WO2013191148A1 - 多層コンタクトレンズおよびその製造方法 - Google Patents

多層コンタクトレンズおよびその製造方法 Download PDF

Info

Publication number
WO2013191148A1
WO2013191148A1 PCT/JP2013/066635 JP2013066635W WO2013191148A1 WO 2013191148 A1 WO2013191148 A1 WO 2013191148A1 JP 2013066635 W JP2013066635 W JP 2013066635W WO 2013191148 A1 WO2013191148 A1 WO 2013191148A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
lens
semi
finished product
polymerizable composition
Prior art date
Application number
PCT/JP2013/066635
Other languages
English (en)
French (fr)
Inventor
靖彦 加藤
Original Assignee
株式会社メニコンネクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコンネクト filed Critical 株式会社メニコンネクト
Priority to JP2014514978A priority Critical patent/JP5621117B2/ja
Priority to US14/406,468 priority patent/US9878473B2/en
Publication of WO2013191148A1 publication Critical patent/WO2013191148A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C43/146Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/021Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles by casting in several steps
    • B29C39/025Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles by casting in several steps for making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/12Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00048Production of contact lenses composed of parts with dissimilar composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00923Applying coatings; tinting; colouring on lens surfaces for colouring or tinting
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C43/146Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles
    • B29C2043/147Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles by compressing after the laying of further material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00192Demoulding, e.g. separating lenses from mould halves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • B29K2083/005LSR, i.e. liquid silicone rubbers, or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0061Gel or sol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0092Other properties hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/005Layered products coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/0041Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Definitions

  • the present invention relates to a method for manufacturing a contact lens having a multilayer structure in the thickness direction, and a method for manufacturing a contact lens laminated by sequentially polymerizing portions forming each layer in a mold, and such a manufacturing method.
  • the present invention relates to a multilayer contact lens to be obtained.
  • a method of polymerizing a contact lens in a mold (hereinafter simply referred to as a “molding method”) is performed by filling a polymerizable monomer between a female mold that forms the front side of the lens and a male mold that forms the rear side.
  • a contact lens finished product is obtained by heating or irradiating ultraviolet rays or the like. Since the process is simple and short in this way, it has been widely adopted as a method for producing disposable contact lenses that have become the mainstream in recent years. This manufacturing method seems to be very simple if it is written in letters, but contact lenses (hereinafter simply referred to as “lenses”) are highly managed medical devices that have high quality such as shape for wearing on the eyes and smoothness of the surface. It must be able to manufacture things.
  • a major problem to be overcome regarding the mold manufacturing method is, for example, polymerization shrinkage of a composition forming a lens. Since the lens material is formed by polymerizing monomers, etc., which are liquids, when the state changes from liquid to solid, the constituent molecules or interatomic distances are relatively close and the entire volume shrinks. is there. As a solution to this problem, a method using a mold having a flexible rim to follow polymerization shrinkage (Patent Document 1) or a non-aqueous solvent that does not participate in polymerization is used to absorb polymerization shrinkage.
  • Patent Document 1 a method using a mold having a flexible rim to follow polymerization shrinkage
  • a non-aqueous solvent that does not participate in polymerization is used to absorb polymerization shrinkage.
  • Patent Document 2 A method using a displaceable inert diluent as described above (Patent Document 2), and a method using a mold holding a feeder that accommodates extra material in advance than the lens formation space in order to compensate for polymerization shrinkage (Patent Document 2) 3).
  • burrs and chipping at the edge of the lens are important issues to be solved.
  • the front and back surfaces of the lens can be transferred to a product by using a mold having a smooth surface.
  • burrs and chips may occur if the lens forming portion and the surplus material are not securely cut off.
  • a knife edge provided on the peripheral edge of one mold penetrates into the other mold (Patent Document 4) or a mold that holds a feeder.
  • the surface is treated so that the surplus monomer portion is securely bonded to one mold, and the mold is separated by selectively bonding the lens molded product to the other mold (Patent Documents 5 and 6).
  • Patent Document 7 There is a type using a molding die having interlocking means for substantially preventing the mutual lateral movement between the male die and the female die.
  • An example of increasing the added value of a lens is a colored lens that objectively changes the color or texture of the pupil.
  • These lenses are also called irised lenses, but the manufacturing method for these lenses is to coat the colored monomer component on the part that forms the iris part of the lens molding die surface, form a film, and then fill and polymerize the lens monomer component.
  • a colored lens is formed when taken out from a mold (Patent Document 8), a lens in which a colored portion is embedded in a lens material (Patent Document 9), and the like. According to these manufacturing methods, the colored portion does not protrude from the lens surface, and the wearer's eyelid or the like does not cause a sense of incongruity directly.
  • colored parts may appear on the lens surface. Depending on the bonding strength with the lens body material, the colored parts may peel off, resulting in irritation, and the hardness of the colored parts and their surrounding parts. There was also a possibility of feeling the difference of, or the adhesion of dirt to the colored part.
  • Patent Document 10 a colored lens in which a colored portion is coated with a coat layer has been proposed.
  • the coating layer is formed by plasma polymerization or UV irradiation in a separate process.
  • the mold manufacturing method is characterized in that a lens can be manufactured at a low cost, and it is expected that the cost will be increased by adding another process with a different system.
  • Soft lenses are suitable for mold manufacturing because they have fewer lens standards (especially base curves) than hard lenses, so they require fewer types of molds and can be manufactured in large quantities at a lower cost. Because it can.
  • a soft lens material has secured oxygen permeability due to its high water content, but has shifted to a new lens material having higher oxygen permeability using a siloxane-containing macromonomer or the like. If a siloxane-containing macromonomer or the like is used, extremely high oxygen permeability is exhibited.
  • a surface hydrophilization treatment Patent Document 11 is required as a separate step.
  • Japanese Patent Publication No.59-29411 Japanese Patent Laid-Open No. 7-109415 Japanese Patent Publication No. 63-36484 JP-A-6-208090 JP-A-6-238682 JP 10-309728 A Special table 2003-516247 gazette Japanese Patent Laid-Open No. 2-134612 JP-A-3-15020 JP 2005-531810 A JP 2001-517731 A
  • the present invention is a method for producing a contact lens having a multilayer structure by a mold, (a) filling a first polymerizable composition in a space formed by combining the first mold and the second mold, (B) a step of polymerizing a first semi-finished product having a thickness smaller than that of a contact lens (hereinafter referred to as a polymerized lens) immediately after release after completion of all the polymerization steps and having a small outer diameter; A step of opening the first mold and the second mold, (c) filling the second polymerizable composition in a space formed by combining one mold to which the first semi-finished product is fixed and the third mold; The process of superposing
  • polymerizing is included.
  • the present invention is also characterized by providing a contact lens having a multilayer structure manufactured by this manufacturing method.
  • the term “polymerized lens” refers to a contact lens manufactured by a mold manufacturing method as described above, and refers to a lens immediately after release after completion of all polymerization processes, and is distinguished from a contact lens product. Used.
  • the mold manufacturing method includes a so-called wet mold manufacturing method in which a diluent or the like is added in advance to compensate for polymerization shrinkage in the polymerizable composition, and a dry mold manufacturing method in which no diluent or the like is added.
  • a lens manufactured by a dry mold manufacturing method does not contain water yet when it is taken out from a mold, but becomes a contact lens product that swells in size due to the water-containing treatment and is distributed in the market.
  • the size of the polymerized lens is generally different from the size of the contact lens product distributed in the market as a product.
  • the reference state is specified as the diameter of the “polymerized lens” because the layer previously polymerized as described above employs a manufacturing method in which the diameter is always smaller than the layer polymerized later.
  • “Semi-finished product” is a product in a state prior to being obtained as a polymerized lens, and a lens as a finished product cannot be obtained even if it is treated with water.
  • the outer diameter of the layer polymerized in the step (a) is set smaller than the outer diameter of the layer polymerized later. That is, the first polymerized layer always has a smaller outer diameter than the later polymerized layer, preferably 5 to 4000 ⁇ m smaller, more preferably 10 to 2000 ⁇ m smaller, and most preferably 15 to 1000 ⁇ m smaller. .
  • the last polymerized layer will form the edge of the contact lens product. This produces an effect of suppressing the occurrence of defects such as defects and burrs at the edge of the lens when the product is manufactured.
  • the present invention provides, instead of the step (c), (e-1) a step of filling a third polymerizable composition in a space formed by combining the third type and the fourth type, (e -2) a step of polymerizing the third polymerizable composition to obtain a second semi-finished product having a thickness smaller than that of the polymerized lens and a smaller outer diameter; (e-3) the third mold and the fourth mold; (C ′) a second polymerizable composition in a space formed by combining one mold to which the first semi-finished product is fixed and a third mold to which the second semi-finished product is fixed. Filling and polymerizing.
  • a lens having a three-layer structure in the thickness direction can be obtained by first polymerizing the lens inner surface side and the lens outer surface side layer when they become contact lens products, and sandwiching them between both.
  • step (f-1) a third polymerizable composition is placed in a space formed by combining one mold to which the first semi-finished product is fixed and the fifth mold.
  • step (F-2) a polymer having a two-layer structure obtained by polymerizing the third polymerizable composition and combining the first semi-finished product and the third polymerizable composition polymer (hereinafter referred to as the third semi-finished product).
  • a step of filling and polymerizing the second polymerizable composition in the space to be formed can also be adopted.
  • the layers are sequentially coated, and the manufacturing method of the lens having the three-layer structure is the same as described above.
  • a lens having a structure in which a silicon-based monomer having high oxygen permeability is used for the intermediate layer and sandwiched with a hydrophilic monomer can be obtained. That is, there is an effect that it can be completed in a series of mold manufacturing methods without requiring different treatments of the system as in the manufacturing method in which surface hydrophilization is conventionally performed in a separate process.
  • the outer diameters of the first semi-finished product in the step (a), the second semi-finished product in the step (e-2), and the third semi-finished product in the step (f-2) are 5 to 4000 ⁇ m smaller than the polymer lens.
  • the polymerization is preferably performed with a size of 10 to 2000 ⁇ m, and most preferably 15 to 1000 ⁇ m. In short, by causing the layer to be finally polymerized to correspond to the edge portion of the contact lens product, the occurrence of defects such as defects or burrs in the edge portion of the lens finally obtained is suppressed.
  • step (D) a step of applying a coloring component to the surface of at least one of the first semi-finished product, the second semi-finished product, and the third semi-finished product that is not fixed to the mold; It is preferable to include.
  • the lens manufactured by this step (d) becomes a so-called iris lens. Through this manufacturing process, a lens having a structure in which the colored portions are completely sandwiched in a series of mold manufacturing methods can be obtained.
  • the coloring component preferably has an opaque part in part. This is because the effect of objectively changing the color or texture of the pupil is high.
  • the lens manufactured by each of the manufacturing methods described above can add an additional function as a contact lens having a multilayer structure in the thickness direction even if a lens material similar to the conventional lens material is used. Also, by combining with the layer structure, it is possible to provide a lens material with high added value as a whole by drawing out the excellent points of each material and compensating for the defects.
  • the layer that is polymerized first (hereinafter referred to as “front layer”) is smaller than the outer diameter of the layer that is polymerized later (hereinafter referred to as “rear layer”). Since it is set, the leading layer is included in the space for forming the trailing layer. At this time, the male mold and the female mold can come into contact with each other at the entire circumference of the lens end.
  • the male mold and the female mold may partially contact each other and the leading layer may be sandwiched by the other part if the alignment accuracy is poor. . Even if the entire circumference of the previous layer is sandwiched, the sandwiched thickness may be different. In this state, when the liquid forming the rear layer is polymerized, the mold of the portion in contact with the front layer cannot bite into the front layer, and the polymer of the polymerization lens and the outer annular portion is between the mold and the front layer. It becomes difficult to cut the edge.
  • the polymer of the outer annular portion strongly adheres to the polymerized lens, and separation from the polymerized lens tends to be difficult. If it is separated forcibly, the lens will have defects such as defects, tears, and scratches.
  • the front layer is set to be smaller than the outer diameter of the rear layer, it is possible to effectively suppress the generation of deformation and burrs on the lens after manufacture.
  • FIG. 1 is a diagram for explaining each step in an example of the production method of the present invention.
  • FIG. 2 is a diagram showing a cross section in the diameter direction of an example of a polymerized lens having a two-layer structure of the present invention.
  • FIG. 3 is a diagram for explaining each step in another example of the production method of the present invention.
  • FIG. 4 is a diagram showing a cross section in the diameter direction of an example of a polymerized lens having a three-layer structure of the present invention.
  • FIG. 5 is a diagram for explaining each step in another example of the production method of the present invention.
  • FIG. 6 is a diagram showing a cross section in the diametrical direction of an example of a polymerization lens having a three-layer structure of the present invention.
  • FIG. 7 is an enlarged view showing the end cross section of the lens when the outer diameter of the first semi-finished product is set smaller than the outer diameter of the superposed lens.
  • the present invention relates to a lens having a multilayer structure in the thickness direction and a method for producing the same, and when polymerizing each layer in multiple stages, the outer diameter of the layer polymerized first is larger than the outer diameter of the layer polymerized later. Is also small.
  • specific description will be given with reference to the accompanying drawings.
  • the lens is manufactured through at least two polymerization steps so that the lens has a multilayer structure.
  • FIG. 1 illustrates a process of manufacturing a lens having a two-layer structure.
  • the first mold (1) and the second mold (2) are prepared.
  • the first type is a female type and the second type is a male type, but this may be reversed. Any one may be considered as the first type and the other as the second type.
  • the mold material used in the present invention is molded from a general-purpose thermoplastic resin. For example, polypropylene, polyethylene, polystyrene, polycarbonate, polyethylene terephthalate, polyamide, polyacetal, polyvinyl chloride, and the like can be used.
  • a combination of these resins can be used for each mold, or a mold molded from the same resin material can be used.
  • the resin polypropylene, polystyrene, polyamide or the like is preferably used for reasons such as excellent price, transparency, and moldability.
  • a known method such as compression molding or vacuum molding can be appropriately employed as the molding method for each mold.
  • step (a) fill the first polymerizable composition (6) into the female mold ((a-1) in FIG. 1).
  • polymerization is performed in the space (4) formed in combination with the male mold ((a-2) in FIG. 1).
  • step (a) in the present invention.
  • the obtained polymer becomes the first semi-finished product (5) having a smaller thickness and a smaller outer diameter than the polymer lens (10) finally obtained by the mold manufacturing method.
  • the thickness of the first semi-finished product does not necessarily have to be constant throughout.
  • the distribution (in the thickness direction) of the first polymerizable composition and the second polymerizable composition having different refractive indexes is changed from the lower side to the upper side of the lens or from the periphery. This is because it is preferable to make gradation toward the center.
  • the thickness occupied by the first semi-finished product with respect to the polymerized lens cannot be generally described, but if it is not gradation, the thickness is 3 to 97%, preferably 5 to 95%, more preferably 7 to 35%. Most preferably, the thickness is 10 to 25%.
  • the thickness of the first semi-finished product is 2% or less, the thickness becomes too thin and a defect such as a defect is likely to occur in part, which is inappropriate.
  • the thickness of one layer is thinner than the thickness of the other layer, the shape of the thin layer tends to follow the shape of the thick layer upon hydration, and when formed from a polymerizable composition that can stably produce a thick layer, This is advantageous because the shape of the lens is stable. Therefore, the thickness occupied by the first semi-finished product is more preferably 35% or less. In the case of gradation, 3 to 20% is appropriate for thin areas and 7 to 40% is appropriate for thick areas.
  • the outer diameter of the first semi-finished product always has an outer diameter smaller than the outer diameter of the polymerized lens, preferably 5 to 4000 ⁇ m, more preferably 10 to 2000 ⁇ m, and most preferably 15 to 1000 ⁇ m.
  • the outer diameter is designed to be “small” in this way.
  • the second polymerizable composition When the second polymerizable composition is brought into contact with the first semi-finished product, the second polymerizable composition penetrates into the first semi-finished product. When the second polymerizable composition is polymerized in this state, a strong strength that does not peel off both layers can be obtained. At this time, if the diameter formed by the second polymerizable composition is smaller than that of the polymerization lens (that is, the outer diameter of the first semi-finished product is the same as the outer diameter of the polymerization lens), the polymerization lens When the second polymerizable composition leaks from the space between the two molds for forming the resin, it penetrates in contact with the peripheral part of at least a part of the first semi-finished product, and the polymerization also proceeds there .
  • FIG. 7 shows this situation more specifically.
  • FIG. 7 (i) shows the case where the outer diameter of the first semi-finished product (35) is smaller than the outer diameter of the polymerized lens
  • FIG. 7 (ii) shows the outer diameter of the first semi-finished product outside the polymerized lens. It shows the case where the diameter formed by the second polymerizable composition (37) is smaller than the outer diameter of the polymerized lens. It can be seen that there is excess second polymerizable composition (37 ') in contact with the periphery (36) of the first semi-finished product.
  • designing the “smaller” diameter of the composition to be polymerized earlier than the diameter of the composition to be polymerized later effectively eliminates defects and burrs in the edge portion. It turns out that it suppresses.
  • polymerized later it fills correctly so that the excess part (37 ') shown in FIG.7 (ii) may not arise, or the composition which superposes
  • the diameter formed by the object is “same” in size and designed to match the outer edge, it is possible to solve the above-mentioned problems such as the loss of the peripheral portion.
  • such precise filling and operation for matching the outer edges are not preferable because they tend to increase the cost because the manufacturing process management is burdened.
  • hydroxyalkyl (meth) acrylate, alkylene glycol mono (meth) acrylate, alkylaminoalkyl (Meth) acrylate, dimethyl (meth) acrylamide, glycerol (meth) acrylate, glycidyl (meth) acrylate, vinyl pyrrolidone, (meth) acrylic acid, etc. have a low glass transition point to obtain a non-hydrous soft lens.
  • Monomers that give molecular polymers such as n-butyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, etc.
  • oxygen permeable materials include monomers such as silicone-containing alkyl (meth) acrylates Or containing silicone Chromers, etc. can be used in combination with the above monomers, etc.
  • None of the first, second, or third polymerizable compositions has essential monomers, etc., depending on the lens product to be obtained.
  • the type, composition ratio, etc. can be selected as appropriate, and the above monomers are merely examples of some of the monomers that can be used in the present invention, and do not limit the monomers that can be used in the present invention. Needless to say.
  • the surface on the side fixed to the mold of the first semi-finished product (5) constitutes one surface of the polymerized lens (10), but the exposed surface is the second polymerized polymerized later. Covered with the composition (7), a lens with a two-layer structure is completed. Therefore, when the surface fixed to the mold of the first semi-finished product is intended to be used on the inner surface side of the polymerization lens, the first mold and the second mold are opened as shown in FIG. In the process, it is preferable that the first semi-finished product is selectively fixed to the male mold. Conversely, when the first semi-finished product is used on the outer surface side of the polymerization lens, it is preferable that the first semi-finished product is selectively fixed to the female mold.
  • a material having a high adhesive force between the mold material and the first semi-finished product is adopted as a mold material on the side to be fixed, and the other material has a low adhesive force.
  • a method of molding from a material (for example, in the case of producing a water-containing lens, a hydrophilic monomer or the like is blended in the first polymerizable composition.
  • the mold material made of the material and exposed is made of a hydrophobic mold material such as polypropylene.
  • First mold and second mold mold materials are made of the same material, and some treatment is performed on one mold surface (for example, applying plasma, UV irradiation, corona discharge, laser, or surfactant) The method of making it easy to adhere
  • a method of opening a mold that is always selectively fixed to one mold for example, a mold having a temperature gradient from the first mold to the second mold. When opened, a method of selectively leaving the first semi-finished product in the lower heat may be adopted.
  • the mold can be opened with the first semi-finished product selectively fixed.
  • the control method described above is a technique that enables more reliable control, and whether or not to adopt it may be determined based on comprehensive judgment such as cost.
  • the space (4) is filled with the first polymerizable composition (6), but another void portion containing an excessive amount of the first polymerizable composition has the first mold and the second mold. It may be formed when combined. Although not shown in FIG. 1, it is because the shrinkage
  • Other methods for avoiding the polymerization shrinkage include a method of adding a non-reactive substance that does not participate in the polymerization in advance to the polymerizable composition, and a method in which the first type and / or the second type can absorb the shrinkage. There is a method of using a material molded from a flexible material.
  • the surface fixed to the mold of the first semi-finished product forms either the inner surface or the outer surface of the polymerization lens.
  • the side exposed without being fixed to the mold is coated with the second polymerizable composition. Since the surface to be coated with the second polymerizable composition does not necessarily have an accurate surface shape, the first mold or the second mold that forms this surface has sufficient flexibility. Thus, the polymerization shrinkage can be absorbed.
  • a known method can be employed for the polymerization of the polymerizable composition in the present invention.
  • thermal polymerization by heating, photopolymerization irradiated with light such as ultraviolet rays, or a combination thereof.
  • the temperature is gradually raised from around room temperature, and heat in a temperature range of 30 to 120 ° C. is applied for several minutes to several hours.
  • the thermal polymerization initiator include persulfates, peroxides, and azo initiators.
  • photopolymerization polymerization proceeds by irradiation with active energy such as ultraviolet rays and electron beams.
  • the photopolymerization initiator include alkylphenone-based and acylphosphine oxide-based initiators.
  • step (b) when the mold is opened in step (b), the mold is opened with the first semi-finished product (5) fixed to the second mold (2).
  • the bipolymerizable composition will be poured.
  • the third mold is prepared as a male mold instead of the second mold, and the second mold is placed on the first semi-finished product.
  • the polymerizable composition will be poured. Therefore, as shown in FIG. 1, the third mold is not necessarily a female mold. It is necessary to prepare a mold in which the space formed in combination with the mold to which the first semi-finished product is fixed in the step (b) becomes the shape of the polymerized lens as the third mold.
  • the second polymerizable composition and the first polymerizable composition are not necessarily different compositions.
  • the same composition as the first polymerizable composition is used as the second polymerizable composition after the coloring component is applied to the exposed surface of the first semi-finished product. It is because it sometimes does.
  • each polymerizable composition forms a polymer having a different refractive index, and therefore different types of polymerizable compositions are inevitably used. It will be.
  • the central portion is a hard lens and the peripheral portion is a soft lens.
  • the characteristics of these two types of materials are that the center part is formed with hardware that is excellent in vision correction, and at the same time, the peripheral part is softened to improve the wearing feeling, and a lens having the advantages of a hard lens and a soft lens is provided. It was in.
  • the material has a distribution of a central portion and an annular peripheral portion. There are two problems with the two kinds of materials.
  • the bonding force between the two materials is weak because the area where different materials are joined is small.
  • the hard lens is generally removed by gathering the upper and lower eyelids toward the center, which is possible because the edge portion of the lens is hard.
  • the soft lens is removed from the eye by bending the lens between the thumb and forefinger.
  • it is difficult to fold like a soft lens so that the hard part does not get in the way as you think, and it is difficult to remove it with the power of the eyelid like a hard lens because the peripheral part is soft It is.
  • the lens inner surface side of the present invention is manufactured with a hard layer and the lens outer surface side with a soft layer.
  • the hardness of the inner surface of the lens prevents the cornea from following the corrugations, and the eyesight can be corrected by collecting tears between the inner surface of the lens and the cornea.
  • by making the lens outer surface side soft it is possible to maintain the wearing feeling of the lens and to show flexibility as a whole so that it can be sandwiched even when the lens is removed.
  • each material is not narrow like the various materials in which the center of the lens and its peripheral part are joined with different materials, and since the layer has a layered structure in the thickness direction, the joining force of both materials is Dramatically improved. In this way, it is possible to design a lens that is comprehensively excellent in terms of vision correction, wearing feeling, ease of lens removal, and durability.
  • FIG. 1 After pouring the second polymerizable composition (7) into the third mold (3) (FIG. 1 (c-1)), the second mold (2) to which the first semi-finished product (5) is fixed; When the third mold (3) is combined, the formed space (8) is filled with the second polymerizable composition (7). By polymerizing the second polymerizable composition (FIG. 1 (c-2)), a polymerized lens (10) is formed.
  • a combination of (c-1) and (c-2) in FIG. 1 is referred to as a step (c) in the present invention.
  • FIG. 1 shows that the polymer lens (10) forms the first semi-finished product (5) on the inner surface and the polymer (9) of the second polymerizable composition forms the outer surface. Of course, this may be reversed, but there is no change in that the polymer of the second polymerizable composition forms the outer edge of the polymerized lens.
  • a cross-sectional view of the superposed lens in the diameter direction is shown in FIG.
  • the first semi-finished product (5) is smaller by (r1 + r2) than the outer diameter of the superposed lens (10).
  • (r1 + r2) in FIG. 2 (i) and (r1 + r2) in FIG. 2 (ii) are shown to be equivalent, they may be different.
  • (r1 + r2) is in the range of 5 to 4000 ⁇ m as described above, preferably 10 to 2000 ⁇ m, and most preferably 15 to 1000 ⁇ m.
  • r1 and r2 are the same, that is, the first semi-finished product (5) and the superposed lens (10) are concentric circles, but it is also possible to decenter the first semi-finished product by providing a difference between r1 and r2. It is.
  • a step of applying a coloring component on the surface of the first semi-finished product is interposed between the steps (b) and (c) will be described.
  • the coloring component is applied with a desired design to the exposed surface of the first semi-finished product.
  • the design is composed of any one of dots, lines, planes, or a combination thereof, and can also represent characters, figures, symbols, iris patterns, etc. in addition to simply coloring.
  • a coating method in the step (d) a conventional method can be appropriately adopted, and examples thereof include screen printing, pad printing, and ink jet printing.
  • Which coating method is selected is determined in consideration of the physical properties of the coloring component, the physical properties of the first semi-finished product, and whether the surface is convex or concave. After application to the first semi-finished product, it is desirable to fix the coloring component so as not to disperse by adding the second polymerizable composition. There are various methods (heating, drying, electron beam irradiation, etc.) for fixing the coloring component, which can be selected as appropriate.
  • the fluidity of the colored components is controlled as an opaque material to conceal the iris of the lens wearer and objectively change the color and texture of the pupil.
  • a thickener or the like is added.
  • a monomer etc. can be added and it can be combined more firmly with the 1st, 2nd polymeric composition. Since the first and second polymerizable compositions completely form a sandwich structure, the elution of the coloring components is effectively suppressed. However, considering that the first and second polymerizable compositions are separated via the coloring component, it is preferable to add a monomer or the like.
  • a colored transparent lens can be manufactured without adding the opaque material.
  • it can be added to the first and / or second polymerizable composition from the beginning.
  • the production method of the present invention is effective when it is desired to make it appear. Whether or not the step (d) is incorporated into the lens production line can be switched depending on the situation. Normally, while manufacturing transparent lenses, for example, it is possible to express the character etc. on the lens by customizing the wearer, so there is no need for inventory management and it is easy to increase the added value of the lens .
  • a lens having a layer structure of three layers or more can also be manufactured.
  • the case where a lens having a three-layer structure is manufactured will be described below.
  • the process is the same as described above.
  • the first semi-finished product is polymerized and the third semi-finished product is further coated, and then the third semi-finished product is coated and sequentially formed, and the second semi-finished product combined with the first semi-finished product is separately polymerized and then both are combined. This is a path to be bonded by the intermediate layer.
  • FIG. 3 when the first semi-finished product (5) is fixed to the second die (2) which is a male die, the manufacturing process after the step (b) is combined with the first semi-finished product (5).
  • the process of polymerizing the second semi-finished product (15) is shown.
  • the fourth mold (14) in this process is a male mold because it is combined with the female third mold (3).
  • the third polymerizable composition (16) is poured into the third mold (3).
  • the fourth mold (14) is combined with the third mold (3) to form a space (18), and the second semi-finished product (15) is polymerized (FIG. 3 (e-2)).
  • step (e) of the present invention Since the intermediate layer acts as the other two adhesive layers, there is an advantage that the bonding force between each layer is equal. Note that (c′-1) and (c′-2) in FIG. 3 are collectively referred to as the (c ′) step of the present invention, and (e-1), (e-2), and (e-3) are Also referred to as step (e) of the present invention.
  • FIG. 4 shows a sectional view in the diameter direction of the polymerization lens (20).
  • both the first semi-finished product (5) and the second semi-finished product (15) have a smaller outer diameter than the superposed lens (20). That is, the polymerization proceeds in a space designed so that the outer diameter of the polymerized first is smaller than the outer diameter of the polymerized later.
  • the front and back of the first semi-finished product and the second semi-finished product cannot be specified. It may be smaller. Considering the structure as shown in FIG.
  • the second semi-finished product (15) forming the outer surface side of the lens is more suitable for the lens shape than the first semi-finished product (5) forming the inner surface side of the lens.
  • the impact is considered large. From such a viewpoint, it may be preferable to increase the ratio of the thickness of each layer in the entire lens to the inner layer side ⁇ the intermediate layer ⁇ the outer surface side.
  • the process of polymerizing the third semi-finished product having a two-layer structure so as to cover the first semi-finished product (5) is shown in FIG.
  • the fifth mold (14 ') is a female mold because it is combined with the male second mold (2).
  • the third polymerizable composition (16) is poured into the fifth mold (14 ′) (FIG. 5 (f-1)) and polymerized in the space (26) combined with the second mold (2) (FIG. 5). (F-2)).
  • the polymer (15 ') of the third polymerizable composition is polymerized so as to cover the first semi-finished product (5) to form a second semi-finished product having a two-layer structure.
  • the second polymerizable composition (7) is poured into the third mold (3) (FIG. 5 (c ′′ -1), the first semi-finished product (5) and the polymer of the third polymerizable composition (15 ′ ) In combination with the second mold (2) fixed, the second polymerizable composition is polymerized in the space (28) (FIG. 5 (c ′′ -2)).
  • FIG. 6 shows a sectional view in the diameter direction of the polymerized lens (20 ').
  • the first semi-finished product (5) has a smaller outer diameter than the polymer (15 ′) of the third polymerizable composition, and the polymer of the third polymerizable composition is a polymerized lens ( The outer diameter is smaller than 20 ′). That is, the polymerization proceeds in a space designed so that the outer diameter of the polymerized first is always smaller than the outer diameter of the polymerized later.
  • conditions such as the material of 4th type
  • the lens having the three-layer structure shown in FIGS. 4 and 6 thus obtained there are an intermediate layer using a material having high oxygen permeability and a lens having a surface layer made of a hydrophilic material.
  • a material having high oxygen permeability can be obtained by using a monomer such as a silicone-containing alkyl (meth) acrylate, a silicone-containing macromer, or the like.
  • these materials generally have a problem of water repellency on the surface.
  • this material is used as an intermediate layer and a hydrophilic monomer or the like is used on the lens surface.
  • a hydrophilic monomer or the like is used on the lens surface.
  • step (c), step (c ′) and step (c ′′) are approximate. Therefore, each manufacturing process of the three-layer structure approximates a process in which the process (e) or the process (f) is inserted between the processes (b) and (c) in the manufacturing process of the two-layer structure. It can be said that it is.
  • the present invention will be more specifically clarified by showing some examples below.
  • Example 1 The first polymerizable composition (2-hydroxyethyl methacrylate (2-HEMA) 59 w / w%, glycerol methacrylate (GMA) 30 w / w%, ethylene glycol dimethacrylate (EDMA) 0.5 w / W%, 2-hydroxy-2-methyl-1-phenyl-propan-1-one (HMPP) as photopolymerization initiator 0.5 w / w%, glycerin (added as solvent) 10 w / w%) 23 ⁇ l Filled.
  • a male mold (second mold) subjected to plasma surface treatment was fitted and polymerized by irradiation with light (365 nm, 1 mW / cm 2 ) for 5 minutes from the female mold side in a nitrogen atmosphere (step a).
  • the first semi-finished product was adhered to the male mold, and had a front surface curvature of 6.6 mm, a rear surface curvature of 6.6 mm, a thickness of 0.024 mm, and an outer diameter of 10.88 mm.
  • Light shielding materials (2-HEMA 30 w / w%, iron oxide 40 w / w%, titanium oxide 20 w / w) on the exposed surface of the first semifinished product (for example, the convex side of the first semifinished product (5) in FIG. 1B) %, Thickener 10 w / w%) was printed to a thickness of 10 ⁇ m and left in a blower at about 25 ° C. for 10 minutes. The surface of the applied light shielding material was observed to be dry (step d).
  • 35 ⁇ l of a composition having the same composition as the first polymerizable composition is placed in a separately prepared female mold (third mold), and the male mold (second mold) to which the first semi-finished product is attached is fitted under a nitrogen atmosphere. Then, light (365 nm, 3 mW / cm 2 ) was irradiated from the female mold side for 5 minutes to polymerize, and the polymerization step was completed (step c). In the cavity formed by the third mold and the second mold, a superposed lens having an outer diameter of 10.92 mm can be obtained. When the mold was opened, it was obtained attached to the male mold.
  • this polymerized lens When this polymerized lens was immersed in 5 ml of purified water, it contained water and swelled, and was detached from the male mold. It was replaced with 5 ml of fresh purified water and immersed for 10 minutes at room temperature, and this operation was repeated 5 times to remove the eluting components.
  • the outer diameter of the first semi-finished product manufactured by the female mold (first type) and the male mold (second type) is 10.92 mm (that is, the female mold (third type) and the male mold (first type).
  • a lens was manufactured in the same manner as in Example 1 except that the outer diameter of the superposed lens formed by the type 2) was designed to be 10.92 mm.
  • the three sheets were good non-distorted contact lenses as in Example 1, but five sheets were impregnated and polymerized with the polymerizable composition filled in step c in the periphery of the first semi-finished product.
  • the shape after water treatment was deformed and did not become a lens shape. Therefore, although 8 sheets were produced, 5 sheets had to be discarded as defective products.
  • the outer diameter of the first semi-finished product manufactured by the female mold (first type) and the male mold (second type) is 11.12 mm (that is, the female mold (third type) and the male mold (first type).
  • a lens was manufactured in the same manner as in Example 1 except that the outer diameter of the superposed lens formed by the type 2) was designed to be 0.2 mm larger than the outer diameter. As a result, all the 8 sheets were deformed in the same manner as the defective product of Comparative Example 1, and did not become a lens shape. Therefore, although 8 sheets were manufactured, all 8 sheets had to be discarded as defective products.
  • Example 2 A female mold (first type) was filled with 23 ⁇ l of the first polymerizable composition (2-HEMA 99 w / w%, EDMA 0.5 w / w%, HMPP 0.5 w / w%).
  • a male mold (second mold) subjected to plasma surface treatment was fitted and polymerized by irradiation with light (365 nm, 1 mW / cm 2 ) for 5 minutes from the female mold side in a nitrogen atmosphere (step a).
  • step b the first semi-finished product is attached to the male mold (second mold), the front curvature is 6.6 mm, the rear curvature is 6.6 mm, the thickness is 0.005 mm, and the outer diameter is 10.88 mm. Met.
  • a third polymerizable composition (compound 30w / w% of polydimethylsiloxane having an average molecular weight of 5,000, both ends of which are propyl methacrylate groups, tris (trimethylsiloxy) silylpropyl) is prepared in a separately prepared female type (fifth type).
  • 35 ⁇ l of the second polymerizable composition having the same composition as the first polymerizable composition is put into a separately prepared female mold (third mold), and the male mold (second mold) to which the third semi-finished product is attached is fitted.
  • light 365 nm, 3 mW / cm 2
  • step c ′′ a superposed lens having a center thickness of 0.045 mm (including the center thickness of the third semi-finished product) and an outer diameter of 10.96 mm can be obtained.
  • the contact lens product after the hydration treatment was inspected. As a result, a good contact lens having a power of ⁇ 3.00 D, a center thickness of 0.07 mm, a diameter of 14.2 mm and no distortion was obtained.
  • This lens has a three-layer structure in which a silicone hydrogel is sandwiched between 2-HEMA materials, and is obtained as an improved surface water wettability that is a problem with silicon lenses.
  • the present invention relates to a lens having a multilayer structure in the thickness direction and a method for manufacturing the same, and by adopting an appropriate material for each layer, the problem that cannot be solved by a single material is combined as a whole by combining a plurality of materials. Solved and useful lens materials can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Eyeglasses (AREA)

Abstract

 モールド製法を使用して新たな機能を付与し、レンズの付加価値を高める製造方法を提供することであり、系統の異なる処理を経ることなく一連のモールド製法の中で製造が完結するようなレンズの製造方法および該製造方法を利用したレンズを提供することを目的とする。 多層構造を有するコンタクトレンズを型によって製造する方法であって、(a)第1型と第2型を組み合わせて形成される空間内に、第一重合性組成物を充填し、全ての重合工程を終えた後であって離型直前のコンタクトレンズ(以下、重合レンズという)よりも薄い厚みで、かつ、外径も小さい第一半製品を重合する工程、(b)前記第1型と第2型を開く工程、(c)前記第一半製品が固定された一方の型と第3型とを組み合わせて形成される空間内に、第二重合性組成物を充填し、重合する工程、を含むことを特徴とする。

Description

多層コンタクトレンズおよびその製造方法
 本発明は、厚み方向に多層構造を有するコンタクトレンズを製造する方法に係り、成形型内で各層を形成する部分を順次重合して積層されたコンタクトレンズの製造方法、およびそのような製造方法から得られる多層コンタクトレンズに関するものである。
 成形型内でコンタクトレンズを重合する方法(以下、単に「モールド製法」という)は一般に、レンズの前面側を形成する雌型と後面側を形成する雄型との間に重合性モノマーを充填して、加熱あるいは紫外線等を照射することによりコンタクトレンズ完成品を得るというものである。このように工程が簡略かつ短時間であるため、近年の主流となっている使い捨てタイプのコンタクトレンズの製法として広く採用されている。この製法は文字で記載すれば、極めて単純に思えるが、コンタクトレンズ(以下、単に「レンズ」という)は高度管理医療機器であり、眼に装用するための形状、表面の滑らかさなど品質が高いものを製造できなければならない。
 モールド製法に関する克服すべき主要な課題としては、例えばレンズを形成する組成物の重合収縮がある。レンズ素材は、液体であるモノマー等を重合して形成されるので、液体から固体へと状態が変化するに際して、構成分子或いは原子間距離が相対的に接近し、全体の体積が収縮するからである。この課題の解決策としては、重合収縮に追随するように可撓性のリムを備えた型を用いる方法(特許文献1)や、重合に関与しない非水系溶媒を使用して重合収縮を吸収するようにした置換可能な不活性希釈剤を用いる方法(特許文献2)、重合収縮を補償するために予めレンズ形成空間よりも余分な材料を収容する押湯を保持する型を用いる方法(特許文献3)などがある。
 また、レンズのエッジ部分におけるバリや欠けも解決すべき重要な課題である。レンズの前面および背面は、平滑な表面を有する型を用いることで、製品への転写が可能である。しかし、雄型と雌型との接点においては、レンズ形成部分と余剰材料とを確実に遮断しないと、バリや欠けが発生する可能性があるからである。この課題への対応としては、一方の型の周縁部に設けられたナイフエッジが、他方の型に貫入するように構成されたもの(特許文献4)や、押湯を保持する型を用いた場合に、余剰モノマー部分が一方の型に確実に接着するように表面処理し、レンズ成形品を他方の型に選択的に接着させて型を分離するようにした方法(特許文献5、6)、雄型と雌型との間の相互的な横方向の移動を実質的に阻止するインターロック手段を有する成形型を使用するもの(特許文献7)などがある。
 これらの技術によってモールド製法における主要な課題が次々と解決され、低価格でレンズが提供できるようになった。そして現在ではモールド製法の特徴を生かして新しい機能を付与し、レンズの付加価値を高めたり、新規なレンズ素材を適用することが要求されるようになったのである。
 レンズの付加価値を高める例としては、瞳の色又は質感を他覚的に変化させる着色レンズがある。虹彩付きレンズとも呼ばれるが、これらのレンズの製造方法としては、レンズ成形金型表面の虹彩部分を形成する部位に色付きモノマー成分を被覆してフィルム形成後、レンズ用モノマー成分を充填・重合して金型から取り出されたときには着色レンズが形成されている方法(特許文献8)、着色部分がレンズ素材の内部に埋め込まれたレンズ(特許文献9)などがある。これらの製法によれば、着色部分がレンズ表面に突出することなく、装用者のまぶた等に直接違和感を生じさせることはない。しかし、レンズ表面には着色部分が現れることがあり、レンズ本体の素材との結合力によっては、着色部分が剥落して結果的に刺激を生じさせたり、着色部分とその周辺部分との硬さの違いを感じたり、あるいは着色部分への汚れ付着のおそれもあった。
 そこで、着色部分がコート層で被覆された着色レンズが提案されている(特許文献10)。このレンズでは、着色部分が完全に被覆された状態であることから、前記のようなおそれはないが、別工程においてコート層をプラズマ表面処理やUV照射によりグラフト重合で形成している点で、製造上の課題がある。モールド製法は低コストでレンズを製造できることが特徴であり、系統の異なる別工程が加わることで、コストがかかることが予想されるからである。
 ところで使い捨てレンズは、殆ど軟質レンズである。軟質レンズは、レンズ規格(特にベースカーブ)が硬質レンズに比して少ないことから、必要な成形型の種類が少ないという点でモールド製法に適しており、コストを抑えて多量に製造することができるからである。従来、軟質レンズの素材は含水率の高さによって酸素透過性を確保してきたが、シロキサン含有マクロモノマー等を使用した、より高い酸素透過性を示す新規なレンズ素材へとシフトしている。シロキサン含有マクロモノマー等を使用すれば、非常に高い酸素透過性を示すのであるが、別工程として例えば表面親水化処理(特許文献11)が必要とされる。
特公昭59-29411号公報 特開平7-109415号公報 特公昭63-36484号公報 特開平6-208090号公報 特開平6-238682号公報 特開平10-309728号公報 特表2003-516247号公報 特開平2-134612号公報 特開平3-15020号公報 特表2005-531810号公報 特表2001-517731号公報
 本発明の課題は、モールド製法を使用して新たな機能を付与し、レンズの付加価値を高める製造方法を提供することであり、系統の異なる処理を経ることなく一連のモールド製法の中で製造が完結するようなレンズの製造方法および該製造方法を利用したレンズを提供することを目的とする。
 本発明は、多層構造を有するコンタクトレンズを型によって製造する方法であって、(a)第1型と第2型を組み合わせて形成される空間内に、第一重合性組成物を充填し、全ての重合工程を終えた後であって離型直前のコンタクトレンズ(以下、重合レンズという)よりも薄い厚みで、かつ、外径も小さい第一半製品を重合する工程、(b)前記第1型と第2型を開く工程、(c)前記第一半製品が固定された一方の型と第3型とを組み合わせて形成される空間内に、第二重合性組成物を充填し、重合する工程を含むものである。また、本発明は、この製造方法によって製造された多層構造を有するコンタクトレンズを提供することも特徴とする。
 本明細書において「重合レンズ」とは、前記のとおりモールド製法により製造されたコンタクトレンズであって、全ての重合工程終了後、離型直前の状態のものをいい、コンタクトレンズ製品とは区別して用いている。モールド製法には、重合性組成物に重合収縮を補償するために予め希釈剤などが添加されるいわゆるウェットモールド製法と、希釈剤などが添加されないドライモールド製法がある。例えばドライモールド製法で製造されたレンズは、型から取りだした状態では未だ水を含んでいないが、含水処理によってサイズが膨潤して市場に流通するコンタクトレンズ製品となる。ウェットモールド製法で製造されたレンズにしても、型から取りだした後に希釈剤を水と置換するなどして、含水状態にする。従って、重合レンズのサイズは、商品として市場に流通するコンタクトレンズ製品のサイズとは一般的に異なる。このように特に含水性レンズの場合、状態によってサイズの変化が大きいため、径の大小を比較するには基準状態を特定する必要がある。そして本発明では前記のように先に重合される層が、後に重合される層よりも常に径を小さくするという製造方法を採用した関係で、基準状態を「重合レンズ」の径と特定した。
 「半製品」とは、重合レンズとして得られるよりも前の状態の製品で、これ自体を含水処理等しても完成品としてのレンズを得ることはできない。(a)工程で重合される層の外径は、後に重合される層の外径よりも小さく設定されている。すなわち、初めに重合される層は、後に重合される層よりも常に小さい外径を有しており、好ましくは、5~4000μm小さく、より好ましくは10~2000μm小さく、最も好ましくは15~1000μm小さい。本発明の方法により製造されたレンズは、最後に重合された層がコンタクトレンズ製品のエッジを形成することとなる。これによって、製品としたときのレンズのエッジ部の欠損やバリ等の不良発生を抑制するという効果を奏する。
 また本発明は、前記(c)工程の代わりに、(e-1)第3型と第4型を組み合わせて形成される空間内に、第三重合性組成物を充填する工程、(e-2)第三重合性組成物を重合し、重合レンズよりも薄い厚みで、かつ、外径も小さい第二半製品を得る工程、(e-3)前記第3型と第4型を開く工程、(c')前記第一半製品が固定された一方の型と、前記第二半製品が固定された第3型とを組み合わせて形成される空間内に、第二重合性組成物を充填し、重合する工程を含むことができる。この方法では、それぞれコンタクトレンズ製品となったときのレンズ内面側と、レンズ外面側の層を先に重合し、両者で挟むようにして厚み方向に三層構造を有するレンズを得ることができる。
 さらに前記(c)工程の代わりに、(f-1)前記第一半製品が固定された一方の型と第5型とを組み合わせて形成される空間内に、第三重合性組成物を充填する工程、(f-2)第三重合性組成物を重合し、第一半製品と第三重合性組成物重合体を合わせた二層構造の重合体(以下、第三半製品という)として、その厚みが重合レンズよりも薄くかつ外径も小さい第三半製品を得る工程、(c'')前記第三半製品が固定された一方の型と第3型とを組み合わせて形成される空間内に、第二重合性組成物を充填し、重合する工程を採用することもできる。この方法は、順次層を塗り重ねていくというものであり、三層構造を有するレンズの製造方法としては前記と同様である。これらの製法によれば、例えば中間層に酸素透過性の高いシリコン系モノマー等を使用し、それを親水性モノマーでサンドイッチしたような構造のレンズを得ることができる。すなわち、従来別工程で表面親水化を行っていた製法のように系統の異なる処理を必要とすることなく、一連のモールド製法の中で完結させることができるという効果がある。
 前記(a)工程の第一半製品、(e-2)工程の第二半製品、(f-2)工程の第三半製品のいずれの外径も、重合レンズより5~4000μm小さい。好ましくは10~2000μm小さく、最も好ましくは15~1000μm小さいサイズで重合される。要するに最後に重合させる層をコンタクトレンズ製品のエッジ部分に相当させることで、最終的に得られるレンズのエッジ部の欠損やバリ等の不良発生を抑制するのである。
 また、(d)前記第一半製品、第二半製品、第三半製品の少なくともひとつの半製品の表面であって、型に固定されていない側の表面に着色成分を塗布する工程、を含むことが好ましい。この工程(d)により製造されるレンズは、いわゆる虹彩付きレンズとなる。この製造工程によって、一連のモールド製法の中で、着色部分を完全にサンドイッチした構造のレンズを得ることができる。着色成分には不透明部分を一部に有していることが好ましい。瞳の色又は質感を他覚的に変化させる効果が高いからである。
 前記記載の各製造方法によって製造されたレンズは、厚み方向に多層構造を有するコンタクトレンズとして、従来と同様のレンズ素材を使用したとしても追加機能を付加することができる。また層構造に組み合わせることで、個々の素材の優れた点を引き出しつつ欠点を補うようにして、全体としては付加価値の高いレンズ素材を提供することができる。
 本発明の厚み方向に多層構造を有するコンタクトレンズを製造する方法は、先に重合する層(以下「先層」という)が後に重合する層(以下「後層」という)の外径よりも小さく設定してあるために、先層は、後層を形成するための空間内に包含されることになる。この際、雄型と雌型とは、レンズ端の全周で接触することが可能になる。この状態で後層を形成する液を重合すると、重合収縮により一方の型が他方の型に食い込み、レンズ端の全周で、重合レンズと外側の環状部分の重合物(レンズを構成しない余計な環状重合物)とが確実に分離される。雄型と雌型を分割し、重合レンズを取り出すと、レンズと外側の環状部分の重合物とは完全に分離され、所望のレンズが得られるのである。
 一方、先層が後層の外径と、同じもしくは大きい場合には、芯合わせの精度が悪いと、雄型と雌型とが一部で接触し、他部で先層を挟むことがある。また、先層の全周を挟んでも、挟んだ厚みが異なったりすることがある。この状態で後層を形成する液を重合すると、先層と接触する部分の型は、先層に食い込むことができず、型と先層の間で、重合レンズと外側の環状部分の重合物との縁を切ることが難しくなる。次いで雄型と雌型を分割し、重合レンズを取り出すと、重合レンズに外側の環状部分の重合物が強く付着し、重合レンズとの分離が困難になりやすい。無理に分離すれば、レンズに欠損、破れ、キズ等の欠点が生じることになるのである。
 従って、先層が後層の外径よりも小さく設定してあると、製造後のレンズに変形や、バリなどの発生を効果的に抑制することができる。また、別途系統の異なる工程を準備する必要がなく、モールド製法による一連の流れのなかで製造が完結するので、付加価値を向上させたレンズを低価格で提供できるのである。
 さらに、多層構造を有することから、各層に適当な素材をあてはめることにより、単一の素材では解決できない課題を、複数の素材を組み合わせることによって全体として解決した、有用なレンズ素材を提供することができる。
図1は本発明の製造方法の一例について各工程を説明する図である。 図2は本発明の2層構造を有する重合レンズの一例について、直径方向の断面を示す図である。 図3は本発明の製造方法の他の例について各工程を説明する図である。 図4は本発明の3層構造を有する重合レンズの一例について、直径方向の断面を示す図である。 図5は本発明の製造方法の他の例について各工程を説明する図である。 図6は本発明の3層構造を有する重合レンズの一例について、直径方向の断面を示す図である。 図7は第一半製品の外径を、重合レンズの外径よりも小さくした場合と、同じに設定した場合において、レンズの端部断面を拡大して示す図である。
 本発明は、厚み方向に多層構造を有するレンズおよびその製造方法に関するもので、多段階で層ごとに重合するに際して、先に重合される層の外径が、後に重合される層の外径よりも小さいことを特徴とする。以下、添付図面を参照しつつ具体的に説明する。
 本発明ではレンズが多層構造を有するように、少なくとも2段階の重合工程を経て製造される。図1には、2層構造のレンズを製造する工程が図示されている。初めに第1型(1)と第2型(2)を準備する。この図では第1型が雌型、第2型が雄型であるが、これは逆であっても良い。いずれか一方が第1型、他方が第2型と考えれば良いのである。本発明に使用する型の材料は、汎用の熱可塑性樹脂から成形され、例えば、ポリプロピレン、ポリエチレン、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリ塩化ビニル等が使用可能である。これらの樹脂を組み合わせて各型に使用することも、また、同じ樹脂材料で成形された型を使用することもできる。樹脂としては、ポリプロピレン、ポリスチレンやポリアミド等が価格、透明性、成形性に優れる等の理由で好ましく用いられる。また各型の成形方法としては射出成形の他、圧縮成形、真空成形など公知の方法が適宜採用可能である。
 準備された型のうち雌型に第一重合性組成物(6)を充填する(図1の(a-1))。次に雄型と組み合わせて形成された空間内(4)で重合させる(図1の(a-2))。なお、図1の(a-1)と(a-2)を合わせて、本発明における(a)工程という。得られた重合体は、モールド製法で最終的に得られる重合レンズ(10)よりも、薄い厚みで、かつ、外径も小さい第一半製品(5)となる。第一半製品の厚みは全体に渡って必ずしも一定である必要はない。例えば、多焦点レンズを作成したいような場合には、屈折率の異なる第一重合性組成物と第二重合性組成物の(厚み方向の)分布を、レンズの下方から上方へ、或いは周辺から中心部へとグラデーションさせることが好ましいからである。
 重合レンズに対する、第一半製品が占める厚みについては一概には言えないが、グラデーションさせない場合には3~97%の厚み、好ましくは5~95%の厚み、より好ましくは7~35%の厚み、最も好ましくは10~25%の厚みである。第一半製品の厚みが2%以下の場合、厚みが薄くなり過ぎて一部に欠損等の欠陥が生じやすいため不適切である。また、一方の層の厚みが他方の層の厚みより薄いと、水和時に薄い層の形状は厚い層の形状に従う傾向があり、厚い層を安定して製作できる重合性組成物より形成すると、レンズの形状が安定するために有利である。そこで、第一半製品が占める厚みは35%以下がより好ましい。グラデーションさせる場合には薄い所で3~20%、厚いところで7~40%程度が適当である。
 第一半製品の外径は重合レンズの外径よりも常に小さい外径を有しており、好ましくは5~4000μm小さく、より好ましくは10~2000μm小さく、最も好ましくは15~1000μm小さい。本発明では、このように外径を「小さく」設計することが特徴である。後に重合させる第二重合性組成物の型をレンズの外縁形成に使用することによって、多層構造のレンズを作成しても、レンズの変形やエッジ部分の欠損、バリの発生などが効果的に抑制されるからである。
 第一半製品に第二重合性組成物を接触させると、第一半製品に第二重合性組成物が浸透する。この状態で第二重合性組成物を重合させると、両層間が剥がれない強い強度が得られる。このとき、第二重合性組成物が形成する径が重合レンズよりも小さくなる(すなわち第一半製品の外径が重合レンズの外径と同じになる)ように設計されていると、重合レンズを形成するための両型間の空間部分から第二重合性組成物が漏れ出た場合に、第一半製品の少なくとも一部の周辺部と接触して浸み込み、そこでも重合が進行する。前述の通り、この結合は強固であるために、漏れ出た余分な第二重合性組成物の重合物を分離する際に、第一半製品の周辺部に欠損等の欠陥が生じることになる。このような状況を、より具体的に示したものが図7である。図7(i)は、第一半製品(35)の外径が重合レンズの外径よりも小さくした場合を示し、図7(ii)は、第一半製品の外径が重合レンズの外径と同じで、第二重合性組成物(37)が形成する径が重合レンズの外径よりも小さい場合を示している。第一半製品の周辺部(36)に余分な第二重合性組成物(37’)が接触していることが理解できると思う。
 図7に示すように、後に重合する組成物が形成する径よりも、先に重合する組成物が形成する径を「小さく」設計することが、エッジ部分の欠損やバリの発生を効果的に抑制することがわかる。なお、後に重合する組成物について、図7(ii)に示す余剰部分(37’)が生じることのないように正確に充填したり、先に重合する組成物が形成する径と後に重合する組成物が形成する径とが「同じ」サイズになって外縁を一致するように設計すれば、前記の周辺部の欠損等の問題を解消することは可能である。しかし、そのような正確な充填や、外縁を一致させるような操作は、製造工程管理に負荷がかかるためにコスト上昇を招きやすいという傾向があり好ましくないのである。
 本発明の重合性組成物には従来公知のモノマー等を使用することができ、例えば含水性ソフトレンズを得る場合には、ヒドロキシアルキル(メタ)アクリレート、アルキレングリコールモノ(メタ)アクリレート、アルキルアミノアルキル(メタ)アクリレート、ジメチル(メタ)アクリルアミド、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ビニルピロリドン、(メタ)アクリル酸等が、また非含水性ソフトレンズを得るにはガラス転移点の低い高分子重合体を与えるモノマー、例えばn-ブチル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ〉アクリレート等が使用できる。酸素透過性の素材としては、シリコーン含有アルキル(メタ)アクリレート等のモノマーやシリコーン含有マクロマーなどが前記モノマー等と組み合わせて用いることができる。第一、第二、或いは第三重合性組成物のいずれも必須のモノマー等がある訳ではなく、得ようとするレンズ製品に応じて種類、組成比などが適宜選択可能である。なお、上記モノマー等は本発明に使用できるモノマー等の一部を例示したものにすぎず、本発明に使用できるモノマー等を限定するものではないことは言うまでもない。
 図1に戻って説明を続ける。第一半製品(5)の型に固定された側の面は、重合レンズ(10)の一方の面を構成することになるが、露出した側の面は、後に重合される第二重合性組成物(7)によって被覆され、二層構造のレンズができあがることになる。従って、第一半製品の型に固定される面を重合レンズの内面側に使用することを意図する場合には、図1(b)に示されるように、第1型と第2型を開く工程において、第一半製品が雄型に選択的に固定されていることが好ましい。逆に、第一半製品を重合レンズの外面側に使用する場合には、第一半製品が雌型に選択的に固定されていることが好ましい。このような選択性を確実にコントロールする方法としては、(I)型材料と第一半製品との接着力が高い材料を、固定させたい側の型材料として採用し、他方を接着力が低い材料から成形する方法(例えば、含水性のレンズを製造する場合には、第一重合性組成物には親水性のモノマー等が配合されているので、固定させる型材料をポリアミドなどの親水性型材料で作成し、露出させる型材料をポリプロピレンなどの疎水性型材料で作成するなど)がある。また、(II)第1型と第2型の型材料を同じもので作成し、一方の型表面に何らかの処理(例えばプラズマ、UV照射、コロナ放電、レーザー或いは、界面活性剤を塗布するなど)を施して第一半製品を接着しやすくする、又は離型しやすくする方法でもよい。或いは、(III)本発明の(b)工程において、常に一方の型に選択的に固定するような型を開く方法(例えば、第1型から第2型へと温度勾配を持たせて型を開くと、熱の低い方に選択的に第一半製品が残るようにする方法)を採用してもよい。
 第一半製品の表面と、第1型および第2型表面との接着面が、反対称(凸面に対して凹面、凹面に対して凸面)の関係にあることから、通常は一方の型に第一半製品が選択的に固定された状態で型を開くことができる。前述したコントロールの方法は、より確実に制御することが可能となる技術であり、その採否はコスト等総合的な判断から決定すれば良い。
 空間(4)には、第一重合性組成物(6)が充填されているのであるが、過剰量の第一重合性組成物を収容する別の空隙部が第1型と第2型を組み合わせた際に形成されるようにしても良い。図1には示されていないが、過剰量を押湯として収容することにより、重合過程で生じうる収縮を抑制することができるからである。重合収縮の回避方法は他にも、重合性組成物中に予め重合に関与しない非反応性物質を添加しておく方法や、第1型及び(又は)第2型が収縮を吸収できる程度の可撓性を有する材料で成形されたものを使用する方法などがある。本発明の(a)工程では、第一半製品の型に固定された面が重合レンズの内面または外面のいずれかの表面を形成する。型に固定されずに露出する側の面は、第二重合性組成物で被覆される。第二重合性組成物で被覆される面については、必ずしも正確な表面形状である必要がないため、この面を形成することになる第1型又は第2型に、十分な可撓性を持たせて重合収縮を吸収できるのである。
 また、本発明における重合性組成物の重合については、公知の方法を採用できる。例えば、加熱による熱重合や、紫外線のような光を照射した光重合、これらの併用などである。熱重合は、室温付近から徐々に昇温し、数分乃至数時間で30~120℃の温度範囲の熱をかける。熱重合開始剤としては、過硫酸塩や過酸化物、アゾ系開始剤などが挙げられる。一方、光重合の場合には、紫外線、電子線などの活性エネルギー照射により重合を進行させる。光重合開始剤としては、アルキルフェノン系、アシルフォスフィンオキサイド系開始剤等が挙げられる。これらの重合法および開始剤の選択は、重合性組成物と型材料などを考慮して適宜選択することができる。
 図1では、(b)工程で型を開くときに、第2型(2)に第一半製品(5)が固定された状態で型が開かれるために、第3型(3)に第二重合性組成物が注がれることになる。第1型(1)に第一半製品が固定された状態で型が開かれる場合には、第3型は雄型として第2型の代わりに用意され、第一半製品の上に第二重合性組成物が注がれることになる。従って図1に示すように、第3型は必ずしも雌型ではない。(b)工程で第一半製品が固定される型と組み合わせて形成される空間が、重合レンズの形となるような型を第3型として用意することが必要である。
 第二重合性組成物と第一重合性組成物は、異なる組成物であるとは限らない。例えば、後述する虹彩付きレンズを製造するような場合であれば、第一半製品の露出表面に着色成分を塗布した後に第一重合性組成物と同じ組成物を第二重合性組成物として使用することもあるからである。一方、上述した多焦点レンズを作成するような場合には、各重合性組成物はそれぞれ異なる屈折率の重合体を形成させることが望まれるため、必然的に異種の重合性組成物を使用することになる。
 異種の重合性組成物を組み合わせる例として、屈折率以外にそれぞれの層の硬さが異なるレンズを製造することもできる。従来、中心部分がハードレンズで、周辺部分をソフトレンズにするという二種材が提案されている。このような二種材の特徴は、視力矯正に優れるハードで中心部を形成すると同時に、周辺部分をソフトにして装用感を向上させ、ハードレンズとソフトレンズの長所を併せ持つレンズが提供されることにあった。その製造方法は種々のものがあるが、基本的には中心部と環状周辺部という材料の分布を有するものであった。二種材には二つの課題がある。一つには、レンズをいかにして外すのか、二つには、異種の材料を接合する面積が小さいために両材料の結合力が弱い、ということである。レンズの外し方として、一般にハードレンズは上下のまぶたを中心に向けて寄せ集めるようにして外すが、これはレンズのエッジ部が硬いから可能なのである。一方、ソフトレンズはレンズを親指と人差し指で挟むように折り曲げて、眼から外す。しかし、二種材を外す際は、ソフトレンズのように折り曲げるにはハード部分が邪魔をして思うように挟めず、周辺部がソフトのためハードレンズのようにまぶたの力で外すことも困難である。
 それに対して、本発明の製造方法によって得られる、各層の硬さが異なるレンズを製造した場合について説明する。ソフトレンズがハードレンズよりも視力矯正に劣るのは、ソフトレンズが角膜表面の凹凸に倣ってしまうからである。すなわち乱視矯正力に劣る。そこで、本発明のレンズ内面側を硬めの層で、レンズ外面側をソフトな層に製造する。レンズ内面側の硬さによって、角膜の凹凸に倣うことが防止され、レンズ内面と角膜の間に涙液を溜めて視力を矯正することができる。一方、レンズ外面側をソフトにすることでレンズの装用感を維持し、レンズを外す際にも挟める程度にレンズ全体としては柔軟性を示すようにすることができる。
 しかも、レンズの中心部とその周辺部とを異種素材で接合させた多種材のように各素材の接合面が狭いわけではなく、厚み方向に層状構造を有するために、両材料の接合力は飛躍的に向上される。このように視力矯正、装用感、レンズの外し易さ、耐久性など、総合的に優れたレンズを設計することができるのである。
 第3型の型材料、型の成形方法などは、前記第1型および第2型の場合と同様であるため、説明は省略する。図1において第二重合性組成物(7)を第3型(3)に注いだのち(図1(c-1))、第一半製品(5)を固定した第2型(2)と第3型(3)を組み合わせると、形成される空間(8)には、第二重合性組成物(7)が満たされた状態となる。この第二重合性組成物を重合する(図1(c-2))ことによって、重合レンズ(10)が形成される。図1の(c-1)と(c-2)を合わせて、本発明における(c)工程という。
 第二重合性組成物の重合方法、重合開始剤、重合収縮への対応などは第一重合性組成物と同様である。ただし、第3型で形成される面は、重合レンズの表面となるので、重合収縮への対応は重要である。前記の型材料の可撓性による回避では、製品の規格が安定しないからである。図1には、重合レンズ(10)が第一半製品(5)を内面に第二重合性組成物の重合体(9)が外面を形成していることが示されている。もちろん、この逆であっても良いが、第二重合性組成物の重合体が重合レンズの外縁部を形成することについては変わりがない。重合レンズの直径方向の断面図を図2に示す。
 図2に示すように第一半製品(5)は重合レンズ(10)の外径よりも(r1+r2)だけ小さい。図2(i)の(r1+r2)と、図2(ii)の(r1+r2)とは、同等であるように示されているが、相違していても良い。本発明では(r1+r2)が、前記の通り5~4000μmの範囲内、好ましくは10~2000μm、最も好ましくは15~1000μmである。図2では、r1とr2とは同一すなわち第一半製品(5)と重合レンズ(10)とが同心円であるが、r1とr2に差を設けて、第一半製品を偏心させることも可能である。
 次に、(b)工程と(c)工程の間に、(d)第一半製品の表面に着色成分を塗布する工程、を介在させる場合について説明する。(b)工程で型を開いた後に、第一半製品の露出した表面に対して所望のデザインで着色成分が塗布される。デザインは、ドット、線、平面のいずれか若しくはこれらの組み合わせで構成され、単に着色する他に、文字、図形、記号、虹彩模様などを表すこともできる。(d)工程の塗布方法は、従来の方法が適宜採用でき、例えば、スクリーン印刷、パッド印刷、インクジェット印刷などがある。いずれの塗布方法を選択するかは、着色成分の物性や第一半製品の物性、凸面か凹面かなどを勘案して定められる。第一半製品へ塗布したのち、第二重合性組成物の添加によって着色成分が分散しないように固定することが望ましい。着色成分の固定方法は、各種(加熱、乾燥、電子線照射など)の方法があり、これも適宜選択可能である。
 虹彩付きレンズの製造に際しては、レンズ装用者の虹彩を隠蔽して、瞳の色や質感を他覚的に変化させるために、着色成分に不透明材料として酸化鉄や酸化チタンなど、流動性を制御するための増粘剤などが添加される。さらに、モノマー等を添加して、第一、第二重合性組成物とより強固に結合させることができる。第一、第二重合性組成物によって完全にサンドイッチ構造となるので、着色成分の溶出などは効果的に抑制される。しかし、着色成分を介して第一、第二の重合性組成物が隔てられていることを考慮すると、モノマー等を添加しておくことが好ましい。
 前記不透明材料を添加しないで、着色透明レンズを製造することも勿論可能である。全体を同一色に着色する場合は、初めから第一及び(または)第二重合性組成物に添加すれば済むが、部分的に異なる色に着色したい場合や、文字、図形などをレンズ全体に現したい場合には、本発明の製造方法が有効である。前記(d)工程をレンズ製造ラインの中に組み込むか否かは、状況に応じて切り替えることができる。通常は透明レンズを製造しつつ、例えば、装用者のオーダーメイドでキャラクターなどをレンズに表現するといった対応が可能であるため、在庫管理の必要がなく、レンズの付加価値を高めることが容易となる。
 以上がいわゆる2層構造のレンズに関する具体例である。当然、3層或いは、それ以上の層構造を有するレンズも製造可能である。以下には3層構造のレンズを製造する場合について述べる。
 (b)工程までは、前記と同様である。3層構造を形成するには大きく二通りの経路がある。第一半製品を被覆するようにして第三半製品を重合しさらに第三半製品を被覆して順次形成する経路と、第一半製品と組み合わせる第二半製品を別途重合してから両者を中間層により結合させる経路である。図3には、雄型である第2型(2)に第一半製品(5)が固定されている場合において、(b)工程以降の製造工程について、第一半製品(5)と組み合わせる第二半製品(15)を重合する工程が示されている。この工程における第4型(14)は、雌型の第3型(3)と組み合わせるため雄型である。図3(e-1)では第3型(3)に第三重合性組成物(16)が注がれている。次に第3型(3)に第4型(14)を組み合わせて、空間(18)を形成し、第二半製品(15)が重合される(図3(e-2))。
 第二半製品(15)を第3型(3)に固定した状態で、第4型(14)と第3型(3)を開く(図3(e-3))。第二半製品(15)の上に第二重合性組成物(7)を注ぎ(図3(c’-1))、第一半製品(5)を固定した第2型(2)と組み合わせることによって重合レンズ(20)が形成される(図3(c’-2))。この工程では、第二重合性組成物の重合体(9)が、第一重合性組成物の重合体(5)と第三重合性組成物の重合体(15)にサンドイッチされた構造の、3層構造を有する重合レンズ(20)が形成される。中間層が他の二層の接着層として作用するので、各層間の結合力が均等であるという利点がある。なお、図3の(c’-1)と(c’-2)を併せて本発明の(c’)工程といい、(e-1)、(e-2)、(e-3)を併せて本発明の(e)工程という。
 重合レンズ(20)の直径方向の断面図を図4に示す。この図から明らかなように第一半製品(5)、第二半製品(15)ともに重合レンズ(20)よりも外径が小さい。すなわち、先に重合されるものの外径は後に重合されるものの外径よりも小さくなるよう設計された空間で重合が進行する。なお、第一半製品と第二半製品とは別々の経路で重合されるために、その前後を特定することはできないので、両者の径は同一であっても良く、また一方が他方の径より小さくても良い。図4に示すような構造を考えたとき、レンズの内面側を形成する第一半製品(5)よりもレンズの外面側を形成する第二半製品(15)の方がレンズの形状への影響が大きいと考えられる。そのような観点からは、レンズ全体に占める各層の厚みの割合が、内面側の層≦中間層≦外面側の準に大きくさせることが好ましい場合がある。
 一方、第一半製品(5)を被覆するように二層構造の第三半製品を重合する工程について、図5に示す。図5においては、第5型(14’)は雄型の第2型(2)と組み合わせるので、雌型である。第5型(14’)に第三重合性組成物(16)を注ぎ(図5(f-1))、第2型(2)と組み合わせた空間(26)内で重合させる(図5(f-2))。このとき第三重合性組成物の重合体(15’)は、第一半製品(5)を被覆するように重合し、二層構造の第三半製品を形成する。
 第3型(3)に第二重合性組成物(7)を注ぎ(図5(c''-1)、第一半製品(5)および第三重合性組成物の重合体(15’)を固定した第2型(2)と組み合わせて、空間(28)内で第二重合性組成物を重合する(図5(c''-2)。この工程では、第三重合性組成物の重合体(15’)が、第一半製品(5)と、第二重合性組成物の重合体(9’)にサンドイッチされた構造の、3層構造を有する重合レンズ(20’)が形成される。なお、図5の(c''-1)と(c''-2)を併せて本発明の(c'')工程といい、(f-1)と(f-2)を併せて本発明の(f)工程という。
 重合レンズ(20’)の直径方向の断面図を図6に示す。この図から明らかなように第一半製品(5)は第三重合性組成物の重合体(15’)よりも外径が小さく、第三重合性組成物の重合体は重合レンズ(20’)よりも外径が小さい。すなわち、先に重合されるものの外径は、常に後に重合されるものの外径よりも小さくなるように設計された空間で重合が進行する。
 なお前記各工程における、第4型、第5型の材質などの条件は他の型と同様であり、重合性組成物の重合条件等も同様である。こうして得られる、図4および図6に示す3層構造のレンズの好適な例としては、酸素透過性の高い材料を使用した中間層と、親水性材料で表面層を構成したレンズがある。酸素透過性の高い素材はシリコーン含有アルキル(メタ)アクリレート等のモノマーやシリコーン含有マクロマーなどを使用することで得られるが、これらは一般に表面の撥水性が問題となる。そこで、この材料を中間層としレンズ表面には、親水性を示すモノマー等を使用する。このような構成によって、酸素透過性が高く、表面親水性に優れた理想のレンズを提供することができるのである。このようなレンズを製造する場合には、酸素透過性の高い材料を使用した中間層の厚みが最も大きくすることが好ましい。
 前記(c)工程と、(c’)工程および(c'')工程とはその内容がそれぞれ近似している。従って、前記三層構造のそれぞれの製造工程は、二層構造の製造工程中における(b)工程と(c)工程の間に、(e)工程或いは(f)工程を挿入した工程に近似しているとも言えるのである。
 以下に幾つかの実施例を示して、本発明をより具体的に明らかにする。
(実施例1)
 雌型(第1型)に第一重合性組成物(2-ヒドロキシエチルメタクリレート(2-HEMA)59w/w%、グリセロールメタクリレート(GMA)30w/w%、エチレングリコールジメタクリレート(EDMA)0.5w/w%、光重合開始剤として2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(HMPP)を0.5w/w%、グリセリン(溶媒として添加)10w/w%)を23μl充填した。プラズマ表面処理した雄型(第2型)を嵌合し、窒素雰囲気下で、雌型側から光(365nm、1mW/cm)を5分間照射して重合した(a工程)。
 両型を分離(b工程)したところ第一半製品は雄型に付着されており、前面曲率6.6mm、後面曲率6.6mm、厚み0.024mm、外径10.88mmであった。第一半製品の露出表面(例えば図1(b)の第一半製品(5)の凸面側)に光遮蔽物質(2-HEMA30w/w%、酸化鉄40w/w%、酸化チタン20w/w%、増粘剤10w/w%)を厚み10μmになるように印刷し、送風器中で10分間約25℃にて放置した。塗布した光遮蔽物質の表面は乾燥したように観察された(d工程)。
 別途用意した雌型(第3型)に第一重合性組成物と同じ組成の組成物を35μl入れ、第一半製品の付着した雄型(第2型)を嵌合し、窒素雰囲気下で、雌型側から光(365nm、3mW/cm)を5分間照射して重合し、重合工程を終了した(c工程)。第3型と第2型が形成するキャビティ内では、外径10.92mmの重合レンズが得られるようになっている。型を開くと雄型に付着した状態で得られた。この重合レンズを精製水5mlに浸漬すると、含水して膨潤し雄型より外れた。新たな精製水5mlに交換して10分間室温で浸漬し、この操作を5回繰り返して、溶出性成分を除去した。NaCl0.9w/w%とエチレンジアミン3ナトリウム(EDTA3Na)0.03w/w%とを加えた精製水1ml入りのポリプロピレン製容器内の窪みに、含水した重合物を入れ、多層フィルムで容器の窪みをシールし、121℃で20分間オートクレーブ滅菌した。冷後、多層フィルムを剥がし、コンタクトレンズ製品を検査したが、設計通り度数-3.00D、中心厚み0.11mm、直径14.2mmで歪のない良品のコンタクトレンズが得られた。
 前記一連の製造工程を8回繰り返して、重合レンズを8枚製造した。これらすべては前記規格を示し、良品のコンタクトレンズ製品が得られた。
(比較例1) 雌型(第1型)と雄型(第2型)によって製造される第一半製品の外径を10.92mm(すなわち、雌型(第3型)と雄型(第2型)によって形成される重合レンズの外径と同じ10.92mmとなるように設計されている)とした他は、実施例1と同様にしてレンズを製造した。その結果、3枚は実施例1と同様に、歪のない良品のコンタクトレンズになったが、5枚は第一半製品の周辺部にc工程で充填した重合性組成物が含浸重合して、含水処理後の形状が変形し、レンズ形状にならなかった。従って、8枚の製作を試みたが、5枚は不良品として廃棄せざるを得なかった。
(比較例2) 雌型(第1型)と雄型(第2型)によって製造される第一半製品の外径を11.12mm(すなわち、雌型(第3型)と雄型(第2型)によって形成される重合レンズの外径よりも0.2mmおおきくなるように設計されている)とした他は、実施例1と同様にしてレンズを製造した。その結果、8枚ともに比較例1の不良品と同様に変形し、レンズ形状にならなかった。従って、8枚の製作を試みたが、8枚とも不良品として廃棄せざるを得なかった。
(実施例2)
 雌型(第1型)に第一重合性組成物(2-HEMA 99w/w%、EDMA 0.5w/w%、HMPP 0.5w/w%)を23μl充填した。プラズマ表面処理した雄型(第2型)を嵌合し、窒素雰囲気下で、雌型側から光(365nm、1mW/cm)を5分間照射して重合した(a工程)。
 両型を分離(b工程)したところ第一半製品は雄型(第2型)に付着されており、前面曲率6.6mm、後面曲率6.6mm、厚み0.005mm、外径10.88mmであった。
 別途用意した雌型(第5型)に第三重合性組成物(平均分子量が5千のポリジメチルシロキサンの両末端がプロピルメタクリレート基である化合物30w/w%、トリス(トリメチルシロキシ)シリルプロピルメタクリレート30w/w%、ジメチルアクリルアミド39w/w%、EDMA 0.5w/w%、HMPP 0.5w/w%)を30μl入れ、第一半製品の付着した雄型(第2型)にて嵌合し、窒素雰囲気下で、雌型側から光(365nm、3mW/cm)を5分間照射して重合した。こうして得られた二層構造の第三半製品は、第一半製品を被覆して含み、中心厚み0.04mm、外径10.92mmになるように設計されている。両型(第5型と第2型)を開いたところ、第三半製品は雄型(第2型)に付着していた(f工程)。
 別途用意した雌型(第3型)に第一重合性組成物と同じ組成の第二重合性組成物を35μl入れ、第三半製品の付着した雄型(第2型)を嵌合し、窒素雰囲気下で、雌型側から光(365nm、3mW/cm)を5分間照射して重合し、重合工程を終了した(c''工程)。第3型と第2型が形成するキャビティ内では、中心厚み0.045mm(第三半製品の中心厚みを含む)、外径10.96mmの重合レンズが得られるようになっている。両型(第3型と第2型)を開くと、3層構造に形成されている重合レンズは雄型(第2型)に付着していた。この重合レンズを精製水5mlに浸漬すると、含水して膨潤し雄型より外れた。以下、実施例1と同様に水和処理を施した。
 水和処理後のコンタクトレンズ製品を検査したが、設計通り度数-3.00D、中心厚み0.07mm、直径14.2mmで歪のない良品のコンタクトレンズが得られた。このレンズは、シリコーンヒドロゲルを2-HEMA系の材料で挟んだ3層構造を有し、シリコン系のレンズで課題となる表面水濡れ性を改善したものとして得られる。
 本発明は、厚み方向に多層構造を有するレンズおよびその製造方法に関するもので、各層に適当な素材を採用することにより、単一の素材では解決できない課題を、複数の素材を組み合わせることによって全体として解決した、有用なレンズ素材を提供することができる。
1     第1型
2     第2型
3     第3型
14    第4型
14’   第5型
5、35  第一半製品
6     第一重合性組成物
7、37  第二重合性組成物
9、9’  第二重合性組成物の重合体
10、20 重合レンズ
15    第二半製品
15’   第三重合性組成物の重合体
37’   余分な第二重合性組成物

Claims (6)

  1. 多層構造を有するコンタクトレンズを型によって製造する方法であって、
    (a)第1型と第2型を組み合わせて形成される空間内に、第一重合性組成物を充填し、全ての重合工程を終えた後であって離型直前のコンタクトレンズ(以下、重合レンズという)よりも薄い厚みで、かつ、外径も小さい第一半製品を重合する工程、
    (b)前記第1型と第2型を開く工程、
    (c)前記第一半製品が固定された一方の型と第3型とを組み合わせて形成される空間内に、第二重合性組成物を充填し、重合する工程、
    を含む多層コンタクトレンズの製造方法。
  2. 前記(c)工程の代わりに、
    (e-1)第3型と第4型を組み合わせて形成される空間内に、第三重合性組成物を充填する工程、
    (e-2)第三重合性組成物を重合し、重合レンズよりも薄い厚みで、かつ、外径も小さい第二半製品を得る工程、
    (e-3)前記第3型と第4型を開く工程、
    (c')前記第一半製品が固定された一方の型と、前記第二半製品が固定された第3型とを組み合わせて形成される空間内に、第二重合性組成物を充填し、重合する工程、
    を含む請求項1に記載の多層コンタクトレンズの製造方法。
  3. 前記(c)工程の代わりに、
    (f-1)前記第一半製品が固定された一方の型と第5型とを組み合わせて形成される空間内に、第三重合性組成物を充填する工程、
    (f-2)第三重合性組成物を重合し、第一半製品と第三重合性組成物重合体を合わせた二層構造の重合体(以下、第三半製品という)として、その厚みが重合レンズよりも薄くかつ外径も小さい第三半製品を得る工程、
    (c'')前記第三半製品が固定された一方の型と第3型とを組み合わせて形成される空間内に、第二重合性組成物を充填し、重合する工程、
    を含む請求項1に記載の多層コンタクトレンズの製造方法。
  4. 前記第一半製品、第二半製品、第三半製品のいずれの外径も、重合レンズより5~4000μm小さいことを特徴とする請求項1乃至3のいずれかに記載の多層コンタクトレンズの製造方法。
  5. (d)前記第一半製品、第二半製品、第三半製品の少なくともひとつの、型に固定されていない側の半製品の表面に着色成分を塗布する工程、
    を含むことを特徴とする請求項1乃至3のいずれかに記載の多層コンタクトレンズの製造方法。
  6. 前記請求項1乃至5のいずれかに記載の製造方法によって製造された多層構造を有するコンタクトレンズ。
PCT/JP2013/066635 2012-06-19 2013-06-17 多層コンタクトレンズおよびその製造方法 WO2013191148A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014514978A JP5621117B2 (ja) 2012-06-19 2013-06-17 多層コンタクトレンズおよびその製造方法
US14/406,468 US9878473B2 (en) 2012-06-19 2013-06-17 Multilayer contact lens and production process therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-137562 2012-06-19
JP2012137562 2012-06-19

Publications (1)

Publication Number Publication Date
WO2013191148A1 true WO2013191148A1 (ja) 2013-12-27

Family

ID=49768744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066635 WO2013191148A1 (ja) 2012-06-19 2013-06-17 多層コンタクトレンズおよびその製造方法

Country Status (3)

Country Link
US (1) US9878473B2 (ja)
JP (1) JP5621117B2 (ja)
WO (1) WO2013191148A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504840A (ja) * 2014-01-31 2017-02-09 シナージアイズ・インコーポレーテッド ハイブリッドコンタクトレンズ
CN106461969A (zh) * 2014-03-24 2017-02-22 美你康新加坡私人有限公司 用于利用眼透镜控制轴向生长的装置和方法
CN109716214A (zh) * 2016-09-30 2019-05-03 Hoya株式会社 隐形眼镜的制造方法
JP2019515357A (ja) * 2016-03-11 2019-06-06 イノベーガ,インコーポレイテッド コンタクトレンズ
CN110709685A (zh) * 2017-04-13 2020-01-17 卡尔蔡司光学国际有限公司 用于根据磨边数据的至少一个数据集来制造眼镜镜片的方法
US12105360B2 (en) 2014-11-22 2024-10-01 Innovega, Inc. Contact lens

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936055B2 (ja) * 2012-06-26 2016-06-15 彦之 今野 矯正コンタクトレンズの製造方法
EP3204821A4 (en) 2014-10-08 2018-06-06 Innovega Inc. Contact lens and method for constructing a contact lens
SG11201900638PA (en) 2016-09-20 2019-04-29 Novartis Ag Colored hydrogel contact lenses with lubricious coating thereon
KR102306300B1 (ko) * 2020-05-11 2021-09-29 주식회사 아이씨케이 콘택트렌즈 몰드와 이를 이용한 콘택트렌즈 제조방법
EP4240578A1 (en) * 2020-11-04 2023-09-13 Alcon Inc. Method for making photochromic contact lenses
EP4240579A1 (en) * 2020-11-04 2023-09-13 Alcon Inc. Method for making photochromic contact lenses
US20220281193A1 (en) 2021-03-08 2022-09-08 Alcon Inc. Method for making photofunctional contact lenses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250126A (ja) * 1985-06-05 1987-03-04 ボ−シユ アンド ロ−ム インコ−ポレイテイド 異るポリマ−組成物の物品を製造するための方法
JP2003515787A (ja) * 1999-11-01 2003-05-07 ドーシ,プレイフール 薄く色付けられたレンズとその製造方法
JP2010529505A (ja) * 2007-06-07 2010-08-26 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 奥行き効果を有する着色コンタクトレンズ
WO2011004800A1 (ja) * 2009-07-08 2011-01-13 株式会社メニコン ハイブリッドソフトコンタクトレンズ、この製造方法及び水和処理方法
WO2011161920A1 (ja) * 2010-06-21 2011-12-29 株式会社メニコン 色付コンタクトレンズ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121896A (en) 1976-03-24 1978-10-24 Shepherd Thomas H Apparatus for the production of contact lenses
US4209289A (en) 1979-05-14 1980-06-24 American Optical Corporation Contact lens mold
US5034166A (en) 1988-07-21 1991-07-23 Allergan, Inc. Method of molding a colored contact lens
US5120121A (en) 1988-07-21 1992-06-09 Allergan, Inc. Colored lens
US5238388A (en) 1991-12-06 1993-08-24 Johnson & Johnson Vision Products, Inc. Ophthalmic lens mold seal
US5326505A (en) 1992-12-21 1994-07-05 Johnson & Johnson Vision Products, Inc. Method for treating an ophthalmic lens mold
US5457140A (en) 1993-07-22 1995-10-10 Johnson & Johnson Vision Products, Inc. Method of forming shaped hydrogel articles including contact lenses using inert, displaceable diluents
ATE182287T1 (de) * 1993-12-13 1999-08-15 Novartis Erfind Verwalt Gmbh Verfahren und vorrichtung zur herstellung einer kontaktlinse
US5894002A (en) 1993-12-13 1999-04-13 Ciba Vision Corporation Process and apparatus for the manufacture of a contact lens
AU5289498A (en) 1997-02-05 1998-08-13 Johnson & Johnson Research Pty. Limited Basecurve mold designs to maintain HEMA ring/basecurve adhesion
WO1999015917A1 (en) 1997-09-23 1999-04-01 Novartis Ag Method for hydrogel surface treatment and article formed therefrom
JPH11198149A (ja) * 1998-01-09 1999-07-27 Seiko Epson Corp コンタクトレンズの成形型及びコンタクトレンズの製造方法
JP2000326347A (ja) * 1999-05-21 2000-11-28 Menicon Co Ltd 眼用レンズの成形型及びそれを用いた眼用レンズの製造方法
JP4544710B2 (ja) * 1999-08-27 2010-09-15 株式会社メニコン 眼用レンズ物品の成形型及び眼用レンズ物品の製造方法
US7048375B2 (en) * 1999-11-01 2006-05-23 Praful Doshi Tinted lenses and methods of manufacture
EP1152883A1 (en) 1999-12-09 2001-11-14 Johnson & Johnson Vision Care, Inc. Molds for use in contact lens production
US7021761B2 (en) 2002-06-28 2006-04-04 Bausch & Lomb Incorporated Lens with colored portion and coated surface
US20070257387A1 (en) * 2006-05-05 2007-11-08 Hofmann Gregory J Package mold combination
JP6155457B2 (ja) * 2013-01-11 2017-07-05 株式会社メニコンネクト 多層コンタクトレンズおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250126A (ja) * 1985-06-05 1987-03-04 ボ−シユ アンド ロ−ム インコ−ポレイテイド 異るポリマ−組成物の物品を製造するための方法
JP2003515787A (ja) * 1999-11-01 2003-05-07 ドーシ,プレイフール 薄く色付けられたレンズとその製造方法
JP2010529505A (ja) * 2007-06-07 2010-08-26 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 奥行き効果を有する着色コンタクトレンズ
WO2011004800A1 (ja) * 2009-07-08 2011-01-13 株式会社メニコン ハイブリッドソフトコンタクトレンズ、この製造方法及び水和処理方法
WO2011161920A1 (ja) * 2010-06-21 2011-12-29 株式会社メニコン 色付コンタクトレンズ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504840A (ja) * 2014-01-31 2017-02-09 シナージアイズ・インコーポレーテッド ハイブリッドコンタクトレンズ
CN106461969A (zh) * 2014-03-24 2017-02-22 美你康新加坡私人有限公司 用于利用眼透镜控制轴向生长的装置和方法
EP3123236A4 (en) * 2014-03-24 2018-04-25 Menicon Singapore Pte Ltd. Apparatus and methods for controlling axial growth with an ocular lens
US10429670B2 (en) 2014-03-24 2019-10-01 Menicon Singapore Pte Ltd. Apparatus and methods for controlling axial growth with an ocular lens
US11947194B2 (en) 2014-03-24 2024-04-02 Menicon Singapore Pte Ltd. Apparatus and methods for controlling axial growth with an ocular lens
US12105360B2 (en) 2014-11-22 2024-10-01 Innovega, Inc. Contact lens
JP2019515357A (ja) * 2016-03-11 2019-06-06 イノベーガ,インコーポレイテッド コンタクトレンズ
JP6993361B2 (ja) 2016-03-11 2022-02-03 イノベーガ,インコーポレイテッド コンタクトレンズ
CN109716214A (zh) * 2016-09-30 2019-05-03 Hoya株式会社 隐形眼镜的制造方法
CN109716214B (zh) * 2016-09-30 2021-01-15 Hoya株式会社 隐形眼镜的制造方法、制造装置以及取出方法
CN110709685A (zh) * 2017-04-13 2020-01-17 卡尔蔡司光学国际有限公司 用于根据磨边数据的至少一个数据集来制造眼镜镜片的方法
CN110709685B (zh) * 2017-04-13 2022-02-15 卡尔蔡司光学国际有限公司 用于根据磨边数据的至少一个数据集来制造眼镜镜片的方法

Also Published As

Publication number Publication date
US20150137397A1 (en) 2015-05-21
JP5621117B2 (ja) 2014-11-05
JPWO2013191148A1 (ja) 2016-05-26
US9878473B2 (en) 2018-01-30

Similar Documents

Publication Publication Date Title
JP5621117B2 (ja) 多層コンタクトレンズおよびその製造方法
US10139522B2 (en) Silicone elastomer-silicone hydrogel hybrid contact lenses
US20170131571A1 (en) Sacrificial molding process for an accommodating contact lens
KR102057869B1 (ko) 난시 교정을 위한 소프트 콘택트 렌즈 내의 증가된 강직도의 중심 광학부
KR20070009585A (ko) 하이브리드 콘택트렌즈 시스템 및 방법
US20060290882A1 (en) Laminated contact lens
US20090200692A1 (en) Method for manufacturing a silicone contact lens having a hydrophilic surface
CN108885279A (zh) 硅酮弹性体-水凝胶混成的隐形眼镜
WO2021059887A1 (ja) 眼鏡レンズおよびその製造方法
JP2009008848A (ja) コンタクトレンズとその製造方法
WO2014073568A1 (ja) 内面側層が薄い着色コンタクトレンズ及びその製造方法
EP3174501A1 (en) Sacrificial molding process for an accomodating contact lens
AU2017252594B2 (en) Silicone elastomer-silicone hydrogel hybrid contact lenses
US9310628B2 (en) Ophthalmic lens including ultra-thin optical parts
JPH06170857A (ja) コンタクトレンズの製造方法およびそれに用いられる成形型
JP6155457B2 (ja) 多層コンタクトレンズおよびその製造方法
JP5621118B2 (ja) 着色コンタクトレンズおよびその製造方法
JP6163640B2 (ja) 眼用レンズの製造方法及び眼用レンズ
WO2012102332A1 (ja) 老眼矯正体及び老眼矯正方法
JP5936055B2 (ja) 矯正コンタクトレンズの製造方法
JP2016177290A (ja) 老眼矯正コンタクトレンズの製造方法
CN109070503A (zh) 彩色隐形眼镜及其制法
JP2012155295A (ja) 老眼矯正体及び老眼矯正方法
JP2013011846A (ja) 老眼矯正体及び老眼矯正方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514978

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406468

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806780

Country of ref document: EP

Kind code of ref document: A1