WO2013190829A1 - 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法 - Google Patents

多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法 Download PDF

Info

Publication number
WO2013190829A1
WO2013190829A1 PCT/JP2013/003791 JP2013003791W WO2013190829A1 WO 2013190829 A1 WO2013190829 A1 WO 2013190829A1 JP 2013003791 W JP2013003791 W JP 2013003791W WO 2013190829 A1 WO2013190829 A1 WO 2013190829A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
plate
silicon rod
sample
baseline
Prior art date
Application number
PCT/JP2013/003791
Other languages
English (en)
French (fr)
Inventor
秀一 宮尾
岡田 淳一
祢津 茂義
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP13806297.1A priority Critical patent/EP2863212B1/en
Priority to KR1020157000911A priority patent/KR101763045B1/ko
Priority to CN201380032180.5A priority patent/CN104395740B/zh
Priority to US14/409,202 priority patent/US9274069B2/en
Publication of WO2013190829A1 publication Critical patent/WO2013190829A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3306Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object rotates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/606Specific applications or type of materials texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Definitions

  • the present invention is a method for evaluating the degree of crystal orientation of polycrystalline silicon, and a non-oriented polycrystalline silicon rod or lump suitable as a raw material for stably producing single crystal silicon using the method. On how to do.
  • Siemens method is a method of vapor deposition (deposition) of polycrystalline silicon on the surface of silicon core wire by CVD (Chemical Vapor Deposition) method by bringing silane source gas such as trichlorosilane and monosilane into contact with heated silicon core wire. It is a method to make it.
  • Patent Document 2 discloses that needle-like crystals may be precipitated in a rod during the process of manufacturing a polycrystalline silicon rod (polycrystalline silicon rod) by the Siemens method.
  • the individual crystallites do not melt uniformly according to their size due to the above-mentioned inhomogeneous microstructure, and the unmelted crystallites become solid particles as single particles through the melting zone.
  • a problem has been pointed out that it passes through the crystal rod and is incorporated into the solidified surface of the single crystal as unmelted particles, thereby causing defect formation.
  • Patent Document 2 the sample surface cut perpendicularly to the long axis direction of the polycrystalline silicon rod is polished or polished, and after etching, the microcrystals of the structure are contrasted to such an extent that they can be visually recognized under an optical microscope.
  • the present invention has been made in view of such problems, and the object of the present invention is to select polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility. It is to provide a technology that contributes to stable manufacturing.
  • a method for evaluating the degree of crystal orientation of polycrystalline silicon is a method for evaluating the degree of crystal orientation of polycrystalline silicon by an X-ray diffraction method.
  • the plate-like sample is arranged at a position where Bragg reflection from the mirror index surface ⁇ hkl> is detected, and the X-ray irradiation region defined by the slit is ⁇ -scanned on the main surface of the plate-like sample.
  • a chart showing the dependence of the Bragg reflection intensity from the mirror index surface ⁇ hkl> on the rotation angle ( ⁇ ) of the plate sample is obtained by in-plane rotation with the center of the plate sample as the rotation center at a rotation angle ⁇ .
  • a baseline is obtained from the chart, and the diffraction intensity value of the baseline is used as an evaluation index of the degree of crystal orientation.
  • the Miller index surface ⁇ hkl> is at least one of ⁇ 111> and ⁇ 220>.
  • the method for selecting a polycrystalline silicon rod according to the present invention is a method for selecting a polycrystalline silicon rod used as a raw material for producing single crystal silicon using an X-ray diffraction method, wherein the polycrystalline silicon rod is a chemical vapor.
  • Two or more plate-like samples grown by phase method precipitation and having a cross section perpendicular to the radial direction of the polycrystalline silicon rod as a main surface are collected, and the plate-like samples are mirror index plane ⁇ hkl > At a position where Bragg reflection is detected, and a rotation angle ⁇ around the center of the plate sample as a rotation center so that the X-ray irradiation region defined by the slit scans the main surface of the plate sample.
  • the Miller index surface ⁇ hkl> is at least one of ⁇ 111> and ⁇ 220>.
  • the mirror index surface ⁇ hkl> is ⁇ 111>
  • the diffraction intensity value of the baseline of the chart obtained by performing the ⁇ scan is calculated as the two or more plate-like shapes. It is possible to adopt an aspect in which each sample is obtained and selected as a raw material for producing single crystal silicon when a value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values by the minimum value is 1.5 or less.
  • the mirror index surface ⁇ hkl> is ⁇ 220>, and the diffraction intensity value of the baseline of the chart obtained by performing the ⁇ scan is obtained for each of the two or more plate-like samples, It is also possible to adopt a mode in which a raw material for producing single crystal silicon is selected when a value obtained by dividing the maximum value of the baseline diffraction intensity by the minimum value is 1.9 or less.
  • the ⁇ scan was performed on both the mirror index surfaces ⁇ 111> and ⁇ 220>, and the baseline diffraction intensity of the chart obtained for the mirror index surface ⁇ 111>.
  • the raw material for producing single crystal silicon can be selected.
  • a polycrystalline silicon rod is selected by the above-described method, and single crystal silicon is produced using this as a silicon raw material, or a polycrystalline silicon lump obtained by crushing a selected polycrystalline silicon rod is obtained.
  • Single crystal silicon is manufactured using silicon as a raw material. Thereby, it is possible to suppress the occurrence of the problem that the crystal line disappears in the single crystallization.
  • the polycrystalline silicon rod selected by the method of the present invention is “non-oriented” having a low degree of crystal orientation, crystals can be grown by the FZ method using such a polycrystalline silicon rod.
  • a crystal is grown by the CZ method using a polycrystalline silicon lump obtained by crushing, local generation of partial melting residue is suppressed, and single crystal silicon can be stably produced.
  • FIG. 5 is an example of a chart obtained by performing the ⁇ scan measurement shown in FIG. 4 for the mirror index surfaces ⁇ 111>, ⁇ 220>, ⁇ 311>, and ⁇ 400>. It is a figure for demonstrating the outline of the other example of a measurement system at the time of calculating
  • 7 is an example of a chart obtained by performing the ⁇ scan measurement shown in FIG.
  • the present inventors are studying the improvement of the quality of polycrystalline silicon for stable production of single crystal silicon, and the degree of crystal orientation in the polycrystalline silicon rod depends on various conditions during the precipitation of polycrystalline silicon. It came to the knowledge that a difference arises. Unlike single crystal silicon, a block of polycrystalline silicon contains many crystal grains, but these many crystal grains tend to be considered to be randomly oriented. However, according to a study by the present inventors, the crystal grains contained in the polycrystalline silicon block are not necessarily completely randomly oriented.
  • a powder sample obtained by pulverizing a polycrystalline silicon block individual silicon crystal grains can be handled as being completely randomly oriented.
  • the powder sample is placed at a position where Bragg reflection from a specific mirror index surface ⁇ hkl> is detected, and the center of the sample is rotated so that the X-ray irradiation area defined by the slit scans the entire surface of the powder sample.
  • the in-plane rotation is performed, the Bragg reflection intensity is substantially constant, and even if 2 ⁇ measurement is performed, the observed value on the chart is almost a straight line.
  • the present inventors collected plate-like samples having a cross section perpendicular to the radial direction from many different polycrystalline silicon rods grown by chemical vapor deposition, as described above.
  • the Bragg reflection intensity chart from the mirror index surface ⁇ hkl> may show large and small peaks depending on the manufacturing conditions of the polycrystalline silicon rod.
  • the baseline value (intensity) of the chart varies depending on the sample.
  • samples are taken from a large number of polycrystalline silicon rods (silicon rods) and the above Bragg reflection intensity is measured, and each polycrystalline silicon rod is used as a raw material by the FZ method.
  • the baseline diffraction intensity value appearing in the above-mentioned Bragg reflection intensity chart satisfies a specific condition, the crystal line does not disappear during the single crystallization process.
  • it was not satisfied it was found that the probability of disappearance of the crystal line was high in the single crystallization process.
  • the specific condition that satisfies the baseline diffraction intensity value will be described later.
  • the degree of crystal orientation depends on various conditions for depositing polycrystalline silicon, and the crystal grains in the polycrystalline silicon rod are not necessarily randomly oriented. If a polycrystalline silicon rod or a polycrystalline silicon lump with a low crystal orientation randomness (high degree of crystal orientation) is used as a raw material for producing single crystal silicon, partial melting residue may occur locally. It was found that this can induce dislocation generation and cause crystal line disappearance.
  • a cylindrical sample having the radial direction as the central axis is obtained from one polycrystalline silicon rod, and a plate whose main surface is a cross section perpendicular to the radial direction of the polycrystalline silicon rod from a different position of the cylindrical sample.
  • a plurality of sliced specimens (disk specimens) were sampled, and 2 ⁇ measurement of the Bragg reflection intensity was performed for each of the specimens, and the charts of the Bragg reflection intensities were compared. The state of orientation can be estimated.
  • FIGS. 1A and 1B are diagrams for explaining an example of collecting a plate-like sample 20 for measuring an X-ray diffraction profile from a polycrystalline silicon rod 10 grown by chemical vapor deposition such as Siemens method. It is.
  • reference numeral 1 denotes a silicon core wire for depositing polycrystalline silicon on the surface to form a silicon rod.
  • three parts CTR: part close to the silicon core wire 1; EDG: part close to the side surface of the polycrystalline silicon rod 10) are used to confirm whether or not the crystal orientation degree of the polycrystalline silicon rod is dependent on the radial direction.
  • R / 2 The plate-like sample 20 is collected from a portion intermediate between CTR and EGD), but is not limited to the collection from such a portion.
  • the diameter of the polycrystalline silicon rod 10 illustrated in FIG. 1A is approximately 120 mm. From the side surface side of the polycrystalline silicon rod 10, a rod 11 having a diameter of approximately 20 mm and a length of approximately 60 mm is connected to the longitudinal direction of the silicon core wire 1. And cut out vertically.
  • the portion, length, and number of rods 11 to be collected may be determined as appropriate according to the diameter of the silicon rod 10 or the diameter of the rod 11 to be cut out, and from which portion of the rod 11 in which the disc-like sample 20 is cut out. Although it may be collected, it is preferably a position where the properties of the entire silicon rod 10 can be reasonably estimated. For example, in the case of obtaining two disk-shaped samples, a position on the center side and a position on the outside of the point that is half the radius from the center with respect to the radius of the circumference of the silicon rod. It is preferable to acquire a disk-shaped sample from a location.
  • the acquisition positions of two samples to be compared are located on the center side of a point that is one third of the radius from the center and outside the point that is two thirds of the radius from the center. If the position is used, a more accurate comparison can be made.
  • the disk-shaped sample to compare should just be 2 or more, and there is no upper limit in particular.
  • the diameter of the disk-shaped sample 20 is set to approximately 20 mm for illustration only, and the diameter may be appropriately determined within a range that does not hinder the X-ray diffraction measurement.
  • the disk-shaped sample 20 collected as described above is placed at a position where Bragg reflection from the mirror index surface ⁇ hkl> is detected.
  • the mirror index plane is arranged and rotated in-plane at a rotation angle ⁇ around the center of the disk-shaped sample 20 so that the X-ray irradiation region defined by the slit scans the main surface of the disk-shaped sample 20 by ⁇ scanning.
  • a chart showing the dependency of Bragg reflection intensity from ⁇ hkl> on the rotation angle ( ⁇ ) of the disk-shaped sample 20 is obtained, a baseline is obtained from the chart, and the diffraction intensity value of the baseline is used as an evaluation index for crystal orientation. Used as
  • a polycrystalline silicon rod suitable as a raw material for producing single crystal silicon is selected by the method for evaluating the degree of crystal orientation of polycrystalline silicon.
  • the method for selecting a polycrystalline silicon rod according to the present invention is a method for selecting a polycrystalline silicon rod used as a raw material for producing single crystal silicon using an X-ray diffraction method, wherein the polycrystalline silicon rod is Two or more plate-like samples grown by chemical vapor deposition and having a cross section perpendicular to the radial direction of the polycrystalline silicon rod as a main surface are collected, and the plate-like samples are taken as mirror index surfaces.
  • the Miller index surface ⁇ hkl> is preferably at least one of ⁇ 111> and ⁇ 220>.
  • FIG. 2 is a diagram for explaining an outline of an example of a measurement system when an X-ray diffraction profile from the disk-shaped sample 20 is obtained by a so-called ⁇ -2 ⁇ method.
  • the collimated X-ray beam 40 (Cu-K ⁇ ray: wavelength 1.54 mm) emitted from the slit 30 is incident on the disk-shaped sample 20 and rotates the sample while rotating the disk-shaped sample 20 in the XY plane.
  • the intensity of the diffracted X-ray beam for each angle ( ⁇ ) is detected by a detector (not shown) to obtain an X-ray diffraction chart of ⁇ -2 ⁇ .
  • FIG. 4 is a diagram for explaining an outline of a measurement system when an X-ray diffraction profile from the disk-shaped sample 20 is obtained by a so-called ⁇ scan method.
  • the angle ⁇ of the disk-shaped sample 20 is set to an angle at which Bragg reflection from the mirror index surface ⁇ 111> is detected, and in this state, a slit is defined in a region extending from the center of the disk-shaped sample 20 to the peripheral edge.
  • FIG. 5 is an example of a chart obtained by performing the ⁇ scan measurement on the mirror index surfaces ⁇ 111>, ⁇ 220>, ⁇ 311>, and ⁇ 400>.
  • the Bragg reflection intensity is substantially constant regardless of any of the above Miller index surfaces, and the Bragg reflection intensity does not depend on the rotation angle ⁇ and is the same chart as the powder sample. That is, it can be determined that the disk-shaped sample 20 has a low degree of crystal orientation (high random orientation).
  • FIG. 6 is a diagram for explaining an outline of another measurement system example for obtaining an X-ray diffraction profile from the disk-shaped sample 20 by the ⁇ scan method.
  • the disk-shaped sample is illustrated.
  • An area extending across both ends of 20 is irradiated with X-rays on a thin rectangular area defined by a slit, and the center of the disk-shaped sample 20 is scanned so that this X-ray irradiation area scans the entire surface of the disk-shaped sample 20.
  • Rotate in the YZ plane ( ⁇ 0 ° to 360 °) as the center of rotation.
  • FIG. 7 is an example of a chart obtained by performing the above ⁇ scan measurement on the mirror index surfaces ⁇ 111>, ⁇ 220>, ⁇ 311>, ⁇ 400>, which is substantially the same as that shown in FIG. The same ⁇ scan chart is obtained.
  • FIG. 8 is a diagram for explaining an outline of another example of a measurement system when an X-ray diffraction profile from the disk-shaped sample 20 is obtained by the ⁇ scan method.
  • X-rays are irradiated not on the entire main surface of the sample 20 but only on the inner peripheral region, and the center of the disk-shaped sample 20 is set as the center of rotation so that this X-ray irradiation region scans the entire surface of the disk-shaped sample 20.
  • the evaluation of the crystal orientation according to the present invention is as follows. Needless to say, it is significant not only as a method for selecting a polycrystalline silicon rod grown by the Siemens method or the like, but also as a method for evaluating the crystal orientation degree of polycrystalline silicon by an X-ray diffraction method.
  • the crystal orientation in the polycrystalline silicon rod can be determined. It is also possible to know the change in crystal orientation with the presence or absence or the expansion of the diameter of the polycrystalline silicon rod, which makes it possible to select a polycrystalline silicon rod suitable as a raw material for producing single crystal silicon. To become.
  • the Miller index plane ⁇ hkl> is ⁇ 111>
  • the baseline diffraction intensity value of the chart obtained by performing the ⁇ scan is calculated as
  • the mirror index surface ⁇ hkl> is ⁇ 220>, and the diffraction intensity value of the baseline of the chart obtained by performing the ⁇ scan is obtained for each of the two or more plate-like samples,
  • the value obtained by dividing the maximum value of the baseline diffraction intensity by the minimum value is 1.9 or less, it may be selected as a raw material for producing single crystal silicon.
  • the ⁇ scan is performed for both the mirror index surface ⁇ 111> and ⁇ 220>, and the baseline diffraction of the chart obtained for the mirror index surface ⁇ 111> is obtained.
  • a value obtained by dividing the intensity value (I ⁇ 111> ) by the baseline diffraction intensity value (I ⁇ 220> ) of the chart obtained for the Miller index surface ⁇ 220> (divided value: I ⁇ 111> / I ⁇ 220> )
  • the maximum value of the plurality of division values obtained from the two or more plate-like samples is less than 2.5, it may be selected as a raw material for producing single crystal silicon.
  • FIG. 9A and 9B are both ⁇ scan chart examples of the mirror index surface ⁇ 111> of the plate-like sample, and FIG. 9A is a sample taken from the center of the polycrystalline silicon rod. Is for samples taken from the periphery of the same polycrystalline silicon rod. These charts were obtained by the measurement of the aspect shown in FIG. 6, and a chart portion where a large number of peaks did not appear was shown to facilitate understanding of the meaning of the baseline.
  • the ones indicated by dotted lines in these charts are base learns, and the crystal orientation of polycrystalline silicon is evaluated based on the diffraction intensity value (average value) of the baseline.
  • a peak having an S / N ratio of 3 or more is determined as a peak, and the peak part is determined according to a method for obtaining a baseline when integrating peak intensity. Establish a baseline.
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for the mirror index surface ⁇ 111> by the minimum value is 1.5 or less (1.46), and the mirror index surface ⁇ 220>
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values by the minimum value is also 1.9 or less (1.43).
  • the division value (I ⁇ 111> / I ⁇ 220> ) is less than 2.5 (maximum 1.74).
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for the mirror index surface ⁇ 111> by the minimum value is 1.5 or less (1.47), and the mirror index surface ⁇ 220>
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values by the minimum value is also 1.9 or less (1.8).
  • the division value (I ⁇ 111> / I ⁇ 220> ) is less than 2.5 (2.42 at the maximum).
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for the mirror index surface ⁇ 220> by the minimum value is 1.9 or less (1.20), but the mirror index surface ⁇ 111
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for> by the minimum value exceeds 1.5 (1.64).
  • One of the three plate-like samples has a division value (I ⁇ 111> / I ⁇ 220> ) of 2.5 or more (2.50).
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for the mirror index surface ⁇ 220> by the minimum value is 1.9 or less (1.89), but the mirror index surface ⁇ 111
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values with respect to> by the minimum value exceeds 1.5 (2.33).
  • One of the three plate-like samples has a division value (I ⁇ 111> / I ⁇ 220> ) of 2.5 or more (2.64).
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for the mirror index surface ⁇ 111> by the minimum value exceeds 1.5 (3.30), and the mirror index surface ⁇ 220
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for> by the minimum value also exceeds 1.9 (6.00).
  • One of the three plate-like samples has a division value (I ⁇ 111> / I ⁇ 220> ) of 2.5 or more (4.00).
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for the mirror index surface ⁇ 111> by the minimum value exceeds 1.5 (1.92), and the mirror index surface ⁇ 220.
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for> by the minimum value also exceeds 1.9 (2.00).
  • the division values (I ⁇ 111> / I ⁇ 220> ) of the three plate samples are all 2.5 or more.
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values for the mirror index surface ⁇ 111> by the minimum value is 1.5 or less, and the mirror index surface ⁇ 220.
  • the value obtained by dividing the maximum value of the plurality of baseline diffraction intensity values with respect to> by the minimum value is also 1.9 or less, and the division value (I ⁇ 111> / I ⁇ 220> ) for any plate-like sample
  • a polycrystalline silicon rod having a thickness of less than 2.5 is suitable as a raw material for growing single crystal silicon.
  • the present invention provides a technology that contributes to stable production of single crystal silicon by selecting polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Silicon Compounds (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 多結晶シリコンの結晶配向度をX線回折法により評価するにあたり、採取した円板状試料20をミラー指数面<hkl>からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が円板状試料20の主面上をφスキャンするように円板状試料20の中心を回転中心として回転角度φで面内回転させ、ミラー指数面<hkl>からのブラッグ反射強度の円板状試料20の回転角度(φ)依存性を示すチャートを求め、該チャートからベースラインを求め、該ベースラインの回折強度値を結晶配向度の評価指標として用いる。本発明は、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供する。

Description

多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
 本発明は、多結晶シリコンの結晶配向度を評価する方法、および、これを利用して単結晶シリコンを安定的に製造するための原料として好適な無配向性の多結晶シリコン棒乃至塊を選択する方法に関する。
 半導体デバイス等の製造に不可欠な単結晶シリコンは、CZ法やFZ法により結晶育成され、その際の原料として多結晶シリコン棒や多結晶シリコン塊が用いられる。このような多結晶シリコン材料は、多くの場合、シーメンス法により製造される(特許文献1等参照)。シーメンス法とは、トリクロロシランやモノシラン等のシラン原料ガスを加熱されたシリコン芯線に接触させることにより、該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法により気相成長(析出)させる方法である。
 例えば、CZ法で単結晶シリコンを結晶育成する際には、石英ルツボ内に多結晶シリコン塊をチャージし、これを加熱溶融させたシリコン融液に種結晶を浸漬して転位線を消滅(無転位化)させた後に、所定の直径となるまで徐々に径拡大させて結晶の引上げが行われる。このとき、シリコン融液中に未溶融の多結晶シリコンが残存していると、この未溶融多結晶片が対流により固液界面近傍を漂い、転位発生を誘発して結晶線を消失させてしまう原因となる。
 また、特許文献2には、多結晶シリコンロッド(多結晶シリコン棒)をシーメンス法で製造する工程中に該ロッド中で針状結晶が析出することがあり、かかる多結晶シリコン棒を用いてFZ法による単結晶シリコン育成を行うと、上述の不均質な微細構造によって個々の晶子がその大きさに相応して均一には溶融せず、不溶融の晶子が固体粒子として溶融帯域をとおって単結晶ロッドへと通り抜けて未溶融粒子として単結晶の凝固面に組み込まれ、これにより欠陥形成が引き起こされるという問題が指摘されている。
 この問題に対し、特許文献2では、多結晶シリコン棒の長軸方向に対して垂直に切り出された試料面を研磨乃至ポリシングし、エッチング後に組織の微結晶を光学顕微鏡下でも視認できる程度にコントラストを高めて針状結晶のサイズとその面積割合を測定し、その測定結果に基づいてFZ単結晶シリコン育成用原料としての良否を判断する手法を提案している。
特公昭37-18861号公報 特開2008-285403号公報
 しかし、特許文献2に開示の手法のような、光学顕微鏡下での視認による良否判断は、観察試料面のエッチングの程度や評価担当者の観察技量等に依存して結果に差が生じ易いことに加え、定量性や再現性にも乏しい。このため、単結晶シリコンの製造歩留まりを高める観点からは、良否判断の基準を高めに設定しておく必要があり、結果として、多結晶シリコン棒の不良品率は高くなってしまう。
 また、本発明者らが検討したところによれば、特許文献2に開示の手法では、良品と判定された多結晶シリコン棒を用いた場合でも、FZ法による単結晶シリコンロッドの育成工程で転位が発生し結晶線が消失することがあることが判明した。
 従って、単結晶シリコンを高い歩留まりで安定的に製造するためには、単結晶シリコン製造用原料として好適な多結晶シリコンを、高い定量性と再現性で選別する技術が求められる。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供することにある。
 上記課題を解決するために、本発明に係る多結晶シリコンの結晶配向度評価方法は、多結晶シリコンの結晶配向度をX線回折法により評価する方法であって、前記多結晶シリコンを板状試料とし、該板状試料をミラー指数面<hkl>からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が前記板状試料の主面上をφスキャンするように該板状試料の中心を回転中心として回転角度φで面内回転させ、前記ミラー指数面<hkl>からのブラッグ反射強度の前記板状試料の回転角度(φ)依存性を示すチャートを求め、該チャートからベースラインを求め、該ベースラインの回折強度値を結晶配向度の評価指標として用いる、ことを特徴とする。
 好ましくは、前記ミラー指数面<hkl>は<111>及び<220>の少なくとも一方である。
 本発明に係る多結晶シリコン棒の選択方法は、単結晶シリコン製造用原料として用いる多結晶シリコン棒をX線回折法を用いて選択するための方法であって、前記多結晶シリコン棒は化学気相法による析出により育成されたものであり、該多結晶シリコン棒の径方向に垂直な断面を主面とする2枚以上の板状試料を採取し、該板状試料をミラー指数面<hkl>からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が前記板状試料の主面上をφスキャンするように該板状試料の中心を回転中心として回転角度φで面内回転させ、前記ミラー指数面<hkl>からのブラッグ反射強度の前記板状試料の回転角度(φ)依存性を示すチャートを求め、該チャートからベースラインを求め、前記2枚以上の板状試料のそれぞれから得られた前記ベースラインの回折強度値の比較結果を判定基準として単結晶シリコン製造用原料としての適否を判断する、ことを特徴とする。
 好ましくは、前記ミラー指数面<hkl>は<111>及び<220>の少なくとも一方である。
 上記多結晶シリコン棒の選択方法は、前記ミラー指数面<hkl>は<111>であり、前記φスキャンを行って得られたチャートの前記ベースラインの回折強度値を前記2枚以上の板状試料のそれぞれにつき求め、該複数のベースライン回折強度値の最大値を最小値で除した値が1.5以下である場合に単結晶シリコン製造用原料として選択する、態様とすることができる。
 また、前記ミラー指数面<hkl>は<220>であり、前記φスキャンを行って得られたチャートの前記ベースラインの回折強度値を前記2枚以上の板状試料のそれぞれにつき求め、該複数のベースライン回折強度値の最大値を最小値で除した値が1.9以下である場合に単結晶シリコン製造用原料として選択する、態様とすることもできる。
 さらに、前記2枚以上の板状試料のそれぞれにつき、ミラー指数面<111>と<220>の双方について前記φスキャンを行い、ミラー指数面<111>につき得られたチャートのベースラインの回折強度値(I<111>)をミラー指数面<220>につき得られたチャートのベースラインの回折強度値(I<220>)で除した値(除算値:I<111>/I<220>)を求め、前記2枚以上の板状試料から求まる複数の前記除算値の最大値が2.5未満である場合に単結晶シリコン製造用原料として選択する、態様とすることもできる。
 本発明に係る方法が特に有用なケースとして、前記多結晶シリコン棒がシーメンス法で育成されたものである場合を挙げることができる。
 本発明では、上述の方法により多結晶シリコン棒を選択し、これをシリコン原料として用いて単結晶シリコンを製造したり、選択された多結晶シリコン棒を破砕して得られた多結晶シリコン塊をシリコン原料として用いて単結晶シリコンを製造する。これにより、単結晶化において結晶線の消失が起きる問題の発生を抑制することができる。
 本発明の方法で選択された多結晶シリコン棒は結晶配向度が低い「無配向性」のものであるため、かかる多結晶シリコン棒を用いてFZ法で結晶育成したり、多結晶シリコン棒を破砕して得られた多結晶シリコン塊を用いてCZ法で結晶育成すると、部分的な溶融残りの局部的な発生が抑制され、単結晶シリコンを安定的に製造することができる。
化学気相法で析出させて育成された多結晶シリコン棒からの、X線回折測定用の板状試料の採取例について説明するための図である。 化学気相法で析出させて育成された多結晶シリコン棒からの、X線回折測定用の板状試料の採取例について説明するための図である。 板状試料からのX線回折プロファイルを、θ-2θ法で求める際の測定系例の概略を説明するための図である。 θ-2θのX線回折チャートの一例である。 板状試料からのX線回折プロファイルを、φスキャン法で求める際の測定系例の概略を説明するための図である。 図4に示したφスキャン測定をミラー指数面<111>、<220>、<311>、<400>について行って得られたチャートの一例である。 板状試料からのX線回折プロファイルを、φスキャン法で求める際の他の測定系例の概略を説明するための図である。 図6に示したφスキャン測定をミラー指数面<111>、<220>、<311>、<400>について行って得られたチャートの一例である。 板状試料からのX線回折プロファイルを、φスキャン法で求める際の他の測定系例の概略を説明するための図である。 多結晶シリコン棒の中心部から採取した板状試料の、ミラー指数面<111>についてのφスキャン・チャート例である。 多結晶シリコン棒の外周部から採取した板状試料の、ミラー指数面<111>についてのφスキャン・チャート例である。
 本発明者らは、単結晶シリコンの製造を安定的に行うための多結晶シリコンの品質向上につき検討を進める中で、多結晶シリコン析出時の諸条件により、多結晶シリコン棒中の結晶配向度に差異が生じるという知見を得るに至った。単結晶シリコンとは異なり、多結晶シリコンのブロックは多くの結晶粒を含んでいるが、これら多くの結晶粒はそれぞれがランダムに配向しているものと考えられがちである。しかし、本発明者らが検討したところによれば、多結晶シリコンブロックに含まれる結晶粒は、必ずしも完全にはランダム配向しているわけではない。
 多結晶シリコンブロックを粉砕して得られる粉末試料では、個々のシリコン結晶粒は完全にランダム配向しているものとして取り扱うことができる。事実、特定のミラー指数面<hkl>からのブラッグ反射が検出される位置に粉末試料を配置し、スリットにより定められるX線照射領域が粉末試料の全面をスキャンするように試料の中心を回転中心として面内回転させても、ブラッグ反射強度は略一定であり、2θ測定を行ってもチャート上の観測値はほぼ直線となる。
 これに対し、本発明者らが、化学気相法による析出で育成された多くの異なる多結晶シリコン棒から径方向に垂直な断面を主面とする板状試料を採取し、上記と同様の手法でミラー指数面<hkl>からのブラッグ反射強度を調べたところ、多結晶シリコン棒の製造条件によって、ミラー指数面<hkl>からのブラッグ反射強度のチャートは、大小のピークを示すこともあり、また、チャートのベースラインの値(強度)が試料により変動している事実がわかった。
 また、本発明者らの検討によれば、多数の多結晶シリコンロッド(シリコン棒)よりサンプルを採取して上述のブラッグ反射強度の測定を行い、それぞれの多結晶シリコンロッドを原料としてFZ法で単結晶化を試みたところ、上述したブラッグ反射強度のチャートに現れるベースラインの回折強度値が特定の条件を満足する場合には単結晶化の工程で結晶線が消失しない一方、この特定条件を満足しない場合には単結晶化の工程で結晶線が消失する確率が高いことが判明した。なお、上記ベースラインの回折強度値が満足する特定条件については、後述する。
 つまり、結晶配向度(反ランダム配向性)は多結晶シリコンを析出させる際の諸条件に依存し、多結晶シリコン棒中の結晶粒は必ずしもランダム配向していない。そして、結晶配向のランダムさが低い(結晶配向度の高い)多結晶シリコン棒乃至多結晶シリコン塊を単結晶シリコンの製造用原料として用いると、部分的な溶融残りが局部的に生じることがあり、これが転位発生を誘発して結晶線消失の原因ともなり得ることがわかった。
 多結晶シリコン棒を製造する際には、シリコン棒の成長に伴って表面積当たりの原料供給量や表面温度の状態も変化する。このため、結晶粒の配向性は、シリコン棒の長軸方向での部位依存性よりも、半径方向での部位依存性の方が高くなりやすい傾向がある。
 そこで、1本の多結晶シリコン棒から径方向を中心軸とする円柱状試料を取得し、この円柱状試料の異なる位置から、多結晶シリコン棒の径方向に垂直な断面を主面とする板状試料(円板状試料)をスライスして複数採取し、各板状試料につきブラッグ反射強度の2θ測定を行い、それらのブラッグ反射強度のチャートを比較することによって、シリコン棒全体の結晶粒の配向性の状態を推定することができる。
 そして、シリコン棒内における結晶配向性の部位依存性がある程度以下の場合には、係る多結晶シリコン棒を原料とする単結晶化工程において、融解・固化が均一に進行し、結果的に結晶線の消失が生じないことになると推定される。
 以下に、図面を参照しながら本発明の実施の形態について説明する。
 図1A及び図1Bは、シーメンス法などの化学気相法で析出させて育成された多結晶シリコン棒10からの、X線回折プロファイル測定用の板状試料20の採取例について説明するための図である。図中、符号1で示したものは、表面に多結晶シリコンを析出させてシリコン棒とするためのシリコン芯線である。なお、この例では、多結晶シリコン棒の結晶配向度の径方向依存性の有無を確認すべく3つの部位(CTR:シリコン芯線1に近い部位、EDG:多結晶シリコン棒10の側面に近い部位、R/2:CTRとEGDの中間の部位)から板状試料20を採取しているが、このような部位からの採取に限定されるものではない。
 図1Aで例示した多結晶シリコン棒10の直径は概ね120mmであり、この多結晶シリコン棒10の側面側から、直径が概ね20mmで長さが概ね60mmのロッド11を、シリコン芯線1の長手方向と垂直にくり抜く。
 そして、図1Bに図示したように、このロッド11のシリコン芯線1に近い部位(CTR)、多結晶シリコン棒10の側面に近い部位(EDG)、CTRとEGDの中間の部位(R/2)からそれぞれ、多結晶シリコン棒10の径方向に垂直な断面を主面とする厚みが概ね2mmの円板状試料(20CTR、20EDG、20R/2)を採取する。
 なお、ロッド11を採取する部位、長さ、および本数は、シリコン棒10の直径やくり抜くロッド11の直径に応じて適宜定めればよく、円板状試料20もくり抜いたロッド11のどの部位から採取してもよいが、シリコン棒10全体の性状を合理的に推定可能な位置であることが好ましい。例えば2枚の円板状試料を取得する場合には、シリコン棒の周の半径に対し、中心から半径の2分の1である点よりも中心側にある位置と、外側にある位置の2箇所から円板状試料を取得することが好ましい。更に、例えば比較を行う2つのサンプルの取得位置を、中心から半径の3分の1である点よりも中心側にある位置と、中心から半径の3分の2である点よりも外側にある位置とした場合、より高精度な比較ができる。また、比較する円板状試料は2枚以上であればよく、特に上限はない。
 また、円板状試料20の直径を概ね20mmとしたのも例示に過ぎず、直径はX線回折測定時に支障がない範囲で適当に定めればよい。
 本発明では、多結晶シリコンの結晶配向度をX線回折法により評価するにあたり、上述のようにして採取した円板状試料20をミラー指数面<hkl>からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が円板状試料20の主面上をφスキャンするように円板状試料20の中心を回転中心として回転角度φで面内回転させ、ミラー指数面<hkl>からのブラッグ反射強度の円板状試料20の回転角度(φ)依存性を示すチャートを求め、該チャートからベースラインを求め、該ベースラインの回折強度値を結晶配向度の評価指標として用いる。
 また、本発明では、上記多結晶シリコンの結晶配向度評価方法により、単結晶シリコン製造用原料として適する多結晶シリコン棒を選択する。
 すなわち、本発明に係る多結晶シリコン棒の選択方法は、単結晶シリコン製造用原料として用いる多結晶シリコン棒をX線回折法を用いて選択するための方法であって、前記多結晶シリコン棒は化学気相法による析出により育成されたものであり、該多結晶シリコン棒の径方向に垂直な断面を主面とする2枚以上の板状試料を採取し、該板状試料をミラー指数面<hkl>からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が前記板状試料の主面上をφスキャンするように該板状試料の中心を回転中心として回転角度φで面内回転させ、前記ミラー指数面<hkl>からのブラッグ反射強度の前記板状試料の回転角度(φ)依存性を示すチャートを求め、該チャートからベースラインを求め、前記2枚以上の板状試料のそれぞれから得られた前記ベースラインの回折強度値の比較結果を判定基準として単結晶シリコン製造用原料としての適否を判断する。
 なお、前記ミラー指数面<hkl>は、<111>及び<220>の少なくとも一方であることが好ましい。
 図2は、円板状試料20からのX線回折プロファイルを、いわゆるθ-2θ法で求める際の測定系例の概略を説明するための図である。スリット30から射出されてコリメートされたX線ビーム40(Cu-Kα線:波長1.54Å)は円板状試料20に入射し、円板状試料20をXY平面内で回転させながら、試料回転角度(θ)毎の回折X線ビームの強度を検知器(不図示)で検出して、θ-2θのX線回折チャートを得る。
 図3は、上記で得られたθ-2θのX線回折チャートの例で、ミラー指数面<111>、<220>、<311>、<400>からの強いブラッグ反射がそれぞれ、2θ=28.40°、47.24°、55.98°、68.98°の位置にピークとなって現れる。
 図4は、円板状試料20からのX線回折プロファイルを、いわゆるφスキャン法で求める際の測定系の概略を説明するための図である。例えば、円板状試料20の上記θを、ミラー指数面<111>からのブラッグ反射が検出される角度とし、この状態で、円板状試料20の中心から周端に渡る領域にスリットにより定められる細い矩形の領域にX線を照射させ、このX線照射領域が円板状試料20の全面をスキャンするように円板状試料20の中心を回転中心としてYZ面内で回転(φ=0°~360°)させる。
 図5は、上記φスキャン測定を、ミラー指数面<111>、<220>、<311>、<400>について行って得られたチャートの一例である。この例では、上記何れのミラー指数面に着目してもブラッグ反射強度は略一定であり、ブラッグ反射強度は回転角φに依存せず、粉末試料と同様のチャートとなっている。つまり、この円板状試料20は、結晶配向度が低い(ランダム配向性が高い)と判断することができる。
 図6は、円板状試料20からのX線回折プロファイルをφスキャン法で求める際の他の測定系例の概略を説明するための図で、この図に示した例では、円板状試料20の両周端に渡る領域にスリットにより定められる細い矩形の領域にX線を照射させ、このX線照射領域が円板状試料20の全面をスキャンするように円板状試料20の中心を回転中心としてYZ面内で回転(φ=0°~360°)させる。
 図7は、上記φスキャン測定を、ミラー指数面<111>、<220>、<311>、<400>について行って得られたチャートの一例で、実質的に、図5に示したものと同じφスキャン・チャートが得られている。
 図8は、円板状試料20からのX線回折プロファイルをφスキャン法で求める際のもうひとつの測定系例の概略を説明するための図で、この図に示した例では、円板状試料20の主面の全体ではなく、内周領域のみにX線を照射させ、このX線照射領域が円板状試料20の全面をスキャンするように円板状試料20の中心を回転中心としてYZ面内で回転(φ=0°~360°)させる。
 このようなX線照射領域から得られるφスキャン・チャートと、上述の円板状試料20の主面全体から得られるφスキャン・チャートとの差分を求める等の処理を行うと、円板状試料20の面内での結晶配向度分布を得ることが可能となる。
 尤も、図1A~1Bに示したような態様で採取された円板状試料20については面内での結晶配向度分布は生じないと考えられるが、本発明に係る結晶配向性の評価は、シーメンス法等により育成された多結晶シリコン棒の選択方法としてのみならず、多結晶シリコンの結晶配向度をX線回折法により評価する方法としても有意であることは言うまでもないから、例えば、化学気相法による析出で育成された多結晶シリコン棒の径方向と平行に切り出された円板状試料につき面内での結晶配向度分布を求めることにより、多結晶シリコン棒内での結晶配向性の有無乃至多結晶シリコン棒の口径拡大に伴う結晶配向性の変化等を知ることも可能となり、これにより単結晶シリコン製造用原料として好適な多結晶シリコン棒を選択することが可能となる。
 具体的には、上述した多結晶シリコン棒の選択方法において、前記ミラー指数面<hkl>は<111>であり、前記φスキャンを行って得られたチャートの前記ベースラインの回折強度値を前記2枚以上の板状試料のそれぞれにつき求め、該複数のベースライン回折強度値の最大値を最小値で除した値が1.5以下である場合に単結晶シリコン製造用原料として選択する方法である。
 また、前記ミラー指数面<hkl>は<220>であり、前記φスキャンを行って得られたチャートの前記ベースラインの回折強度値を前記2枚以上の板状試料のそれぞれにつき求め、該複数のベースライン回折強度値の最大値を最小値で除した値が1.9以下である場合に単結晶シリコン製造用原料として選択することとしてもよい。
 さらには、前記2枚以上の板状試料のそれぞれにつき、ミラー指数面<111>と<220>の双方について前記φスキャンを行い、ミラー指数面<111>につき得られたチャートのベースラインの回折強度値(I<111>)をミラー指数面<220>につき得られたチャートのベースラインの回折強度値(I<220>)で除した値(除算値:I<111>/I<220>)を求め、前記2枚以上の板状試料から求まる複数の前記除算値の最大値が2.5未満である場合に単結晶シリコン製造用原料として選択することとしてもよい。
 図9Aおよび図9Bは何れも、板状試料のミラー指数面<111>についてのφスキャン・チャート例で、図9Aは多結晶シリコン棒の中心部から採取した試料についてのものであり、図9Bは同じ多結晶シリコン棒の周辺部から採取した試料についてのものである。なお、これらのチャートは図6に示した態様の測定により得られたものであり、ベースラインの意味を理解し易いように多数のピークが現れないチャート部分を示した。
 これらのチャート中に点線で示したものがベースラーンであり、このベースラインの回折強度値(平均値)を基に、多結晶シリコンの結晶配向性を評価する。なお、ピークが現れているチャート部のベースラインは、まず、S/N比が3以上であるピークをピークと判定し、ピーク部分についてはピーク強度の積分を行う際にベースラインを求める手法に従ってベースラインを定める。
 異なる析出条件下で育成された多結晶シリコン棒を6本準備した。これらの多結晶シリコン棒(シリコン棒A~F)のそれぞれにつき、図1Aおよび1Bで示した3つの部位から、厚みが概ね2mmの円板状試料(20CTR、20EDG、20R/2)を採取し、図6に示した測定系により、ミラー指数面<111>及び<220>のφスキャン・チャートを得た。なお、円板状試料20の直径は約20mmである。
 これらの多結晶シリコン棒から得られた円板状試料毎のベースライン(BL)の回折強度、並びに、多結晶シリコン棒を用いてFZ法による単結晶シリコンロッドの育成を行った際の結晶線消失の有無を表1に纏めた。
Figure JPOXMLDOC01-appb-T000001
 シリコン棒Aについては、ミラー指数面<111>についての複数のベースライン回折強度値の最大値を最小値で除した値が1.5以下(1.46)であり、ミラー指数面<220>についての複数のベースライン回折強度値の最大値を最小値で除した値も1.9以下(1.43)である。また、何れの板状試料についても、除算値(I<111>/I<220>)は2.5未満(最大で1.74)である。
 シリコン棒Bについては、ミラー指数面<111>についての複数のベースライン回折強度値の最大値を最小値で除した値が1.5以下(1.47)であり、ミラー指数面<220>についての複数のベースライン回折強度値の最大値を最小値で除した値も1.9以下(1.8)である。また、何れの板状試料についても、除算値(I<111>/I<220>)は2.5未満(最大で2.42)である。
 シリコン棒Cについては、ミラー指数面<220>についての複数のベースライン回折強度値の最大値を最小値で除した値は1.9以下(1.20)であるが、ミラー指数面<111>についての複数のベースライン回折強度値の最大値を最小値で除した値が1.5を超えている(1.64)。また、3つの板状試料のうちのひとつは、除算値(I<111>/I<220>)が2.5以上(2.50)である。
 シリコン棒Dについては、ミラー指数面<220>についての複数のベースライン回折強度値の最大値を最小値で除した値は1.9以下(1.89)であるが、ミラー指数面<111>についての複数のベースライン回折強度値の最大値を最小値で除した値が1.5を超えている(2.33)。また、3つの板状試料のうちのひとつは、除算値(I<111>/I<220>)が2.5以上(2.64)である。
 シリコン棒Eについては、ミラー指数面<111>についての複数のベースライン回折強度値の最大値を最小値で除した値が1.5を超えており(3.30)、ミラー指数面<220>についての複数のベースライン回折強度値の最大値を最小値で除した値も1.9を超えている(6.00)。また、3つの板状試料のうちのひとつは、除算値(I<111>/I<220>)が2.5以上(4.00)である。
 シリコン棒Fについては、ミラー指数面<111>についての複数のベースライン回折強度値の最大値を最小値で除した値が1.5を超えており(1.92)、ミラー指数面<220>についての複数のベースライン回折強度値の最大値を最小値で除した値も1.9を超えている(2.00)。また、3つの板状試料の除算値(I<111>/I<220>)は何れも、2.5以上である。
 そして、シリコン棒AおよびBにおいてはFZ法による単結晶シリコンロッドの育成を行った際の結晶線消失は認められなかった一方、シリコン棒C、D、E、およびFにおいて結晶線消失が生じた。
 本発明者らの検討によれば、特許文献2に開示されているような目視観察では結晶粒が確認されない多結晶シリコンであっても、これを原料として単結晶シリコンを製造すると転位発生の誘発に起因する結晶線消失を生じる場合があるのに対し、上述した本発明の方法によれば、上記基準で選択された多結晶シリコン棒乃至多結晶シリコン塊を用いて単結晶シリコンの育成を行うと、結晶線消失の発生が高い確率で防止できることが確認された。
 特に、上述のシリコン棒AやBのように、ミラー指数面<111>についての複数のベースライン回折強度値の最大値を最小値で除した値が1.5以下で、ミラー指数面<220>についての複数のベースライン回折強度値の最大値を最小値で除した値も1.9以下であり、且つ、何れの板状試料についても除算値(I<111>/I<220>)が2.5未満である多結晶シリコン棒は、単結晶シリコン育成用の原料として好適である。
 本発明は、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供する。
 1 シリコン芯線
 10 多結晶シリコン棒
 11 ロッド
 20 板状試料
 30 スリット
 40 X線ビーム

Claims (12)

  1.  多結晶シリコンの結晶配向度をX線回折法により評価する方法であって、
     前記多結晶シリコンを板状試料とし、該板状試料をミラー指数面<hkl>からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が前記板状試料の主面上をφスキャンするように該板状試料の中心を回転中心として回転角度φで面内回転させ、前記ミラー指数面<hkl>からのブラッグ反射強度の前記板状試料の回転角度(φ)依存性を示すチャートを求め、該チャートからベースラインを求め、該ベースラインの回折強度値を結晶配向度の評価指標として用いる、ことを特徴とする多結晶シリコンの結晶配向度評価方法。
  2.  前記ミラー指数面<hkl>は<111>及び<220>の少なくとも一方である、請求項1に記載の多結晶シリコンの結晶配向度評価方法。
  3.  単結晶シリコン製造用原料として用いる多結晶シリコン棒をX線回折法を用いて選択するための方法であって、
     前記多結晶シリコン棒は化学気相法による析出により育成されたものであり、該多結晶シリコン棒の径方向に垂直な断面を主面とする2枚以上の板状試料を採取し、該板状試料をミラー指数面<hkl>からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が前記板状試料の主面上をφスキャンするように該板状試料の中心を回転中心として回転角度φで面内回転させ、前記ミラー指数面<hkl>からのブラッグ反射強度の前記板状試料の回転角度(φ)依存性を示すチャートを求め、該チャートからベースラインを求め、前記2枚以上の板状試料のそれぞれから得られた前記ベースラインの回折強度値の比較結果を判定基準として単結晶シリコン製造用原料としての適否を判断する、ことを特徴とする多結晶シリコン棒の選択方法。
  4.  前記ミラー指数面<hkl>は<111>及び<220>の少なくとも一方である、請求項3に記載の多結晶シリコン棒の選択方法。
  5.  前記ミラー指数面<hkl>は<111>であり、前記φスキャンを行って得られたチャートの前記ベースラインの回折強度値を前記2枚以上の板状試料のそれぞれにつき求め、該複数のベースライン回折強度値の最大値を最小値で除した値が1.5以下である場合に単結晶シリコン製造用原料として選択する、
    請求項4に記載の多結晶シリコン棒の選択方法。
  6.  前記ミラー指数面<hkl>は<220>であり、前記φスキャンを行って得られたチャートの前記ベースラインの回折強度値を前記2枚以上の板状試料のそれぞれにつき求め、該複数のベースライン回折強度値の最大値を最小値で除した値が1.9以下である場合に単結晶シリコン製造用原料として選択する、
    請求項4に記載の多結晶シリコン棒の選択方法。
  7.  前記2枚以上の板状試料のそれぞれにつき、ミラー指数面<111>と<220>の双方について前記φスキャンを行い、ミラー指数面<111>につき得られたチャートのベースラインの回折強度値(I<111>)をミラー指数面<220>につき得られたチャートのベースラインの回折強度値(I<220>)で除した値(除算値:I<111>/I<220>)を求め、前記2枚以上の板状試料から求まる複数の前記除算値の最大値が2.5未満である場合に単結晶シリコン製造用原料として選択する、
    請求項4に記載の多結晶シリコン棒の選択方法。
  8.  前記多結晶シリコン棒はシーメンス法で育成されたものである、請求項3乃至7の何れか1項に記載の多結晶シリコン棒の選択方法。
  9.  請求項3乃至7の何れか1項に記載の方法により選択された多結晶シリコン棒。
  10.  請求項9に記載の多結晶シリコン棒を破砕して得られた多結晶シリコン塊。
  11.  請求項9に記載の多結晶シリコン棒をシリコン原料として用いる単結晶シリコンの製造方法。
  12.  請求項10に記載の多結晶シリコン塊を原料として用いる単結晶シリコンの製造方法。
PCT/JP2013/003791 2012-06-18 2013-06-18 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法 WO2013190829A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13806297.1A EP2863212B1 (en) 2012-06-18 2013-06-18 Polycrystalline silicon rod selection method
KR1020157000911A KR101763045B1 (ko) 2012-06-18 2013-06-18 다결정 실리콘의 결정 배향도 평가 방법, 다결정 실리콘 막대의 선택 방법, 다결정 실리콘 막대, 다결정 실리콘 덩어리, 및 단결정 실리콘의 제조 방법
CN201380032180.5A CN104395740B (zh) 2012-06-18 2013-06-18 多晶硅的晶体取向度评价方法、多晶硅棒的选择方法、多晶硅棒、多晶硅块以及单晶硅的制造方法
US14/409,202 US9274069B2 (en) 2012-06-18 2013-06-18 Method for evaluating degree of crystalline orientation of polycrystalline silicon, method for selecting polycrystalline silicon rod, polycrystalline silicon rod, polycrystalline silicon ingot, and method for manufacturing monocrystalline silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012136849A JP2014001096A (ja) 2012-06-18 2012-06-18 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
JP2012-136849 2012-06-18

Publications (1)

Publication Number Publication Date
WO2013190829A1 true WO2013190829A1 (ja) 2013-12-27

Family

ID=49768443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003791 WO2013190829A1 (ja) 2012-06-18 2013-06-18 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法

Country Status (7)

Country Link
US (1) US9274069B2 (ja)
EP (1) EP2863212B1 (ja)
JP (1) JP2014001096A (ja)
KR (1) KR101763045B1 (ja)
CN (1) CN104395740B (ja)
MY (1) MY170172A (ja)
WO (1) WO2013190829A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10237132B2 (en) 2014-03-21 2019-03-19 Huawei Technologies Co., Ltd. Configuration method, network device, and user equipment

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712176B2 (ja) * 2012-08-06 2015-05-07 信越化学工業株式会社 多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法
JP6131218B2 (ja) 2014-06-17 2017-05-17 信越化学工業株式会社 多結晶シリコン棒の表面温度の算出方法および制御方法、多結晶シリコン棒の製造方法、多結晶シリコン棒、ならびに、多結晶シリコン塊
JP6345108B2 (ja) 2014-12-25 2018-06-20 信越化学工業株式会社 多結晶シリコン棒、多結晶シリコン棒の加工方法、多結晶シリコン棒の結晶評価方法、および、fz単結晶シリコンの製造方法
JP6314097B2 (ja) * 2015-02-19 2018-04-18 信越化学工業株式会社 多結晶シリコン棒
JP6454248B2 (ja) 2015-09-14 2019-01-16 信越化学工業株式会社 多結晶シリコン棒
US9939393B2 (en) 2015-09-28 2018-04-10 United Technologies Corporation Detection of crystallographic properties in aerospace components
JP6470223B2 (ja) * 2016-04-04 2019-02-13 信越化学工業株式会社 単結晶シリコンの製造方法
CN106222745B (zh) * 2016-09-29 2019-04-19 宜昌南玻硅材料有限公司 一种检测用区熔硅单晶棒及其拉制方法
CN110133017B (zh) * 2019-05-31 2022-07-01 西安奕斯伟材料科技有限公司 多晶硅熔化参数的检测方法、多晶硅、单晶硅及其制造方法
JP7460180B2 (ja) * 2019-08-30 2024-04-02 国立研究開発法人産業技術総合研究所 配向度分布計算方法、配向度分布解析装置および配向度分布解析プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266249A (ja) * 1989-04-06 1990-10-31 Oki Electric Ind Co Ltd 結晶面のx線回折測定方法
JPH0320651A (ja) * 1989-06-16 1991-01-29 Matsushita Electron Corp X線回折計によるインライン膜質監視装置
JPH0422218B2 (ja) * 1983-10-27 1992-04-16 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JP2006071377A (ja) * 2004-08-31 2006-03-16 Rigaku Corp X線回折装置
JP2008285403A (ja) 2007-05-16 2008-11-27 Wacker Chemie Ag 帯域引き上げ用の多結晶シリコンロッド及びその製造方法
WO2012164803A1 (ja) * 2011-06-02 2012-12-06 信越化学工業株式会社 多結晶シリコン棒の選択方法および単結晶シリコンの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186135A (ja) 1983-04-06 1984-10-22 Nec Corp 磁気記録媒体
US5414747A (en) * 1993-02-22 1995-05-09 The Penn State Research Foundation Method and apparatus for in-process analysis of polycrystalline films and coatings by x-ray diffraction
WO1997044277A1 (fr) 1996-05-21 1997-11-27 Tokuyama Corporation Barreau de silicium polycristallin et son procede de preparation
JP3887588B2 (ja) * 2002-08-30 2007-02-28 株式会社リガク X線回折による応力測定法
JP4094599B2 (ja) * 2004-09-27 2008-06-04 株式会社大阪チタニウムテクノロジーズ 多結晶シリコンおよびその製造方法
US8049100B2 (en) * 2007-07-26 2011-11-01 Translucent, Inc. Multijunction rare earth solar cell
DE102007047210A1 (de) * 2007-10-02 2009-04-09 Wacker Chemie Ag Polykristallines Silicium und Verfahren zu seiner Herstellung
EP2310317A1 (en) * 2008-06-27 2011-04-20 MEMC Electronic Materials, Inc. Methods for increasing polycrystalline silicon reactor productivity by recycle of silicon fines
JP5751748B2 (ja) * 2009-09-16 2015-07-22 信越化学工業株式会社 多結晶シリコン塊群および多結晶シリコン塊群の製造方法
JP5560018B2 (ja) * 2009-10-14 2014-07-23 信越化学工業株式会社 多結晶シリコン製造用芯線ホルダおよび多結晶シリコンの製造方法
JP5238762B2 (ja) * 2010-07-06 2013-07-17 信越化学工業株式会社 多結晶シリコン棒および多結晶シリコン棒の製造方法
JP4884553B1 (ja) 2010-08-31 2012-02-29 株式会社リガク X線分析装置および方法
JP5828795B2 (ja) * 2012-04-04 2015-12-09 信越化学工業株式会社 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422218B2 (ja) * 1983-10-27 1992-04-16 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPH02266249A (ja) * 1989-04-06 1990-10-31 Oki Electric Ind Co Ltd 結晶面のx線回折測定方法
JPH0320651A (ja) * 1989-06-16 1991-01-29 Matsushita Electron Corp X線回折計によるインライン膜質監視装置
JP2006071377A (ja) * 2004-08-31 2006-03-16 Rigaku Corp X線回折装置
JP2008285403A (ja) 2007-05-16 2008-11-27 Wacker Chemie Ag 帯域引き上げ用の多結晶シリコンロッド及びその製造方法
WO2012164803A1 (ja) * 2011-06-02 2012-12-06 信越化学工業株式会社 多結晶シリコン棒の選択方法および単結晶シリコンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2863212A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10237132B2 (en) 2014-03-21 2019-03-19 Huawei Technologies Co., Ltd. Configuration method, network device, and user equipment

Also Published As

Publication number Publication date
EP2863212B1 (en) 2021-07-21
CN104395740B (zh) 2016-08-10
US9274069B2 (en) 2016-03-01
CN104395740A (zh) 2015-03-04
EP2863212A4 (en) 2015-11-11
KR101763045B1 (ko) 2017-07-28
JP2014001096A (ja) 2014-01-09
EP2863212A1 (en) 2015-04-22
US20150185167A1 (en) 2015-07-02
MY170172A (en) 2019-07-09
KR20150023747A (ko) 2015-03-05

Similar Documents

Publication Publication Date Title
WO2013190829A1 (ja) 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
JP5828795B2 (ja) 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法
JP5947248B2 (ja) 多結晶シリコン棒の選択方法
JP6314097B2 (ja) 多結晶シリコン棒
JP5969956B2 (ja) 多結晶シリコンの粒径評価方法および多結晶シリコン棒の選択方法
JP5868286B2 (ja) 多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法
JP5923463B2 (ja) 多結晶シリコンの結晶粒径分布の評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
JP5984741B2 (ja) 多結晶シリコン棒の選択方法、および、fz単結晶シリコンの製造方法
JP2019019010A (ja) 多結晶シリコン棒および多結晶シリコン棒の製造方法
JP6470223B2 (ja) 単結晶シリコンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013806297

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14409202

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157000911

Country of ref document: KR

Kind code of ref document: A