロロホルムで抽出し、有機層をシリカゲルクロマトグラフィー(展開溶媒;クロロホルム)で精製し、目的物である3-[4-(2-ピリジル)フェニル]-9-[3-(4,6-ジ(4-メチルフェニル)トリアジン-2-イル)-5-(4-メチルナフタレン-1-イル)]フェニルカルバゾール(A-8)の黄色粉末(収量640mg,収率40%)を得た。
 H-NMR(CDCl):δ2.50(s,6H),2.85(s,3H),7.28(t,J=6.0Hz,1H),7.35(d,J=8.0Hz,4H),7.41(t,J=7.5Hz,1H),7.52(d,J=7.2Hz,1H),7.53(t,J=7.7Hz,1H),7.51-7.68(m,3H),7.70(d,J=8.2Hz,1H),7.75(d,J=8.5Hz,1H),7.77-7.85(m,3H),7.91(d,J=8.5Hz,2H),7.99(s,1H),8.18(d,J=8.6Hz,4H),8.31(d,J=7.6Hz,1H),8.52(s,1H),8.68(d,J=8.2Hz,4H),8.79(d,J=4.8Hz,1H),9.05(s,1H),9.13(s,1H).
 実施例-9
Figure JPOXMLDOC01-appb-C000058
 アルゴン気流下、合成例-2で合成した3-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾール(650mg)、3,5-ジ(2-ピリジル)ブロモベンゼン(469mg)、酢酸パラジウム(6.2mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(82μL)、炭酸カリウム(379mg)、及び18-クラウン-6-エーテル(72mg)を、キシレン(6.9mL)に懸濁し、5.5時間加熱還流した。反応混合物を放冷後、水を加えた。次いで、析出した固体をろ過し、水、次いでメタノール、その後ヘキサンで洗浄して、目的物である3-[4-(4,6-ジ(ビフェニル-4-イル)フェニルトリアジン-2-イル)フェニル]-9-[3,5-ジ(2-ピリジル)フェニル]カルバゾール(A-9)の褐色固体(収量888mg,収率92%)を得た。
 H-NMR(CDCl):δ7.32-7.36(m,2H),7.38(t,J=7.4Hz,1H),7.50(t,J=7.6Hz,1H),7.58(d,J=8.2Hz,1H),7.60-7.68(m,7H),7.81-7.87(m,3H),7.95(d,J=8.0Hz,2H),7.98(d,J=8.6Hz,2H),8.29(d,J=7.5Hz,1H),8.36(s,2H),8.53(s,1H),8.78(d,J=4.8Hz,2H),8.84(s,1H),8.85(d,J=7.8Hz,4H),8.91(d,J=8.5Hz,2H).
 実施例-10
Figure JPOXMLDOC01-appb-C000059
 アルゴン気流下、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(660mg)、3-(2-ピリジル)カルバゾール(457mg)、酢酸パラジウム(7.6mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(102μL)、炭酸カリウム(470mg)、及び18-クラウン-6-エーテル(90mg)を、キシレン(8.5mL)に懸濁し、2時間加熱還流した。反応混合物を放冷後、クロロホルムで抽出した。有機層を減圧留去した後、メタノールを加えて、固体を析出させた。析出した固体をはろ過し、メタノール、次いでヘキサンで洗浄して、目的物である3-(2-ピリジル)-9-[4-(4,6-ジフェニルトリアジン-2-イル)フェニル]カルバゾール(A-10)の黄色粉末(収量917mg,収率98%)を得た。
 H-NMR(CDCl):δ7.26(dd,J=7.4,4.8Hz,1H),7.39(t,J=7.4Hz,1H),7.50(t,J=7.7Hz,1H),7.60-7.69(m,8H),7.81(t,J=7.7Hz,1H),7.87(d,J=8.7Hz,2H),7.90(d,J=8.0Hz,1H),8.13(d,J=8.7Hz,1H),8.28(d,J=7.6Hz,1H),8.77(d,J=4.8Hz,1H),8.84-8.696(m,5H),9.07(d,J=8.6Hz,2H).
 実施例-11
Figure JPOXMLDOC01-appb-C000060
 アルゴン気流下、3-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(1.19g)、2-ブロモピリジン(474mg)、酸化銅(36mg)、1,10-フェナントロリン(45mg)、18-クラウン-6-エーテル(132mg)、及び炭酸カリウム(864mg)を、キシレン(12.5mL)に懸濁し、15時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ過し、水、次いでメタノール、その後ヘキサンで洗浄して、目的物である9-(2-ピリジル)-3-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(A-11)の黄色粉末(収量1.29g,収率93%)を得た。
 H-NMR(CDCl):δ7.32-7.37(m,2H),7.48(t,J=7.6Hz,1H),7.58-7.61(m,6H),7.66-7.71(m,2H),7.83(d,J=8.0Hz,1H),7.87(d,J=8.0Hz,1H),7.94-7.99(m,3H),8.21(d,J=7.6Hz,1H),8.44(s,1H),8.75-8.81(m,2H),8.80(d,J=7.8Hz,4H),9.08(s,1H).
 実施例-12
Figure JPOXMLDOC01-appb-C000061
 アルゴン気流下、2-[5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ビフェニル]-4,6-ジフェニル-1,3,5-トリアジン(1.08g)、3-ブロモ-9-(2-ピリジル)カルバゾール(570mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(102mg)を、1,4-ジオキサン(9.0mL)に懸濁し、さらに、3M-リン酸カリウム水溶液(1.8mL)を添加し、27時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ過し、水、次いでメタノール、その後ヘキサンで洗浄して、目的物である9-(2-ピリジル)-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]カルバゾール(A-12)の灰色粉末(収量800mg,収率60%)を得た。
 H-NMR(CDCl):δ7.32-7.35(m,2H),7.44-7.50(m,2H),7.54-7.62(m,8H),7.71(d,J=8.0Hz,1H),7.84(d,J=8.4,2H),7.87(d,J=8.4,2H),7.96(t,J=7.8,1H),8.00(d,J=8.4Hz,1H),8.16(s,1H),8.22(d,J=7.6Hz,1H),8.49(s,1H),8.76(d,J=6.0Hz,1H),8.81(d,J=8.0Hz,4H),8.97(s,1H),9.07(s,1H).
 実施例-13
Figure JPOXMLDOC01-appb-C000062
 アルゴン気流下、3-[1-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-3-イル]-9-(2-ピリジル)カルバゾール(1.47g)、4-(2-ピリジル)フェニルボロン酸(597mg)、酢酸パラジウム(11mg)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(72mg)を、キシレン(22.5mL)及び1-ブタノール(2.5mL)の混合溶媒に懸濁し、さらに3M-炭酸カリウム水溶液(2.5mL)を添加し、24時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ過し、水、次いでメタノール、その後ヘキサンで洗浄して、目的物である9-(2-ピリジル)-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]カルバゾール(A-13)の灰色粉末(収量1.50g,収率60%)を得た。
 H-NMR(CDCl):δ7.26-7.28(m,1H),7.33-7.38(m,2H),7.48(t,J=7.2Hz,1H),7.57-7.63(m,6H),7.71(d,J=8.0Hz,1H),7.77-7.85(m,2H),7.88-7.91(m,2H),7.96-8.00(m,3H),8.02(d,J=8.0Hz,1H),8.18-8.24(m,3H),8.24(d,J=7.4Hz,1H),8.50(s,1H),8.75(d,J=4.6Hz,1H),8.77(d,J=4.6Hz,1H),8.82(d,J=8.0Hz,4H),9.04(s,1H),9.08(s,1H).
 実施例-14
Figure JPOXMLDOC01-appb-C000063
 アルゴン気流下、6-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)-β-カルボリン(845mg)、4-(2-ピリジル)フェニルボロン酸(873mg)、酢酸パラジウム(9.7mg)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(61.7mg)を、THF(30mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.5mL)を添加し、60時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ過し、水、次いでメタノール、その後ヘキサンで洗浄し、さらに減圧下において溶媒を留去した。その後、シリカゲルカラムクロマトグラフィー(溶離液;酢酸エチル)による精製を行い、目的物である6-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-9-(2-ピリジル)-β-カルボリン(A-14)の白色粉末(収量834mg,収率82%)を得た。
 H-NMR(CDCl):δ7.27-7.29(m,1H),7.39(dd,J=7.4、5.0Hz,1H),7.57-7.74(m,6H),7.74-7.85(m,3H),7.96(d,J=8.4Hz,2H),8.00-8.06(m,2H),8.10-8.12(m,2H),8.19-8.21(m,3H),8.56(s,1H),8.60(d,J=5.2Hz,1H),8.75(d,J=4.8Hz,1H),8.79(d,J=4.8Hz,1H),8.83(d,J=8.0Hz,4H),9.06(s,2H),9.35(s,1H).
 実施例-15
Figure JPOXMLDOC01-appb-C000064
 アルゴン気流下、3-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(1.98g)、及び2-ブロモピリジン(0.56g)、テトラキス(トリフェニルホスフィン)パラジウム(101.5mg)を、1,4-ジオキサン(15mL)に懸濁し、さらに3M-炭酸カリウム水溶液(3mL)を添加し、17時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄した。さらに、減圧下において溶媒を留去することで、目的物である3-[3-(2-ピリジル)-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(A-15)の灰色粉末(収量1.72g,収率93%)を得た。
 H-NMR(CDCl):δ7.32-7.38(m,3H),7.50(t,J=7.4Hz,1H),7.56-7.62(m,6H),7.71(d,J=8.4Hz,1H),7.87-7.89(m,2H),7.92(d,J=8.4Hz,1H),7.97(t,J=7.4Hz,1H),8.03(t,J=7.4Hz,2H),8.24(d,J=8.4Hz,1H),8.54(s,1H),8.64(s,1H),8.77(d,J=4.4Hz,1H),8.81-8.8(m,5H),9.15(s,1H),9.30(s,1H).
 実施例-16
Figure JPOXMLDOC01-appb-C000065
 アルゴン気流下、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-フェニル-6-(2-ピリジル)カルバゾール(754mg)、フェニルボロン酸(167mg)、酢酸パラジウム(5.1mg)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(32.6mg)を、キシレン(9mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.2mL)を添加し、48時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄した。さらに、減圧下において溶媒を留去することで、目的物である3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-9-フェニル-6-(2-ピリジル)カルバゾール(A-16)の黄白色粉末(収量297.9mg,収率37%)を得た。
 マススペクトル(質量分析)測定の結果は、分子量が703であり、得られた化合物はA-16であることを確認した。
 実施例-17
Figure JPOXMLDOC01-appb-C000066
 アルゴン気流下、3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-ビフェニル-3-イル]カルバゾール(1.50g)、2-ブロモピリジン(515mg)、酸化銅(I)(20mg)、1,10-フェナントロリン(49mg)、18-クラウン-6-エーテル(143mg)、及び炭酸カリウム(752mg)を、キシレン(14mL)に懸濁し、15時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ過し、水、次いでメタノール、その後ヘキサンで洗浄して、目的物である9-(2-ピリジル)-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-ビフェニル-3-イル]カルバゾール(A-12)の黄色粉末(収量1.28g,収率96%)を得た。
 H-NMR(CDCl):δ7.32-7.35(m,2H),7.44-7.50(m,2H),7.54-7.62(m,8H),7.71(d,J=8.0Hz,1H),7.84(d,J=8.4,2H),7.87(d,J=8.4,2H),7.96(t,J=7.8,1H),8.00(d,J=8.4Hz,1H),8.16(s,1H),8.22(d,J=7.6Hz,1H),8.49(s,1H),8.76(d,J=6.0Hz,1H),8.81(d,J=8.0Hz,4H),8.97(s,1H),9.07(s,1H).
 実施例-18
Figure JPOXMLDOC01-appb-C000067
 アルゴン気流下、化合物(E-1)(1.13g)、6-ブロモ-9-(2-ピリジル)-δ-カルボリン(749mg)、及びビス(トリフェニルホスフィン)パラジウムジクロライド(31mg)を、1,4-ジオキサン(11mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.5mL)を添加し、18時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄した。
 さらに、減圧下において溶媒を留去することで、目的物である6-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-9-(2-ピリジル)-δ-カルボリン(A-17)の灰色粉末(収量1.30g,収率94%)を得た。
 H-NMR(CDCl):δ7.39(dd,J=7.4,4.9Hz,1H),7.45(dd,J=8.4,4.7Hz,1H),7.48(t,J=7.4Hz,1H),7.55-7.67(m,8H),7.73(d,J=8.1Hz,1H),7.87(d,J=7.7Hz,2H),8.01(t,J=7.7Hz,1H),8.05-8.06(m,2H),8.24(s,1H),8.32(d,J=8.4Hz,1H),8.70(d,J=4.7Hz,1H),8.78(d,J=4.9Hz,1H),8.84(d,J=7.9Hz,4H),8.95(s,1H),9.01(s,1H),9.11(s,1H).
 実施例-19
Figure JPOXMLDOC01-appb-C000068
 アルゴン気流下、化合物(E-1)(418mg)、3-クロロ-9-(2-ピリジル)-δ-カルボリン(240mg)、酢酸パラジウム(3.7mg)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(22.9mg)を、1,4-ジオキサン(4.1mL)に懸濁し、さらに3M-炭酸カリウム水溶液(0.54mL)を添加し、2時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄した。さらに、減圧下において溶媒を留去することで、目的物である3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-9-(2-ピリジル)-δ-カルボリン(A-18)の灰色粉末(収量447mg,収率87%)を得た。
 H-NMR(CDCl):δ7.39(dd,J=7.4,4.9Hz,1H),7.46-7.52(m,2H),7.59-7.68(m,9H),7.74(d,J=8.1Hz,1H),7.93-7.97(m,3H),8.02(t,J=7.6Hz,1H),8.10(d,J=8.7Hz,1H),8.42(d,J=8.6Hz,1H),8.66(d,J=4.3Hz,1H),8.78(s,1H),8.79(d,J=4.9Hz,1H),8.87(d,J=7.9Hz,4H),9.07(s,1H),9.46(s,1H).
実施例-20
Figure JPOXMLDOC01-appb-C000069
 アルゴン気流下、化合物(E-1)(1.02g)、3-ブロモ-6-フェニル-9-(2-ピリジル)カルバゾール(839g)、及びビス(トリフェニルホスフィン)パラジウムジクロライド(28mg)を、1,4-ジオキサン(10mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.3mL)を添加し、5時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄した。さらに、減圧下において溶媒を留去することで、目的物である3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-6-フェニル-9-(2-ピリジル)カルバゾール(A-19)の灰色粉末(収量1.34g,収率95%)を得た。
 H-NMR(CDCl):δ7.39(t,J=7.4Hz,1H),7.40-7.43(m,1H),7.47-7.54(m,3H),7.58-7.68(m,8H),7.77-7.81(m,4H),7.89(d,J=8.2Hz,2H),7.95(d,J=8.6Hz,1H),7.98(d,J=8.6Hz,1H),8.04-8.08(m,2H),8.21(s,1H),8.48(s,1H),8.58(s,1H),8.83-8.87(m,5H),9.02(s,1H),9.12(s,1H).
 実施例-21
Figure JPOXMLDOC01-appb-C000070
 アルゴン気流下、化合物(E-1)(1.34g)、6-ブロモ-3-フェニル-9-(2-ピリジル)-δ-カルボリン(1.00g)、及びビス(トリフェニルホスフィン)パラジウムジクロライド(35.1mg)を、1,4-ジオキサン(16.7mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.8mL)を添加し、19時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄し、さらに、減圧下において溶媒を留去した。得られた固体をo-キシレンで再結晶することで、目的物である6-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-3-フェニル-9-(2-ピリジル)-δ-カルボリン(A-20)の灰色粉末(収量1.7g,収率97%)を得た。
 H-NMR(CDCl):δ7.39(dd,J=7.4,4.9Hz,1H),7.45(t,J=7.3Hz,1H),7.49(t,J=7.4Hz,1H),7.54-7.68(m,10H),7.76(d,J=8.1Hz,1H),7.89(d,J=8.6Hz,1H),7.90(d,J=8.0Hz,2H),8.01-8.06(m,2H),8.10(d,J=8.6Hz,1H),8.24(d,J=8.1Hz,2H),8.27(s,1H),8.35(d,J=8.7Hz,1H),8.80(d,J=4.9Hz,1H),8.86(d,J=8.1Hz,4H),8.98(s,1H),9.02(s,1H),9.15(s,1H).
 実施例-22
Figure JPOXMLDOC01-appb-C000071
 アルゴン気流下、化合物(E-1)(701mg)、6-ブロモ-9-フェニル-3-(2-ピリジル)-δ-カルボリン(550mg)、及びビス(トリフェニルホスフィン)パラジウムジクロライド(19mg)を、1,4-ジオキサン(7mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1mL)を添加し、40時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄し、さらに、減圧下において溶媒を留去した。得られた固体をトルエンで再結晶することで、目的物である6-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-9-フェニル-3-(2-ピリジル)-δ-カルボリン(A-21)の灰色粉末(収量400mg,収率41%)を得た。
 H-NMR(CDCl):δ7.32(dd,J=7.4,4.8Hz,1H),7.50(t,J=7.4Hz,1H),7.55-7.73(m,14H),7.86-7.91(m,4H),8.00(d,J=8.6Hz,1H),8.26(s,1H),8.58(d,J=8.7Hz,1H),8.73(d,J=4.8Hz,1H),8.79(d,8.0Hz,1H),8.84-8.86(m,4H),8.96(s,1H),9.02(s,1H),9.14(s,1H).
 実施例-23
Figure JPOXMLDOC01-appb-C000072
 アルゴン気流下、化合物(E-1)(1.02g)、3-ブロモ-9-フェニル-6-(2-ピリジル)カルバゾール(839g)、及びビス(トリフェニルホスフィン)パラジウムジクロライド(28mg)を、1,4-ジオキサン(10mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.3mL)を添加し、5時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄し、さらに、減圧下において溶媒を留去した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液;クロロホルム)で精製し、目的物である3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-9-フェニル-6-(2-ピリジル)カルバゾール(A-16)の灰色粉末(収量1.06g,収率75%)を得た。
 H-NMR(CDCl):δ7.26-7.30(m,1H),7.50(t,J=7.4Hz,1H),7.54-7.71(m,15H),7.85(t,J=7.6Hz,1H),7.89-7.93(m,3H),7.95(d,J=8.0Hz,1H),8.18(d,J=8.7Hz,1H),8.21(s,1H),8.66(s,1H),8.78(d,J=4.8Hz,1H),8.85(d,J=7.9Hz,4H),8.98(s,1H),9.02(s,1H),9.11(s,1H).
 実施例-24
Figure JPOXMLDOC01-appb-C000073
 アルゴン気流下、化合物(E-1)(1.53g)、3-ブロモ-9-フェニル-6-(ピラジニル)カルバゾール(1.20g)、及びビス(トリフェニルホスフィン)パラジウムジクロライド(42.1mg)を、1,4-ジオキサン(15mL)に懸濁し、さらに3M-炭酸カリウム水溶液(2.0mL)を添加し、7時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ別し、水、次いでメタノール、その後ヘキサンで洗浄し、さらに、減圧下において溶媒を留去した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液;クロロホルム)で精製し、目的物である3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-9-フェニル-6-(ピラジニル)カルバゾール(A-22)の灰色粉末(収量1.59g,収率75%)を得た。
 H-NMR(CDCl):δ7.50(t,J=7.4Hz,1H),7.56-7.72(m,15H),7.89(d,J=8.3Hz,2H),7.92(d,J=8.6Hz,1H),8.15(d,J=8.7Hz,1H),8.20(s,1H),8.51(d、J=2.5Hz,1H),8.65(s、1H),8.68(d、J=2.5Hz,1H),8.84(d、J=8.0Hz,4H),8.99(s、1H),9.00(s、1H),9.10(s,1H),9.21(s、1H).
 実施例-25
Figure JPOXMLDOC01-appb-C000074
 アルゴン気流下、前記化合物(E-2)(628mg)、ヨードピラジン(309mg)、酸化銅(I)(7.2mg)、1,10-フェナントロリン(18mg)、18-クラウン-6-エーテル(53mg)、炭酸カリウム(276mg)をキシレン(5.0mL)に懸濁し、18時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体を水、メタノール、ヘキサンで洗浄した後、キシレンで再結晶をすることで、目的の9-ピラジル-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]カルバゾール(A-23)の褐色粉末(収量691mg,収率98%)を得た。
 H-NMR(CDCl):δ7.31-7.35(m,1H),7.45(t,J=7.4Hz,1H),7.56(t,J=7.7Hz,1H),7.61-7.68(m,6H),7.86-7.89(m,2H),7.94-7.98(m,2H),8.00(d,J=8.3Hz,2H),8.10(d,J=8.6Hz,1H),8.22(d,J=8.5Hz,2H),8.24(s,1H),8.28(d,J=7.6Hz,1H),8.54(s,1H),8.63(s,1H),8.76(s,1H),8.81(d,J=4.3Hz,1H),8.85(d,J=7.8Hz,4H),9.08(s,1H),
 実施例-26
Figure JPOXMLDOC01-appb-C000075
 アルゴン気流下、前記化合物(E-2)(628mg)、2-ブロモピリミジン(238mg)、酸化銅(I)(7.2mg)、1,10-フェナントロリン(18.0mg)、炭酸カリウム(276mg)、18-クラウン-6(52.9mg)をキシレン(5.0mL)に懸濁し、150℃で60時間加熱した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン30mlで再結晶することで、目的の3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-9-(2-ピリミジル)カルバゾール(A-24)の灰色粉末(収量636mg,収率90%)を得た。
 H-NMR(CDCl):δ7.16(t,J=5.0Hz,1H),7.31(m,1H),7.41(t,J=7.0Hz,1H),7.54-7.66(m,7H),7.82-7.89(m,2H),7.95-8.00(m,3H),8.20-8.23(m,4H),8.64(d,J=18Hz,1H),8.78-8.84(m,5H),8.89-8.94(m,3H),9.02-9.06(m,2H),9.11(s,1H).
 実施例-27
Figure JPOXMLDOC01-appb-C000076
 アルゴン気流下、9-ピラジル-3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(2.00g)、4-ビフェニルボロン酸(875mg)、酢酸パラジウム(23mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(97mg)をトルエン(34mL)及び1-ブタノール(3.0mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(3.0mL)を添加し、24時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、メタノール、ヘキサンで洗浄した。得られた固体をトルエンで再結晶した後、昇華精製することで目的の9-ピラジル-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-1,1’:4’,1”-ターフェニル-3-イル]カルバゾール(A-25)の薄黄色粉末(収量329mg,収率14%)を得た。
 H-NMR(CDCl):δ7.43(t,J=7.6Hz,1H),7.46(d,J=7.8Hz,1H),7.52(d,J=7.8Hz,1H),7.54-7.58(m,2H),7.61-7.67(m,6H),7.74(d,J=8.0Hz,2H),7.83(d,J=8.4Hz,2H),7.94-7.99(m,4H),8.10(d,J=8.6Hz,1H),8.23(s,1H),8.27(d,J=7.4Hz,1H),8.53(s,1H),8.63(s,1H),8.77(s,1H),8.85(d,J=8.0Hz,4H),9.07(s,1H),9.10(s,1H),9.16(s,1H).
 実施例-28
Figure JPOXMLDOC01-appb-C000077
 アルゴン気流下、前記のN-(2-ピリジル)-3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(586mg)、4-ビフェニルボロン酸(257mg)、酢酸パラジウム(4.5mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(28.6mg)をトルエン(20mL)及び1-ブタノール(0.9mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(0.9mL)を添加し、18時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、メタノール、ヘキサンで洗浄した。得られた固体をトルエンで再結晶した後、昇華精製することで目的の9-(2-ピリジル)-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-1,1’:4’,1”-ターフェニル-3-イル]カルバゾール(A-26)の薄黄色粉末(収量171mg,収率24%)を得た。
 H-NMR(CDCl):δ7.38-7.45(m,3H),7.51-7.55(m,3H),7.60-7.67(m,6H),7.74(d,J=8.2Hz,2H),7.76(d,J=7.1Hz,1H),7.83(d,J=8.4Hz,2H),7.92(d,J=8.3Hz,1H),7.93(d,J=8.5Hz,1H),7.97(d,J=8.4Hz,2H),8.00-8.04(m,1H),8.05(d,J=8.5Hz,1H),8.24(s,1H),8.27(d,J=7,1Hz,1H),8.54(s,1H),8.81-8.82(m,1H),8.85(d,J=7.9Hz,4H),9.06(s,1H),9.11(s,1H).
 実施例-29
Figure JPOXMLDOC01-appb-C000078
 アルゴン気流下、前記のN-(2-ピリジル)-3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(586mg)、9-フェナントレンボロン酸(267mg)、酢酸パラジウム(2.3mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(9.5mg)をトルエン(20.0mL)及び1-ブタノール(0.6mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(0.6mL)を添加し、5時間加熱還流した。その後、9-フェナントレンボロン酸(267mg)、酢酸パラジウム(2.3mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(9.5mg)を追加し、さらに5時間加熱還流した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、シリカゲルカラムクロマトグラフィー(展開溶媒クロロホルム:ヘキサン=1:9)で精製した。これをトルエンで再結晶することで、目的の3-[5-(9-フェナントリル)-3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(A-27)の灰色粉末(収量119mg,収率16%)を得た。
 H-NMR(CDCl):δ7.35-7.42(m,2H),7.50(t,J=7.5Hz,1H),7.54-7.63(m,6H),7.66-7.77(m,4H),7.87(d,J=8.3Hz,1H),7.94-8.10(m,6H),8.15(t,J=1.9Hz,1H),8.20(d,J=7.7Hz,1H),8.52(d,J=1.3Hz,1H),8.79-8.87(m,8H),8.94(t,J=1.5Hz,1H),9.22(t,J=1.7Hz,1H).
 実施例-30
Figure JPOXMLDOC01-appb-C000079
 アルゴン気流下、前記のN-(2-ピリジル)-3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(586mg)、9-アントラセンボロン酸(666mg)、酢酸パラジウム(2.3mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(9.5mg)をトルエン(20.0mL)及び1-ブタノール(0.6mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(0.6mL)を添加し、3.5時間加熱還流した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、次いでトルエンで再結晶することで、目的の3-[5-(9-アントラシル)-3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(A-28)の灰色粉末(収量575mg,収率79%)を得た。
 H-NMR(CDCl):δ7.35(t,J=7.1Hz,1H),7.40-7.61(m,13H),7.89(d,J=8.4Hz,3H),7.97-8.07(m,4H),8.13(d,J=8.9Hz,2H),8.18(d,J=8.2Hz,1H),8.52(s,1H),8.61(s,1H),8.76-8.78(m,5H),8.84(s,1H),9.31(s,1H).
 実施例-31
Figure JPOXMLDOC01-appb-C000080
 アルゴン気流下、前記のN-(2-ピリジル)-3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(586mg)、4-ジベンゾチオフェンボロン酸(274mg)、酢酸パラジウム(2.3mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(9.5mg)をトルエン(20.0mL)及び1-ブタノール(0.6mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(0.6mL)を添加し、5時間加熱還流した。その後、4-ジベンゾチオフェンボロン酸(274mg)、酢酸パラジウム(2.3mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(9.5mg)を追加し、さらに5時間加熱還流した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、次いでクロロホルムで熱時ろ過することで、目的の3-[5-(ジベンゾチオフェン-4-イル)-3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(A-29)の灰色粉末(収量213mg,収率29%)を得た。
 H-NMR(CDCl):δ7.38(t,J=7.9Hz,1H),7.48-7.52(m,3H),7.56-7.63(m,6H),7.67(t,J=7.2Hz,1H),7.74-7.77(m,2H),7.88(d,J=8.3Hz,2H),7.94-8.04(m,3H),8.23-8.28(m,3H),8.35(d,J=1.6Hz,1H),8.54(d,J=1.4Hz,1H),8.80-8.84(m,6H),9.17(d,J=7.3Hz,2H).
 実施例-32
Figure JPOXMLDOC01-appb-C000081
 アルゴン気流下、前記のN-(2-ピリジル)-3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(586mg)、3-キノリンボロン酸(346mg)、酢酸パラジウム(2.3mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(9.5mg)をトルエン(20.0mL)及び1-ブタノール(0.6mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(0.6mL)を添加し、9時間加熱還流した。反応混合物を放冷し、メタノールを加えて析出した固体をろ取した。得られた固体と、3-キノリンボロン酸(346mg)、酢酸パラジウム(2.3mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(9.5mg)をトルエン(20.0mL)及び1-ブタノール(0.6mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(0.6mL)を添加し、再度3時間加熱還流した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、次いでトルエンで再結晶することで、目的の3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-3-(3-キノリル)フェニル]-9-(2-ピリジル)カルバゾール(A-30)の灰色粉末(収量541mg,収率80%)を得た。
 H-NMR(CDCl):δ7.35-7.41(m,2H),7.50(t,J=7.4Hz,1H),7.58-7.74(m,8H),7.83(t,J=6.9Hz,1H),7.91(t,J=8.5Hz,2H),7.98-8.06(m,3H),8.26-8.33(m,3H),8.53(s,1H),8.65(s,1H),8.79-8.83(m,5H),9.10(s,1H),9.18(s,1H),9.48(s,1H).
 実施例-33
Figure JPOXMLDOC01-appb-C000082
 アルゴン気流下、前記の3-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(339mg)、3-ブロモ-6-フェニルピリジン(129mg)、テトラキス(トリフェニルホスフィン)パラジウム(11.6mg)を1,4-ジオキサン(2.5mL)に懸濁し、3M-炭酸カリウム水溶液(0.33mL)を添加し、20時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体をろ別し、水、メタノール、ヘキサンで洗浄し、減圧下において加熱乾燥した。これをトルエンで再結晶することで、目的の3-[5-(6-フェニルピリジン-3-イル)-3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(A-31)の褐色粉末(収量207mg,収率59%)を得た。
 H-NMR(CDCl):δ7.37-7.43(m,2H),7.49-7.69(m,10H),7.75(d,J=7.8Hz,1H),7.91-7.93(m,2H),7.99(d,J=8.3Hz,1H),8.02(t,J=7.7Hz,1H),8.06(d,J=8.4Hz,1H),8.16(d,J=7.3Hz,2H),8.23(s,1H),8.27-8,31(m,2H),8.54(s,1H),8.81-8.86(m,5H),9.07(s,1H),9.17(s,1H),9.27(s,1H).
 実施例-34
Figure JPOXMLDOC01-appb-C000083
 アルゴン気流下、前記の3-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(678mg)、2-ブロモジベンゾチオフェン(316mg)、酢酸パラジウム(2.3mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(9.5mg)をトルエン(20.0mL)及び1-ブタノール(0.6mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(0.6mL)を添加し、24時間加熱還流した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、次いでトルエンで再結晶することで、目的の3-[5-(ジベンゾチオフェン-2-イル)-3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)カルバゾール(A-32)の灰色粉末(収量640mg,収率87%)を得た。
 H-NMR(CDCl):δ7.38-7.41(m,2H),7.50-7.53(m,3H),7.58-7.64(m,6H),7.89-7.97(m,4H),8.00-8.06(m,3H),8.22-8.28(m,2H),8.34(t,J=5.8Hz,1H),8.50-8.59(m,2H),8.78-8.85(m,6H),9.08-9.13(m,2H).
 実施例-35
Figure JPOXMLDOC01-appb-C000084
 アルゴン気流下、前記化合物(E-1)(1.02g)、合成例-17で合成した3-ブロモ-9-(2-ピリジル)-6-(キノリン-8-イル)カルバゾール(946mg)、テトラキス(トリフェニルホスフィン)パラジウム(46.2mg)を1,4-ジオキサン(10mL)に懸濁し、3M-炭酸カリウム水溶液(1.3mL)を添加し、13時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体をろ別し、水、メタノール、ヘキサンで洗浄し、ろ取物を減圧下において過熱乾燥した。得られた固体をキシレンで再結晶することで、目的の3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-9-(2-ピリジル)-6-(キノリン-8-イル)カルバゾール(A-33)の黄褐色粉末(収量1.08g,収率72%)を得た。
 H-NMR(CDCl):δ7.39(dd,J=7.4,4.9Hz,1H),7.45-7.51(m,2H),7.56-7.65(m,8H),7.71(t,J=7.3Hz,1H),7.83(d,J=8.1Hz,1H),7.86-7.91(m,4H),7.93-7.96(m,2H),8.00-8.05(m,1H),8.03(d,J=8.6Hz,1H),8.11(d,J=8.6Hz,1H),8.20(s,1H),8.31(d,J=8.1Hz,1H),8.56(s,1H),8.58(s,1H),8.82-8.85(m,5H),9.00(s,1H),9.06-9.07(m,1H),9.11(s,1H).
 実施例-36
Figure JPOXMLDOC01-appb-C000085
 アルゴン気流下、2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(1.31g)、3-ブロモ-9-(2-ピリジル)-6-[4-(2-ピリジル)フェニル]カルバゾール(1.57g)、テトラキス(トリフェニルホスフィン)パラジウム(69.3mg)を1,4-ジオキサン(20mL)及び3M-炭酸カリウム水溶液(2.0mL)の混合溶媒に懸濁し、13時間加熱還流した。室温まで冷却後、水及びメタノールを加えた。析出した固体を水、メタノール、ヘキサンで洗浄し、ろ取物をキシレンで再結晶することで、目的の3-[4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9-(2-ピリジル)-6-[4-(2-ピリジル)フェニル]カルバゾール(A-34)の褐色固体(収量1.33g,収率63%)を得た。
 H-NMR(DMSO-d):δ7.26-7.29(m,1H),7.38(dd,J=7.5Hz,4.9Hz,1H),7.60-7.68(m,6H),7.74(d,J=8.0Hz,1H),7.81(d,J=8.7Hz,2H),7.83-7.86(m,2H),7.90(d,J=8.5Hz,2H),7.96-8.03(m,5H),8.16(d,J=8.5Hz,2H),8.51(s,1H),8.54(s,1H),8.76(d,J=4.6Hz,1H),8.80(d,J=4.9Hz,1H),8.83(d,J=7.9Hz,4H),8.91(d,J=8.5Hz,2H).
 実施例-37
Figure JPOXMLDOC01-appb-C000086
 アルゴン気流下、前記化合物(E-1)(1.02g)、3-ブロモ-6,9-ジ(2-ピリジル)カルバゾール(961mg)、酢酸パラジウム(4.5mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(19.0mg)を1,4-ジオキサン(40.0mL)に懸濁し、3M-炭酸カリウム水溶液(1.3mL)を添加し、95℃で4時間加熱した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、次いでトルエンで再結晶することで、目的の6-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル-3-イル]-3,9-ジ(2-ピリジル)カルバゾール(A-35)の灰色粉末(収量492mg,収率35%)を得た。
 H-NMR(CDCl):δ7.26-7.29(m,1H),7.41(dd,J=7.4,4.9Hz,1H),7.50(t,J=7.4Hz,1H),7.58-7.66(m,8H),7.78(d,J=8.0Hz,1H),7.84(t,J=7.7Hz,1H),7.88-7.92(m,2H),7.95(d,J=8.6Hz,2H),8.00(d,J=8.6Hz,1H),8.04(t,J=7.7Hz,1H),8.06(d,J=8.6Hz,1H),8.18-8.23(m,2H),8.64(s,1H),8.78(d,J=4.8Hz,1H),8.83(d,J=4.9Hz,1H),8.85(d,J=7.8Hz,4H),8.95(s,1H),9.02(s,1H),9.11(s,1H).
 実施例-38
Figure JPOXMLDOC01-appb-C000087
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニルピリミジン(466mg)、9-アントラセンボロン酸(233mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(23mg)を、4N-水酸化ナトリウム水溶液(0.5mL)とTHF(2.0mL)の混合溶媒に懸濁し、30℃で3時間撹拌した。その後、水を加え、析出した固体はろ過し、水、次いでメタノール、その後ヘキサンで洗浄して、黄白色固体を500mg得た。
 得られた黄白色固体(500mg)、3-[4-(2-ピリジル)フェニル]カルバゾール(285mg)、酢酸パラジウム(4mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(53μL)、炭酸カリウム(246mg)、及び18-クラウン-6-エーテル(47mg)をキシレン(4.4mL)に懸濁し、5時間加熱還流した。反応混合物を放冷後、クロロホルムで抽出した。有機層をシリカゲルクロマトグラフィー(展開溶媒;クロロホルム)で精製し、3-[4-(2-ピリジル)フェニル]-9-[3-(4,6-ジフェニルピリミジン-2-イル)-5-(アントラセン-9-イル)]フェニルカルバゾール(B-1)の黄色固体(収量580mg,収率72%)を得た。
 H-NMR(CDCl):δ7.29(t,J=5.9Hz,1H),7.48(t,J=7.4Hz,1H),7.54-7.64(m,11H),7.79(t,J=8.0Hz,1H),7.83(d,J=7.9Hz,1H),7.86-7.07(m,6H),8.12(d,J=7.5Hz,2H),8.16(s,1H),8.19-8.24(m,4H),8.33-8.38(m,5H),8.58(s,1H),8.67(s,1H),8.84(d,J=4.8Hz,1H),9.13(s,1H),9.38(s,1H).
 実施例-39
Figure JPOXMLDOC01-appb-C000088
 アルゴン気流下、2-(5-クロロビフェニル-3-イル)-4,6-ジフェニルピリミジン(3.25g)、3-[4-(2-ピリジル)フェニル]カルバゾール(2.73g)、酢酸パラジウム(34.8mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(465μL)、炭酸カリウム(2.14g)、及び18-クラウン-6-エーテル(410mg)を、キシレン(39mL)に懸濁し、18時間加熱還流した。反応混合物を放冷後、クロロホルムで抽出した。有機層をシリカゲルクロマトグラフィー(展開溶媒;クロロホルム)で精製し、目的物である3-[4-(2-ピリジル)フェニル]-9-[5-(4,6-ジフェニルピリミジン-2-イル)ビフェニル-3-イル]カルバゾール(B-2)の褐色粉末(収量5.03g,収率92%)を得た。
 H-NMR(CDCl):δ7.28(dd,J=7.0,4.8Hz,1H),7.39(t,J=7.4Hz,1H),7.47(t,J=7.4Hz,1H),7.51(t,J=7.7Hz,1H),7.55-7.64(m,9H),7.68(d,J=8.6Hz,1H),7.78-7.87(m,5H),7.90(d,J=8.5Hz,2H),8.00(s,1H),8.13(s、1H),8.17(d,J=8.5Hz,2H),8.329-8.35(m,5H),8.51(s,1H),8.76(d,J=4.8Hz,1H),8.97(s,1H),9.12(s,1H).
 実施例-40
Figure JPOXMLDOC01-appb-C000089
 アルゴン気流下、2-(5-クロロビフェニル-3-イル)-4,6-ジフェニルピリミジン(1.20g)、3-(2-ピリジル)カルバゾール(770mg)、酢酸パラジウム(12.8mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(172μL)、炭酸カリウム(791mg)、及び18-クラウン-6-エーテル(151mg)を、キシレン(14mL)に懸濁し、44時間加熱還流した。反応混合物を放冷後、クロロホルムで抽出した。有機層をシリカゲルクロマトグラフィー(展開溶媒;クロロホルム)で精製し、目的物である3-(2-ピリジル)-9-[5-(4,6-ジフェニルピリミジン-2-イル)ビフェニル-3-イル]カルバゾール(B-3)の褐色粉末(収量949mg,収率53%)を得た。
 H-NMR(CDCl):δ7.25(dd,J=7.2,4.8Hz,1H),7.38(t,J=7.4Hz,1H),7.47(t,J=7.4Hz,1H),7.50(t,J=7.7Hz,1H),7.54-7.62(m,9H),7.66(d,J=8.8Hz,1H),7.81(t,J=7.7Hz,1H),7.84(d,J=8.0Hz,2H),7.90(d,J=8.0Hz,1H),7.99(s,1H),8.12(d,J=8.6Hz,1H),8.13(s、1H),8.29-8.33(m,5H),8.77(d,J=4.8Hz,1H),8.91(s,1H),8.96(s,1H),9.11(s,1H).
 実施例-41
Figure JPOXMLDOC01-appb-C000090
 アルゴン気流下、9-(2-ピリジル)-9-[3-クロロ-5-(4,6-ジフェニルピリミジン-2-イル)フェニル]カルバゾール(1.17g)、フェニルボロン酸(293mg)、酢酸パラジウム(9.0mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(57mg)、及び3M-炭酸カリウム水溶液(1.6mL)を、トルエン(9.0mL)及びn-ブタノール(1.0mL)の混合溶媒に懸濁し、3時間加熱還流した。反応混合物を放冷後、水を加え、クロロホルムで抽出した。次いで、有機層を硫酸マグネシウムで乾燥させた後、ろ過し、溶媒を減圧留去した。その後、濃縮した有機層にヘキサンを加え、固体を再沈殿させることで、目的物である9-(2-ピリジル)-3-[5-(4,6-ジフェニルピリミジン-2-イル)ビフェニル-3-イル]カルバゾール(B-4)の褐色粉末(収量900mg,収率72%)を得た。
 H-NMR(CDCl):δ7.28(dd,J=7.4,4.9Hz,1H),7.40(t,J=7.4Hz,1H),7.47-7.54(m,2H),7.57-7.64(m,8H),7.73(d,J=8.1Hz,1H),7.89-7.94(m,4H),7.98(t,J=7.7Hz,1H),8.02(d,J=8.5Hz,1H),8.07(s、1H),8.12(s,1H),8.25(d,J=7.4Hz,1H),8.349-8.37(m,4H),8.54(s,1H),8.81(d,J=4.9Hz,1H),8.99(s,1H),9.08(s,1H).
 実施例-42
Figure JPOXMLDOC01-appb-C000091
 アルゴン気流下、9-(2-ピリジル)-9-[3-クロロ-5-(4,6-ジフェニルピリミジン-2-イル)フェニル]カルバゾール(585mg)、4-(2-ピリジル)フェニルボロン酸(239mg)、酢酸パラジウム(4.5mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(29mg)、及び3M-炭酸カリウム水溶液(0.8mL)を、トルエン(4.5mL)及びn-ブタノール(0.5mL)の混合溶媒に懸濁し、3時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えてスラリーとし、固体を析出させた。析出した固体はろ過し、水、次いでメタノール、その後ヘキサンで洗浄して、目的物である9-(2-ピリジル)-3-[5-(4,6-ジフェニルピリミジン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]カルバゾール(B-5)の褐色粉末(収量676mg,収率96%)を得た。
 H-NMR(CDCl):δ7.28(t,J=6.0Hz,1H),7.34(dd,J=7.2,5.0Hz,1H),7.39(t,J=7.5Hz,1H),7.52(t,J=7.5Hz,1H),7.56-7.63(m,6H),7.71(d,J=8.0Hz,1H),7.78-7.85(m,2H),7.91-8.02(m,6H),8.05(s,1H),8.15(s、1H),8.21(d,J=8.3Hz,2H),8.25(d,J=7.7Hz,1H),8.35(d,J=7.8Hz,4H),8.53(s,1H),8.78(d,J=4.8Hz,1H),8.80(d=4.4Hz,1H),9.03(s,1H),9.08(s,1H).
 実施例-43
Figure JPOXMLDOC01-appb-C000092
 アルゴン気流下、9-(2-ピリジル)-9-[3-クロロ-5-(4,6-ジフェニルピリミジン-2-イル)フェニル]カルバゾール(1.17g)、4-(2-ピラジル)フェニルボロン酸(480mg)、酢酸パラジウム(9.0mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(57mg)、及び3M-炭酸カリウム水溶液(1.6mL)を、トルエン(9.0mL)及びn-ブタノール(1.0mL)の混合溶媒に懸濁し、2時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体はろ過し、水、次いでメタノール、その後ヘキサンで洗浄して、目的物である9-(2-ピリジル)-3-[5-(4,6-ジフェニルピリミジン-2-イル)-4’-(2-ピラジル)ビフェニル-3-イル]カルバゾール(B-6)の褐色粉末(収量1.25g,収率89%)を得た。
 H-NMR(CDCl):δ7.34-7.40(m,2H),7.51(t,J=7.7Hz,1H),7.56-7.63(m,6H),7.72(d,J=8.0Hz,1H),7.91(d,J=8.5Hz,1H),7.92(d,J=8.2Hz,1H),7.96-8.03(m,4H),8.06(s、1H),8.13(s,1H),8.21-8.25(m,3H),8.33-8.35(m,4H),8.52(s,1H),8.56(s,1H),8.70(s,1H),8.80(d,J=4.8Hz,1H),9.01(s,1H),9.08(s,1H),9.15(s,1H).
 実施例-44
Figure JPOXMLDOC01-appb-C000093
 アルゴン気流下、合成例-20で合成した4-(4-ブロモフェニル)-6-(1-ナフチル)-2-フェニルピリミジン(219mg)、合成例-15で合成した3-(キノリン-8-イル)カルバゾール(162mg)、酢酸パラジウム(2.2mg)、1M-トリ(tert-ブチル)ホスフィンのトルエン溶液(30μL)、炭酸カリウム(152mg)、18-クラウン-6-エーテル(26mg)をキシレン(2.5mL)に懸濁し、20時間加熱還流した。反応混合物を放冷後、ろ過することで不要物を除去した。濾液をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の9-[4-(6-ナフチル-2-フェニルピリミジン-4-イル)フェニル]-3-(キノリン-8-イル)カルバゾール(B-7)の黄色粉末(収量297mg,収率91%)を得た。
 H-NMR(CDCl):δ7.35(t,J=7.4Hz,1H),7.47(d,J=8.0Hz,1H),7.47-7.50(m,1H),7.56-7.63(m,6H),7.66-7.72(m,3H),7.85(d,J=8.5Hz,1H),7.88(d,J=8.6Hz,2H),7.86-7.93(m,3H),8.00-8.02(m,1H),8.04(s,1H),8.06(d,J=8.2Hz,1H),8.21(d,J=7.6Hz,1H),8.29(d,J=8.3Hz,1H),8.43-8.46(m,1H),8.48(s,1H),8.60(d,J=8.6Hz,2H),8.76-8.79(m,2H),9.04(d,J=4.1Hz,1H).
<環状アジンを構成成分とする有機電界発光素子の作製と性能評価>
 以下の実施例、参考例、及び比較例は、有機電界発光素子の作製と性能評価に関するものである。
 用いた化合物の構造式は、以下に示す通りである。
Figure JPOXMLDOC01-appb-C000094
 実施例-45
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、酸素プラズマ洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図が図1に示すような発光面積4mmの有機電界発光素子を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図1の1で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層2、正孔輸送層3、発光層4、及び電子輸送層5を順次成膜し、その後陰極層6を成膜した。なお、有機電界発光素子の各層をなす材料は抵抗加熱方式により真空蒸着した。
 正孔注入層2としては、昇華精製したCuPcを0.06nm/秒の成膜速度で25nmの膜厚で真空蒸着した。
 正孔輸送層3としては、NPDを0.30nm/秒の成膜速度で45nmの膜厚で真空蒸着した。
 発光層4としては、EML-1とEML-2を0.18nm/秒の成膜速度で40nmの膜厚(EML-1/EML-2=95/5(重量比)の共蒸着)で真空蒸着した。
 電子輸送層5としては、本発明の実施例1で合成したA-1を0.25nm/秒の成膜速度で20nmの膜厚で真空蒸着した。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層6を成膜した。陰極層6は、フッ化リチウムとアルミニウムを、この順番に、それぞれ0.1nm/秒と0.25nm/秒の成膜速度で1.0nmと100nmの膜厚で真空蒸着し、2層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Veeco社製)で測定した。
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
 実施例-46
 実施例-45の電子輸送層5において、A-1に代えて、実施例3で合成したA-3を用いた以外は、実施例-45と同じ方法で有機電界発光素子を作製した。
 実施例-47
 実施例-45の電子輸送層5において、A-1に代えて、実施例6で合成したA-6を用いた以外は、実施例-45と同じ方法で有機電界発光素子を作製した。
 参考例-1
 実施例-31の電子輸送層5において、A-1に代えて、公知の電子輸送材料であるETL-1を用いた以外は、実施例-45と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。寿命特性として電流密度20mA/cmを流した時の連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が20%減じた時の時間を以下に示す。
Figure JPOXMLDOC01-appb-T000095
 表1より、参考例に比べて、本発明の環状アジン誘導体を使用した有機電界発光素子は寿命特性に優れていることが分かる。
 実施例-48
 実施例-45の発光層4において、EML-1とEML-2を0.18nm/秒の成膜速度で40nmの膜厚(EML-1/EML-2=95/5(重量比)の共蒸着)で真空蒸着する代わりに、TBADNとEML-2を0.18nm/秒の成膜速度で40nmの膜厚(TBADN/EML-2=95/5(重量比)の共蒸着)で真空蒸着した。
 また、電子輸送層5においてA-1の代わりにA-2を0.25nm/秒の成膜速度で20nmの膜圧で真空蒸着した以外は、実施例-45と同じ方法で、有機電界発光素子を作製した。
 実施例-49
 実施例-48の電子輸送層5において、A-2に代えて、実施例10で合成したA-10を用いた以外は実施例-48と同じ方法で有機電界発光素子を作製した。
 比較例-1
 実施例-48の電子輸送層5において、A-2に代えて、特許文献4に記載のETL-2を用いた以外は実施例-48と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。輝度(cd/m)が20%減じた時の時間、及び素子に20mA/cmの密度で電流を流した時の電圧及び効率を以下に示す。
Figure JPOXMLDOC01-appb-T000096
 表2より、本発明の環状アジン化合物(1)は、従来公知の化合物に比べて、有機電界発光素子の電子注入性、電子輸送特性、駆動電圧(電圧[V])、電流効率(効率[cd/A])、及び素子寿命を顕著格別に向上させることが示された。
 実施例-50
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、酸素プラズマ洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図が図2に示すような発光面積4mmの有機電界発光素子を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図2の11で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層12、第一正孔輸送層13、第二正孔輸送層14、発光層15、及び電子輸送層16を順次成膜し、その後陰極層17を成膜した。なお、有機電界発光素子の各層をなす材料は抵抗加熱方式により真空蒸着した。
 正孔注入層12としては、HTL-1を0.15nm/秒の成膜速度で40nmの膜厚で真空蒸着した。
 第一正孔輸送層13としては、HAT-CNを0.025nm/秒の成膜速度で5nmの膜厚で真空蒸着した。
 第二正孔輸送層14としてはHTL-2を0.15nm/秒の成膜速度で25nmの膜厚で真空蒸着した。
 発光層15としては、EML-1とEML-2を0.18nm/秒の成膜速度で40nmの膜厚(EML-1/EML-2=95/5(重量比)の共蒸着)で真空蒸着した。
 電子輸送層16としては、本発明の実施例39で合成したB-2を0.15nm/秒の成膜速度で30nmの膜厚で真空蒸着した。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層17を成膜した。陰極層17は、Liq、マグネシウム/銀(重量比80/20)、銀を、この順番に、それぞれ0.005nm/秒、0.5nm/秒、0.2nm/秒の成膜速度で0.5nm、80nm、20nmの膜厚で真空蒸着し、3層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Veeco社製)で測定した。
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
 実施例-51
 実施例-50の電子輸送層16において、B-2に代えて、実施例40で合成したB-3を用いた以外は実施例-50と同じ方法で有機電界発光素子を作製した。
 実施例-52
 実施例-50の電子輸送層16において、B-2に代えて、実施例41で合成したB-4を用いた以外は実施例-50と同じ方法で有機電界発光素子を作製した。
 実施例-53
 実施例-50の電子輸送層16において、B-2に代えて、実施例42で合成したB-5を用いた以外は実施例50と同じ方法で有機電界発光素子を作製した。
 実施例-54
 実施例-50の電子輸送層16において、B-2に代えて、実施例43で合成したB-6を用いた以外は実施例-50と同じ方法で有機電界発光素子を作製した。
 比較例-2
 実施例-50の電子輸送層16において、B-2に代えて、ETL-3を用いた以外は実施例-50と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。寿命特性として電流密度20mA/cmを流した時の連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が10%減じた時の時間、及び素子に20mA/cmの密度で電流を流した時の電圧及び効率を以下に示す。
Figure JPOXMLDOC01-appb-T000097
 表3より、本発明の環状アジン化合物(1)は、従来公知の化合物に比べて、有機電界発光素子の電子注入性、電子輸送特性、駆動電圧(電圧[V])、電流効率(効率[cd/A])、及び素子寿命を顕著格別に向上させることが示された。
 実施例-55
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、酸素プラズマ洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図が図2に示すような発光面積4mmの有機電界発光素子を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図2の11で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層12、第一正孔輸送層13、第二正孔輸送層14、発光層15、及び電子輸送層16を順次成膜し、その後陰極層17を成膜した。なお、有機電界発光素子の各層をなす材料は抵抗加熱方式により真空蒸着した。
 正孔注入層12としては、HTL-1を0.15nm/秒の成膜速度で45nmの膜厚で真空蒸着した。
 第一正孔輸送層13としては、HAT-CNを0.025nm/秒の成膜速度で5nmの膜厚で真空蒸着した。
 第二正孔輸送層14としてはHTL-2を0.15nm/秒の成膜速度で30nmの膜厚で真空蒸着した。
 発光層15としては、EML-1とEML-2を0.18nm/秒の成膜速度で20nmの膜厚(EML-1/EML-2=96/4(重量比)の共蒸着)で真空蒸着した。
 電子輸送層16としては、本発明の実施例3で合成したA-3を0.15nm/秒の成膜速度で30nmの膜厚で真空蒸着した。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層17を成膜した。陰極層17は、フッ化リチウム、マグネシウム/銀(重量比80/20)、銀を、この順番に、それぞれ0.005nm/秒、0.5nm/秒、0.2nm/秒の成膜速度で0.5nm、80nm、20nmの膜厚で真空蒸着し、3層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Veeco社製)で測定した。
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
 実施例-56
 実施例-55の電子輸送層16において、A-3に代えて、実施例13で合成したA-13を用いた以外は実施例55と同じ方法で有機電界発光素子を作製した。
 実施例-57
 実施例-55の電子輸送層16において、A-3に代えて、実施例42で合成したB-5を用いた以外は実施例55と同じ方法で有機電界発光素子を作製した。
 参考例-2
 実施例-55の電子輸送層16において、A-3に代えて、ETL-1を用いた以外は実施例55と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。寿命特性として電流密度20mA/cmを流した時の連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が20%減じた時の時間及び素子に10mA/cmの密度で電流を流した時の電圧及び効率を以下に示す。
Figure JPOXMLDOC01-appb-T000098
 表4より、本発明の環状アジン化合物(1)は、従来公知の化合物に比べて、有機電界発光素子の駆動電圧(電圧[V])、電流効率(効率[cd/A])、及び寿命特性に優れることが示された。
 実施例-58
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、酸素プラズマ洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図を図2に示すような発光面積4mm有機電界発光素子を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図2の11で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層12、第一正孔輸送層13、第二正孔輸送層14、発光層15、及び電子輸送層16を順次成膜し、その後陰極層17を成膜した。なお、有機電界発光素子の各層をなす材料は抵抗加熱方式により真空蒸着した。
 正孔注入層12としては、HTL-1を0.15nm/秒の成膜速度で65nmの膜厚で真空蒸着した。
 第一正孔輸送層13としては、HAT-CNを0.025nm/秒の成膜速度で5nmの膜厚で真空蒸着した。
 第二正孔輸送層14としてはHTL-2を0.15nm/秒の成膜速度で10nmの膜厚で真空蒸着した。
 発光層15としては、EML-1とEML-2を0.18nm/秒の成膜速度で25nmの膜厚(EML-1/EML-2=96/4(重量比)の共蒸着)で真空蒸着した。
 電子輸送層16としては、本発明の実施例12で合成したA-12を0.15nm/秒の成膜速度で30nmの膜厚で真空蒸着した。
 なお、各有機材料は抵抗加熱方式により成膜し、加熱した化合物を0.3~0.5nm/秒の成膜速度で真空蒸着した。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層17を成膜した。陰極層7は、Liq、マグネシウム/銀(重量比80/20)、銀を、この順番に、それぞれ0.005nm/秒、0.5nm/秒、0.2nm/秒の成膜速度で0.5nm、80nm、20nmの膜厚で真空蒸着し、3層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Veeco社製)で測定した。さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
 実施例-59
 実施例-58の電子輸送層16において、A-12に代えて、実施例16で合成したA-16を用いた以外は実施例58と同じ方法で有機電界発光素子を作製した。
 実施例-60
 実施例-58の電子輸送層16において、A-12に代えて、実施例18で合成したA-17を用いた以外は実施例58と同じ方法で有機電界発光素子を作製した。
 実施例-61
 実施例-58の電子輸送層16において、A-12に代えて、実施例19で合成したA-18を用いた以外は実施例58と同じ方法で有機電界発光素子を作製した。
 実施例-62
 実施例-58の電子輸送層16において、A-12に代えて、実施例20で合成したA-19を用いた以外は実施例58と同じ方法で有機電界発光素子を作製した。
 実施例-63
 実施例-58の電子輸送層16において、A-12に代えて、実施例21で合成したA-20を用いた以外は実施例58と同じ方法で有機電界発光素子を作製した。
 実施例-64
 実施例-58の電子輸送層16において、A-12に代えて、実施例24で合成したA-22を用いた以外は実施例58と同じ方法で有機電界発光素子を作製した。
 比較例-3
 実施例-58の電子輸送層16において、A-12に代えて、合成例-21で合成したETL-4を用いた以外は実施例58と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。寿命特性として電流密度20mA/cmを流した時の連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が10%減じた時の時間及び素子に10mA/cmの密度で電流を流した時の電圧を以下に示す。
Figure JPOXMLDOC01-appb-T000099
 表5より、本発明の環状アジン化合物(1)は、従来公知の化合物に比べて、有機電界発光素子の駆動電圧(電圧[V])、及び寿命特性に優れることが示された。
 このように、本発明の環状アジン化合物(1)を使用した有機電界発光素子は、従来公知の化合物に比べて、有機電界発光素子の駆動電圧、電流効率、素子寿命等の素子特性において、顕著格別に優れていることが分かる。
 本発明の環状アジン化合物を用いた有機電界発光素子は、既存材料を用いた有機電界発光素子に比較して、長時間駆動することが可能であり、蛍光発光材料を用いた素子だけではなく、燐光発光材料を用いた様々な有機電界発光素子への適用も可能である等、産業上、極めて有用である。
 また、本発明の環状アジン化合物は溶解度も高く、真空蒸着法ばかりでなく塗布法を用いた素子作製も可能であり、電子輸送層以外にも、発光ホスト層などとしても適用可能であり、さらに、フラットパネルディスプレイなどの用途以外にも、低消費電力が求められる照明用途などにおいても有用である。
 なお、2012年6月18日に出願された日本特許出願2012-136711号、2012年11月9日に出願された日本特許出願2012-247767号、及び2012年12月21日に出願された日本特許出願2012-279641号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1.ITO透明電極付きガラス基板
 2.正孔注入層
 3.正孔輸送層
 4.発光層
 5.電子輸送層
 6.陰極層
 11.ITO透明電極付きガラス基板
 12.正孔注入層
 13.第一正孔輸送層
 14.第二正孔輸送層
 15.発光層
 16.電子輸送層
 17.陰極層

Claims (22)

  1.  一般式(1)で示されることを特徴とする環状アジン化合物。

    Figure JPOXMLDOC01-appb-C000001
    (式中、
    Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、
    Arは、各々独立して、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、各々独立して、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
  2.  一般式(1)が、一般式(B)、(C)、又は(D)で表される請求項1に記載の環状アジン化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(D)中、Cbは(n+1)価のカルボリン基を表す。
    式(B)、(C)、及び(D)中、
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    nは、各々独立して、1~7の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、
    Arは、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
  3.  Ar及びArで示される炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)が、各々独立して、炭素、水素、及び窒素のみからなる炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は炭素、水素、窒素、及び硫黄のみからなる炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)である、請求項1又は請求項2に記載の環状アジン化合物。
  4.  Ar及びArで示される炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)が、各々独立して、炭素、水素、及び窒素のみからなる炭素数3~30の含窒素ヘテロアリール基(ただし、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)である、請求項1乃至請求項3のいずれか一項に記載の環状アジン化合物。
  5.  Ar及びArで示される炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)が、各々独立して、ピリジル基、ピリミジル基、ピラジル基、キノリル基、イソキノリル基、ピリジルフェニル基、又は1-(3,5-ジピリジル)フェニル基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)である、請求項1乃至請求項4のいずれか一項に記載の環状アジン化合物。
  6.  Ar及びArで示される炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)が、各々独立してピリジル基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)である、請求項1乃至請求項5のいずれか一項に記載の環状アジン化合物。
  7.  Ar及びArが、各々独立して、フェニル基、ビフェニリル基、ナフチル基、アントリル基、ピレニル基、ターフェニル基、又はフェナントリル基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)である請求項1乃至請求項6のいずれか一項に記載の環状アジン化合物。
  8.  Ar及びArが、各々独立して、フェニル基又はビフェニリル基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)である請求項1乃至請求項7のいずれか一項に記載の環状アジン化合物。
  9.  Ar及びArが、各々独立して、フェニル基、メチルフェニル基、又はビフェニリル基である請求項1乃至請求項8のいずれか一項に記載の環状アジン化合物。
  10.  Arが、フェニレン基又はビフェニリレン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)である請求項1乃至請求項9のいずれか一項に記載の環状アジン化合物。
  11.  Arが、(m+1)価のベンゼン基又は(m+1)価のビフェニル基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)である請求項1乃至請求項10のいずれか一項に記載の環状アジン化合物。
  12.  Y及びZが窒素原子である、又はYがCHでありZが窒素原子である、請求項1乃至請求項11のいずれか一項に記載の環状アジン化合物。
  13.  nが1、2、又は3である、請求項1乃至12のいずれか一項に記載の環状アジン化合物。
  14.  mが1又は2である、請求項1乃至13のいずれか一項に記載の環状アジン化合物。
  15.  一般式(2)で示される化合物と、一般式(3)で示される化合物とを、金属触媒の存在下、又は塩基及び金属触媒の存在下にカップリング反応させることを特徴とする、一般式(1)で示される環状アジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式中、
    Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    はCzにおける窒素原子上の水素原子を表す。
    は脱離基を表す。
    nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、
    Arは、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
  16.  一般式(4)で示される化合物と、一般式(5)で示される化合物とを、金属触媒の存在下、又は塩基及び金属触媒の存在下にカップリング反応させることを特徴とする、一般式(1)で示される環状アジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式中、
    Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    M及びXは脱離基を表す。
    nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、
    Arは、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
  17.  一般式(6)で示される化合物と、一般式(7)で示される化合物とを、金属触媒の存在下、又は塩基及び金属触媒の存在下にカップリング反応させることを特徴とする、一般式(1)で示される環状アジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (式中、
    Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    はCzにおける窒素原子上の水素原子を表す。
    は脱離基を表す。
    nは1である)
    Figure JPOXMLDOC01-appb-C000010
    (式中、
    Arは、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
  18.  一般式(8)で示される化合物と、一般式(9)で示される化合物とを、金属触媒の存在下又は塩基及び金属触媒の存在下にカップリング反応させることを特徴とする、一般式(1)で示される環状アジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    (式中、
    Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    M及びXは脱離基を表す。
    nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)
    Figure JPOXMLDOC01-appb-C000012
    (式中、
    Arは、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
  19.  一般式(1)
    Figure JPOXMLDOC01-appb-C000013
    (式中、
    Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)
    Figure JPOXMLDOC01-appb-C000014
    (式中、
    Arは、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
    で示される環状アジン化合物を含んでなることを特徴とする有機電界発光素子。
  20.  一般式(1)で表される環状アジン化合物を、正孔ブロック層、電子輸送層、又は電子注入層のいずれかに含む、請求項19に記載の有機電界発光素子。
  21. 一般式(1)
    Figure JPOXMLDOC01-appb-C000015
    (式中、
    Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)
    Figure JPOXMLDOC01-appb-C000016
    (式中、
    Arは、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
    で示される環状アジン化合物を電子輸送層に用いることを特徴とする、有機電界発光素子の長寿命化方法。
  22.  一般式(1)
    Figure JPOXMLDOC01-appb-C000017
    (式中、
    Czは(n+1)価のカルバゾール基又は(n+1)価のカルボリン基(これらの基は、各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子を有する炭素数6~18の芳香族炭化水素基、又は炭素数1~4のアルキル基が置換した炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。
    Ar及びArは、各々独立して、炭素数6~30の芳香族炭化水素基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは炭素数6~30のアリーレン基(フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)、又は一般式(A)で示される置換基を表す。
    Y及びZは、各々独立して、窒素原子又はCHを表す。但し、Y及びZのうち少なくとも一方は窒素原子である。
    nは1~[Cz上に形成できる最大の結合数-1]の整数を表す。)
    Figure JPOXMLDOC01-appb-C000018
    (式中、
    Arは、(m+1)価の炭素数6~30のアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    Arは、各々独立して、炭素数3~30の含窒素ヘテロアリール基(各々独立して、フッ素原子、炭素数1~4のアルキル基、炭素数3~18の芳香族基、フッ素原子を有する炭素数3~18の芳香族基、又は炭素数1~4のアルキル基が置換した炭素数3~18の芳香族基を置換基として有してもよい)を表す。
    mは、1~[Ar上に形成できる最大の結合数-1]の整数を表す。)
    で示される環状アジン化合物を電子輸送層に用いることを特徴とする、有機電界発光素子の低電化方法。
PCT/JP2013/066739 2012-06-18 2013-06-18 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子 WO2013191177A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147029251A KR102148539B1 (ko) 2012-06-18 2013-06-18 환상 아진 화합물, 그 제조 방법, 및 그것을 함유하는 유기 전계발광소자
CN201380030110.6A CN104507927A (zh) 2012-06-18 2013-06-18 环状吖嗪化合物、其制造方法、及含有其的有机电致发光元件

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-136711 2012-06-18
JP2012136711 2012-06-18
JP2012-247767 2012-11-09
JP2012247767 2012-11-09
JP2012-279641 2012-12-21
JP2012279641 2012-12-21

Publications (1)

Publication Number Publication Date
WO2013191177A1 true WO2013191177A1 (ja) 2013-12-27

Family

ID=49768772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066739 WO2013191177A1 (ja) 2012-06-18 2013-06-18 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子

Country Status (3)

Country Link
KR (1) KR102148539B1 (ja)
CN (1) CN104507927A (ja)
WO (1) WO2013191177A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171541A1 (ja) * 2013-04-18 2014-10-23 東ソー株式会社 有機電界発光素子用の複素環化合物及びその用途
WO2014208755A1 (ja) * 2013-06-28 2014-12-31 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを用いた有機電界発光素子
WO2015142036A1 (en) * 2014-03-17 2015-09-24 Rohm And Haas Electronic Materials Korea Ltd. Electron buffering material and organic electroluminescent device comprising the same
WO2015156102A1 (ja) * 2014-04-07 2015-10-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含む有機電界発光素子用材料
KR20160054131A (ko) * 2014-11-05 2016-05-16 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
WO2016089080A1 (ko) * 2014-12-02 2016-06-09 주식회사 두산 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
US9406892B2 (en) 2015-01-07 2016-08-02 Universal Display Corporation Organic electroluminescent materials and devices
CN106068267A (zh) * 2014-03-17 2016-11-02 罗门哈斯电子材料韩国有限公司 电子缓冲材料和包含其的有机电致发光装置
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3184522A1 (en) * 2015-12-22 2017-06-28 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the condensed cyclic compound, organic light-emitting device including the condensed cyclic compound, and method of manufacturing the organic light-emitting device
US20170213983A1 (en) * 2014-11-28 2017-07-27 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
WO2019076844A1 (en) * 2017-10-18 2019-04-25 Cynora Gmbh ORGANIC MOLECULES, IN PARTICULAR FOR USE IN OPTOELECTRONIC DEVICES
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
WO2019162332A1 (en) * 2018-02-20 2019-08-29 Cynora Gmbh Organic molecules for optoelectronic devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US11189800B2 (en) 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
EP4043453A1 (en) 2021-02-11 2022-08-17 Idemitsu Kosan Co., Ltd. Compound, material for an organic electroluminescence device and an organic electroluminescence device comprising the compound
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US11548869B2 (en) * 2017-06-28 2023-01-10 Samsung Display Co., Ltd. Organic molecules for use in organic optoelectronic devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101674134B1 (ko) * 2015-04-27 2016-11-08 (주)더블유에스 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR102458043B1 (ko) 2015-11-25 2022-10-24 엘지디스플레이 주식회사 유기전계발광소자
CN111808076A (zh) * 2019-04-12 2020-10-23 冠能光电材料(深圳)有限责任公司 一种电子传输空穴阻挡有机材料及其在薄膜发光二极管应用

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131930A2 (ko) * 2009-05-15 2010-11-18 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011013783A1 (ja) * 2009-07-31 2011-02-03 富士フイルム株式会社 有機電界発光素子
WO2011013681A1 (ja) * 2009-07-31 2011-02-03 富士フイルム株式会社 電荷輸送材料及び有機電界発光素子
WO2011013843A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
WO2011019156A1 (en) * 2009-08-10 2011-02-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011049325A2 (en) * 2009-10-21 2011-04-28 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2011132683A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2011139055A2 (ko) * 2010-05-03 2011-11-10 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2011148909A1 (ja) * 2010-05-24 2011-12-01 出光興産株式会社 有機エレクトロルミネッセンス素子
KR20120009588A (ko) * 2010-07-19 2012-02-02 에스에프씨 주식회사 피리딘 유도체 및 이를 포함하는 유기전계발광소자
WO2012014841A1 (ja) * 2010-07-26 2012-02-02 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2012015274A2 (ko) * 2010-07-30 2012-02-02 롬엔드하스전재재로코리아유한회사 유기발광화합물을 발광재료로서 채용하고 있는 유기 전계 발광 소자
US20120126208A1 (en) * 2010-11-22 2012-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2012069121A1 (de) * 2010-11-24 2012-05-31 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012074210A2 (ko) * 2010-12-02 2012-06-07 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012077902A2 (ko) * 2010-12-08 2012-06-14 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20120072787A (ko) * 2010-12-24 2012-07-04 에스에프씨 주식회사 피리딘 유도체 화합물 및 이를 포함하는 유기전계발광소자
WO2012091279A1 (ko) * 2010-12-31 2012-07-05 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012108881A1 (en) * 2011-02-11 2012-08-16 Universal Display Corporation Organic light emitting device and materials for use in same
KR20120092908A (ko) * 2011-02-14 2012-08-22 에스에프씨 주식회사 피리딘 유도체 화합물 및 이를 포함하는 유기전계발광소자
KR20120092909A (ko) * 2011-02-14 2012-08-22 에스에프씨 주식회사 피리딘 유도체 화합물 및 이를 포함하는 유기전계발광소자
US20120211736A1 (en) * 2009-11-03 2012-08-23 Cheil Industries, Inc. Compound for organic photoelectric device and organic photoelectric device including the same
WO2012136295A1 (de) * 2011-04-05 2012-10-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
KR20120122813A (ko) * 2011-04-29 2012-11-07 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20120122812A (ko) * 2011-04-29 2012-11-07 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP2012216801A (ja) * 2011-03-28 2012-11-08 Toray Ind Inc 発光素子材料および発光素子
WO2013024872A1 (ja) * 2011-08-18 2013-02-21 出光興産株式会社 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
JP2013035752A (ja) * 2011-08-03 2013-02-21 Idemitsu Kosan Co Ltd ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
WO2013089424A1 (ko) * 2011-12-12 2013-06-20 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013100540A1 (ko) * 2011-12-30 2013-07-04 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013105206A1 (ja) * 2012-01-10 2013-07-18 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた素子
WO2013115340A1 (ja) * 2012-02-03 2013-08-08 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404473B2 (ja) 2000-12-25 2010-01-27 富士フイルム株式会社 新規含窒素へテロ環化合物、発光素子材料およびそれらを使用した発光素子
CN1643105A (zh) 2002-03-15 2005-07-20 出光兴产株式会社 有机电致发光装置用材料以及使用这种材料制备的有机电致发光装置
EP2169028B1 (en) 2002-03-22 2018-11-21 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
JP5399236B2 (ja) 2007-03-26 2014-01-29 新日鉄住金化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
JP5194596B2 (ja) 2007-07-11 2013-05-08 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
SE0900435A1 (sv) * 2009-04-02 2010-06-08 Anna-Kari Sundbaum Oval nål med trubbig spets
TW201301598A (zh) * 2010-11-22 2013-01-01 Idemitsu Kosan Co 有機電激發光元件

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131930A2 (ko) * 2009-05-15 2010-11-18 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011013783A1 (ja) * 2009-07-31 2011-02-03 富士フイルム株式会社 有機電界発光素子
WO2011013681A1 (ja) * 2009-07-31 2011-02-03 富士フイルム株式会社 電荷輸送材料及び有機電界発光素子
WO2011013843A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
WO2011019156A1 (en) * 2009-08-10 2011-02-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011049325A2 (en) * 2009-10-21 2011-04-28 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
US20120211736A1 (en) * 2009-11-03 2012-08-23 Cheil Industries, Inc. Compound for organic photoelectric device and organic photoelectric device including the same
WO2011132683A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2011132684A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2011139055A2 (ko) * 2010-05-03 2011-11-10 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2011148909A1 (ja) * 2010-05-24 2011-12-01 出光興産株式会社 有機エレクトロルミネッセンス素子
KR20120009588A (ko) * 2010-07-19 2012-02-02 에스에프씨 주식회사 피리딘 유도체 및 이를 포함하는 유기전계발광소자
WO2012014841A1 (ja) * 2010-07-26 2012-02-02 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2012015274A2 (ko) * 2010-07-30 2012-02-02 롬엔드하스전재재로코리아유한회사 유기발광화합물을 발광재료로서 채용하고 있는 유기 전계 발광 소자
US20120126208A1 (en) * 2010-11-22 2012-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2012069121A1 (de) * 2010-11-24 2012-05-31 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012074210A2 (ko) * 2010-12-02 2012-06-07 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012077902A2 (ko) * 2010-12-08 2012-06-14 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20120072787A (ko) * 2010-12-24 2012-07-04 에스에프씨 주식회사 피리딘 유도체 화합물 및 이를 포함하는 유기전계발광소자
WO2012091279A1 (ko) * 2010-12-31 2012-07-05 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012108881A1 (en) * 2011-02-11 2012-08-16 Universal Display Corporation Organic light emitting device and materials for use in same
KR20120092908A (ko) * 2011-02-14 2012-08-22 에스에프씨 주식회사 피리딘 유도체 화합물 및 이를 포함하는 유기전계발광소자
KR20120092909A (ko) * 2011-02-14 2012-08-22 에스에프씨 주식회사 피리딘 유도체 화합물 및 이를 포함하는 유기전계발광소자
JP2012216801A (ja) * 2011-03-28 2012-11-08 Toray Ind Inc 発光素子材料および発光素子
WO2012136295A1 (de) * 2011-04-05 2012-10-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
KR20120122813A (ko) * 2011-04-29 2012-11-07 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20120122812A (ko) * 2011-04-29 2012-11-07 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP2013035752A (ja) * 2011-08-03 2013-02-21 Idemitsu Kosan Co Ltd ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
WO2013024872A1 (ja) * 2011-08-18 2013-02-21 出光興産株式会社 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
WO2013089424A1 (ko) * 2011-12-12 2013-06-20 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013100540A1 (ko) * 2011-12-30 2013-07-04 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013105206A1 (ja) * 2012-01-10 2013-07-18 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた素子
WO2013115340A1 (ja) * 2012-02-03 2013-08-08 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780310B2 (en) 2013-04-18 2017-10-03 Tosoh Corporation Heterocyclic compound for organic electroluminescent device and its application
WO2014171541A1 (ja) * 2013-04-18 2014-10-23 東ソー株式会社 有機電界発光素子用の複素環化合物及びその用途
WO2014208755A1 (ja) * 2013-06-28 2014-12-31 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを用いた有機電界発光素子
CN106068267A (zh) * 2014-03-17 2016-11-02 罗门哈斯电子材料韩国有限公司 电子缓冲材料和包含其的有机电致发光装置
WO2015142036A1 (en) * 2014-03-17 2015-09-24 Rohm And Haas Electronic Materials Korea Ltd. Electron buffering material and organic electroluminescent device comprising the same
CN106068267B (zh) * 2014-03-17 2019-09-03 罗门哈斯电子材料韩国有限公司 电子缓冲材料和包含其的有机电致发光装置
WO2015156102A1 (ja) * 2014-04-07 2015-10-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含む有機電界発光素子用材料
JP2015199681A (ja) * 2014-04-07 2015-11-12 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含む有機電界発光素子用材料
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US11456423B2 (en) 2014-07-09 2022-09-27 Universal Display Corporation Organic electroluminescent materials and devices
US11957047B2 (en) 2014-07-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US11024811B2 (en) 2014-07-09 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US11641774B2 (en) 2014-09-29 2023-05-02 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US11342510B2 (en) 2014-10-06 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US20180069181A1 (en) * 2014-11-05 2018-03-08 Samsung Display Co., Ltd. Organic light emitting device and display device including the same
KR102330221B1 (ko) * 2014-11-05 2021-11-25 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
US10763439B2 (en) 2014-11-05 2020-09-01 Samsung Display Co., Ltd. Organic light emitting device and display device including the same
US11211566B2 (en) 2014-11-05 2021-12-28 Samsung Display Co., Ltd. Organic light emitting device and display device including the same
KR20160054131A (ko) * 2014-11-05 2016-05-16 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
US10784446B2 (en) * 2014-11-28 2020-09-22 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
US20170213983A1 (en) * 2014-11-28 2017-07-27 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
WO2016089080A1 (ko) * 2014-12-02 2016-06-09 주식회사 두산 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20160066339A (ko) * 2014-12-02 2016-06-10 주식회사 두산 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102154878B1 (ko) * 2014-12-02 2020-09-10 두산솔루스 주식회사 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
US9406892B2 (en) 2015-01-07 2016-08-02 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3184522A1 (en) * 2015-12-22 2017-06-28 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the condensed cyclic compound, organic light-emitting device including the condensed cyclic compound, and method of manufacturing the organic light-emitting device
US10597403B2 (en) 2015-12-22 2020-03-24 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the condensed cyclic compound, organic light-emitting device including the condensed cyclic compound, and method of manufacturing the organic light-emitting device
US11548869B2 (en) * 2017-06-28 2023-01-10 Samsung Display Co., Ltd. Organic molecules for use in organic optoelectronic devices
US11189800B2 (en) 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
WO2019076844A1 (en) * 2017-10-18 2019-04-25 Cynora Gmbh ORGANIC MOLECULES, IN PARTICULAR FOR USE IN OPTOELECTRONIC DEVICES
WO2019162332A1 (en) * 2018-02-20 2019-08-29 Cynora Gmbh Organic molecules for optoelectronic devices
EP4043453A1 (en) 2021-02-11 2022-08-17 Idemitsu Kosan Co., Ltd. Compound, material for an organic electroluminescence device and an organic electroluminescence device comprising the compound

Also Published As

Publication number Publication date
KR20150018776A (ko) 2015-02-24
CN104507927A (zh) 2015-04-08
KR102148539B1 (ko) 2020-08-26

Similar Documents

Publication Publication Date Title
KR102148539B1 (ko) 환상 아진 화합물, 그 제조 방법, 및 그것을 함유하는 유기 전계발광소자
US9624193B2 (en) Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
JP6822508B2 (ja) ベンゾチエノピリミジン化合物、その製造方法、及びそれを含有する有機電界発光素子
JP6326930B2 (ja) 有機電界発光素子用複素環化合物及びその用途
JP5761907B2 (ja) 1,3,5−トリアジン誘導体とその製造方法、及びそれらを構成成分とする有機電界発光素子
EP2746271B1 (en) Phenyl-substituted 1, 3, 5-triazine compounds as intermediates for electroluminescent molecules
JP6034146B2 (ja) 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれらを構成成分とする有機電界発光素子
JP6443107B2 (ja) トリアジン化合物及びその製造方法
WO2012091026A1 (ja) 1,3,5-トリアジン化合物とその製造方法、及びそれらを構成成分とする有機電界発光素子
JP6264877B2 (ja) 1,2,4−トリス置換ベンゼン化合物、その製造方法、および有機電界発光素子
JP6136616B2 (ja) 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
WO2021079915A1 (ja) ピリジル基を有するトリアジン化合物およびピリジン化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147029251

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807430

Country of ref document: EP

Kind code of ref document: A1