WO2013191109A1 - 循環型多層燃焼炉 - Google Patents

循環型多層燃焼炉 Download PDF

Info

Publication number
WO2013191109A1
WO2013191109A1 PCT/JP2013/066511 JP2013066511W WO2013191109A1 WO 2013191109 A1 WO2013191109 A1 WO 2013191109A1 JP 2013066511 W JP2013066511 W JP 2013066511W WO 2013191109 A1 WO2013191109 A1 WO 2013191109A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
circulation
air
flow rate
unit
Prior art date
Application number
PCT/JP2013/066511
Other languages
English (en)
French (fr)
Inventor
知志 竹下
修策 服部
陽一朗 水野
正將 井上
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to KR1020147034787A priority Critical patent/KR101552294B1/ko
Priority to EP13806758.2A priority patent/EP2863122B1/en
Priority to JP2014521440A priority patent/JP5998216B2/ja
Priority to CN201380030129.0A priority patent/CN104350330B/zh
Publication of WO2013191109A1 publication Critical patent/WO2013191109A1/ja
Priority to HK15102855.3A priority patent/HK1202610A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/04Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste liquors, e.g. sulfite liquors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/104Arrangement of sensing devices for CO or CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/105Arrangement of sensing devices for NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/30Oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55003Sensing for exhaust gas properties, e.g. O2 content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention has a circulation part that burns sludge while supplying air for circulating the fluid medium, and a post-combustion part that supplies secondary air and tertiary air to the pyrolysis gas from the circulation part to cause complete combustion.
  • the present invention relates to a circulation type multilayer combustion furnace.
  • the circulating fluidized incinerator causes a fluid medium made of dredged sand or the like filled in a riser to flow with fluid air, and the fluid medium discharged along with combustion exhaust gas is discharged from the riser. It has a circulation part which incinerates waste, collecting it with a cyclone and circulating it to the lower part of the riser through a downcomer. And there exists a thing which has a preliminary combustion part which ensures complete combustion in combustion exhaust gas in the latter stage.
  • This circulating fluidized incinerator is used for incineration of waste such as sewage sludge because it can stably incinerate a wide variety of wastes having different moisture contents and calorific values.
  • a circulating unit that circulates a fluid medium and supplies fuel and primary air to burn sludge, and a combustion exhaust gas from the circulating unit that is provided in a subsequent stage of the circulating unit.
  • a circulation type multi-layer combustion furnace having a post-combustion section that supplies secondary air and tertiary air to complete combustion.
  • combustion is suppressed at a lower temperature than the above-described circulation type fluid incinerator to suppress the generation amount of greenhouse gas N 2 O, and a high temperature zone is formed in the rear combustion section of the latter stage
  • N 2 O is decomposed and the unburned portion is completely burned.
  • the total amount of air necessary for complete combustion corresponding to the amount of input sludge is controlled at the circulation section at the optimum ratio for suppressing combustion in the circulation section and complete combustion in the rear combustion section. It is supplied separately to the rear combustion section.
  • the primary air amount to be supplied to the circulation section becomes less than the minimum primary air amount, and the furnace is stopped after low-load operation. May be forced.
  • the sludge stock is increased until the normal operation in which the primary air amount to be supplied to the circulation section is at least the primary air amount becomes possible. Therefore, a method of restarting the operation of the circulation type multi-layer combustion furnace has been adopted.
  • the amount of primary air to be supplied to the circulation section does not become less than the minimum primary air amount by supplementing the shortage of the input sludge amount with auxiliary fuel.
  • the amount of auxiliary fuel used is increased, which is also inefficient.
  • the present invention has been made in view of the above, and an object of the present invention is to avoid the stop of the circulating multilayer combustion furnace even when the operation of the circulating multilayer combustion furnace shifts from the normal operation to the low load operation. Another object of the present invention is to provide a circulation type multilayer combustion furnace capable of continuing operation without increasing the amount of auxiliary fuel used per unit sludge treatment amount.
  • a circulation type multilayer combustion furnace includes a circulation part that burns sludge while supplying air for circulating a fluid medium, and a pyrolysis gas from the circulation part. And a post-combustion section that completely burns by supplying air to the air, and divides the air flow rate required for complete combustion corresponding to the amount of input sludge into a predetermined ratio with respect to the circulation section and the post-combustion section.
  • a circulation type multi-layer combustion furnace that performs first control to be supplied, and in the first control, when the air flow rate of air to be supplied to the circulation unit is less than the air flow rate necessary for circulating the fluid medium. In place of the first control, out of the air flow rate required for complete combustion, air exceeding the minimum air flow rate required for circulating the fluid medium in the circulation portion is supplied to the circulation portion, and the remaining portion Control to supply the air to the post-combustion unit And performing.
  • the second control is the minimum air necessary for circulating the fluid medium in the circulation section among the air flow rate required for complete combustion. It is control which supplies the air of a flow volume to a circulation part, and supplies the remaining air to a post-combustion part.
  • the circulation type multilayer combustion furnace can be prevented from being stopped and the auxiliary fuel used per unit sludge treatment amount is used. Operation can be continued without increasing the amount.
  • FIG. 1 is a schematic diagram showing the configuration of a circulation type multilayer combustion furnace according to an embodiment of the present invention.
  • 2A is an explanatory diagram illustrating an example of a change in the amount of fuel used per unit incineration processing amount with respect to the incineration processing amount per unit time by the control device illustrated in FIG. 1.
  • FIG. 2B is an explanatory diagram illustrating an example of a change in the air ratio with respect to the incineration processing amount per unit time by the control device illustrated in FIG. 1.
  • FIG. 2C is an explanatory diagram showing an example of a change in the primary air flow rate with respect to the incineration processing amount per unit time by the control device shown in FIG. 1.
  • FIG. 2D is an explanatory diagram illustrating an example of a change in the circulation portion outlet temperature with respect to the incineration processing amount per unit time by the control device illustrated in FIG. 1.
  • FIG. 1 is a diagram showing a configuration of a circulation type multi-layer combustion furnace according to an embodiment of the present invention.
  • the circulation type multi-layer combustion furnace 1 includes a circulation part 2 and a post-combustion part 3 provided at a subsequent stage of the circulation part 2.
  • the circulation unit 2 includes a riser 10, a cyclone 20, and a downcomer 21.
  • the riser 10 has a substantially cylindrical shape, and in the furnace, a dilute layer 11 is formed in the upper portion, and a portion of a fluidized medium such as packed sand, which is called a dense layer 12, is formed in the lower portion.
  • the fluid medium filled in the lower part of the riser 10 is fluidized in the furnace by fluid air (primary air), and the introduced sludge is combusted at about 600 to 900 ° C. with vigorous stirring.
  • Combustion exhaust gas pyrolysis gas
  • a cyclone 20 together with a fluid medium and separated into solid gas, and the fluid medium incinerates sludge while circulating to the lower part of the riser 10 via a downcomer 21.
  • the pyrolysis gas separated into solid and gas by the cyclone 20 is sent to the post-combustion unit 3 provided in the subsequent stage.
  • the post-combustion unit 3 forms a local high temperature field zone formed upstream by the secondary air and a complete combustion zone formed downstream by the tertiary air, and the heat sent from the cyclone 20 in the local high temperature field zone.
  • N 2 O in the cracked gas is decomposed to reduce the greenhouse gas, and the unburned portion is completely burned in the complete combustion zone.
  • Sludge is supplied to the lower part of the riser 10 via a sludge supply pump 60, and the amount of sludge supplied is sent to the control device 100 as a combustion processing amount. Further, the fuel 70 is supplied to the lower portion of the riser 10 via the valve 51 and the fuel usage amount detection unit 71.
  • the opening of the valve 51 is controlled by a fuel usage amount controller (FIC) 41 so that the fuel usage amount detected by the fuel usage amount detector 71 becomes a control amount instructed by the control device 100.
  • FIC fuel usage amount controller
  • the lower part of the riser 10 is supplied with primary air A1 as a part of the air having an air flow rate necessary for complete combustion of sludge through a valve 52 from a primary air blower 80.
  • the secondary air A2 is supplied from the secondary air blower 90 through the valve 53 to the upper or middle portion of the post-combustion unit 3 to form a local high temperature field zone.
  • the tertiary air A3 is supplied from the secondary air blower 90 through the valve 54 to the middle or lower part of the rear combustion unit 3 to form a complete combustion zone.
  • These secondary air A2 and tertiary air A3 are the remaining air of the air flow rate air necessary for complete combustion of sludge.
  • the primary air flow rate regulator 42 detects the detection result of a primary air flow rate detector (not shown) so as to supply the controlled air 100 A controlled by the control device 100 to the concentrated layer 12 below the riser 10. Based on the above, the opening degree of the valve 52 is controlled.
  • the secondary air flow rate regulator 43 detects a secondary air flow rate detector (not shown) so as to supply the controlled air secondary air A2 instructed by the control device 100 to the upper part or middle part of the post-combustion unit 3. Based on the result, the opening degree of the valve 53 is controlled.
  • the tertiary air flow rate adjuster 44 detects the result of detection by a tertiary air flow rate detector (not shown) so as to supply the controlled air of the tertiary air A3 instructed by the control device 100 to the middle or lower part of the rear combustion unit 3. Based on the above, the opening degree of the valve 54 is controlled.
  • thermocouples 13 and 33 are dispersedly arranged in the riser 10 and the post-combustion unit 3, and the respective furnace temperatures are measured.
  • the sludge supplied to the lower part in the riser 10 is combusted by the fuel 70 and the primary air A 1 also supplied from the lower part, and the riser 10 and the cyclone 20 are
  • the pyrolysis gas discharged from the exhaust gas is burned in the local high-temperature field zone by the secondary air A2 supplied to the upper part or the middle part to decompose N 2 O in the combustion exhaust gas.
  • the incombustible portion is completely burned in the complete combustion zone by A3.
  • the control device 100 includes a fuel usage amount detector 71, a sludge supply flow rate detector 61, a primary air flow rate detector, a secondary air flow rate detector, and a tertiary air flow rate detector, respectively.
  • the primary air flow rate, the secondary air flow rate, and the tertiary air flow rate are input, and the in-furnace temperature of the riser 10 and the in-furnace temperature of the post-combustion unit 3 are input from the thermocouples 13 and 33, respectively.
  • an exhaust gas component value such as O 2 or N 2 O detected by the gas sensor 35 is also input to the control device 100 from the post-combustion unit 3.
  • control device 100 sends a fuel usage amount as a control amount to the fuel usage amount regulator 41, the primary air flow rate regulator 42, the secondary air flow rate regulator 43, and the tertiary air flow rate regulator 44, respectively.
  • the primary air flow rate, the secondary air flow rate, and the tertiary air flow rate are output.
  • the primary air flow rate above a certain value. Needs to flow into the circulation part 2. Therefore, the primary air flow rate to the circulation part 2 does not become less than a fixed primary air flow rate (minimum primary air flow rate).
  • the control device 100 per unit incineration processing amount of sludge in the circulation unit 2
  • the amount of fuel used is constant and the primary air ratio is less than 1, and the secondary combustion unit 3 supplies the secondary air A2 and the tertiary air A3 to the pyrolysis gas from the circulation unit 2.
  • the first multi-layer combustion process is performed by the first control for further burning the gas to complete combustion.
  • the control device 100 uses the fuel per unit of incineration treatment amount of sludge in the circulation unit 2.
  • the primary air ratio is set to the same value as the first multi-layer combustion treatment, and the primary air ratio is reduced as the sludge incineration treatment amount per unit time supplied to the circulation unit 2 is reduced.
  • the secondary air ratio and the tertiary air ratio are gradually increased to a value of 0 as the amount of incineration of sludge per unit time supplied to the circulation unit 2 in the post-combustion unit 3 is decreased.
  • a second multilayer combustion process is performed by the second control to be reduced.
  • FIG. 2A shows the fuel use amount Fr (Nm 3 / t-cake) per unit incineration processing amount (1 t-cake) with respect to the incineration processing amount Br per unit time, which is the load of the circulation type multi-layer combustion furnace 1.
  • FIG. 2B shows changes in the air ratio (primary air ratio m1, secondary air ratio m2, secondary air ratio m3, total air ratio m) with respect to the incineration processing amount Br per unit time.
  • 2C shows the primary air flow rate A1V with respect to the incineration processing amount Br per unit time
  • the incineration processing amount Br at 100% load is specifically 100 t / day, for example. Therefore, the incineration throughput Br at the 75% load and the 50% load is specifically, for example, 75 t / day and 50 t / day, respectively.
  • the minimum primary air flow rate A1Vmin of the circulation section 2 is when the incineration processing amount Br is 75% load.
  • the first multilayer combustion process B1 described above is performed in the section from the minimum primary air flow rate A1Vmin to the maximum primary air flow rate A1Vmax, that is, between the 75% load and the 100% load.
  • the second multi-layer combustion process B2 described above is performed in a section where the primary air flow rate is A1 Vmin, that is, between 75% load and 50% load, and particularly at the time of 50% load, the circulation part complete combustion process. B3 is performed.
  • a suppression combustion process is performed in which the primary air ratio m1 in the circulation unit 2 is less than 1, for example, 0.9. Further, the secondary air ratio m2 in the post-combustion unit 3 is set to 0.1 and the tertiary air ratio m3 is set to 0.3, for example, and the pyrolysis gas from the circulation unit 2 is completely burned. And the total air ratio of the circulation type multilayer combustion furnace 1 whole is set to 1.3, for example.
  • the circulation unit 2 In this state, the amount of sludge treated is large, the circulation unit 2 is in a suppressed combustion state, and a local high-temperature field zone is formed in the post-combustion unit 3, so that N 2 O gas is reduced. And since the circulation part 2 is suppression combustion, as shown to FIG. 2D, in the area of 1st multilayer combustion process B1, the circulation part exit temperature T will be 750 degreeC, for example.
  • the post-combustion section outlet temperature is, for example, 850 ° C.
  • the amount of fuel used per unit incineration process amount is a constant value Fr1 (for example, 20 (Nm 3 / t-cake)). Since the constant value Fr1 corresponds to the unit incineration processing amount, the absolute amount of fuel usage increases as the incineration processing amount Br increases.
  • the primary air ratio m1 in the circulation section 2 is monotonously increased as the load decreases, regardless of being less than 1. It is set to the value of the total air ratio m at% load.
  • the secondary air ratio m2 and the tertiary air ratio m3 of the post-combustion unit 3 are monotonously decreased as the load decreases, and become 0 at 50% load. That is, at 50% load, only the circulation part 2 is completely combusted, and the post-combustion part 3 serves as a pre-combustion part that ensures complete combustion.
  • the circulation section 2 is in the suppression combustion state as in the section of the first multi-layer combustion process B1.
  • a local high-temperature field zone is formed in the post-combustion part 3, and N 2 O is reduced.
  • the primary air ratio m1 in the circulation part 2 continuously increases to 1.0 or more, and the temperature rises in the circulation part 2. However, it will be in a state of combustion that will not reach complete combustion. In this case, the temperature in the post-combustion section 3 is lower than that in the case of the first multilayer combustion process B1, but N 2 O is in a lower state than in the complete combustion in the circulation section 2.
  • the circulation unit 2 In the above-described first multi-layer combustion process B1, even if the load increases or decreases, the circulation unit 2, the post-combustion unit 3, and the combustion process ratio do not change, but in the second multi-layer combustion process B2, the load decreases. Thus, the combustion treatment ratio in the circulation unit 2 is gradually increased without immediately changing. And at 50% load, the circulation part complete combustion process B3 which makes the combustion process ratio in the circulation part 2 100% is performed.
  • the circulating portion outlet temperature T increases from, for example, 750 ° C. to 850 ° C. as it approaches from the 75% load to the 50% load.
  • the post-combustion section outlet temperature is 700 ° C., for example.
  • the primary air flow rate A1V which is an absolute amount, does not decrease as the load decreases.
  • the fuel per unit incineration processing amount for forcibly maintaining the primary air ratio m1 at 0.9 corresponding to the surplus air and performing the sludge suppression combustion As shown by the broken line in FIG. 2A, the fuel per unit incineration processing amount for forcibly maintaining the primary air ratio m1 at 0.9 corresponding to the surplus air and performing the sludge suppression combustion.
  • the amount used increased with a decrease in load (increase in the surplus amount of the primary air flow rate A1V).
  • the primary air ratio m1 is increased between the 75% load and the 50% load in FIG. )
  • the complete combustion state (high temperature state) of the sludge by the circulation unit 2 the state of increase of the surplus amount of the primary air flow rate A1V does not occur, and the increase in useless fuel can be suppressed.
  • the 75% load and 50% load described above are examples, and are determined by the furnace capacity of the circulation unit 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

 流動媒体を循環させる空気を供給しつつ汚泥を燃焼する循環部(2)と、循環部(2)からの熱分解ガスに空気を供給して完全燃焼させる後燃焼部(3)とを有し、投入汚泥量に対応する完全燃焼に必要な流量の空気を、循環部(2)と後燃焼部(3)とに対して所定の比率に分けて供給する第一の制御を行う循環型多層燃焼炉において、第一の制御では循環部(2)に供給される空気の流量が流動媒体を循環させるのに必要な流量未満になる場合に、第一の制御に代えて、完全燃焼に必要な流量の空気のうち、循環部(2)において流動媒体を循環させるのに必要な最低限の流量の空気を循環部(2)に供給するとともに、残部の空気を後燃焼部(3)に供給する第二の制御を行う。

Description

循環型多層燃焼炉
 この発明は、流動媒体を循環させる空気を供給しつつ汚泥を燃焼する循環部と循環部からの熱分解ガスに2次空気及び3次空気を供給して完全燃焼させる後燃焼部とを有した循環型多層燃焼炉に関する。
 循環式流動焼却炉は、特許文献1に開示されているように、ライザーに充填された硅砂等からなる流動媒体を流動空気により流動させ、燃焼排ガスに同伴されてライザーから排出された流動媒体をサイクロンで回収し、ダウンカマーを介してライザー下部へ循環させながら廃棄物を焼却する循環部を有するものである。そして、その後段において燃焼排ガス中の完全燃焼を確保する予備燃焼部を有するものがある。この循環式流動焼却炉は、含水率や発熱量等の異なる幅広い廃棄物を安定して焼却できるため、下水汚泥等の廃棄物の焼却処理に用いられている。
 さらに、特許文献2に開示されているように、流動媒体を循環させ燃料及び1次空気を供給して汚泥を燃焼する循環部と前記循環部の後段に設けられ前記循環部からの燃焼排ガスに2次空気及び3次空気を供給して完全燃焼させる後燃焼部とを有した循環型多層燃焼炉もある。この循環型多層燃焼炉の循環部では上述した循環式流動焼却炉よりも低温で抑制燃焼させて温室効果ガスであるNOの発生量を抑え、後段の後燃焼部で高温場ゾーンを形成してNOを分解するとともに未燃焼分を完全燃焼するようにしている。
 さて、従来の循環型多層燃焼炉では、投入汚泥量に対応する完全燃焼に必要な全空気量を、循環部で抑制燃焼させるとともに後燃焼部で完全燃焼させるのに最適な比率で、循環部と後燃焼部とに分けて供給している。この循環型多層燃焼炉においては、単位時間当たりの焼却処理量が減少した場合において、循環部に供給されるべき1次空気量が最低1次空気量未満となり、低負荷運転後に、炉の停止を強いられる場合がある。この場合は、循環型多層燃焼炉を停止した上で、汚泥のストックを、循環部に供給されるべき1次空気量が最低1次空気量以上となる通常運転が可能になるまで増加させてから、循環型多層燃焼炉の運転を再開する方法が採られていた。
特開2001-263634号公報 特開2009-139043号公報
 しかしながら、上述した方法においては、循環型多層燃焼炉において、立ち上げ作業が極めて煩雑で相当な時間を要することから、時間的に非効率であった。さらに、冷却してしまった炉を再度昇温させる必要があり、この昇温に膨大な補助燃料が必要になることから、補助燃料の使用量に関しても極めて非効率的であった。
 また、循環型多層燃焼炉の停止を回避する方法として、投入汚泥量の不足分を補助燃料で補完することによって、循環部に供給されるべき1次空気量が最低1次空気量未満にならないようにする方法が採用されることもあるが、この場合には補助燃料の使用量が増加してしまい、やはり非効率であった。
 この発明は、上記に鑑みてなされたものであって、その目的は、循環型多層燃焼炉の運転が通常運転から低負荷運転に移行する場合においても、循環型多層燃焼炉の停止を回避できるとともに使用する補助燃料の単位汚泥処理量当たりの使用量を増加させることなく運転を継続することができる循環型多層燃焼炉を提供することにある。
 上述した課題を解決し、目的を達成するために、この発明にかかる循環型多層燃焼炉は、流動媒体を循環させる空気を供給しつつ汚泥を燃焼する循環部と、循環部からの熱分解ガスに空気を供給して完全燃焼させる後燃焼部とを有し、投入汚泥量に対応する完全燃焼に必要な空気流量の空気を、循環部と後燃焼部とに対して所定の比率に分けて供給する第一の制御を行う循環型多層燃焼炉であって、第一の制御では循環部に供給されるべき空気の空気流量が流動媒体を循環させるのに必要な空気流量未満になる場合に、第一の制御に代えて、完全燃焼に必要な空気流量の空気のうち、循環部において流動媒体を循環させるのに必要な最低限の空気流量以上の空気を循環部に供給するとともに、残部の空気を後燃焼部に供給する、第二の制御を行うことを特徴とする。
 この発明にかかる循環型多層燃焼炉は、上記の発明において、第二の制御は、完全燃焼に必要な空気流量の空気のうち、循環部において流動媒体を循環させるのに必要な最低限の空気流量の空気を循環部に供給するとともに、残部の空気を後燃焼部に供給する制御であることを特徴とする。
 この発明による循環型多層燃焼炉によれば、通常運転から低負荷運転に運転が移行する場合においても、循環型多層燃焼炉の停止を回避できるとともに使用する補助燃料の単位汚泥処理量当たりの使用量を増加させることなく運転を継続することができる。
図1は、この発明の実施の形態にかかる循環型多層燃焼炉の構成を示す模式図である。 図2Aは、図1に示した制御装置による、単位時間当たりの焼却処理量に対する単位焼却処理量当たりの燃料使用量の変化の一例を示す説明図である。 図2Bは、図1に示した制御装置による、単位時間当たりの焼却処理量に対する空気比の変化の一例を示す説明図である。 図2Cは、図1に示した制御装置による、単位時間当たりの焼却処理量に対する1次空気流量の変化の一例を示す説明図である。 図2Dは、図1に示した制御装置による、単位時間当たりの焼却処理量に対する循環部出口温度の変化の一例を示す説明図である。
 以下、添付図面を参照してこの発明を実施するための形態について説明する。
 図1は、この発明の実施形態である循環型多層燃焼炉の構成を示す図である。図1に示すように、この循環型多層燃焼炉1は、循環部2と、循環部2の後段に設けられた後燃焼部3とを有する。循環部2は、ライザー10とサイクロン20とダウンカマー21とを有する。ライザー10は、略円筒形状をなし、炉内には、上部に希薄層11と、下部に濃厚層12と称される、充填された硅砂等流動媒体の粒子留まりの部分とが形成される。
 ライザー10の下部に充填される流動媒体は、流動空気(1次空気)により炉内で流動され、投入された汚泥を激しく攪拌しつつ600~900℃程度で燃焼させる。燃焼排ガス(熱分解ガス)は、流動媒体とともにサイクロン20に送られて固気分離され、流動媒体は、ダウンカマー21を介してライザー10の下部に循環させながら汚泥を焼却する。サイクロン20によって固気分離された熱分解ガスは、後段に設けられた後燃焼部3に送られる。
 後燃焼部3は、2次空気によって上流に形成される局所高温場ゾーンと3次空気によって下流に形成される完全燃焼ゾーンとを形成し、局所高温場ゾーンで、サイクロン20から送られた熱分解ガス中のNOを分解して温室効果ガスの削減を行い、完全燃焼ゾーンで、未燃分を完全燃焼する。
 ライザー10の下部には、汚泥供給ポンプ60を介して汚泥が供給され、汚泥供給量は、燃焼処理量として制御装置100に送られる。また、ライザー10の下部には、バルブ51、燃料使用量検出部71を介して燃料70が供給される。バルブ51は、燃料使用量調節器(FIC)41により、燃料使用量検出器71で検出された燃料使用量が制御装置100から指示された制御量となるように開度制御される。
 ライザー10の下部には一次空気ブロワ80からバルブ52を介して、汚泥の完全燃焼に必要な空気流量の空気のうちの一部の空気としての1次空気A1が供給される。また、後燃焼部3の上部又は中部には、二次空気ブロワ90からバルブ53を介して2次空気A2が供給され、局所高温場ゾーンが形成される。さらに、後燃焼部3の中部又は下部には、二次空気ブロワ90からバルブ54を介して3次空気A3が供給され、完全燃焼ゾーンが形成される。これらの2次空気A2及び3次空気A3は、汚泥の完全燃焼に必要な空気流量の空気のうちの残部の空気である。
 1次空気流量調節器42は、制御装置100によって指示された制御量の1次空気A1をライザー10の下部の濃厚層12に供給するように、不図示の1次空気流量検出器の検出結果をもとにバルブ52の開度を制御する。2次空気流量調節器43は、制御装置100から指示された制御量の2次空気A2を、後燃焼部3の上部又は中部に供給するように、不図示の2次空気流量検出器の検出結果をもとにバルブ53の開度を制御する。3次空気流量調節器44は、制御装置100から指示された制御量の3次空気A3を後燃焼部3の中部又は下部に供給するように、不図示の3次空気流量検出器の検出結果をもとにバルブ54の開度を制御する。
 ライザー10及び後燃焼部3には、複数の熱電対13,33がそれぞれ分散配置され、それぞれの炉内温度が計測されるようになっている。
 この循環型多層燃焼炉1では、ライザー10において、下部に供給された汚泥を、同じく下部から供給される燃料70及び1次空気A1によって燃焼させ、後燃焼部3において、ライザー10及びサイクロン20を介してから排出される熱分解ガスに対し、上部又は中部に供給される2次空気A2によって局所高温場ゾーンで燃焼させて燃焼排ガス中のNOを分解し、同じく下部では、3次空気A3によって完全燃焼ゾーンで不燃分を完全燃焼させる。
 制御装置100には、燃料使用量検出器71、汚泥供給流量検出器61、1次空気流量検出器、2次空気流量検出器、3次空気流量検出器から、それぞれ燃料使用量、汚泥処理量、1次空気流量、2次空気流量、3次空気流量が入力されるとともに、熱電対13、33からそれぞれ、ライザー10の炉内温度、及び後燃焼部3の炉内温度が入力される。また、制御装置100には、後燃焼部3から、ガスセンサ35により検出されるOやNO等の排ガス成分値も入力される。そして、制御装置100は、燃料使用量調節器41、1次空気流量調節器42、2次空気流量調節器43、及び3次空気流量調節器44にそれぞれ、制御量としての、燃料使用量、1次空気流量、2次空気流量、及び3次空気流量を出力する。
 ここで、循環部2では、上述したように、ライザー10の炉内容量に応じて、炉内で流動媒体を分散させて適度な流動媒体密度を確保するため、一定値以上の1次空気流量を循環部2内に流入させる必要がある。したがって、循環部2への1次空気流量は、一定値の1次空気流量(最低1次空気流量)未満となることはない。
 制御装置100は、循環部2に供給される1次空気流量が流動媒体を分散させるための最低1次空気流量を超える、いわゆる通常運転状態の場合、循環部2において汚泥の単位焼却処理量当たりの燃料使用量を一定値とし、かつ1次空気比が1未満となる抑制燃焼を行い、後燃焼部3において2次空気A2及び3次空気A3を供給して循環部2からの熱分解ガスをさらに燃焼させて完全燃焼させる第一の制御による第1多層燃焼処理を行う。
 また、制御装置100は、循環部2に供給される1次空気流量が最低1次空気流量となった、いわゆる低負荷運転状態の場合、循環部2において汚泥の単位焼却処理量当たりの燃料使用量を第1多層燃焼処理と同じ値とし、かつ循環部2に供給される単位時間当たりの汚泥の焼却処理量の減少に伴って1次空気比を循環型多層燃焼炉1全体の全空気比の値まで徐々に増大させ、後燃焼部3において循環部2に供給される単位時間当たりの汚泥の焼却処理量の減少に伴って2次空気比及び3次空気比を0の値まで徐々に減少させる第二の制御による第2多層燃焼処理を行う。そして、循環部2に供給される1次空気流量が最低1次空気流量であり、循環部2に供給される1次空気比が全空気比となった場合、循環部2のみで汚泥を完全燃焼させる循環部完全燃焼処理を行う。
 ここで、図2A,図2B、図2C、及び図2Dを参照して、制御装置100による燃焼制御処理を具体的に説明する。図2Aは、循環型多層燃焼炉1の負荷である、単位時間当たりの焼却処理量Brに対する単位焼却処理量(1t-cake)当たりの燃料使用量Fr(Nm/t-cake)を示す。図2Bは、単位時間当たりの焼却処理量Brに対する空気比(1次空気比m1,2次空気比m2,3次空気比m3,全空気比m)の変化を示す。また、図2Cは、単位時間当たりの焼却処理量Brに対する1次空気流量A1V、図2Dは、単位時間当たりの焼却処理量Brに対する循環部出口温度Tの変化を示す。なお、100%負荷の焼却処理量Brは、具体的には例えば100t/日である。したがって、75%負荷及び50%負荷の焼却処理量Brはそれぞれ、具体的には例えば75t/日及び50t/日である。
 図2Cに示すように、この循環部2の最低1次空気流量A1Vminは、焼却処理量Brが75%負荷のときである。この最低1次空気流量A1Vminを超えて最大1次空気流量A1Vmaxまでの区間、すなわち、75%負荷から100%負荷の間では、上述した第1多層燃焼処理B1が行われる。また、最低1次空気流量A1Vminである区間、すなわち、75%負荷から50%負荷の間では、上述した第2多層燃焼処理B2が行われ、特に、50%負荷時では、循環部完全燃焼処理B3が行われる。
(第1多層燃焼処理)
 図2Bに示すように、第1多層燃焼処理B1の区間では、循環部2での1次空気比m1が1未満、例えば0.9とする抑制燃焼処理が行われる。また、後燃焼部3での2次空気比m2を例えば0.1及び3次空気比m3を例えば0.3として循環部2からの熱分解ガスを完全燃焼させる。そして、循環型多層燃焼炉1全体の全空気比は例えば1.3に設定される。この状態においては、汚泥の処理量が多く、循環部2が抑制燃焼状態であるとともに、後燃焼部3において局所高温場ゾーンが形成されており、N2Oガスが低減される。そして、循環部2が抑制燃焼であるため、図2Dに示すように、第1多層燃焼処理B1の区間では、循環部出口温度Tは、例えば750℃となる。なお、後燃焼部出口温度は、例えば850℃となる。
 また、図2Aに示すように、第1多層燃焼処理B1の区間では、1次空気比m1を維持するために、単位焼却処理量当たりの燃料使用量は、一定値Fr1(例えば、20(Nm/t-cake))となる。なお、一定値Fr1は、単位焼却処理量に対応するため、焼却処理量Brが増えれば、燃料使用量の絶対量は増大する。
(第2多層燃焼処理及び循環部完全燃焼処理)
 図2Bに示すように、第2多層燃焼処理B2の区間では、循環部2での1次空気比m1は、1未満とすることに拘らず、負荷の減少に伴って単調に増大させ、50%負荷において全空気比mの値となるようにしている。一方、後燃焼部3の2次空気比m2及び3次空気比m3は、負荷の減少に伴って単調に減少させ、50%負荷において0となるようにしている。すなわち、50%負荷では、循環部2のみが完全燃焼し、後燃焼部3は、完全燃焼を確保する予備燃焼部の役割となる。ここで、第2多層燃焼処理B2の区間の75%負荷において、1次空気比m1を直ちに1.3、2次空気比m2及び3次空気比m3を直ちに0にして不連続に制御すると、循環部2に急速に多くの空気が供給されることになる。この場合、循環部2に余剰の空気を供給することになるので、循環部2においては、この余剰の空気を昇温させる必要が生じ、燃料の使用量が増加してしまう。そのため、第2多層燃焼処理B2の区間においては、負荷の減少に従って、1次空気比m1、2次空気比m2、及び3次空気比m3のそれぞれを単調かつ連続的に変化させる。
 また、第2多層燃焼処理B2の区間において、循環部2における1次空気比m1が1.0未満の場合、第1多層燃焼処理B1の区間と同様に、循環部2が抑制燃焼状態であるとともに、後燃焼部3において局所高温場ゾーンが形成されて、N2Oが低減される。そして、汚泥の処理量が少なくなり負荷が減少するのに伴い、循環部2における1次空気比m1が連続的に増加して1.0以上になると、循環部2においては、温度が上昇するが完全燃焼まではいかない程度の燃焼状態になる。この場合、後燃焼部3においては、第1多層燃焼処理B1の場合に比して温度が低下するが、N2Oは循環部2において完全燃焼させるよりも低い状態となる。
 上述した第1多層燃焼処理B1では、負荷が増減しても、循環部2と後燃焼部3と燃焼処理比率は変化させていないが、この第2多層燃焼処理B2では、負荷の減少に伴って、循環部2での燃焼処理比率を直ちに変更することなく、徐々に高めるようにしている。そして、50%負荷では、循環部2での燃焼処理比率を100%とする循環部完全燃焼処理B3を行っている。この結果、図2Dに示すように、第2多層燃焼処理B2の区間では、循環部出口温度Tは、75%負荷から50%負荷に近づくにしたがって、例えば750℃から850℃に高温化する。なお、後燃焼部出口温度は、例えば700℃となる。
 ここで、従来の循環型多層燃焼炉では、図2Bの破線で示すように、75%負荷から50%負荷の間でも、100%負荷から75%負荷の間の第1多層燃焼処理と同様に、負荷とは無関係に1次空気比m1、2次空気比m2、3次空気比m3を一定とする制御を行っていた。この結果、図2Dの破線で示すように、75%負荷から50%負荷の間でも、循環部2は、循環部出口温度Tが750℃となる抑制燃焼が行われ、後燃焼部出口温度が850℃となっていた。しかし、図2Cに示すように、75%負荷から50%負荷の間では、負荷の減少に伴って、絶対量である1次空気流量A1Vが減少しないため、1次空気流量A1Vが余剰となり、図2Aの破線で示すように、この余剰分の空気に対応して強制的に1次空気比m1を0.9に維持して汚泥の抑制燃焼を行わせるための単位焼却処理量当たりの燃料使用量が、負荷の減少(1次空気流量A1Vの余剰量の増大)に伴って増大していた。
 これに対し、この実施の形態では、図2Bの75%負荷から50%負荷の間で、負荷の減少に伴って、1次空気比m1を増大させ、循環部2の抑制燃焼(多層燃焼状態)から、循環部2による汚泥の完全燃焼状態(高温状態)に移行させているため、1次空気流量A1Vの余剰量の増大という状態が発生せず、無駄な燃料増大を抑えることができる。
 なお、上述した75%負荷や50%負荷は、一例であり、循環部2の炉容量によって決定されるものである。
 以上、実施形態を用いてこの発明を説明したが、この発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。またその様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 1 循環型多層燃焼炉
 2 循環部
 3 後燃焼部
 10 ライザー
 11 希薄層
 12 濃厚層
 13,33 熱電対
 20 サイクロン
 21 ダウンカマー
 35 ガスセンサ
 41 燃料使用量調節器
 42,43,44 空気流量調節器
 51,52,53,54 バルブ
 60 汚泥供給ポンプ
 61 汚泥供給流量検出器
 70 燃料
 71 燃料使用量検出器
 80 一次空気ブロワ
 90 二次空気ブロワ
 100 制御装置
 A1 1次空気
 A2 2次空気
 A3 3次空気

Claims (2)

  1.  流動媒体を循環させる空気を供給しつつ汚泥を燃焼する循環部と、前記循環部からの熱分解ガスに空気を供給して完全燃焼させる後燃焼部とを有し、投入汚泥量に対応する完全燃焼に必要な空気流量の空気を、前記循環部と前記後燃焼部とに対して所定の比率に分けて供給する第一の制御を行う循環型多層燃焼炉であって、
     前記第一の制御では前記循環部に供給されるべき空気の空気流量が前記流動媒体を循環させるのに必要な空気流量未満になる場合に、前記第一の制御に代えて、前記完全燃焼に必要な空気流量の空気のうち、前記循環部において前記流動媒体を循環させるのに必要な最低限の空気流量以上の空気を前記循環部に供給するとともに、残部の空気を前記後燃焼部に供給する、第二の制御を行う
     ことを特徴とする循環型多層燃焼炉。
  2.  前記第二の制御は、前記完全燃焼に必要な空気流量の空気のうち、前記循環部において前記流動媒体を循環させるのに必要な最低限の空気流量の空気を前記循環部に供給するとともに、残部の空気を前記後燃焼部に供給する制御であることを特徴とする請求項1に記載の循環型多層燃焼炉。
PCT/JP2013/066511 2012-06-18 2013-06-14 循環型多層燃焼炉 WO2013191109A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147034787A KR101552294B1 (ko) 2012-06-18 2013-06-14 순환형 다층 연소로
EP13806758.2A EP2863122B1 (en) 2012-06-18 2013-06-14 Circulating-type multi-layer furnace
JP2014521440A JP5998216B2 (ja) 2012-06-18 2013-06-14 循環型多層燃焼炉
CN201380030129.0A CN104350330B (zh) 2012-06-18 2013-06-14 循环型多层燃烧炉
HK15102855.3A HK1202610A1 (zh) 2012-06-18 2015-03-20 循環型多層燃燒爐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-137091 2012-06-18
JP2012137091 2012-06-18

Publications (1)

Publication Number Publication Date
WO2013191109A1 true WO2013191109A1 (ja) 2013-12-27

Family

ID=49768706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066511 WO2013191109A1 (ja) 2012-06-18 2013-06-14 循環型多層燃焼炉

Country Status (6)

Country Link
EP (1) EP2863122B1 (ja)
JP (1) JP5998216B2 (ja)
KR (1) KR101552294B1 (ja)
CN (1) CN104350330B (ja)
HK (1) HK1202610A1 (ja)
WO (1) WO2013191109A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008761A (ja) * 2014-06-24 2016-01-18 株式会社神鋼環境ソリューション 汚泥の燃焼方法および汚泥用の燃焼炉

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107461752A (zh) * 2017-06-29 2017-12-12 俞国豪 一种湿污泥焚烧方法及流化床焚烧炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219413A (ja) * 1995-02-14 1996-08-30 Mitsubishi Heavy Ind Ltd 流動床ボイラ
JP2001263634A (ja) 2000-03-22 2001-09-26 Ngk Insulators Ltd 循環流動焼却炉の運転方法及びこれに用いられる流動媒体分離粒径調整装置
JP2003042422A (ja) * 2001-08-02 2003-02-13 Hitachi Zosen Corp 廃棄物燃焼方法
JP2004279015A (ja) * 2003-03-19 2004-10-07 Babcock Hitachi Kk 流動床式廃棄物処理装置
JP2009139043A (ja) 2007-12-10 2009-06-25 Metawater Co Ltd 汚泥の焼却装置及びこれを用いた汚泥の焼却方法
JP2009229042A (ja) * 2008-03-25 2009-10-08 Ihi Corp 循環流動層ガス化装置とその空気流量制御方法及び装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181322A (ja) * 2002-12-02 2004-07-02 Tsukishima Kikai Co Ltd 流動層
JP2004278992A (ja) * 2003-03-18 2004-10-07 Babcock Hitachi Kk 流動層焼却炉とその運転方法
US6865994B2 (en) * 2003-04-03 2005-03-15 General Electric Company Step-diffuser for overfire air and overfire air/N-agent injector systems
CN101725965B (zh) * 2008-10-21 2012-07-25 神华集团有限责任公司 循环流化床高温烟气炉及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219413A (ja) * 1995-02-14 1996-08-30 Mitsubishi Heavy Ind Ltd 流動床ボイラ
JP2001263634A (ja) 2000-03-22 2001-09-26 Ngk Insulators Ltd 循環流動焼却炉の運転方法及びこれに用いられる流動媒体分離粒径調整装置
JP2003042422A (ja) * 2001-08-02 2003-02-13 Hitachi Zosen Corp 廃棄物燃焼方法
JP2004279015A (ja) * 2003-03-19 2004-10-07 Babcock Hitachi Kk 流動床式廃棄物処理装置
JP2009139043A (ja) 2007-12-10 2009-06-25 Metawater Co Ltd 汚泥の焼却装置及びこれを用いた汚泥の焼却方法
JP2009229042A (ja) * 2008-03-25 2009-10-08 Ihi Corp 循環流動層ガス化装置とその空気流量制御方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008761A (ja) * 2014-06-24 2016-01-18 株式会社神鋼環境ソリューション 汚泥の燃焼方法および汚泥用の燃焼炉

Also Published As

Publication number Publication date
KR101552294B1 (ko) 2015-09-10
JPWO2013191109A1 (ja) 2016-05-26
HK1202610A1 (zh) 2015-10-02
CN104350330B (zh) 2016-09-07
EP2863122A4 (en) 2016-03-09
EP2863122B1 (en) 2019-01-09
EP2863122A1 (en) 2015-04-22
KR20150014490A (ko) 2015-02-06
JP5998216B2 (ja) 2016-09-28
CN104350330A (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
JP2009139043A (ja) 汚泥の焼却装置及びこれを用いた汚泥の焼却方法
JP5780806B2 (ja) 汚泥焼却処理システム、及び汚泥焼却処理方法
JP2015001347A (ja) 竪型粉砕分級装置
KR101867160B1 (ko) 고온튜브부식과 클링커 생성 감소가 가능한 고형연료 열이용 순환유동층 연소보일러, 및 그 작동방법
JP5297066B2 (ja) 汚泥炭化処理設備における熱分解ガス処理方法及び装置
WO2013191109A1 (ja) 循環型多層燃焼炉
JP5435973B2 (ja) 流動焼却炉
JP2005097063A (ja) 有機系廃棄物の処理方法
JP2005199157A (ja) 汚泥の炭化処理方法及び装置並びに発電方法
JP2012122623A (ja) 下水汚泥の乾燥焼却方法及び装置
JP7397627B2 (ja) 焼却プラント及びその燃焼制御方法
JP2019127576A (ja) バイオマス炭化物製造システム
JP6748697B2 (ja) 燃焼制御方法
JP6363810B1 (ja) バイオマス炭化物製造システム
JP2010054169A (ja) 流動層式焼却装置の運転制御方法及び流動層式焼却装置
JP4200789B2 (ja) 焼却方法、及び焼却装置
JP2020008248A (ja) ストーカ式廃棄物発電システム及びその廃棄物発電量の安定化方法
JP2681748B2 (ja) 流動床炉における安定燃焼方法及び装置
JPH1194224A (ja) 流動床式焼却炉の燃焼制御方法
JP2000081206A (ja) 部分燃焼炉の起動制御方法及び停止制御方法並びに起動・停止制御装置
JP2005282970A (ja) ストーカ式ごみ焼却炉の燃焼制御方法及びごみ焼却炉
JP6363809B1 (ja) バイオマス炭化物製造システム
JP2008224144A (ja) 廃棄物の焼却方法
JP2012021652A (ja) 石炭焚きボイラの燃焼炉及び石炭焚きボイラの燃焼炉の運転方法
JP2005351562A (ja) 廃棄物処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521440

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013806758

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147034787

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE