WO2013185501A1 - 一种薄片类介质厚度检测装置及其方法 - Google Patents

一种薄片类介质厚度检测装置及其方法 Download PDF

Info

Publication number
WO2013185501A1
WO2013185501A1 PCT/CN2013/073549 CN2013073549W WO2013185501A1 WO 2013185501 A1 WO2013185501 A1 WO 2013185501A1 CN 2013073549 W CN2013073549 W CN 2013073549W WO 2013185501 A1 WO2013185501 A1 WO 2013185501A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
zero value
detection
sheet
value
Prior art date
Application number
PCT/CN2013/073549
Other languages
English (en)
French (fr)
Inventor
罗攀峰
王荣秋
徐朝阳
黎明
Original Assignee
广州广电运通金融电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州广电运通金融电子股份有限公司 filed Critical 广州广电运通金融电子股份有限公司
Priority to IN1016MUN2014 priority Critical patent/IN2014MN01016A/en
Priority to US14/353,482 priority patent/US9683840B2/en
Priority to AU2013276048A priority patent/AU2013276048B2/en
Priority to EP13804529.9A priority patent/EP2860708B1/en
Publication of WO2013185501A1 publication Critical patent/WO2013185501A1/zh
Priority to ZA2014/03588A priority patent/ZA201403588B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/16Testing the dimensions
    • G07D7/164Thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/40Caliper-like sensors
    • G01B2210/42Caliper-like sensors with one or more detectors on a single side of the object to be measured and with a backing surface of support or reference on the other side

Definitions

  • the present invention relates to a thickness detecting technique, and more particularly to an uninterrupted detecting method and detecting device for a sheet medium in a continuous conveying process.
  • the automatic processing of financial currency is getting higher and higher.
  • Obtaining the thickness of the processing currency during the automatic processing is a basic detection method.
  • the thickness information can be used to judge whether the current currency is old, authentic, defective, or whether tape is stuck or not.
  • the above information is to determine whether the current currency is in compliance.
  • the thickness data collecting device generally used in the financial self-service device is as shown in FIG.
  • the distance sensor 4 is used to detect the distance between the leaf spring 3 and the distance sensor 4.
  • the distance detecting means in order to obtain the thickness of one banknote 5, it is necessary to first set the distance d between the sensor 4 and the leaf spring 3 when no banknote is transported, which is called the zero value of the thickness detecting device, when the banknote passes The actual thickness value of the banknote under test can be obtained by subtracting the above zero value from the distance data actually detected by the sensor 4.
  • the performance of all mechanical and electronic equipment will age with the use of time, will change with the use of the environment, the equipment will be shaken and the performance parameters will change.
  • the actual mechanical zero value is detected when detecting the thickness of the banknote. There may be fluctuations. When using inaccurate zero values, the measured thickness values are not accurate and cannot be used for financial self-service machines with high precision requirements. There are currently two ways to set the relevant zero value:
  • the dynamic zero value method that is, the zero value is detected once before the banknote passes, and the zero value of the currency is detected.
  • the method uses the real-time data to be collected as zero value, which can avoid the influence of factors such as the use environment change. Fixed zero value is more accurate.
  • the following problems still exist in this method. Due to the inherent nature of the zero-value detection device, the data acquisition has fluctuations, that is, the multiple values collected in the same environment are different, and the acquired zero value appears instantaneously larger. When the deviation occurs, the actual thickness detection value is greatly deviated, which may cause the collected thickness data to be abnormal, resulting in instability of the entire self-service financial service device. Summary of the invention
  • One of the objects of the present invention is to provide a sheet-like medium thickness detection which can effectively eliminate the problem of large deviation of detection due to changes in the use environment and avoid the problem of inaccurate thickness detection caused by sudden change of detection value caused by dynamic zero-value mechanical fluctuation.
  • Device
  • the sheet medium thickness detecting device comprises:
  • a conveying roller for conveying a sheet medium
  • a detecting roller opposite to the conveying roller for conveying the sheet together with the conveying roller during conveying a medium-like medium and having an elastic displacement with the conveying roller;
  • a sensor for obtaining a change in the distance between the detecting roller and the sensor
  • a thickness calculating unit calculates a sheet-like medium based on a distance detection value between the detecting roller and the sensor obtained by the sensor when the sheet-type medium passes, and a standard zero value between the detecting roller and the sensor obtained by the sensor before entering the sheet-type medium Thickness value;
  • a zero value correction unit for correcting the above-mentioned dynamic detection zero value according to a zero value correction formula to obtain a standard zero value
  • a data storage unit for storing the preset distance measurement zero value and the operational data required for the zero value correction described above.
  • the zero value correction formula is as follows:
  • &frag is the dynamic detection zero value when detecting the thickness of the nth sheet-like medium
  • b n represents a standard zero value when detecting the thickness of the nth sheet-like medium
  • b n-1 is a standard zero value when detecting the thickness of the n-1th sheet medium
  • n is a natural number greater than 0.
  • b Q A Q
  • a Q is the preset distance measurement zero value.
  • t when t is between 0.05 and 0.2, 4 good engineering results can be obtained.
  • the t is equal to 0.2.
  • the sheet medium thickness detecting device further comprises a sheet medium entry discriminating module for discriminating whether or not the sheet medium is to be subjected to thickness detection.
  • a leaf spring is pressed against the other side of the detecting roller with respect to the conveying roller to achieve elastic displacement between the detecting roller and the conveying roller, and the sensor is placed above the leaf spring and is relatively static with the conveying roller Stop.
  • Another object of the present invention is to provide a sheet-like medium thickness detecting method, which comprises the following steps:
  • the zero value modification positive formula is:
  • &frag is the dynamic detection zero value when detecting the thickness of the nth sheet-like medium
  • b n represents a standard zero value when detecting the thickness of the nth sheet-like medium
  • is the standard zero value when detecting the thickness of the n-1th sheet medium
  • n is a natural number greater than 0.
  • b Q A Q
  • a Q is the preset distance measurement zero value.
  • the value of t is between 0.05 and 0.25, and the value of t is preferably equal to 0.2.
  • the sheet medium sorting method has the following advantages compared with the prior art:
  • the real-time standard zero value is a weighted correction of the dynamic zero value and the historical standard zero value, it can effectively solve the problem that the detection data is inaccurate due to the inherent fluctuation of the zero-value detection device itself.
  • FIG. 1 is a schematic structural view of a current general thickness data acquisition device
  • 2 is a schematic diagram of the composition of a sheet-like medium thickness detecting device provided by the present invention
  • FIG. 3 is a schematic flow chart of a sheet-like medium thickness detecting method provided by the present invention
  • FIG. 4 is a method for detecting thickness of a sheet-like medium by using a fixed zero-value method.
  • Figure 7 is a statistical diagram of the thickness of the sheet-like medium using the dynamic zero-value method.
  • Figure 6 is a statistical diagram of the thickness of the sheet-like medium using the method provided by the present invention.
  • the thickness detecting device can be arranged from one to several tens, and each thickness detecting device is mutually Independent, but it works exactly the same, only the location of the installation is different.
  • a plurality of the thickness detecting devices may be disposed on the path through which the banknote passes as needed.
  • the plurality of thickness detecting devices When the banknote passes, the plurality of thickness detecting devices generate corresponding banknote thickness detecting data, and each banknote is generated by the thickness detecting device.
  • a set of thickness detection values When the banknote is flat, the calculated set of thickness values is uniform and is the actual thickness of the banknote; when there is a change in the thickness of the banknote, for example, if the banknote is pasted with adhesive tape, and the position of the tape is detected, the calculation is obtained.
  • a set of thickness values follows the corresponding changes.
  • a conveying roller 1 for conveying a sheet-like medium
  • a detecting roller 2 opposite to the conveying roller 1 for conveying a sheet-like medium together with the conveying roller during transport, and having an elastic displacement with the conveying roller
  • - a leaf spring 3 pressed against the other side of the detecting roller 2 with respect to the conveying roller 1
  • a sensor 4 disposed above the leaf spring for obtaining a change in the distance between the leaf spring 3 and the sensor 4
  • a thickness a calculating unit 6 the thickness calculating unit 6 detects the distance between the leaf spring 3 and the sensor 4 obtained by the sensor 4 when the sheet-like medium passes, and the sensing before the sheet-like medium enters
  • the standard zero value between the leaf spring 3 and the sensor obtained by the device 4 calculates the thickness value of the sheet-like medium; in order to obtain an accurate standard zero value, a zero value correction unit 7 is further included for the above-mentioned dynamic detection of the zero value according to The zero value correction formula is corrected to obtain a standard zero value;
  • the use of the leaf spring 3 in the present embodiment is only a solution for realizing elastic displacement between the detecting roller 2 and the conveying roller 1.
  • those skilled in the art can also adopt a detecting roller.
  • the rotating shaft is subjected to spring pulling or torsion spring limiting, and the like, and the present invention will not be described again.
  • the sensor 4 can directly obtain the distance information between the detecting roller 2 and the sensor 4 to calculate the thickness value through the sheet-like medium.
  • the process for measuring the thickness of a sheet-like medium by the sheet-like medium thickness detecting device comprises the following steps:
  • &frag is the dynamic detection zero value when detecting the thickness of the nth sheet-like medium
  • b n represents a standard zero value when detecting the thickness of the nth sheet-like medium
  • is the standard zero value when detecting the thickness of the n-1th sheet medium
  • n is a natural number greater than 0.
  • b Q A Q
  • a Q is the preset distance measurement zero value.
  • t when t is between 0.05 and 0.2, 4 good engineering results can be obtained.
  • the t is equal to 0.2.
  • a statistical chart of the thickness detection of the sheet medium by the fixed zero value method is firstly determined, and the initial fixed zero value of the sheet medium thickness detecting device is first determined;
  • the current common method is that when the sheet medium thickness detecting device is officially Before use, by measuring N ( N > 0 ) times the measured zero value d when no medium enters, the measured zero value d is: ⁇ ⁇ U 2 , ... , U N , which can be calculated by the formula Fixed zero value:
  • a 0 ( U!+U 2 +... +U N ) / N
  • the preset fixed zero value of the sheet dielectric thickness measurement was 50 ⁇ m.
  • the experimental thickness data is collected by a standard test medium having a thickness of 100 ⁇ m, and the number of sheets of the test medium is represented by the abscissa, that is, the first test medium is indicated.
  • the ordinate represents the thickness data in micrometers, forming a statistical graph as shown in Fig. 4.
  • the lower data line a indicates that the standard zero value used to calculate the thickness data of each test medium is a preset fixed zero value of 50 ⁇ m.
  • Data line b indicating The detected thickness value of each test medium obtained is collected, and the intermediate data line c represents the detected thickness value of the test medium calculated from the difference between the detected thickness value and the preset fixed zero value.
  • the data line b drifts downward, resulting in the final calculated data line c, that is, the detected thickness value is completely away from the standard test medium.
  • the true thickness is 100 microns, causing serious detection errors.
  • Figure 5 shows the statistical data of the thickness measurement of the sheet medium using the dynamic zero value method.
  • the experimental thickness data is also collected by the standard test medium with a thickness of 100 ⁇ m, and the number of sheets of the test medium is represented by the abscissa.
  • the first test medium, the ordinate indicates the thickness data, and the unit is micrometer, forming a statistical chart as shown in FIG. 5, wherein the lower data line a1 represents the standard zero value used when calculating the thickness data of each test medium, that is, each The dynamic zero value collected before the test medium detects the thickness value, the upper data line bl indicates the detected thickness value of each test medium collected, and the middle data line cl indicates the detected thickness value and the dynamic zero value. The detected thickness of the test medium was calculated from the difference.
  • the experimental thickness data is also collected by a standard test medium having a thickness of 100 ⁇ m, and the number of sheets of the test medium is represented by an abscissa, that is, the first test medium is represented, and the ordinate represents the thickness data.
  • the unit is micrometer, and the statistical graph shown in FIG. 6 is formed, wherein the lower data line a2 represents the standard zero value used when calculating the thickness data of each test medium, that is, before the thickness value is detected for each test medium according to the correction formula.
  • the acquired dynamic zero value d is corrected for the standard zero value
  • the upper data line b2 represents the detected thickness value of each test medium collected
  • the middle data line c2 represents the detected thickness value and the dynamic zero value.
  • the detected thickness of the test medium was calculated from the difference.
  • a n represents the dynamic zero value collected before the nth currency is passed; if the dynamic zero value method is adopted, a n is the dynamic zero value when detecting the nth banknote;
  • b n represents an adaptive zero value when detecting the nth banknote
  • b n-1 is an adaptive zero value when detecting the n-1th banknote
  • n is a natural number greater than 0.
  • b Q A Q
  • a Q is the preset distance measurement zero value.
  • t is the correlation coefficient, 0 ⁇ t ⁇ l; the larger t is, the faster the adaptation speed is, the worse the stability is; on the contrary, the slower the adaptation speed, the better the stability.
  • the standard zero value is formed after the correction of the modified zero value method of the present invention.
  • the final calculated thickness value does not deviate significantly from the thickness of the standard medium of 100 mm. It can be seen that the solution can solve the problem of inaccurate detection data caused by aging and environmental changes of the detection device, and can solve the zero value detection device itself.
  • the intrinsic nature causes inaccurate detection data caused by sudden fluctuations in data acquisition.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Controlling Sheets Or Webs (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

一种针对薄片类介质在连续输送过程中不间断厚度检测方法及检测装置,可使检测厚度值更加准确稳定。薄片类介质厚度检测装置包括输送辊(1);与输送辊(1)对置、并与输送辊(1)之间具有弹性位移的检测辊(2);在检测辊(2)相对于输送辊(1)的另一侧压置的板簧(3);设置在板簧(3)上方的传感器(4);以及厚度计算单元(6),根据距离检测值与标准零值计算出通过薄片类介质的厚度值;还包括零值修正单元(7),用以对动态检测零值根据零值修正公式进行修正得到标准零值;以及数据存储单元(8),用以存储预置距离测量零值以及零值修正所需的运行数据。

Description

一种薄片类介盾厚度检测装置及其方法 本申请要求于 2012 年 6 月 11 日提交中国专利局、 申请号为 201210191067.9、 发明名称为"一种薄片类介质厚度检测装置及其方法"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种厚度检测技术, 尤其一种针对薄片类介质在连续输送 过程中不间断地检测方法及检测装置。
背景技术
目前金融货币的自动处理程度越来越高, 在货币的自动处理过程中需 要对货币的真伪、 新旧等信息进行获得和检测, 以便减少人工干预程度, 为人类使用货币提供便利。 在自动处理过程中获得处理货币的厚度是一项基本的检测手段, 厚度 信息可以用来判断当前货币的新旧、真伪、残缺或是否黏贴有胶带等信息, 上述信息是判断当前货币是否符合流通条件的必要手段。 目前金融自助设备中通用的厚度数据采集装置如图 1所示, 其包括一 输送纸币的传输辊 1 , 与该传输辊 1对置的检测辊 2,在检测辊 2相对于输 送辊 1的另一侧压置有一板簧 3 ,在板簧上方设有一个距离传感器 4,距离 传感器 4用以检测板簧 3与距离传感器 4之间的距离值。 鉴于目前的距离 检测手段, 为了获得一张钞票 5的厚度, 需要首先设定无纸币输送时, 传 感器 4和板簧 3之间的距离 d, 称为厚度检测装置的零值, 当纸币通过时, 传感器 4真实检测的距离数据减去上述零值即可以得出被测纸币的实际厚 度值。 众所周知, 所有机械电子设备的性能会随使用时间发生老化, 会随使 用环境的改变, 设备搬移受震动, 使其性能参数发生变化, 针对厚度检测 装置来说在检测纸币厚度时实际机械零值均有可能会波动。 当使用不准确 的零值时, 测量的厚度值也不准确, 无法满足精密要求很高的金融自助机 具使用。 目前相关零值的设置有两种方法:
1. 固定零值方法, 即令零值 d=d0, d0为出厂时测定的零值常量。 该种 方法均在如下弊端, 但当厚度检测装置使用过久, 发生老化, 或者设备移 动受震动, 实际零值会发生变化, 但实际检测是仍使用固定零值 d。, 则会 给采集到的厚度数据造成较大的误差。
2. 动态零值方法, 即每次纸币经过之前检测一次零值, 作为检测该张 货币的零值, 该种方法采用实时采集数据作为零值, 可以避免因为使用环 境改变等因素的影响, 相对固定零值较为准确。 但该种方法仍然存在的如 下问题, 由于零值检测设备本身固有的性质, 造成数据采集具有波动性, 即同样的环境下多次采集零值不尽相同, 当采集的零值出现瞬间较大偏差 时,使得实际厚度检测值出现较大偏差,就会造成采集到的厚度数据异常, 从而导致整个自助金融服务设备的不稳定。 发明内容
本发明的目的之一在于提供一种即可以有效消除由于使用环境变化而 引起的检测偏差较大问题又可以避免动态零值机械波动引起检测值突变引 起厚度检测不准确问题的薄片类介质厚度检测装置。
这种薄片类介质厚度检测装置, 包括:
一输送辊, 用以输送薄片类介质;
一检测辊, 与该传输辊对置, 用以输送过程中与输送辊一起夹送薄片 类介质, 并与输送辊之间具有弹性位移;
一传感器, 用以获得的检测辊与传感器之间的距离变化值;
一厚度计算单元, 根据薄片类介质通过时该传感器获得的检测辊与传 感器之间的距离检测值与薄片类介质进入之前该传感器获得的检测辊与传 感器之间的标准零值计算出薄片类介质的厚度值;
其特殊之处在于, 还包括:
一零值修正单元, 用以对上述动态检测零值根据零值修正公式进行修 正得到标准零值;
一数据存储单元, 用以存储预置距离测量零值以及上述零值修正所需 的运行数据。
优选地, 所述零值修正公式如下:
bn= (1-t) bn-1+t an t e (0,l)
其中, &„为检测第 n张薄片类介质厚度时的动态检测零值;
bn表示检测第 n张薄片类介质厚度时的标准零值;
bn-1为检测第 n-1张薄片类介质厚度时的标准零值;
n为大于 0的自然数, 当 n=l时, 即首次检测时, bQ = AQ, AQ为预置 距离测量零值。
其中相关性系数 t越大, 自适应速度越快, 稳定性越差; 反之, 自适 应速度越慢, 稳定性越好。
特别的, 当 t取 0时, bn =bn4…… b0=A0退化为固定零值; 当 t取 1时, bn = an退化为动态零值; t应该避免取 0及 1 , 根据实验表明 t取值 0.05至 0.2之间时, 可以得到 4艮好的工程效果。 优选的, 所述 t等于 0.2。
优选地, 该薄片类介质厚度检测装置还还包括一薄片类介质进入判别 模块, 用以判别是否有薄片类介质将要进行厚度检测 .
优选地, 在检测辊相对于输送辊的另一侧压置有一板簧以实现检测辊 与输送辊之间的弹性位移, 且所述传感器置于板簧上方且与输送辊相对静 止。
本发明的另一目的还提供一种薄片类介质厚度检测方法, 该检测方法 具体包括如下步骤:
S1. 获得薄片类介质进入之前检测辊与传感器之间的动态检测零值; S2. 对上述动态检测零值根据零值修正公式进行修正得到标准零值; 值;
S4. 根据上述距离检测值与标准零值之差计算得出薄片类介质的实际 厚度值。
优选地, 所述零值修改正公式为:
bn= (1-t) x bn-1+t χ an t e (0,l)
其中, &„为检测第 n张薄片类介质厚度时的动态检测零值;
bn表示检测第 n张薄片类介质厚度时的标准零值;
!?^为检测第 n-1张薄片类介质厚度时的标准零值;
n为大于 0的自然数, 当 n=l时, 即首次检测时, bQ = AQ, AQ为预置 距离测量零值。
进一步地, 所述 t取值 0.05至 0.25之间, 所述 t值优选等于 0.2。 该薄片类介质分类方法与现有技术对比具有如下优点:
1、 由于采用了实时标准零值的方法,可以有效解决由于厚度检测装置 使用过久而发生老化, 或者设备移动受震动, 而引起实际零值发生变化所 造成的检测数据不准确问题。
2、 由于实时标准零值是经过对动态零值与历史标准零值的加权修正, 可以有效解决由于零值检测设备本身固有的性质, 造成数据采集突然波动 而 I起的检测数据不准确问题。
附图说明
图 1是目前通用厚度数据采集装置结构示意图; 图 2是本发明所提供的薄片类介质厚度检测装置的组成示意图; 图 3是本发明所提供的薄片类介质厚度检测方法流程示意图; 图 4是采用固定零值方法进行薄片类介质厚度检测的数据统计图; 图 5是采用动态零值方法进行薄片类介质厚度检测的数据统计图 图 6 是采用本发明所提供方法进行薄片类介质厚度检测的数据统计 图。 具体实施方式
为进一步阐述本发明, 以下结合图示详细描述本发明的技术方案, 根 据对纸币厚度数据检测精度要求的不同, 厚度检测装置可以布放从一个到 几十个不等, 每个厚度检测装置相互独立, 但是其工作原理完全相同, 仅 是安装的位置不同而已。
为了筒明阐述本发明的技术方案, 仅以一个厚度检测装置展开详细说 明。 实际使用时, 根据需要可以布放多个该厚度检测装置在纸币经过的路 径上, 当纸币通过时上述多个厚度检测装置将产生对应的纸币厚度检测数 据, 每张纸币通过厚度检测装置将产生一组厚度检测值。 当纸币是平整的, 则计算得到的一组厚度值为均匀的, 且为纸币的实际厚度; 当纸币厚度存 在变化时, 例如纸币上贴有胶纸, 而胶带位置又经过检测, 则计算得到的 一组厚度值跟随相应变化。
参阅附图 2所示, 本发明所提供的这种薄片类介质厚度检测装置, 包 括:
一用以输送薄片类介质的输送辊 1 ; 一与该传输辊 1对置, 用以输送 过程中与输送辊一起夹送薄片类介质, 并与输送辊之间具有弹性位移的检 测辊 2; —在检测辊 2相对于输送辊 1的另一侧压置的板簧 3; —设置在板 簧上方的传感器 4, 用以获得板簧 3与传感器 4之间的距离变化值; 以及 一厚度计算单元 6, 该厚度计算单元 6根据薄片类介质通过时该传感器 4 获得的板簧 3与传感器 4之间的距离检测值与薄片类介质进入之前该传感 器 4获得的板簧 3与传感器之间的标准零值计算出薄片类介质的厚度值; 为了获得准确的标准零值, 还包括一零值修正单元 7, 用以对上述动态检 测零值根据零值修正公式进行修正得到标准零值; 以及一数据存储单元 8, 用以存储预置距离测量零值以及上述零值修正所需的运行数据。
需要说明的是本实施例中板簧 3的使用仅是一种实现检测辊 2与输送 辊 1之间具有弹性位移的方案, 为了实现该种弹性位移, 本领域技术人员 还可以采用对检测辊的转动轴进行弹簧牵拉或扭簧限位等手段, 本发明不 再赘述。 当然如果不采用上述板簧的方案时, 传感器 4可以直接获得检测 辊 2和传感器 4之间的距离信息以计算通过薄片类介质的厚度值。
参阅图 3 , 本发明所提供的薄片类介质厚度检测装置测量薄片类介质 厚度的流程包括如下步骤:
51. 获得薄片类介质进入之前检测辊与传感器之间的动态检测零值;
52. 对上述动态检测零值根据零值修正公式进行修正得到标准零值; 值;
S4. 根据上述距离检测值与标准零值之差计算得出薄片类介质的实际 厚度值。
其中本实施例中所采用的修正公式为:
bn= (1-t) bn-1+t an t e (0,l)
其中, &„为检测第 n张薄片类介质厚度时的动态检测零值;
bn表示检测第 n张薄片类介质厚度时的标准零值;
!?^为检测第 n-1张薄片类介质厚度时的标准零值;
n为大于 0的自然数, 当 n=l时, 即首次检测时, bQ = AQ, AQ为预置 距离测量零值。
对于相关性系数 t值, 其取值越大, 自适应速度越快, 稳定性越差; 反之, 自适应速度越慢, 稳定性越好。
特别的, 当 t取 0时, bn=bn4... ... b0=A0退化为固定零值; 当 t取 1时, bn = an退化为动态零值; t应该避免取 0及 1 , 根据实验表明 t取值 0.05至 0.2之间时, 可以得到 4艮好的工程效果。 优选的, 所述 t等于 0.2。
上述仅是实现本发明第二目的的一个实施方案, 本领域技术人员可以 应用其所知晓的任何现有技术进行优化, 比如, 为了准确获得动态零值数 据, 可以为薄片类介质厚度检测装置增加一个薄片类介质进入判断模块, 以指导传感器采集获取准确的动态零值。
下面为了进一步说明本发明所提供的薄片类介质厚度检测方法与现有 厚度检测方法相比具有优越性, 通过如下的实验数据做一个阐述。
如图 4所示为采用固定零值方法进行薄片类介质厚度检测的数据统计 图, 首先确定薄片类介质厚度检测装置的初始固定零值; 目前通用的手段 是, 当薄片类介质厚度检测装置正式使用之前, 通过检测 N ( N>0 )次无 介质进入时的测量零值 d, 测量零值 d分别为: υΐ U2, ... ... , UN, 可通 过公式计算得到对应的固定零值:
A0= ( U!+U2+…… +UN ) / N
本实验用薄片类介质厚度测量预设的固定零值为 50微米。
然后以上述固定零值作为薄片类介质厚度测量的标准零值, 以厚度为 100微米的标准测试介质进行实验厚度数据采集, 以横坐标表示测试介质 的张数, 即表示第几张测试介质, 纵坐标表示厚度数据, 单位为微米, 形 成如图 4所示统计图, 其中下方的数据线 a表示计算每张测试介质厚度数 据时所使用的标准零值为预设固定零值 50微米, 上方的数据线 b, 表示采 集得到的每张测试介质的检测厚度值, 中间的数据线 c则表示根据检测厚 度值与预设固定零值之差计算所得的测试介质的检测厚度值。
从图 4中可以看出, 当薄片类介质厚度检测装置的测试环境改变时, 数据线 b发生了向下漂移, 从而导致了最后计算获得的数据线 c也就是检 测厚度值完全远离标准测试介质的真实厚度 100微米, 从而造成严重的检 测错误。
如图 5所示为采用动态零值方法进行薄片类介质厚度检测的数据统计 图, 同样以厚度为 100微米的标准测试介质进行实验厚度数据采集, 以横 坐标表示测试介质的张数, 即表示第几张测试介质,纵坐标表示厚度数据, 单位为微米, 形成如图 5所示统计图, 其中下方的数据线 al表示计算每张 测试介质厚度数据时所使用的标准零值, 即, 每次采集测试介质检测厚度 值之前所采集得到的动态零值, 上方的数据线 bl , 表示采集得到的每张测 试介质的检测厚度值,中间的数据线 cl则表示根据检测厚度值与动态零值 之差计算所得的测试介质的检测厚度值。
从图中 5可以看出, 由于检测零部件的抖动, 造成数据采集出现较大 波动, 如图 p点, 当采集的零值出现瞬间较大偏差时, 使得最后计算所得 检测厚度值与标准 100微米相比出现较大偏差, 造成测量到的厚度数据严 重异常。
参阅图 6, 采用本发明所提供方法进行薄片类介质厚度检测的数据统 计图,
同样以厚度为 100微米的标准测试介质进行实验厚度数据采集, 以横 坐标表示测试介质的张数, 即表示第几张测试介质,纵坐标表示厚度数据, 单位为微米, 形成如图 6所示统计图, 其中下方的数据线 a2表示计算每张 测试介质厚度数据时所使用的标准零值, 即, 根据修正公式对每次采集测 试介质检测厚度值之前所采集得到的动态零值 d进行修正后的标准零值, 上方的数据线 b2, 表示采集得到的每张测试介质的检测厚度值, 中间的数 据线 c2 则表示根据检测厚度值与动态零值之差计算所得的测试介质的检 测厚度值。
具体采用修正公式为:
bn= (1-t) bn-1+t an t e (0,l)
1) an表示第 n张货币经过前采集到的动态零值; 若采用动态零值的方 法, 则 an为检测第 n张纸币时动态零值;
2) bn表示检测第 n张纸币时的自适应零值; bn-1为检测第 n-1张纸币时 的自适应零值;
3) n为大于 0的自然数, 当 n=l时, 即首次检测时, bQ = AQ, AQ为预 置距离测量零值。
4) t为相关性系数, 0<t<l ; t越大, 自适应速度越快, 稳定性越差; 反 之, 自适应速度越慢, 稳定性越好。
5)特别的, 当 t取 0时, bn =bn4…… b0=A0退化为固定零值; 当 t取 1 时, bn = an 退化为动态零值; t应该避免取 0及 1 , t取值 0.05至 0.2之间 时, 可以得到 4艮好的工程效果。
本实验测试以 t=0.2为例子, 本方法中第 n张货币的标准零值计算计 算公式为: bn = 0.8 x bn4+0.2 x an其中 b。 = A。=50微米。
从图 6可以看出, 经过本发明的修正零值方法修正后形成标准零值, 使最后计算所得检测厚度值并没有严重偏离标准介质 100毫米的厚度值, 可见, 该方案即能够解决检测装置老化及环境变化所造成检测数据不准确 的问题, 又可以解决由于零值检测设备本身固有的性质, 造成数据采集突 然波动而引起的检测数据不准确问题。
以上仅是本发明的优选实施方式, 应当指出的是, 上述优选实施方式 不应视为对本发明的限制, 本发明的保护范围应当以权利要求所限定的范 围为准。 对于本技术领域的普通技术人员来说, 在不脱离本发明的精神和 范围内, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的 保护范围。

Claims

权 利 要 求
1、 一种薄片类介质厚度检测装置, 其包括:
一输送辊, 用以输送薄片类介质;
一检测辊,与该传输辊对置,用以输送过程中与输送辊一起夹送薄片 类介质, 并与输送辊之间具有弹性位移;
一传感器, 用以获得的检测辊与传感器之间的距离变化值; 一厚度计算单元,根据薄片类介质通过时该传感器获得的检测辊与传 感器之间的距离检测值与薄片类介质进入之前该传感器获得的检测辊与 传感器之间的标准零值计算出薄片类介质的厚度值;
其特征在于, 还包括:
一零值修正单元, 用以对上述动态检测零值根据零值修正公式进行修 正得到标准零值;
一数据存储单元, 用以存储预置距离测量零值以及上述零值修正所需 的运行数据。
2、 如权利要求 1所述的薄片类介质厚度检测装置, 其特征在于, 所述 零值修正公式如下:
bn= (1-t) bn-1+t an t e (0,l)
其中, &„为检测第 n张薄片类介质厚度时的动态检测零值;
bn表示检测第 n张薄片类介质厚度时的标准零值;
bn-1为检测第 n-1张薄片类介质厚度时的标准零值;
n为大于 0的自然数, 当 n=l时, 即首次检测时, bQ = AQ, AQ为预置 距离测量零值。
3、 如权利要求 2所述的薄片类介质厚度检测装置, 其特征在于, 所述 t取值 0.05至 0.25之间。
4、 如权利要求 2或 3所述的薄片类介质厚度检测装置, 其特征在于, 所述 t等于 0.2。
5、 如权利要求 4所述的薄片类介质厚度检测装置, 其特征在于, 还包 括一薄片类介质进入判别模块, 用以判别是否有薄片类介质将要进行厚度 检测。
6、 如权利要求 1所述的薄片类介质厚度检测装置, 其特征在于, 在检 测辊相对于输送辊的另一侧压置有一板簧以实现检测辊与输送辊之间的弹 性位移。
7、 如权利要求 6所述的薄片类介质厚度检测装置, 其特征在于, 所述 传感器置于板簧上方且与输送辊相对静止。
8、 一种薄片类介质厚度检测方法, 其包括如下步骤:
S1. 获得薄片类介质进入之前检测辊与传感器之间的动态检测零值; S2. 对上述动态检测零值根据零值修正公式进行修正得到标准零值; 值;
S4. 根据上述距离检测值与标准零值之差计算得出薄片类介质的实际 厚度值。
9、 如权利要求 8所述的薄片类介质厚度检测方法, 其特征在于, 所述 零值修改正公式为:
bn= (1-t) χ bn-1+t χ an t e (0,l)
其中, &„为检测第 n张薄片类介质厚度时的动态检测零值;
bn表示检测第 n张薄片类介质厚度时的标准零值;
bn-1为检测第 n-1张薄片类介质厚度时的标准零值;
n为大于 0的自然数, 当 n=l时, 即首次检测时, bQ = AQ, AQ为预置 距离测量零值。
10、 如权利要求 9所述的薄片类介质厚度检测方法, 其特征在于, 所 述 t取值 0.05至 0.25之间。
11、如权利要求 9或 10所述的薄片类介质厚度检测方法,其特征在于, 所述 t等于 0.2。
PCT/CN2013/073549 2012-06-11 2013-04-01 一种薄片类介质厚度检测装置及其方法 WO2013185501A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN1016MUN2014 IN2014MN01016A (zh) 2012-06-11 2013-04-01
US14/353,482 US9683840B2 (en) 2012-06-11 2013-04-01 Device for detecting thickness of sheet-type medium and method thereof
AU2013276048A AU2013276048B2 (en) 2012-06-11 2013-04-01 Device for detecting thickness of sheet-type medium and method thereof
EP13804529.9A EP2860708B1 (en) 2012-06-11 2013-04-01 Device for detecting thickness of sheet-type medium and method thereof
ZA2014/03588A ZA201403588B (en) 2012-06-11 2014-05-16 Device for detecting thickness of sheet-type medium and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210191067.9 2012-06-11
CN201210191067.9A CN102722933B (zh) 2012-06-11 2012-06-11 一种薄片类介质厚度检测装置及其方法

Publications (1)

Publication Number Publication Date
WO2013185501A1 true WO2013185501A1 (zh) 2013-12-19

Family

ID=46948679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073549 WO2013185501A1 (zh) 2012-06-11 2013-04-01 一种薄片类介质厚度检测装置及其方法

Country Status (8)

Country Link
US (1) US9683840B2 (zh)
EP (1) EP2860708B1 (zh)
CN (1) CN102722933B (zh)
AU (1) AU2013276048B2 (zh)
CL (1) CL2014001267A1 (zh)
IN (1) IN2014MN01016A (zh)
WO (1) WO2013185501A1 (zh)
ZA (1) ZA201403588B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722933B (zh) 2012-06-11 2014-08-20 广州广电运通金融电子股份有限公司 一种薄片类介质厚度检测装置及其方法
CN103106729B (zh) * 2012-12-24 2015-05-13 广州广电运通金融电子股份有限公司 薄片类介质厚度鉴别装置及其鉴别方法
CN103136842A (zh) 2013-01-29 2013-06-05 广州广电运通金融电子股份有限公司 一种薄片类介质测厚装置
CN103673961B (zh) * 2013-12-12 2016-05-11 广州广电运通金融电子股份有限公司 一种薄片介质厚度检测装置及方法
CN103743333B (zh) * 2014-01-22 2016-08-17 广州广电运通金融电子股份有限公司 电涡流检测钞票厚度的装置
CN105528826A (zh) * 2014-09-30 2016-04-27 恒银金融科技有限公司 一种用于金融自动服务终端的传感器微调机构
CN104266626A (zh) * 2014-10-23 2015-01-07 成都卓微科技有限公司 一种多功能厚度仪
CN104296712A (zh) * 2014-10-29 2015-01-21 深圳怡化电脑股份有限公司 厚度传感器检测装置及方法
CN105652777A (zh) * 2014-11-11 2016-06-08 宁夏嘉翔自控技术有限公司 一种距离传感器的杂志装订计多页计数系统
CN105652776A (zh) * 2014-11-11 2016-06-08 宁夏嘉翔自控技术有限公司 一种距离传感器的杂志装订缺页计数系统
CN104574637B (zh) * 2015-02-05 2017-04-26 广州广电运通金融电子股份有限公司 一种薄片介质的厚度检测装置
JP6358211B2 (ja) * 2015-09-16 2018-07-18 コニカミノルタ株式会社 用紙搬送装置、画像形成装置、用紙搬送装置の制御方法、及び用紙搬送装置の制御プログラム
CN105374106B (zh) * 2015-11-04 2018-03-16 东方通信股份有限公司 一种atm机纸币检测装置及检测方法
CN105427447B (zh) * 2015-11-04 2018-03-16 东方通信股份有限公司 Atm机纸币检测装置及检测方法
CN106067213B (zh) * 2016-05-25 2019-02-01 深圳怡化电脑股份有限公司 一种介质厚度检测装置及方法
US20180172422A1 (en) * 2016-12-16 2018-06-21 Climax Machine Industry Co., Ltd Device for detecting thickness and thickness variation of a sheetlike object
CN106910274B (zh) * 2017-02-28 2019-03-12 深圳怡化电脑股份有限公司 一种介质厚度测量方法、装置及atm机
CN107131859A (zh) * 2017-06-20 2017-09-05 深圳怡化电脑股份有限公司 一种厚度传感器的校正设备
CN109559423B (zh) 2018-11-23 2020-11-06 威海华菱光电股份有限公司 检测方法、检测装置、存储介质和处理器
CN113725111B (zh) * 2021-08-27 2024-01-30 苏州晶睿半导体科技有限公司 一种化合物半导体芯片的测试装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207613A (ja) * 1988-02-16 1989-08-21 Oki Electric Ind Co Ltd 搬送紙葉厚み検知装置
CN101158569A (zh) * 2007-11-16 2008-04-09 中钞长城金融设备控股有限公司 纸币厚度检测装置
CN101397098A (zh) * 2007-09-28 2009-04-01 冲电气工业株式会社 媒介物厚度检测装置
CN101446478A (zh) * 2007-11-28 2009-06-03 冲电气工业株式会社 介质识别装置
CN101996433A (zh) * 2010-09-21 2011-03-30 广州广电运通金融电子股份有限公司 薄片类介质厚度鉴别装置及其鉴别方法
CN102722933A (zh) * 2012-06-11 2012-10-10 广州广电运通金融电子股份有限公司 一种薄片类介质厚度检测装置及其方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8432438D0 (en) 1984-12-21 1985-02-06 De La Rue Syst Sensing sheets
JP2567279B2 (ja) 1988-04-26 1996-12-25 ローレルバンクマシン株式会社 シートの厚み検出装置
JP3760375B2 (ja) * 2000-12-22 2006-03-29 日立オムロンターミナルソリューションズ株式会社 紙幣取扱装置
JP2003081463A (ja) * 2001-09-12 2003-03-19 Toshiba Corp 紙葉類取出装置
JP4623436B2 (ja) * 2008-04-02 2011-02-02 富士ゼロックス株式会社 記録媒体の厚さ計測装置、記録媒体の重送検知装置及び画像形成装置
JP2010257292A (ja) * 2009-04-27 2010-11-11 Hitachi Omron Terminal Solutions Corp 媒体厚み検知装置
JP4850940B2 (ja) * 2009-08-26 2012-01-11 キヤノン株式会社 画像形成装置
JP2012030937A (ja) * 2010-07-30 2012-02-16 Kyocera Mita Corp 用紙搬送装置及び画像形成装置
CN101968903B (zh) * 2010-09-21 2012-08-29 广州广电运通金融电子股份有限公司 有价文件识别方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207613A (ja) * 1988-02-16 1989-08-21 Oki Electric Ind Co Ltd 搬送紙葉厚み検知装置
CN101397098A (zh) * 2007-09-28 2009-04-01 冲电气工业株式会社 媒介物厚度检测装置
CN101158569A (zh) * 2007-11-16 2008-04-09 中钞长城金融设备控股有限公司 纸币厚度检测装置
CN101446478A (zh) * 2007-11-28 2009-06-03 冲电气工业株式会社 介质识别装置
CN101996433A (zh) * 2010-09-21 2011-03-30 广州广电运通金融电子股份有限公司 薄片类介质厚度鉴别装置及其鉴别方法
CN102722933A (zh) * 2012-06-11 2012-10-10 广州广电运通金融电子股份有限公司 一种薄片类介质厚度检测装置及其方法

Also Published As

Publication number Publication date
US20140309958A1 (en) 2014-10-16
CL2014001267A1 (es) 2014-08-01
EP2860708A4 (en) 2015-06-03
EP2860708B1 (en) 2020-10-07
ZA201403588B (en) 2015-07-29
US9683840B2 (en) 2017-06-20
AU2013276048A1 (en) 2014-05-08
IN2014MN01016A (zh) 2015-07-03
EP2860708A1 (en) 2015-04-15
AU2013276048B2 (en) 2015-01-22
CN102722933B (zh) 2014-08-20
CN102722933A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2013185501A1 (zh) 一种薄片类介质厚度检测装置及其方法
CN101754919B (zh) 纸张厚度检测装置
CN105069896B (zh) 一种薄片介质的厚度检测装置及金融自助设备
US20130118861A1 (en) Banknote processing system and method
WO2014044032A1 (zh) 一种薄片类介质厚度检测装置
WO2014117473A1 (zh) 一种薄片类介质测厚装置
RU2682417C1 (ru) Датчик холла для определения толщины листового материала
CN105261107A (zh) 一种纸张厚度检测及传输装置和方法
JP2014169164A (ja) 紙葉類の厚さ検出装置、紙幣判定装置及び紙幣取扱装置
JP5732791B2 (ja) 紙葉類識別ユニット及び紙幣取扱装置
JP6272624B2 (ja) 紙葉類の厚み検出センサ及び紙幣鑑別ユニット
US20170190529A1 (en) Apparatus and Method for Controlling a Banknote Feed Rate
JP2002179289A (ja) 紙葉類厚さ検知装置および現金自動取扱装置
US10502541B2 (en) Device for detecting thickness and thickness variation of a sheetlike object
JPH05147768A (ja) 紙葉類厚さ検出機構
KR100960126B1 (ko) 지폐 투입기에서의 지폐두께 측정 방법
JP6737070B2 (ja) 厚さ検出装置、媒体鑑別装置、及び、媒体取扱装置
CN106442309B (zh) 检测设备及方法
KR100984767B1 (ko) 지폐계수기 및 지폐정사기에 적용되는 온도제어가 가능한 테이프권 검지장치
JP2575748B2 (ja) 紙葉類の異常検知装置
KR101456947B1 (ko) 이매 검지방법
US20180172422A1 (en) Device for detecting thickness and thickness variation of a sheetlike object
JPH01207613A (ja) 搬送紙葉厚み検知装置
JP2008215855A (ja) 紙葉類取扱装置
JPH02152843A (ja) 紙葉類の厚さ検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14353482

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013276048

Country of ref document: AU

Date of ref document: 20130401

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE