WO2013185453A1 - 单斜相Ga2S3晶体的制备方法及其在光学上的应用 - Google Patents

单斜相Ga2S3晶体的制备方法及其在光学上的应用 Download PDF

Info

Publication number
WO2013185453A1
WO2013185453A1 PCT/CN2012/086248 CN2012086248W WO2013185453A1 WO 2013185453 A1 WO2013185453 A1 WO 2013185453A1 CN 2012086248 W CN2012086248 W CN 2012086248W WO 2013185453 A1 WO2013185453 A1 WO 2013185453A1
Authority
WO
WIPO (PCT)
Prior art keywords
monoclinic phase
monoclinic
phase
crystal
preparation
Prior art date
Application number
PCT/CN2012/086248
Other languages
English (en)
French (fr)
Inventor
张明建
郭国聪
曾卉一
姜小明
范玉航
刘彬文
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012101902808A external-priority patent/CN102701269A/zh
Priority claimed from CN2012101912886A external-priority patent/CN102681289A/zh
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Publication of WO2013185453A1 publication Critical patent/WO2013185453A1/zh
Priority to US14/565,133 priority Critical patent/US9513532B2/en
Priority to US15/261,708 priority patent/US9766529B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data

Definitions

  • the invention relates to the application of a monoclinic phase Ga 2 S 3 crystal as a second-order nonlinear optical material in the infrared band and a preparation method thereof, and belongs to the fields of material science and optics. Background technique
  • nonlinear crystal materials have attracted more and more attention due to the application of laser technology.
  • second-order nonlinear crystal materials in the deep ultraviolet and mid-far infrared bands are not suitable for the application because of the small variety. Hot spot.
  • Chalcogenide system is becoming the direction of second-order nonlinear crystal research in the mid-far infrared, such as AgGaS 2 (AGS), AgGaSe 2 (AGSe), AgGa (1 . x) In x Se 2 , GaSe, LiInS 2
  • chalcogenides are ternary and ternary compounds, and the second-order nonlinear properties of binary chalcogenides are less studied. Compared with these ternary compounds and above, the binary chalcogenide compound has the characteristics of simple structure, convenient synthesis and stable physical and chemical properties.
  • Ga 2 S 3 has three crystal phases: monoclinic phase (Cc), hexagonal phase ( ⁇ sc), and cubic phase
  • Ga 2 S 3 There are two known preparation methods for Ga 2 S 3 , both of which use Ga and S as the starting reactants: (1) Mix Ga and S in a suitable ratio, vacuum-sealed into a quartz tube, and heat at 450 ° C. 5 days, then heated to 1100 °C at a rate of 50 °C / 12h, natural cooling to obtain Ga 2 S 3 polycrystalline powder; (2) equal amount of Ga, S under vacuum conditions placed in a sealed quartz tube Among the two quartz boats, the quartz boat containing Ga was heated to 1150. C, quartz boat with S After heating to 450-500 ° C, after day, a polycrystalline powder of Ga 2 S 3 was formed at one end of the Ga-containing quartz boat. Both methods yield a monoclinic phase of Ga 2 S 3 .
  • the invention uses Ga 2 O 3 , S powder and B powder as raw materials to synthesize monoclinic phase Ga 2 S 3 by high temperature solid phase boron vulcanization, which not only reduces the synthesis temperature (950 ° C), but also avoids the traditional operation.
  • the cumbersome steps, and the cheap Ga 2 0 3 generation ⁇ ir is Ga, reducing the cost. Summary of the invention
  • the compound has high yield, high purity and good repeatability, which is suitable for large production.
  • A, b 6.406(5)
  • A, c 7.033(5)
  • the mixture was ground in a suitable ratio, and the pellet was sealed in a vacuum quartz tube and treated at a certain temperature to obtain a monoclinic phase Ga 2 S 3 product.
  • the metal bowl has a three-dimensional network frame structure.
  • the process is a high temperature solid phase boron vulcanization process for monoclinic phase Ga 2 S 3 .
  • the molar ratio of Ga 2 O 3 , B and S is 1:2:3.
  • the molar ratio of Ga 2 O 3 , B and S is 1:2:3, wherein the amount of S is additionally in excess of 1-3%, preferably 1-2%, to ensure that the reaction proceeds sufficiently.
  • the treatment temperature in the vacuum quartz tube is raised to a temperature of 30 to 40 ° C / h to 850-980 V (preferably 880-950 ° C, more preferably 900-950 V), constant temperature 48-144 Hour (preferably 60-120 h, more preferably 60-100 h), then 2-6 °C/h
  • the rate (preferably 2-5 ° C / h, more preferably 2-4 ° C / h) is cooled to 250 ° C.
  • the preparation method comprises mixing and grinding Ga 2 O 3 , B and S in a molar ratio of 1:2:3 (preferably wherein the amount of S is additionally 1-3%), and compressing the sheet into vacuum quartz.
  • the tube is heated and heated to 850-980 at a rate of 30 ⁇ 40 °C / h. (: (preferably 880-950 V, more preferably 900-950 ° C), constant temperature 48-144 hours (preferably 60-120 h, more preferably 60-100 h), and then 2-6 ° C / h (preferably 2 -5 ° C / h, more preferably 2-4 ° C / h) rate is cooled to 250 ° C. Turn off the power, remove the quartz tube, wash off the by-product B 2 0 3 with hot water to obtain monoclinic phase Ga 2 S 3 light yellow crystallites.
  • the yield of the preparation method of the present invention is 90% or more, preferably 95% or more, or even 98% or more.
  • the present invention also provides the use of the above-described binary metal chalcogenide monoclinic phase Ga 2 S 3 having a three-dimensional network framework structure as a nonlinear optical crystal material.
  • the application is an application as a second order nonlinear optical material in the mid-far infrared range.
  • the monoclinic phase Ga 2 S 3 (preferably after it grows into a large crystal) is applied to a laser such as a second harmonic generator, an up-and-down frequency converter or an optical parametric oscillator to expand the laser The range of the band.
  • the use of the monoclinic phase Ga 2 S 3 as a second-order nonlinear optical material in the infrared band is characterized in that: the material is phase-matched at 1910 nm, and the powder frequency doubling signal is 0.7 times that of KTP.
  • the use of the monoclinic phase Ga 2 S 3 as a second-order nonlinear optical material in the infrared band is characterized in that the powder laser damage threshold is 174 MW at a laser beam of 1064 nm with a pulse width of 8 ns. /cm 2 .
  • This value is greater than the classical infrared nonlinear crystal AGS (0.03 GW/cm 2 @1064 nm with ⁇ ⁇ as 10 ns ) and LIS ( 0.1 GW/cm 2 @1064 nm with ⁇ ⁇ as 10 ns ).
  • the preparation method of the present invention is characterized in that: (1) the raw material is used for Ga 2 0 3 , S, B, instead of the conventional Ga, S; (2) the ratio of the raw materials is a specific ratio 1: 2: 3, S may be slightly An excess of 1-3% ensures sufficient reaction of the raw materials; (3) The quartz tube may burst due to too fast heating, and the excessively rapid cooling rate may result in poor crystal quality and structural disorder, and the present invention uses constant temperature and constant temperature. The degree of crystallization and the grain size are determined so that the present invention can produce a good nonlinear optical crystal material.
  • the advantages of the present invention are: (1) The metal sulfide of the present invention has a large nonlinear optical coefficient, the frequency doubling signal is about 0.7 times that of KTP, and the phase matching is at 1910 nm, and the laser damage threshold is higher than AGS and LIS. As a good nonlinear optical crystal material; (2) the compound of the invention has good thermal stability and wide transmission band; (3) the synthesis method is simple, easy to operate, sufficient source of raw materials, high yield of compound synthesis, purity High and repeatable, suitable for large-scale production. DRAWINGS
  • Figure 1 is an X-ray powder diffraction pattern of the compound of the present invention.
  • Figure 2 is an infrared absorption chart of the compound of the present invention.
  • Figure 3 is a diagram showing the visible reflection of the purple buds of the compound of the present invention.
  • Figure 4 is a phase matching diagram of the compound of the present invention at 1910 nm. detailed description
  • Ga 2 S 3 of the invention is obtained by medium-high temperature solid phase synthesis.
  • the specific reaction formula is:
  • the crystal structure analysis shows that the compound has a simple three-dimensional network frame structure and crystallizes in the non-center space group.
  • Example 2 Synthesis of 30 mmol monoclinic phase Ga 2 S 3 Weigh 30 mmol of Ga 2 0 3 ( 5623 mg ), 60 mmol of B powder ( 649 mg ), 90 mmol of S powder ( 2943 mg, 2% excess), and ball mill for 2 h at 400 r/min in a ball mill. Mix well and press into a piece. Under a vacuum of ⁇ 10 Pa, seal it with a oxyhydrogen flame in a quartz tube of about 15 cm long and 23 mm inside diameter and 20 mm inside diameter. The quartz tube was placed in a muffle furnace and heated to 900 °C at a rate of 30 °C/h for 60 hours at a constant temperature of 5 hours. The rate of C/h is cooled to 250.
  • the powder diffraction test was performed on a Niflex II diffractometer from Japan.
  • the diffractometer was a copper target X-ray with an operating voltage and current of 30 KV and 15 mA, respectively.
  • the scanning speed was 5 degrees/min and the scanning range was 5-65 degrees.
  • the simulation of the powder diffraction was carried out by using the mercury software to calculate the single crystal structure of the monoclinic phase Ga 2 S 3 .
  • Infrared transmission is based on Perkin-Elmer's Spectrum One Fourier transform infrared light transmitter, which has a test range of 4000-400 cm- 1 .
  • the sample powder and KBr are fully ground at a ratio of 1:100. After the tableting test, there was no obvious absorption peak in the range of 4000-400 cm -1 .
  • BaS0 4 plate as a reference, fully ground sample powder It is placed on it.
  • the powder diffraction pattern has no peaks indicating that the compound prepared by the high temperature solid phase boron vulcanization method has high purity, and the infrared transmission pattern indicates that the compound is infrared in the range of 2.5-25 m. Over, the visible light reflection of the purple bud shows that the energy gap of the compound is about 2.80 eVo Experimental Example 2: Powder doubling phase matching test of monoclinic phase Ga 2 S 3
  • the monoclinic phase Ga 2 S 3 polycrystalline powder is sieved with a steel sieve into powders of three particle sizes ranging from 30-50, 50-75, 75-100, 100-150, 150-200, and 200-300 m, respectively. In the same way, they are placed on the laser light path, and their frequency-doubled signal intensity at 1910 nm infrared laser wavelength is measured by near-infrared CCD. After analysis, the compound can be phase-matched. The test results of powder frequency doubling phase matching are shown in Figure 4.
  • the second-order nonlinear optical effect test shows that the compound has a large second-order nonlinear optical effect, and the sample frequency increases as the particle size increases, and the multiplication signal intensity is about KTP. 0.7 times, and the monoclinic phase Ga 2 S 3 is phase-matched at 1910 nm laser, which can be used as a good potential nonlinear optical crystal material.
  • Experimental Example 3 Laser Damage Threshold Test of Monoclinic Phase Ga 2 S 3
  • the monoclinic phase Ga 2 S 3 polycrystalline powder was sieved out of the 50-75 m particle size by a steel sieve, and the laser damage threshold was measured under the 1064 nm laser with a pulse width of about 8 ns. Power, observe the damage of the sample until the damage spot appears in the sample, record the laser power at this time, and measure the main damage spot area is 2.45 mm 2 .
  • the laser damage threshold test of the polycrystalline powder sample showed that the damage threshold of the compound was 174 MW/cm 2 , which was larger than the classical infrared nonlinear crystal AGS (0.03 GW/cm 2 @1064 nm with ⁇ ⁇ as 10 ns ) and LIS ( 0.1 GW/cm 2 @1064 nm with ⁇ ⁇ aslO ns ).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Compositions (AREA)

Abstract

提供一种单斜相Ga2S3的制备方法,包括:Ga2O3、B和S按照1:2:3的摩尔比例混合研磨,压片封入真空石英管中,以一定的温度曲线处理得到单斜相Ga2S3晶体产物。还提供一种单斜相Ga2S3晶体作为红外波段二阶非线性晶体材料的应用。

Description

单斜相 Ga2S3晶体的制备方法及其在光学上的应用
技术领域
本发明涉及单斜相 Ga2S3晶体作为红外波段二阶非线性光学材 料的应用及其制备方法, 属于材料科学领域和光学领域。 背景技术
目前非线性晶体材料由于激光技术的应用越来越引起大家的重 视,尤其是深紫外和中远红外波段的二阶非线性晶体材料由于种类较 少,还无法满足应用的需求, 而成为各国科学家研究的热点。硫属化 合物体系正在成为中远红外二阶非线性晶体研究的方向, 其中诸如 AgGaS2 (AGS), AgGaSe2 (AGSe)、 AgGa(1.x)InxSe2, GaSe、 LiInS2
( LIS )、 LiInSe2等已获得广泛的关注。 这些硫属化合物多为三元及 三元以上化合物,二元硫属化合物的二阶非线性性质研究较少。二元 硫属化合物相对于这些三元及其以上化合物,往往具有结构筒单、合 成方便、 物化性能稳定等特点。
Ga2S3有三种晶相: 单斜相 ( Cc )、 六方相( ^s c )和立方相
( F-43m ), 都结晶于非心空间群, 意味着 Ga2S3可能具有二阶非线 性光学效应。 1961年, Goodyear等人在 Acta 中首次报道了
Ga2S3的单斜相结构(Cc:)。 通过文献调研, 至今没有关于 Ga2S3作 为红外二阶非线性光学材料应用的报道。
Ga2S3的已知制备方法有两种, 都是采用 Ga和 S单质作为起始 反应物: ( 1 )将 Ga和 S以合适比例混合, 抽真空封入石英管中, 在 450°C保温 5天,再以 50°C/12h的速率加热到 1100 °C, 自然降温得到 Ga2S3的多晶粉末;( 2 )等量 Ga、 S在抽真空条件下分别置于密封石 英管的两个石英舟中,含 Ga的石英舟加热到 1150。C,含 S的石英舟 加热到 450-500°C , —天后, 在含 Ga的石英舟一端形成 Ga2S3的多 晶粉末。 这两种方法得到的都是单斜相的 Ga2S3。 本发明以 Ga203、 S粉、 B粉为原料,采用高温固相硼硫化的方法合成单斜相的 Ga2S3, 不仅降低了合成温度(950。C ),避免了传统操作的繁瑣步骤, 而且以 价 氐廉的 Ga203代^ ir属 Ga, 缩减了成本。 发明内容
本发明的目的在于提供一种单斜相 Ga2S3晶体材料,其在红外波 段具有潜在的二阶非线性光学应用及其制备方法,所述制备方法合成 简单, 易操作、原料来源充足、化合物合成的产率高, 纯度高且重复 性好, 适合大 生产的要求。
本发明通过如下技术方案实现:
一种二元金属硫化物晶体材料的制备方法,所述金属硫化物的化 学式为 Ga2S3,单斜晶系, 空间群为 Cc,单胞参数为 β = 11.117(9) A, b = 6.406(5) A, c = 7.033(5) A, a= 90 °, ;5=121.15(9) °, γ= 90 °, Z = 4, 其特征在于: 将 Ga203、 B和 S按照合适的比例进行混合研磨, 压片封入真空石英管中, 以一定的温度处理得到单斜相 Ga2S3产物。
根据本发明, 所述金属碗化物具有三维网络框架结构。
根据本发明, 所述方法为单斜相 Ga2S3的高温固相硼硫化方法。 根据本发明, 所述 Ga203、 B和 S的摩尔比例为 1: 2: 3。
根据本发明, 所述 Ga203、 B和 S的摩尔比例为 1: 2: 3, 其中 S的用量另外过量 1-3%, 优选 1-2%, 以保证反应充分进行。
根据本发明,在真空石英管中所述处理温度为以 30 ~ 40 °C/h的 速率升温至 850-980 V (优选 880-950 。C , 更优选 900-950 V ), 恒 温 48-144小时(优选 60-120 h, 更优选 60-100 h ), 再以 2 ~ 6 °C/h (优选 2-5°C/h, 更优选 2-4°C/h )的速率降温至 250 °C。
根据本发明, 所述制备方法包括将 Ga203、 B和 S按照 1: 2: 3 的摩尔比例(优选其中 S的用量另外过量 1-3% )进行混合研磨, 压 片装入真空石英管加热,以 30 ~ 40 °C/h的速率升温至 850-980 。(:(优 选 880-950 V , 更优选 900-950 °C ), 恒温 48-144小时 (优选 60-120 h, 更优选 60-100 h ), 再以 2 ~ 6 °C/h (优选 2-5°C/h, 更优选 2-4°C /h )的速率降温至 250 。C。 关掉电源, 取出石英管, 用热水洗掉副 产物 B203, 得到单斜相 Ga2S3浅黄色微晶。
本发明制备方法的产率为 90 %以上, 优选 95%以上, 甚至 98% 以上。
本发明具体反应式为:
Ga203 + 2 B + 3 S→ Ga2S3 + B203
本发明还提供上述具有三维网络框架结构的二元金属硫属化合 物单斜相 Ga2S3作为非线性光学晶体材料的应用。
优选地,所述应用为作为中远红外波段二阶非线性光学材料的应 用。 更优选地, 该单斜相 Ga2S3 (优选在其长成大晶体后), 在二次 谐波发生器,上、下频率转换器或光参量振荡器等激光器中应用, 以 扩大激光器的波段范围。
根据本发明,所述的单斜相 Ga2S3作为红外波段二阶非线性光学 材料的应用, 其特征在于: 该材料在 1910 nm处相位匹配, 粉末倍 频信号是 KTP的 0.7倍。
根据本发明,所述的单斜相 Ga2S3作为红外波段二阶非线性光学 材料的应用, 其特征在于: 该材料在脉宽 8 ns的 1064 nm激光下, 粉末激光损伤阈值为 174 MW/cm2。 该值大于经典红外非线性晶体 AGS ( 0.03 GW/cm2@1064 nm with τρ as 10 ns ) 和 LIS ( 0.1 GW/cm2@1064 nm with τρ as 10 ns )。
本发明的制备方法的特点在于: (1 )原料釆用 Ga203、 S、 B, 而不是传统的 Ga、 S; ( 2 )原料比例采用特定的比例 1: 2: 3, S可 以稍过量 1-3%, 保证原料充分反应; ( 3 )由于升温过快可能导致石 英管炸裂,降温速度过快可能会导致晶体质量较差和结构无序,而本 发明釆用恒温温度和恒温时间决定了结晶程度和晶粒大小,从而使得 本发明可以制备获得良好的非线性光学晶体材料。
本发明的优点是:( 1 )本发明的金属硫化物具有大的非线性光学 系数, 倍频信号约为 KTP的 0.7倍, 且在 1910nm处相位匹配, 激 光损伤阈值高于 AGS和 LIS, 可作为良好的非线性光学晶体材料; ( 2 )本发明的化合物的热稳定性好, 透过波段宽; (3 )合成方法筒 单, 易操作、原料来源充足、化合物合成的产率高, 纯度高且重复性 好, 适合大规模生产的要求。 附图说明
图 1为本发明化合物的 X射线粉末衍射图。
图 2为本发明化合物的红外吸收图。
图 3为本发明化合物的紫夕卜可见漫反射光讲图。
图 4为本发明化合物在 1910nm处的相位匹配图。 具体实施方式
以下通过实施例对本发明进行说明。 但下述实施例不是对本发明 的限制, 任何对本发明做出的改进和变化, 都在本发明的范围之内。 本发明的化合物 Ga2S3的合成: Ga2S3是采用中高温固相合成法得到的, 具体反应式为:
Ga203 + 2 B + 3 S→ Ga2S3 + B203
具体操作步骤为:
将 Ga203、 B和 S按照 1: 2: 3的摩尔比例进行混合, 压片^ 真空石英管加热, 以 30 ~ 40 °C/h的速率升温至 850-980 °C, 恒温 48-144小时, 再以 2 ~ 6 °C/h的速率降温至 250 。C , 最后关掉电源, 取出石英管, 用热水冲洗掉副产物 B203, 可得到浅黄色块状的化合 物微晶, 产率为 90 %以上。 经单晶衍射仪和元素分析测试表明该晶 体为单斜相 Ga2S3。 实施例 1: 1 mmol单斜相 Ga2S3的合成
称取 1 mmol的 Ga203( 187 mg )、 2 mmol的 B ( 22 mg )、 3 mmol 的 S粉( 97 mg, 过量 1% ), 于玛瑙研钵中研磨约 10 min至充分混 合均匀,再压制成片,在< 10 Pa的真空度下, 用氢氧焰封于约 10cm 长外径 13mm内径 11 mm的石英管中。 将石英管置于马弗炉中, 以 30 °C/h的速率升温至 920 °C , 恒温 60小时, 再以 5 。C/h的速率降 温至 250 °C, 关掉电源自然降至室温, 取出石英管, 开管后用热水 冲洗掉副产物 B203,可得到约 1 mmol的单斜相 Ga2S3多晶粉末,产 率为 90 %以上。
本发明的晶体结构 为: α = 11.117(9) A, b = 6.406(5) A, c = 7.033(5) A, α = 90。, ;5=121.15(9) °, γ= 90 °, Z = 4。 经晶体结构分 析表明,该化合物具有简单的三维网络框架结构,结晶于非心空间群
实施例 2: 30 mmol单斜相 Ga2S3的合成 称取 30 mmol的 Ga203 ( 5623 mg )、 60 mmol的 B粉( 649 mg )、 90 mmol的 S粉( 2943 mg, 过量 2% ), 在球磨机中以 400 r/min球 磨 2 h至充分混合均匀, 再压制成片, 在< 10 Pa的真空度下, 用氢 氧焰封于约 15 cm长外径 23 mm内径 20 mm的石英管中。将石英管 置于马弗炉中, 以 30 °C/h的速率升温至 900 °C, 恒温 60小时, 再 以 5 。C/h的速率降温至 250 。C , 关掉电源自然降至室温, 取出石英 管, 开管后用热水冲洗掉副产物 B203, 可得到约 30 mmol的单斜相 Ga2S3多晶粉末, 产率为 90 %以上。
该实施例说明此方法可用于大量合成单斜相 Ga2S3多晶粉末,为 下一步单斜相 Ga2S3大晶体的生长奠定了基础。 实施例 3: 10 mmol单斜相 Ga2S3的合成
称取 10 mmol的 Ga203 ( 1874 mg )、 20 mmol的 B粉( 217 mg )、 30 mmol的 S粉( 981 mg, 过量 2% ), 在球磨机中以 400 r/min球磨 2 h至充分混合均匀,再压制成片,在< 10 Pa的真空度下, 用氢氧焰 封于约 15cm长外径 18 mm内径 15 mm的石英管中。 将石英管置于 马弗炉中,以 40 °C/h的速率升温至 850 。(:,恒温 144小时,再以 4 。C /h的速率降温至 250 。C , 关掉电源自然降至室温, 取出石英管, 开 管后用热水冲洗掉副产物 B203, 可得到约 10 mmol的单斜相 Ga2S3 多晶粉末, 产率为 98 %以上。 实施例 4: 3 mmol单斜相 Ga2S3的合成
称取 3 mmol的 Ga203( 562 mg )、 6 mmol的 B ( 65 mg )、 9 mmol 的 S粉( 291 mg, 过量 1% ), 于玛瑙研钵中研磨约 30 min至充分混 合均匀,再压制成片, < 10 Pa的真空度下,用氢氧焰封于约 12 cm 长外径 13 mm内径 11 mm的石英管中。将石英管置于马弗炉中, 以 35 °C/h的速率升温至 950 V , 恒温 48小时, 再以 2 。C/h的速率降 温至 250 V , 关掉电源自然降至室温, 取出石英管, 开管后用热水 冲洗掉副产物 B203, 可得到约 3 mmol的单斜相 Ga2S3多晶粉末,产 率为 95 %以上。 实验例 1: 单斜相 Ga2S3的粉末的性质测试
粉末衍射测试釆用日本理学的 Miniflex II衍射仪, 该衍射仪为 铜靶 X射线, 工作电压和电流分别为 30 KV和 15 mA, 图谱扫描速 度为 5度 /min,扫描范围为 5-65度。粉末衍射的模拟图是用 mercury 软件对单斜相 Ga2S3的单晶结构进行计算模拟得到的。
红外透过借图采用 Perkin-Elmer公司的 Spectrum One傅里叶 变换红外光傳仪, 该光傳仪的测试范围为 4000-400 cm-1.该样品粉末 和 KBr以 1: 100的比例充分研磨后压片测试, 在 4000-400 cm-1范 围内无明显吸收峰。
紫外 ¾X射谱图采用 Perkin-Elmer公司的 Lambda 900 紫夕卜 可见-近红外光"^ , 采用积分球, 测试范围为 190-2500 nm。 采用 BaS04板作为参比,将充分研磨的样品粉末置于其上。吸收谱图是由 ¾ 射谱图经过 Kubelka-Munk公式 /S=(1-R)2/2R ( R为反射率, S 为散射系数, 为吸收系数)计算得到的。
如图 1、 图 2、 图 3所示, 粉末衍射图谱无杂峰表明高温固相硼 硫化法制备的该化合物纯度较高,红外透过图表明该化合物在 2.5-25 m的范围内红外透过, 紫夕卜可见漫反射光傅图显示该化合物的能 隙约为 2.80 eVo 实验例 2: 单斜相 Ga2S3的粉末倍频相位匹配测试
将单斜相 Ga2S3多晶粉末用钢筛筛出 30-50、 50-75、 75-100、 100-150、 150-200、 200-300 m六个粒径范围的粉末, 分别装样, 置于激光光路之上,用近红外 CCD测得它们在 1910 nm红外激光波 长下的倍频信号强度,作图后分析判断化合物能否相位匹配。粉末倍 频相位匹配的测试结果见图 4。
如图 4所示,二阶非线性光学效应测试表明该化合物具有较大的 二阶非线性光学效应,样品随着粒径增大其倍频信号也变大,倍频信 号强度约为 KTP的 0.7倍, 且单斜相 Ga2S3在 1910 nm激光下相位 匹配, 可作为良好的潜在非线性光学晶体材料。 实验例 3: 单斜相 Ga2S3的激光损伤阈值测试
将单斜相 Ga2S3多晶粉末用钢筛筛出 50-75 m粒径范围的粉 末, 装样后在脉宽约为 8 ns的 1064 nm激光下测其激光损伤阈值, 不断提高激光功率, 观察样品的损伤情况, 直至样品出现损伤光斑, 记录此时激光器功率, 并测得主损伤斑面积为 2.45 mm2
多晶粉末样品的激光损伤阈值测试表明,该化合物的损伤阈值为 174 MW/cm2, 大于经典红外非线性晶体 AGS ( 0.03 GW/cm2@1064 nm with τρ as 10 ns )和 LIS( 0.1 GW/cm2@1064 nm with τρ aslO ns )。

Claims

1. 一种二元金属硫化物晶体材料的制备方法, 所述金属硫化物的化 学式为 Ga2S3,单斜晶系, 空间群为 Cc,单胞 为 α = 11.117(9) A, b = 6.406(5) A, c = 7.033(5) A, a= 90 °, ;5=121.15(9) °, γ= 90 。, Z = 4, 其特征在于: 将 Ga203、 B和 S按照合适的比例进行混 合研磨, 压片封入真空石英管中, 以一定的温度曲线处理得到单 斜相 Ga2S3产物。
2. 根据权利要求 1所述的制备方法, 其特征在于, 所述 Ga203、 B 和 S的摩尔比例为 1: 2: 3。
3. 根据权利要求 1或 2所述的制备方法,其特征在于,所述 Ga203、 B和 S的摩尔比例为 1: 2: 3, 其中 S的用量另外过量 1-3%, 以 保证反应充分进行。
4. 根据权利要求 1-3任一项所述的制备方法, 其特征在于, 所在真 空石英管中所述处理温度为以 30 ~ 40 °C /h 的速率升温至 850-980 °C (优选 880-950 °C ,更优选 900-950 °C ), 恒温 48-144 小时(优选 60-120 h, 更优选 60-100 h ), 再以 2 ~ 6 °C/h (优选 2-5°C/h, 更优选 2-4°C/h )的速率降温至 250 V。
5. 根据权利要求 1-4任一项所述的制备方法, 其特征在于, 单斜相 Ga2S3的高温固相硼破化制备方法, 包括如下步骤: Ga203、 B和 S按照 1: 2: 3的摩尔比例(优选其中 S的用量另外过量 1-3% ) 混合研磨, 压片装入真空石英管, 以 30 ~ 40 。C/h的速率升温至 850-980 V , 恒温 48-144 小时, 再以 2 ~ 6 °C/h 的速率降温至 250 。C , 洗掉副产物 B203 (优选用热水洗涤),制得单斜相 Ga2S3 微晶。
6. 一种单斜相 Ga2S3作为红外波段二阶非线性光学材料的应用, 所 述单斜相的空间群为 Cc,单胞 为 a = 11.117(9) A, b = 6.406(5) A, c = 7.033(5) A, a = 90。, ;5=121.15(9) °, γ= 90 °, Z = 4。
7. 根据权利要求 6所述的应用, 其特征在于, 作为中远红外波段二 阶非线性光学材料的应用。 更优选地, 该单斜相 Ga2S3 (优选在 其长成大晶体后),在二次谐波发生器,上、下频率转换器或光参 量振荡器等激光器中应用。
8. 根据权利要求 6或 7的应用, 其特征在于, 所述单斜相 Ga2S3通 过前述权利要求 1-5任一项的制备方法制备。
9. 如权利要求 6-8任一项的应用,其特征在于:所述材料在 1910 nm 处相位匹配, 粉末倍频信号是 KTP的 0.7倍。 优选地, 所述材料 在脉宽 8 ns 的 1064 nm 激光下, 粉末激光损伤阈值为 174 MW/cm
PCT/CN2012/086248 2012-06-11 2012-12-10 单斜相Ga2S3晶体的制备方法及其在光学上的应用 WO2013185453A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/565,133 US9513532B2 (en) 2012-06-11 2014-12-09 Optical parametric oscillator and second harmonic generator using monoclinic phase Ga2S3 crystal
US15/261,708 US9766529B2 (en) 2012-06-11 2016-09-09 Optical parametric oscillator and second harmonic generator using monoclinic phase Ga2S3 crystal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210191288.6 2012-06-11
CN2012101902808A CN102701269A (zh) 2012-06-11 2012-06-11 制备单斜相Ga2S3晶体的方法
CN201210190280.8 2012-06-11
CN2012101912886A CN102681289A (zh) 2012-06-11 2012-06-11 单斜相Ga2S3晶体在光学上的应用

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/565,133 Continuation-In-Part US9513532B2 (en) 2012-06-11 2014-12-09 Optical parametric oscillator and second harmonic generator using monoclinic phase Ga2S3 crystal
US14/565,133 Continuation US9513532B2 (en) 2012-06-11 2014-12-09 Optical parametric oscillator and second harmonic generator using monoclinic phase Ga2S3 crystal

Publications (1)

Publication Number Publication Date
WO2013185453A1 true WO2013185453A1 (zh) 2013-12-19

Family

ID=49757469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086248 WO2013185453A1 (zh) 2012-06-11 2012-12-10 单斜相Ga2S3晶体的制备方法及其在光学上的应用

Country Status (3)

Country Link
US (2) US9513532B2 (zh)
CN (2) CN103484938B (zh)
WO (1) WO2013185453A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484938B (zh) * 2012-06-11 2017-02-22 中国科学院福建物质结构研究所 单斜相Ga2S3晶体的制备方法及其在光学上的应用
CN104532352B (zh) * 2014-12-05 2018-02-16 中国科学院福建物质结构研究所 一种非线性光学晶体材料、其制备方法及应用
WO2016086425A1 (zh) * 2014-12-05 2016-06-09 中国科学院福建物质结构研究所 一种非线性光学晶体材料、其制备方法及应用
CN107366020A (zh) * 2017-07-04 2017-11-21 扬州大学 立方相Ga2Se3晶体在非线性光学上的应用
CN108441964B (zh) * 2018-04-16 2019-12-24 中国科学院福建物质结构研究所 Ga2S3单晶的制备方法以及该单晶在铁电材料、压电器件及热电器件中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029217A1 (en) * 1993-06-03 1994-12-22 Merck Patent Gmbh Process for the preparation of metal sulphides
CN1952222A (zh) * 2005-10-20 2007-04-25 中国科学院福建物质结构研究所 含碱金属、镓或铟的硫属化合物晶体的生长方法
CN101376492A (zh) * 2007-08-30 2009-03-04 中国科学院福建物质结构研究所 一种过渡金属硫属化合物的制备方法
CN102681289A (zh) * 2012-06-11 2012-09-19 中国科学院福建物质结构研究所 单斜相Ga2S3晶体在光学上的应用
CN102701269A (zh) * 2012-06-11 2012-10-03 中国科学院福建物质结构研究所 制备单斜相Ga2S3晶体的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085964A (zh) * 1992-10-20 1994-04-27 国家建筑材料工业局人工晶体研究所 非线性光学晶体
US5611856A (en) * 1994-05-19 1997-03-18 Lockheed Sanders, Inc. Method for growing crystals
US6304583B1 (en) * 1999-07-26 2001-10-16 The United States Of America As Represented By The Secretary Of The Air Force Utilization of telluride quaternary nonlinear optic materials
CN1951820A (zh) * 2005-10-20 2007-04-25 中国科学院福建物质结构研究所 非中心对称结构稀土硫化物
CN1837115B (zh) * 2006-04-13 2010-09-08 武汉理工大学 红外倍频硫系玻璃陶瓷的制备方法
CN101544472A (zh) * 2009-04-27 2009-09-30 武汉理工大学 一种具有倍频功能的硫系玻璃陶瓷及其制备方法
CN102351425B (zh) * 2011-07-11 2014-01-29 宁波大学 一种半导体纳米晶复合硫系玻璃陶瓷材料及其制备方法
CN103484938B (zh) * 2012-06-11 2017-02-22 中国科学院福建物质结构研究所 单斜相Ga2S3晶体的制备方法及其在光学上的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029217A1 (en) * 1993-06-03 1994-12-22 Merck Patent Gmbh Process for the preparation of metal sulphides
CN1952222A (zh) * 2005-10-20 2007-04-25 中国科学院福建物质结构研究所 含碱金属、镓或铟的硫属化合物晶体的生长方法
CN101376492A (zh) * 2007-08-30 2009-03-04 中国科学院福建物质结构研究所 一种过渡金属硫属化合物的制备方法
CN102681289A (zh) * 2012-06-11 2012-09-19 中国科学院福建物质结构研究所 单斜相Ga2S3晶体在光学上的应用
CN102701269A (zh) * 2012-06-11 2012-10-03 中国科学院福建物质结构研究所 制备单斜相Ga2S3晶体的方法

Also Published As

Publication number Publication date
US9766529B2 (en) 2017-09-19
US9513532B2 (en) 2016-12-06
US20150146281A1 (en) 2015-05-28
CN103484938B (zh) 2017-02-22
CN106757303A (zh) 2017-05-31
CN103484938A (zh) 2014-01-01
US20160377957A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis, structure and properties of a new nonlinear optical material: zinc cadmium tetrathiocyanate
US9766529B2 (en) Optical parametric oscillator and second harmonic generator using monoclinic phase Ga2S3 crystal
Tan et al. Synthesis of copper sulfide nanotube in the hydrogel system
CN105951181B (zh) 一种晶体材料、制备方法及作为红外非线性光学材料的应用
CN107022793B (zh) 一种红外非线性光学晶体、其制备方法及应用
WO2016086425A1 (zh) 一种非线性光学晶体材料、其制备方法及应用
Deng et al. Novel Bi19S27Br3 superstructures: facile microwave-assisted aqueous synthesis and their visible light photocatalytic performance
Yu et al. Hydrothermal synthesis and characterization of LiNbO3 crystal
CN106835284A (zh) 一类红外非线性光学晶体材料及其制备方法和用途
CN112575368B (zh) 一种含镓的非线性光学晶体材料及其合成方法与应用
Wang et al. Crystal growth and characterization of a novel organometallic nonlinear-optical crystal:: MnHg (SCN) 4 (C2H6OS) 2
Baraniraj et al. Growth and characterization of NLO based l-arginine maleate dihydrate single crystal
CN102681289A (zh) 单斜相Ga2S3晶体在光学上的应用
CN110777434A (zh) 一种混合阴离子红外非线性光学晶体/粉末及其制备方法
WO2017201648A1 (zh) 一类红外非线性光学晶体材料及其制备方法和用途
CN109750357B (zh) 红外非线性光学晶体Ba10Zn7M6Q26及其制备方法与用途
CN110468445A (zh) 硼酸铯钡非线性光学晶体及其制备方法和用途
Validžić et al. Colloidal synthesis of Sb2S3 nanorods/bars with strong preferred orientation
CN102701269A (zh) 制备单斜相Ga2S3晶体的方法
Mahalakshmi et al. Growth, structure and optical properties of an efficient NLO crystal-aqua maleatocopper (II)
CN102191553A (zh) 一类新型红外非线性光学晶体及其制备方法
CN109680335B (zh) 硫碘化物硼酸盐非线性光学晶体材料及其制备方法和用途
CN111118607B (zh) 一种杂阴离子非线性光学材料及其制备方法和应用
Wang et al. Exploring the thermo-stability and optical characteristics of (Morpholine) 2SbCl5 crystal with a non-centrosymmetric structure
CN104562204A (zh) 钨酸碲铯晶体及其助熔剂生长方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878821

Country of ref document: EP

Kind code of ref document: A1