WO2013183517A1 - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
WO2013183517A1
WO2013183517A1 PCT/JP2013/064897 JP2013064897W WO2013183517A1 WO 2013183517 A1 WO2013183517 A1 WO 2013183517A1 JP 2013064897 W JP2013064897 W JP 2013064897W WO 2013183517 A1 WO2013183517 A1 WO 2013183517A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
rolling
outer ring
annular
rolling bearing
Prior art date
Application number
PCT/JP2013/064897
Other languages
English (en)
French (fr)
Inventor
加藤 平三郎
Original Assignee
Kato Heizaburo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Heizaburo filed Critical Kato Heizaburo
Priority to KR1020147035365A priority Critical patent/KR101990174B1/ko
Priority to EP13800708.3A priority patent/EP2860417B1/en
Publication of WO2013183517A1 publication Critical patent/WO2013183517A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • F16C27/045Ball or roller bearings, e.g. with resilient rolling bodies with a fluid film, e.g. squeeze film damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General buildup of machine tools, e.g. spindles, slides, actuators

Definitions

  • the present invention relates to a rolling bearing having a pressure contact mechanism that presses a plurality of rolling elements against an outer ring and an inner ring from a radial direction.
  • a cylindrical roller bearing 10 'as shown in FIG. 1A is used as a rolling bearing.
  • This cylindrical roller bearing 10 ' has a plurality of cylindrical rolling elements 50' between an inner ring 20 'and an outer ring 30'. Since the peripheral speed difference between the rolling element 50 ′ and the inner ring 20 ′ and the outer ring 30 ′ is small based on the cylindrical shape, the rolling friction coefficient is low, and the rolling element 50 ′, the inner ring 20 ′, and the outer ring 30 ′. Since this is a line contact, it is excellent in the ability to support a radial load, and for these reasons, it is often used in a support structure for the spindle 5 of a machine tool.
  • the rolling element 50 ′ is press-contacted in the radial direction with a predetermined pressing force in advance on the inner ring 20 ′ and the outer ring 30 ′.
  • the outer ring 30 ′ of the cylindrical roller bearing 10 ′ is fixed to the mounting hole 3h of the housing 3 of the apparatus so as not to be relatively movable. Further, the inner peripheral surface 20i ′ of the inner ring 20 ′ is formed into a tapered surface, and the inner peripheral surface 20i ′ is in contact with the tapered outer peripheral surface 5g of the shaft member 5 to be supported.
  • the inner ring 20 ′ is moved by the nut member 6n ′ that moves in the axial direction.
  • the inner ring 20 ' is radially expanded in the radial direction in accordance with the pushing amount based on the wedge effect caused by the contact between the tapered surfaces 20i' and 5g. 'Presses the rolling element 50' toward the outer outer ring 30 'in the radial direction, and as a result, the rolling element 50' is in a preload state in which it is in pressure contact with the inner ring 20 'and the outer ring 30'.
  • FIG. 1B is a graph showing this state.
  • the vertical axis represents the amount of axial force applied to the inner ring 30 ′
  • the horizontal axis represents the amount of relative movement of the inner ring 20 ′ with respect to the housing 3.
  • Patent Document 1 discloses a cylindrical roller bearing 210 capable of avoiding a stick-slip phenomenon when preload is applied.
  • FIG. 2 is a schematic central sectional view thereof.
  • a preload adjusting ring 240 is provided on the outer side of the outer ring 230 in the radial direction of the cylindrical roller bearing 210, and a pressure chamber R 240 is provided between the preload adjusting ring 240 and the housing 3. Then, by supplying a pressurized fluid from the outside to the pressure chamber R240, the diameter of the outer ring 230 is reduced through the radial deformation of the preload adjusting ring 240, whereby the rolling element 250 is moved to the outer ring 230 and the inner ring 220. It is comprised so that it may press-contact to.
  • the machine tool is used for cutting or the like.
  • the radial load is: From the shaft member 5, the inner ring 220 ⁇ the rolling element 250 ⁇ the outer ring 230 ⁇ the preload adjusting ring 240 are sequentially transmitted outward in the radial direction and finally must be reliably transmitted to the housing 3.
  • a pressure chamber R240 exists between the housing 3 and the preload adjusting ring 240, and the pressure chamber R240 is supported by a pair of O-rings 242 and 242 located on both sides thereof. That is, the radial load is supported by the low-rigidity O-ring 242. Therefore, under the action of a large radial load, there is a risk that the O-ring 242 loses the radial load and is easily and greatly deformed. As a result, the cylindrical roller bearing 210 can be used for a machine tool or the like. It is considered that it is difficult to apply to a device that assumes a large radial load.
  • the present invention has been made in view of the conventional problems as described above, and its purpose is to provide a pressure contact force in a rolling bearing having a pressure contact mechanism that presses a plurality of rolling elements against an outer ring and an inner ring from a radial direction. It is to make it possible to reliably support a radial load while making it easy to manage the load.
  • the main invention for achieving the above object is: A rolling bearing having an outer ring, an inner ring, and a plurality of rolling elements that roll in contact with the outer ring and the inner ring from a radial direction,
  • the outer ring is An annular portion having a rolling surface on the inner circumferential surface on which the rolling element rolls;
  • a fixing portion for fixing the outer ring to a predetermined fixing target member a protruding portion provided to protrude outward in the radial direction while being integrally continuous with an end portion in the axial direction of the annular portion is provided.
  • the rolling bearing is characterized in that the annular portion is elastically contracted in the radial direction by the pressurized fluid supplied to the annular space, and the rolling element is pressed against the outer ring and the inner ring.
  • the radial load can be reliably supported while facilitating management of the pressure contact force.
  • FIG. 1A is a schematic central cross-sectional view of a conventional cylindrical roller bearing 10 ′ capable of applying a preload
  • FIG. 1B is a graph for explaining a stick-slip phenomenon that may occur when preload is applied. It is a general
  • 3A is a schematic center sectional view of the rolling bearing 10 of the present embodiment
  • FIG. 3B is a sectional view taken along the line BB in FIG. 3A. It is the IV section enlarged view in FIG. 3A.
  • FIG. 5A is a schematic center sectional view of the rolling bearing 10 when the pressure chamber 40R is in a non-pressurized state
  • 5B is a schematic center sectional view of the rolling bearing 10 in the same pressurized state.
  • 6A is an explanatory diagram of a cylindrical body model used for examining the thickness of the annular portion 32 of the outer ring 30, and
  • FIG. 6B is an explanatory diagram of a support structure model used for examining the rigidity of the annular portion 32. It is a general
  • a rolling bearing having an outer ring, an inner ring, and a plurality of rolling elements that roll in contact with the outer ring and the inner ring from a radial direction
  • the outer ring is An annular portion having a rolling surface on the inner circumferential surface on which the rolling element rolls;
  • a fixing portion for fixing the outer ring to a predetermined fixing target member a protruding portion provided to protrude outward in the radial direction while being integrally continuous with an end portion in the axial direction of the annular portion is provided.
  • a rolling bearing according to claim 1 wherein the annular portion is elastically deformed in the radial direction by the pressurized fluid supplied to the annular space, and the rolling element is pressed against the outer ring and the inner ring.
  • the rolling element is pressed against the outer ring and the inner ring by elastically deforming the annular portion in the radial direction based on the supply of the pressurized fluid. Therefore, the occurrence of the stick-slip phenomenon in the pressure contact process is effectively avoided, and as a result, the pressure contact force between the outer ring and the inner ring of the rolling element changes smoothly and quickly in association with the increase or decrease of the supply pressure of the pressurized fluid. To come. As a result, the pressing force can be applied accurately, and the pressing force can be easily managed (that is, preload management).
  • the pressure contact force changes quickly following the supply pressure of the pressurized fluid, the pressure contact force can be freely adjusted to any desired value, and there is a need to change such pressure contact force. Can be handled without any problems.
  • the outer ring has a fixing portion provided integrally with an annular portion where the rolling element rolls, and the outer ring is fixed to a fixing target member such as a housing of an appropriate device via the fixing portion. Therefore, the radial load transmitted to the annular portion via the rolling element can be quickly transmitted to the member to be fixed through the fixing portion, and thereby the radial load can be reliably supported.
  • the annular space to which the pressurized fluid is supplied is adjacent to the outer peripheral surface of the annular portion of the outer ring, the supply pressure directly acts on the annular portion. Therefore, the reduced diameter deformation of the annular portion can be reliably performed by supplying the pressurized fluid, and as a result, the rolling element can be reliably pressed against the outer ring and the inner ring.
  • Such a rolling bearing An annular seal member that is interposed between the annular portion and the ring-shaped member while being in contact with both of them to prevent leakage of the pressurized fluid from the annular space;
  • the seal members are respectively disposed at both ends in the axial direction of the ring-shaped member,
  • the seal member is preferably made of rubber or resin.
  • Such a rolling bearing It is desirable that the center position of the rolling element is located closer to the opposite side of the fixed portion with respect to the axial direction than the center position in the axial direction in the annular space.
  • the rolling element is arranged at a position away from the fixed part of the outer ring, and thus the rolling element is reduced in diameter at a part of the annular part away from the fixed part.
  • a radial pressing force is applied.
  • the restraining force in the radial direction due to the attachment target member that can reach the annular part via the fixed part is difficult to act on the above-mentioned separated part.
  • the distant portion is deformed in a reduced diameter substantially uniformly over the entire length in the axial direction of the same portion.
  • the radial pressing force acting on the rolling elements can be effectively prevented from having a one-sided bias, that is, the pressing force can be applied in a substantially uniform distribution with respect to the axial direction, As a result, the rotational accuracy and rotational rigidity of the rolling bearing can be increased.
  • the ring-shaped member undergoes elastic diameter expansion deformation by supplying the pressurized fluid to the annular space
  • the outer peripheral surface of the protrusions is a part that is fixed in contact with the fixing target member,
  • the size is such that a space is formed adjacent to the outer peripheral surface of the ring-shaped member and allowing outward elastic deformation of the ring-shaped member.
  • a space is formed adjacent to the outer peripheral surface of the ring-shaped member and on the outer side thereof to allow elastic expansion deformation of the ring-shaped member. It is in the state that was done. That is, there is no member that can take a reaction force outside the outer peripheral surface of the ring-shaped member. Therefore, the supply pressure of the pressurized fluid in the annular space is faithfully converted into a radial contact force. As a result, the annular portion is reduced in diameter based on only the supply pressure of the pressurized fluid, so that the annular portion is reduced in diameter almost uniformly over the entire circumference, resulting in the rolling element.
  • the applied pressure contact force is also substantially equalized over the entire circumference of the rolling bearing. Further, it is possible to improve the rotational accuracy and rotational rigidity of the rolling bearing.
  • FIG. 3B is a cross-sectional view taken along the line BB in FIG. 3A.
  • FIG. 4 is an enlarged view of a portion IV in FIG. 3A.
  • the axial direction of the rolling bearing 10 is referred to as “axial direction” or “front-rear direction”
  • the radial direction of the rolling bearing 10 is referred to as “radial direction” or “internal / external direction”.
  • the circumferential direction of the rolling bearing 10 is simply referred to as “circumferential direction”.
  • a part of hatching that should originally be shown in the sectional portion may be omitted for the purpose of preventing the complication of the drawings.
  • the rolling bearing 10 rotatably supports a shaft member 5 such as a main shaft on a housing 3 of an appropriate device such as a machine tool (see FIG. 7).
  • a shaft member 5 such as a main shaft
  • the outer ring 30 of the rolling bearing 10 is fitted into the mounting hole 3 h of the housing 3, and the shaft member 5 to be pivotally supported is fitted to the inner peripheral side of the inner ring 20.
  • the rolling bearing 10 supports the shaft member 5 rotatably.
  • the rolling bearing 10 of this embodiment belongs to the category of so-called single-row cylindrical roller bearings. That is, since it is a single row, a plurality of rolling elements 50 are arranged in a line in the circumferential direction between the inner ring 20 and the outer ring 30. Moreover, since it is the cylindrical roller bearing 10, while using the cylindrical body whose cross-sectional shape is a perfect circle shape as the rolling element 50, the rotating shaft C50 of the rolling element 50 is parallel to the axial direction. Thereby, a high radial load supporting ability is exhibited. Note that the contact between the rolling elements 50 adjacent to each other in the circumferential direction is avoided by the annular cage 60. For example, the cage 60 has a hole for accommodating the rolling element 50 for each rolling element 50, thereby avoiding contact between the rolling elements 50, 50.
  • the rolling bearing 10 has a preload mechanism, that is, a pressure contact mechanism that presses the rolling element 50 against the inner ring 20 and the outer ring 30 from the radial direction.
  • the press contact mechanism includes a ring-shaped member 40 that is disposed to face the outer peripheral surface 32b of the annular portion 32 of the outer ring 30 with a gap G therebetween, and the annular portion 32 and the ring-shaped member.
  • An annular pressure chamber R ⁇ b> 40 (corresponding to an annular space) is defined between the chamber 40 and the chamber 40.
  • a rolling surface 30 a of the rolling element 50 is formed on the inner peripheral surface of the annular portion 32.
  • the rolling element 50 is pressed toward the inner ring 20, and as a result, the rolling element 50 is moved to the outer ring 30.
  • the annular portion 32 and the inner ring 20 are pressed against each other.
  • the inner ring 20 has a steel cylindrical body having a circular cross section as a main body.
  • a groove 20t is formed in a concave shape on the outer peripheral surface of the inner ring 20 over the entire circumference, and the rolling element 50 rolls with the bottom surface 20tb of the groove 20t as the rolling surface 20a.
  • the rolling surface 20a is parallel to the axial direction. Further, since there are side surfaces 20ts and 20ts of the groove 20t on both sides in the axial direction of the rolling surface 20a, the end surfaces of the rolling elements 50 abut on the side surfaces 20ts and 20ts, respectively, and the rolling member 50 moves in the axial direction. Is regulated.
  • the material of the inner ring 20 is not limited to the above steel.
  • non-ferrous metal such as cemented carbide or non-metal such as ceramic may be used.
  • the outer ring 30 as a whole has a cylindrical body with a circular cross section.
  • the outer ring 30 has an annular annular portion 32 having a rolling surface 30a on which the rolling element 50 rolls on the inner peripheral surface, and the housing 3 ( And a fixing portion 36 for fixing the outer ring 30 to the fixing target member).
  • the fixed portion 36 is a protruding portion 36 that protrudes in an annular shape outward in the radial direction while being continuous with the rear end portion 32eb in the axial direction of the annular portion 32.
  • the outer peripheral surface 36a of the protruding portion 36 is Is fitted into the hole 3h while being in contact with the inner peripheral surface of the mounting hole 3h (FIG.
  • the rolling surface 30 a of the annular portion 32 is formed in parallel with the axial direction over the entire circumference of the annular portion 32. Further, the thickness of the annular portion 32 is set to a constant thickness at least in the formation portion of the rolling surface 30a. In the example of FIG. 4, the annular portion 32 is excluded except for the chamfered portion of the front end portion 32ef in the axial direction. Is set to a constant thickness over the entire length and circumference. The thickness is calculated based on, for example, a design formula 1 described later, and the annular portion 32 is designed so that it can be smoothly elastically contracted in the radial direction based on the supply pressure of the pressurized fluid. Yes.
  • the outer ring 30 is made of steel. And if it makes it steel, based on the mechanical property, it can carry out elastic diameter reduction deformation
  • the outer peripheral surface 32 b of the annular portion 32 is provided with a pressure contact mechanism that presses the rolling element 50 against the inner ring 20 and the outer ring 30.
  • the pressure contact mechanism has a ring-shaped member 40 that is opposed to the outer peripheral surface 32b of the annular portion 32 of the outer ring 30 with a predetermined gap G as a main body, and between the ring-shaped member 40 and the annular portion 32.
  • An annular pressure chamber R40 is defined. Therefore, as shown in FIGS. 5A and 5B, by supplying pressurized fluid to the pressure chamber R40 and reducing the diameter of the annular portion 32, the rolling element 50 is moved to the inner ring 20 on the rolling surface 30a of the annular portion 32. As a result, the rolling element 50 is pressed against the outer ring 30 and the inner ring 20.
  • the ring-shaped member 40 is an annular member having a length in the axial direction that is substantially the same as the length of the annular portion 32.
  • An annular pressure chamber R40 is defined.
  • the shape of the cross section along the axial direction of the ring-shaped member 40 is uniform in the same shape over the perimeter of the circumferential direction. Therefore, the deformation bias at the time of the diameter reduction deformation does not substantially occur over the entire circumference, so that the pressure contact force between the rolling element 50 and the outer ring 30 and the inner ring 20 is substantially uniform over the entire circumference in the circumferential direction. Act on.
  • packings 47 and 47 for preventing leakage of pressurized fluid from the pressure chamber R40 to the outside are provided at both ends in the axial direction of the ring-shaped member 40, respectively. That is, grooves 40t and 40t are formed at both ends of the inner peripheral surface of the ring-shaped member 40 over the entire circumference, and an annular packing 47 is inserted into each groove 40t. 32, and is in contact with both the outer peripheral surface 32b of the groove 40t and the bottom surface of the groove 40t, and is interposed between the annular portion 32 and the ring-shaped member 40 while being slightly elastically compressed and deformed. The leakage of pressurized fluid from is effectively prevented.
  • annular portion 32 and the ring-shaped member 40 are held in a non-contact state by the interposition of the packing 47, thereby causing a stick-slip phenomenon caused by the contact between the annular portion 32 and the ring-shaped member 40. Has been effectively avoided.
  • the packing 47 is made of rubber or resin. If it does so, it will become possible to avoid reliably the generation
  • a general metal material may be used as long as it can withstand the supply pressure of the pressurized fluid.
  • the supply of the pressurized fluid to the pressure chamber R40 is performed through the supply hole 40h drilled in the ring-shaped member 40.
  • the supply hole 40 h is formed through the ring-shaped member 40 along the radial direction. And by connecting piping, a manifold member, etc. used as the flow path of pressurized fluid from the outside of the ring-shaped member 40 to this supply hole 40h, pressurized fluid can be supplied to the pressure chamber R40.
  • the number of supply holes 40h may be one as shown in the example of FIG. 3B or may be plural.
  • the pressurized fluid is generally hydraulic oil used for hydraulic pressure, but may be compressed air or other fluids.
  • a pump serving as a supply source of the pressurized fluid is connected to the flow path of the pressurized fluid, and the pump and the supply hole are included in the flow path.
  • a pressure regulating valve is arranged in a portion between 40h. The pressure adjusting valve adjusts the supply pressure to the pressure chamber R40. Therefore, the pressure contact force between the rolling element 50, the outer ring 30, and the inner ring 20 can be adjusted to a desired arbitrary value by adjusting the supply pressure.
  • the outer ring 30 having the annular portion 32 and the fixed portion 36 is formed of a single member. That is, the outer ring 30 is not formed by joining or connecting different members by welding or the like.
  • the outer ring 30 can be formed from a solid material by cutting with a lathe, and in that case, the outer peripheral surface 36a of the fixing portion 36 that forms the mounting reference surface of the outer ring 30.
  • the rolling surface 30a of the annular portion 32 can be cut with the same processing chance. Therefore, the rolling surface 30a can be processed with high concentricity with respect to the virtual center C30 of the outer ring 30, and the rolling bearing 10 with high rotational accuracy can be manufactured.
  • FIG. 4 when the cross-sectional shape of the outer ring 30 is viewed only on one side in the radial direction, it is L-shaped. Therefore, the reference surface related to the inner diameter and outer diameter is clear, and the processing can be easily performed.
  • the outer peripheral surface 40a of the ring-shaped member 40 that forms the main body of the pressure-contacting mechanism is more in the radial direction than the position of the outer peripheral surface 36a of the fixed portion 36 that makes the maximum diameter in the outer ring 30 Located inward. Therefore, when the envelope surface 36v including the outer peripheral surface 36a of the fixed portion 36 that is virtually extended in the axial direction is used as the outer surface 10v of the rolling bearing 10, the outer surface of the rolling bearing 10 is used. It can also be said that the ring-shaped member 40 is accommodated inward from 10v, that is, the pressure contact mechanism as the ring-shaped member 40 is built in the rolling bearing 10. When the pressure contact mechanism is built in the rolling bearing 10 as described above, the outer shape of the rolling bearing 10 can be made to conform to various standards such as a standard standard of a general rolling bearing and an industry standard.
  • the cross-sectional shape of the rolling bearing 10 of the present embodiment is a general shape as can be seen with reference to the three-dot chain line at the bottom of FIG. 3A. It has a substantially rectangular shape similar to the cross-sectional shape of the rolling bearing. More specifically, the inner diameter of the inner ring 20 that defines the inner peripheral surface 10i of the rolling bearing 10 is the same over the entire length in the axial direction, and the outer diameter of the outer surface 10v of the rolling bearing 10 is also the entire length in the axial direction. It is the same diameter over.
  • the mounting-related dimensions of the rolling bearing 10 are defined by a bearing outer diameter D, a bearing inner diameter d, and a width W (length W in the axial direction) that are generally used in the rolling bearing 10.
  • the rolling bearing 10 having the pressure contact mechanism as in this embodiment can be used for various devices such as machine tools with the same ease as a standard rolling bearing.
  • the pressure chamber R40 be closer to the position opposite to the fixed portion 36 with respect to the axial direction than the center position PCR40 in the axial direction (the position closer to the front in FIG. 4).
  • the rolling element 50 may be arranged so that the center position PC50 of the rolling element 50 is located. That is, the rolling element 50 may be disposed at a position away from the fixing portion 36 of the outer ring 30. In this case, the rolling element 50 is given a radial pressing force by the diameter-reducing deformation of the portion 32p of the annular portion 32 that is away from the fixed portion 36.
  • the thickness of the annular portion 32 is designed so as to be capable of being reduced in diameter based on the supply pressure of the pressurized fluid”, which will be described here.
  • the annular portion 32 of the outer ring 30 can be modeled as a cylindrical body 32 that receives pressure P from the outside in the radial direction as shown in FIG. 6A.
  • the diameter reduction amount Z (mm) at the position of the radius r is expressed by the following formula 1.
  • each parameter in Formula 1 and FIG. 6A is as follows.
  • P is the pressure (MPa) acting on the cylindrical body 32 from the outside in the radial direction
  • r1 is the inner radius (mm) of the cylindrical body 32
  • r2 is the outer radius (mm) of the cylindrical body 32
  • E is the longitudinal elastic modulus (MPa) of the cylindrical body 32.
  • the various conditions necessary for realizing the rolling bearing 10, that is, the necessary dimensions (inner diameter, outer diameter) of the annular portion 32 of the outer ring 30 and the reduced diameter amount Z necessary for the pressure contact are substituted for each parameter in Equation 1.
  • the estimated value of the pressure P was within the range of the pressure resistance specification of a commercially available sealed container. Accordingly, it has been confirmed that the diameter reduction amount Z necessary for the pressure contact is a realizable value.
  • FIG. 6B is an explanatory diagram of the state in which the shaft member 5 is supported on the housing 3 via the outer ring 30 and the rolling element 50 of the rolling bearing 10.
  • the bending amount ⁇ (mm) of the annular portion 32 of the outer ring when the radial load W (N) is applied to the shaft member 5 is expressed by the following equation 2.
  • W is a radial load (N) input to the annular portion 32 from the central position PC50 of the rolling element 50
  • L is a distance in the axial direction between the fixed portion 36 of the outer ring 30 and the central position PC50 of the rolling element 50
  • Mm radial load
  • E is a longitudinal elastic modulus (MPa) of the annular portion 32 of the outer ring 30
  • D1 is the outer diameter (mm) of the annular portion 32 of the outer ring 30, and d1 is the inner diameter (mm) of the annular portion 32.
  • the parameters in Equation 2 include various conditions necessary for realizing the rolling bearing 10, that is, the required dimensions (outer diameter D1, outer diameter d1) of the annular portion 32 of the outer ring 30 of the rolling bearing 10 and the radial load W.
  • the radial load W is 10000 (N).
  • the result that the deflection amount ⁇ is several microns was obtained. Therefore, it was confirmed that the rigidity of the annular portion 32 can be set to a level that can withstand sufficient use.
  • FIG. 7 is a schematic central sectional view of an application example of the rolling bearing 10 of the present embodiment.
  • the rolling bearing 10 of the present embodiment is applied to a support structure that supports a main shaft 5 as a shaft member 5 in a housing 3 in a machine tool.
  • the support structure is in a mirror image relation with respect to the axis C5 of the shaft member 5, only one side in the radial direction (the upper side in FIG. 7) is shown with respect to the axis C5. Is not shown.
  • the shaft core C5 of the shaft member 5 is along the axial direction of the rolling bearing 10, and hereinafter, the side to which the tool is attached (the left side in FIG. 7) of both ends in the axial direction is referred to as “one end side”. And the opposite side (right side in FIG. 7) is called the “other end side”.
  • the rolling bearing 10 of the present embodiment belongs to the category of single row cylindrical roller bearings as described above. For this reason, the rolling bearing 10 is specialized for supporting a radial load and cannot support an axial load. Therefore, in this application example, a pair of single-row angular ball bearings 110 and 110 are combined to support the axial load so as to support the main shaft 5 of the machine tool. In such a machine tool, since a tool (not shown) is attached to one end portion 5ea of the main shaft 5 in the axial direction, a large radial load acts on the one end portion 5ea. Therefore, the cylindrical roller bearing 10 which is the rolling bearing 10 of the present embodiment is provided on one end side, and a pair of single-row angular ball bearings 110 and 110 are provided on the other end side on the opposite side.
  • the pair of single row angular contact ball bearings 110 and 110 are arrange
  • the single-row angular contact ball bearing 110 includes an inner ring 120, an outer ring 130, and a plurality of spherical rolling elements 150 that are in contact with both the inner ring 120 and the outer ring 130 at a predetermined contact angle ⁇ .
  • the housing 3 has a through-hole 3h extending from one end in the axial direction to the other end as a housing hole 3h for housing the shaft member 5 to be pivotally supported.
  • the shaft member 5 is rotatably supported around the axis C5 via the cylindrical roller bearing 10 and the pair of single-row angular ball bearings 110, 110 in a state where the shaft member 5 is accommodated in the through hole 3h. ing.
  • the opening 3hea of the through hole 3h exposed on the one end surface 3ea of the housing 3 is referred to as “first opening 3hea”, and the opening 3heb exposed on the other end surface 3eb is referred to as “second opening”. Part 3heb ".
  • the outer ring 30 of the cylindrical roller bearing 10 is inserted into the through hole 3h from the first opening 3hea of the one end surface 3ea of the housing 3.
  • the inner diameter of the through hole 3h is substantially the same as the outer diameter of the fixing portion 36 of the outer ring 30 over a range Aea from the first opening 3hea on one end side to a predetermined position in the axial direction.
  • the tolerance is set to such a tolerance that the inner peripheral surface of the through hole 3h and the outer peripheral surface 36a of the fixing portion 36 of the outer ring 30 are in contact with each other under the operation of the apparatus (machine tool).
  • the outer ring 30 inserted into the through hole 3h is fixed to the housing 3 so as not to move relative to the housing 3 in the radial direction.
  • a step surface 3hs1 formed by reducing the inner diameter of the through hole 3h is formed at the predetermined position of the through hole 3h. Therefore, the other end surface of the fixing portion 36 of the outer ring 30 comes into contact with the stepped surface 3hs1, and the collar member 4c pushed by the retaining member 4a for preventing the separation from the side of the first opening 3hea
  • the outer ring 30 is fixed to the housing 3 so as not to move relative to the housing 3 in the axial direction.
  • the pressing member 4a is fixed to the housing 3 so as not to move by screwing or bolting.
  • a shaft member 5 to be pivotally supported is inserted into the inner peripheral side of the inner ring 20 of the cylindrical roller bearing 10.
  • the outer diameter of the shaft member 5 is substantially the same as the inner diameter of the inner ring 20 over a range from the substantially other end of the coaxial member 5 to a predetermined position on one end side in the axial direction, and its fitting tolerance is The tolerance is set such that the inner peripheral surface of the inner ring 20 and the outer peripheral surface of the shaft member 5 are in contact with each other under the operation of the apparatus.
  • the inner ring 20 into which the shaft member 5 is inserted is fixed so as not to move relative to the shaft member 5 in the radial direction.
  • a step surface 5s1 formed by expanding the outer diameter of the shaft member 5 is formed at the predetermined position of the shaft member 5. Therefore, one end surface of the inner ring 20 abuts on the step surface 5s1, and a spacer 9a described later abuts on the other end surface of the inner ring 20, so that the inner ring 20 cannot move relative to the shaft member 5 in the axial direction. Fixed to.
  • each outer ring 130 of the pair of angular ball bearings 110, 110 is inserted into the through hole 3h from the second opening 3heb of the other end surface 3eb of the housing 3, respectively.
  • the inner diameter of the through hole 3h is substantially the same as the outer diameter of each outer ring 130 over the range Aeb from the second opening 3heb to a predetermined position in the axial direction, and the fitting tolerance is The tolerance is set such that the inner circumferential surface of the through-hole 3h and the outer circumferential surface of each outer ring 130 abut all over the circumference during operation.
  • each outer ring 130 inserted into the through hole 3h is fixed to the housing 3 so as not to move relative to the housing 3 in the radial direction.
  • a step surface 3hs2 formed by reducing the inner diameter of the through hole 3h is formed at the predetermined position of the through hole 3h. Therefore, one end surface of the outer ring 130 of the angular ball bearing 110 located on one end side of the pair of angular ball bearings 110, 110 abuts on the step surface 3hs2, and from the second opening 3heb side, The retaining member 6a for retaining is brought into contact with the other end surface of the outer ring 130 of the angular ball bearing 110 located on the other end side, so that each outer ring 130 of the pair of angular ball bearings 110, 110 is axial with respect to the housing 3. Fixed to be incapable of relative movement in the direction. The pressing member 6a is fixed to the housing 3 so as not to move by screwing or bolting. In the illustrated example, an annular collar member 8c is interposed between the outer rings 130 and 130, but the collar member 8c may be omitted.
  • the shaft member 5 to be pivotally supported is inserted into the inner peripheral side of each inner ring 120 of the pair of angular ball bearings 110 and 110.
  • the outer diameter of the shaft member 5 is substantially the same as the inner diameter of the inner ring 20 over at least the range from the other end of the coaxial member 5 to the predetermined position, and the fitting tolerance is determined under the operation of this apparatus.
  • the tolerance is set such that the inner circumferential surface of each inner ring 20 and the outer circumferential surface of the shaft member 5 are in contact with each other over the entire circumference.
  • a cylindrical spacer 9 a is disposed on the shaft member 5 between the inner ring 20 of the cylindrical roller bearing 10 and the inner ring 120 of the angular ball bearing 110 so as to cover the outer peripheral surface of the shaft member 5.
  • the total length in the axial direction of the spacer 9a is set to be substantially equal to the distance Ls between the step surface 3hs1 and the step surface 3hs2 of the through hole 3h. Therefore, the other end surface of the inner ring 20 of the cylindrical roller bearing 10 comes into contact with one end surface of the spacer 9a, and the other end surface of the spacer 9a is one of the inner rings 120 of the angular ball bearing 110 located on one end side of the pair.
  • An appropriate retaining member 6b having a nut member 6n, a collar member 6c, and the like is provided on the other end surface of the inner ring 120 of the angular ball bearing 110 that is in contact with the end surface and is located on the other end side of the pair.
  • the inner rings 120 are fixed to the shaft member 5 so as not to move relative to the shaft member 5 in the axial direction.
  • the pressing member 6b is fixed to the shaft member 5 so as not to move by screwing or the like.
  • the cylindrical collar member 9c is interposed between the inner rings 120 and 120. However, when the annular collar member 8c between the outer rings 130 and 130 is omitted. The collar member 9c between the inner rings 120 and 120 is also omitted.
  • the ring-shaped member 40 that forms the above-described pressure contact mechanism is provided outside the annular portion 32 of the outer ring 30 of the cylindrical roller bearing 10.
  • the outer peripheral surface 40a of the ring-shaped member 40 is opposed to the inner peripheral surfaces 4aa and 4ca of the pressing member 4a and the collar member 4c located inside the through hole 3h of the housing 3.
  • an annular gap G3 is provided between each of the inner peripheral surfaces 4aa and 4ca and the outer peripheral surface 40a of the ring-shaped member 40. That is, outside the outer peripheral surface 40a of the ring-shaped member 40, the space SP3 is adjacent to the entire surface.
  • the space SP3 functions as a space that permits elastic diameter expansion deformation of the ring-shaped member 40 (hereinafter also referred to as an allowable space SP3). That is, when the pressurized fluid is supplied to the pressure chamber R40 so as to apply a radial pressing force to the rolling element 50, the ring-shaped member 40 is elastically expanded in accordance with the diameter reduction deformation of the annular portion 32 of the outer ring 30.
  • the size of the space SP3 is set in advance so that the elastic diameter expansion deformation is accommodated in the permissible space SP3, and the outer peripheral surface 40a of the ring-shaped member 40 is held by the pressing member 4a.
  • the collar member 4c is prevented from coming into contact with the inner peripheral surfaces 4aa and 4ca.
  • the setting method for securing the allowable space SP3 as described above can be expressed as follows. That is, “when the fixing portion 36 is fixed to the housing 3 as the fixing target member, the space SP3 that adjoins the outer peripheral surface 40a of the ring-shaped member 40 and that allows the elastic member 40 to elastically expand and deform outwardly. It can be expressed that the outer diameter of the fixing portion 36 is set to such a size as to be formed.
  • the pressurized fluid is supplied to the pressure chamber R40 through the supply hole 40h drilled in the ring-shaped member 40.
  • the supply of the pressurized fluid to the supply hole 40h is as follows.
  • the pressurized fluid supply hole 40h is formed in the ring-shaped member 40.
  • the present invention is not limited to this.
  • a flow path 30h communicating with the pressure chamber R40 is drilled in the outer ring 30, and this flow path 30h is used as a pressurized fluid supply hole 30h. May be supplied to the pressure chamber R40.
  • the material of the rolling element 50 and the cage 60 has not been described.
  • the rolling element 50 since the rolling element 50 is directly affected by centrifugal force during use, it may be made of ceramic instead of steel.
  • the cage 60 considering the light load from the rolling element 50 and the influence of centrifugal force, in addition to metal, non-metal such as plastic or carbon fiber can be used as the material. .
  • a cylindrical roller bearing is exemplified as the rolling bearing 10, that is, a cylindrical body is used as the rolling element 50.
  • the present invention is not limited to this.
  • a spherical body may be used as the rolling element 50, that is, the present invention may be applied to a ball bearing (angular ball bearing, four-point contact ball bearing, deep groove ball bearing, etc.).
  • 3 Housing fixed member, 3ea one end surface, 3eb other end surface, 3h through hole, 3hea first opening, 3heb second opening, 3hs1 step surface, 3hs2 step surface, 3k flow path, 4a holding member, 4aa Peripheral surface, 4c collar member, 4ca inner peripheral surface, 5 main shaft (shaft member), 5ea one end, 5s1, stepped surface, 6a pressing member, 6b pressing member, 6c collar member, 6n nut member, 8c collar member, 9a spacer, 9c collar member, 10 cylindrical roller bearing (rolling bearing), 10i inner peripheral surface, 10v outer surface, 20 inner ring, 20a rolling surface, 20t groove, 20tb bottom surface, 20ts side surface, 30 outer ring, 30a rolling surface, 30h flow path , 32 annular part, 32b outer peripheral surface, 32ef front end part, 32eb rear end part (end part) , 32p remote part, 36 fixed part (protruding part), 36a outer peripheral surface, 36v envelope surface

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

 外輪と、内輪と、ラジアル方向から前記外輪及び前記内輪に接触して転動する複数の転動体と、を有した転がり軸受である。前記外輪は、前記転動体が転動する転動面を内周面に有する環状部と、前記外輪を所定の固定対象部材に固定するための固定部として、前記環状部におけるアキシャル方向の端部に一体に連続しつつ前記ラジアル方向の外方に突出して設けられた突出部と、を有する。前記環状部の外周面の外方には、前記外周面を全周に亘って覆いつつ該外周面との間に環状空間を区画するリング状部材が設けられている。前記環状空間に供給された加圧流体によって、前記環状部が前記ラジアル方向に弾性縮径変形されて、前記転動体が前記外輪及び前記内輪に圧接される。

Description

転がり軸受
 本発明は、複数の転動体を、ラジアル方向から外輪及び内輪に圧接する圧接機構を有した転がり軸受に関する。
 従来、転がり軸受として図1Aのような円筒ころ軸受10’が使用されている。この円筒ころ軸受10’は、内輪20’と外輪30’との間に、円柱形状の複数の転動体50’を有する。そして、その円柱形状に基づいて転動体50’と内輪20’及び外輪30’との間の周速差が小さいことから転がり摩擦係数が低く、また転動体50’と内輪20’及び外輪30’との接触が線接触であることからラジアル荷重の支持能力に長けており、これらの理由から、工作機械の主軸5の支持構造によく使用されている。
 このような円筒ころ軸受10’に対し、スミアリング(転動体50’と内輪20’及び外輪30’との間の相対滑りに起因した損傷)の防止、回転剛性や回転精度の向上などを目的として、ラジアル方向に予圧を付与することが行われる。すなわち、転動体50’を内輪20’及び外輪30’に予め所定の圧接力でラジアル方向に圧接しておくことがなされている。
 ここで、図1Aを参照しながら、この予圧付与の一般的手法について説明すると、先ず、円筒ころ軸受10’の外輪30’は、装置のハウジング3の取り付け孔3hに相対移動不能に固定されており、また、内輪20’の内周面20i’はテーパー面に形成されていて、当該内周面20i’は、軸支対象の軸部材5のテーパー状の外周面5gに当接している。そして、軸部材5におけるアキシャル方向の端部5eに螺着された押しねじとしてのナット部材6n’が締め込み方向に螺合回転されると、アキシャル方向に移動するナット部材6n’によって内輪20’がアキシャル方向に押し込まれるが、その際には、上記テーパー面20i’,5g同士の当接によるくさび効果に基づき、押し込み量に応じて内輪20’がラジアル方向に拡径変形して当該内輪20’は転動体50’をラジアル方向の外方たる外輪30’の方へ押圧し、その結果、転動体50’は内輪20’及び外輪30’に圧接された状態たる予圧状態になる。
 しかしながら、かかる内輪20’の押し込みの際には、内輪20’のテーパー面20i’と軸部材5のテーパー面5gとの間の金属接触に起因して所謂スティックスリップ現象を生じ得る。すなわち、アキシャル方向に内輪20’を押し込むと、軸部材5のテーパー面5gに対して内輪20’のテーパー面20i’が相対移動するが、その際には、動いたり止まったりを繰り返す。
 図1Bは、この様子を示すグラフである。縦軸には内輪30’に与えるアキシャル方向の押し力の大きさを取っており、横軸にはハウジング3に対する内輪20’の相対移動量を取っている。そして、このグラフを見てわかるように、押し力を増やしているのに相対移動しないスティック域Astがあったり、押し力を増やしていないのに相対移動するスリップ域Aslipがあったりする。そのため、このようなテーパー面20i’,5g同士を滑らせながら予圧する方法では、内輪20’及び外輪30’に対する転動体50’の圧接力を所期の適正範囲に設定するのは困難である。
 この点につき、特許文献1には、予圧付与時のスティックスリップ現象を回避可能な円筒ころ軸受210が開示されている。図2は、その概略中心断面図である。円筒ころ軸受210の外輪230のラジアル方向の外方には、予圧調整リング240が設けられており、また予圧調整リング240とハウジング3との間には、圧力室R240が設けられている。そして、この圧力室R240に外部から加圧流体を供給することで、予圧調整リング240のラジアル方向の縮径変形を介して外輪230を縮径し、これにより転動体250を外輪230及び内輪220に圧接するように構成されている。
特開平8-174306号公報
 そして、かかる圧接力が円筒ころ軸受210に付与された後、工作機械は切削加工等に使用されるが、その使用中に軸部材5にラジアル荷重が作用した際には、このラジアル荷重は、軸部材5から内輪220→転動体250→外輪230→予圧調整リング240の順番で順次ラジアル方向の外方に伝達され、最終的にはハウジング3に確実に伝達されなければならない。
 しかしながら、ハウジング3と予圧調整リング240との間には圧力室R240が存在し、そして、この圧力室R240は、その両側に位置する一対のOリング242,242で支えられている。つまり、低剛性のOリング242でラジアル荷重を支える構成になっている。よって、大きなラジアル荷重の作用下にあっては、当該ラジアル荷重にOリング242が負けて容易且つ大きく圧縮変形してしまう虞があって、その結果、かかる円筒ころ軸受210は、工作機械などの大きなラジアル荷重が想定される装置には適用困難なものと考えられる。
 本発明は、上記のような従来の問題に鑑みなされたものであって、その目的は、複数の転動体を、ラジアル方向から外輪及び内輪に圧接する圧接機構を有した転がり軸受において、圧接力の管理を行い易くしながらも、ラジアル荷重を確実に支持可能にすることにある。
 上記目的を達成するための主たる発明は、
 外輪と、内輪と、ラジアル方向から前記外輪及び前記内輪に接触して転動する複数の転動体と、を有した転がり軸受であって、
 前記外輪は、
 前記転動体が転動する転動面を内周面に有する環状部と、
 前記外輪を所定の固定対象部材に固定するための固定部として、前記環状部におけるアキシャル方向の端部に一体に連続しつつ前記ラジアル方向の外方に突出して設けられた突出部と、を有し、
 前記環状部の外周面の外方には、前記外周面を全周に亘って覆いつつ該外周面との間に環状空間を区画するリング状部材が設けられており、
 前記環状空間に供給された加圧流体によって、前記環状部が前記ラジアル方向に弾性縮径変形されて、前記転動体が前記外輪及び前記内輪に圧接されることを特徴とする転がり軸受である。
 本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。
 本発明によれば、複数の転動体を、ラジアル方向から外輪及び内輪に圧接する圧接機構を有した転がり軸受において、圧接力の管理を行い易くしながらも、ラジアル荷重を確実に支持可能になる。
図1Aは、従来の予圧付与可能な円筒ころ軸受10’の概略中心断面図であり、図1Bは、予圧付与時に生じ得るスティックスリップ現象の説明用グラフである。 予圧付与時のスティックスリップ現象を回避可能な円筒ころ軸受210の概略中心断面図である。 図3Aは、本実施形態の転がり軸受10の概略中心断面図であり、図3Bは、図3A中のB-B断面図である。 図3A中のIV部拡大図である。 図5Aは、圧力室40Rが非加圧状態の場合の転がり軸受10の概略中心断面図であり、図5Bは、同加圧状態の場合の転がり軸受10の概略中心断面図である。 図6Aは、外輪30の環状部32の厚さの検討に供した円筒体モデルの説明図であり、図6Bは、環状部32の剛性の検討に供した支持構造モデルの説明図である。 本実施形態の転がり軸受10の適用例の概略中心断面図である。 その他の実施の形態の転がり軸受10aの概略中心断面図である。
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。 
 外輪と、内輪と、ラジアル方向から前記外輪及び前記内輪に接触して転動する複数の転動体と、を有した転がり軸受であって、
 前記外輪は、
 前記転動体が転動する転動面を内周面に有する環状部と、
 前記外輪を所定の固定対象部材に固定するための固定部として、前記環状部におけるアキシャル方向の端部に一体に連続しつつ前記ラジアル方向の外方に突出して設けられた突出部と、を有し、
 前記環状部の外周面の外方には、前記外周面を全周に亘って覆いつつ該外周面との間に環状空間を区画するリング状部材が設けられており、
 前記環状空間に供給された加圧流体によって、前記環状部が前記ラジアル方向に弾性縮径変形されて、前記転動体が前記外輪及び前記内輪に圧接されることを特徴とする転がり軸受。
 このような転がり軸受によれば、加圧流体の供給に基づいて環状部がラジアル方向に弾性縮径変形されることにより、転動体は外輪及び内輪に圧接される。よって、圧接過程でのスティックスリップ現象の発生は有効に回避され、これにより、概ね加圧流体の供給圧の増減に連動して、転動体の外輪及び内輪との圧接力は円滑且つ速やかに変化するようになる。その結果、圧接力を正確に付与することができて、圧接力の管理(つまり予圧管理)を容易に行うことができる。
 また、加圧流体の供給圧に追随して速やかに圧接力は変化するので、圧接力を任意の目標値に自在に増減調整可能となり、そのような圧接力の変更のニーズのあるような場合にも何等問題なく対応可能である。
 更に、外輪は、転動体が転動する環状部に一体に設けられた固定部を有し、この固定部を介して、適宜な装置のハウジングなどの固定対象部材に外輪は固定される。よって、転動体を介して環状部に伝達されるラジアル荷重を、固定部を通して速やかに固定対象部材に伝達可能であり、これにより、ラジアル荷重を確実に支持することができる。
 また、加圧流体が供給される環状空間は、外輪の環状部の外周面に隣接しているので、供給圧は環状部に直接作用する。よって、加圧流体の供給によって環状部の縮径変形を確実に行うことができて、結果、転動体を外輪及び内輪に確実に圧接可能となる。
 かかる転がり軸受であって、
 前記環状部と前記リング状部材との間にこれら両者に当接しつつ介装されて、前記環状空間からの前記加圧流体の漏出を防ぐ環状のシール部材を有し、
 前記シール部材は、前記リング状部材における前記アキシャル方向の両端部にそれぞれ配置されており、
 前記シール部材は、ゴム製又は樹脂製であるのが望ましい。 
 このような転がり軸受によれば、シール部材によって環状空間の密閉性が高められるので、加圧流体の外部漏出は確実に防止されるようになる。また、圧接力の付与過程で環状部が弾性縮径変形する際には、当該環状部はシール部材と若干摺動することになるが、かかるシール部材は、ゴム製或いは樹脂製であるので、金属接触に起因したスティックスリップ現象の発生は有効に回避される。
 かかる転がり軸受であって、
 前記環状空間における前記アキシャル方向の中央位置よりも、前記アキシャル方向に関して前記固定部の逆側に寄った位置に、前記転動体の中央位置が位置しているのが望ましい。 
 このような転がり軸受によれば、転動体は、外輪の固定部から離れた位置に配されており、これにより、当該転動体は、環状部のうちで固定部から離れた部分の縮径変形によってラジアル方向の圧接力が付与されることになる。そして、このときには、固定部から離れているために、上記の離れた部分には、固定部を介して環状部に及び得る取り付け対象部材起因のラジアル方向の拘束力が作用し難く、結果、当該離れた部分は、同部分のアキシャル方向の全長に亘って略均等に縮径変形する。これにより、転動体に作用するラジアル方向の圧接力が、片当たり状の偏りを持つことを有効に防ぐことができて、つまり、当該圧接力を、アキシャル方向に関して略均等分布で付与可能となり、その結果、当該転がり軸受の回転精度及び回転剛性を高めることができる。
 かかる転がり軸受であって、
 前記リング状部材は、前記環状空間への前記加圧流体の供給によって弾性拡径変形をし、
 前記突出部のうちで該突出部の外周面が、前記固定対象部材に当接して固定される部分であり、
 前記突出部を前記固定対象部材に固定した際に、前記リング状部材の外周面に隣接してその外方に、前記リング状部材の弾性拡径変形を許容する空間が形成されるような大きさに、前記突出部の外径が設定されているのが望ましい。 
 このような転がり軸受によれば、突出部を固定対象部材に固定した際に、リング状部材の外周面に隣接してその外方に、リング状部材の弾性拡径変形を許容する空間が形成された状態になっている。つまり、リング状部材の外周面の外方には、反力を取り得る部材が何も存在しない状態になっている。よって、環状空間内の加圧流体の供給圧が忠実にラジアル方向の圧接力に変換されることとなる。これにより、環状部は、加圧流体の供給圧のみに基づいて縮径変形するので、同環状部は、その全周に亘って概ね均等に縮径変形するようになり、結果、転動体に付与される圧接力も、転がり軸受の全周に亘って略均等化される。そして、転がり軸受の回転精度及び回転剛性の向上を図ることができる。
 ===本実施形態===
 図3Aは、本実施形態の転がり軸受10の概略中心断面図であり、図3Bは、図3A中のB-B断面図である。また、図4は、図3A中のIV部拡大図である。 
 なお、以下の説明では、転がり軸受10の軸方向のことを「アキシャル方向」又は「前後方向」と言い、転がり軸受10の半径方向のことを「ラジアル方向」又は「内外方向」と言う。また、転がり軸受10の周方向のことを、単に「周方向」と言う。更に、以下で用いる断面図については、本来断面部に示すべきハッチングの一部を、図の錯綜防止目的で省略していることがある。
 転がり軸受10は、工作機械等の適宜な装置のハウジング3に、主軸などの軸部材5を回転自在に支持するものである(図7を参照)。そして、その使用状態にあっては、例えば転がり軸受10の外輪30がハウジング3の取り付け孔3hに嵌合され、また、内輪20の内周側には、軸支対象の軸部材5が嵌合され、これにより転がり軸受10は軸部材5を回転自在に支持する。
 図3A及び図3Bに示すように、本実施形態の転がり軸受10は、所謂単列円筒ころ軸受の範疇に属する。すなわち、単列であることから、内輪20と外輪30との間には、複数の転動体50が周方向に一列に並んだ状態で配置されている。また、円筒ころ軸受10であることから、転動体50として、断面形状が正円形状の円柱体が使用されているとともに、転動体50の回転軸C50はアキシャル方向と平行になっている。これにより、ラジアル荷重の高い支持能力を発揮する。なお、周方向に互いに隣り合う転動体50,50同士の接触は、環状の保持器60によって回避されている。例えば、保持器60は、転動体50を収容する孔部を転動体50毎に有し、これにより転動体50,50同士の接触を回避する。
 ここで、この転がり軸受10は、予圧機構、すなわちラジアル方向から転動体50を内輪20及び外輪30に圧接する圧接機構を有している。詳細には後述するが、圧接機構は、外輪30の環状部32の外周面32bとの間に隙間Gを空けて対向配置されたリング状部材40を有し、かかる環状部32とリング状部材40との間には環状の圧力室R40(環状空間に相当)が区画されている。また、環状部32の内周面には転動体50の転動面30aが形成されている。よって、圧力室R40に加圧流体を供給して環状部32をラジアル方向に縮径変形することにより、転動体50は内輪20の方へと押圧されて、その結果、転動体50は外輪30の環状部32及び内輪20に圧接される。
 以下、転がり軸受10の各構成について詳細に説明する。 
 図4に示すように、内輪20は、断面正円形状の鋼製円筒体を本体とする。内輪20の外周面には、凹状に溝部20tが周方向の全周に亘って形成されており、そして、この溝部20tの底面20tbを転動面20aとして転動体50が転動する。転動面20aは、アキシャル方向に平行である。また、転動面20aのアキシャル方向の両脇には、それぞれ溝部20tの側面20ts,20tsが有るので、各側面20ts,20tsに転動体50の端面が当接して転動体50のアキシャル方向の移動が規制される。
 なお、かかる内輪20の素材は、何等上記の鋼製に限らない。例えば超硬等の非鉄金属でも良いし、或いはセラミック等の非金属でも良い。
 外輪30は、全体として断面正円形状の円筒体をなしており、詳しくは、転動体50が転動する転動面30aを内周面に有する円環状の環状部32と、上記ハウジング3(固定対象部材に相当)に外輪30を固定するための固定部36と、を有する。固定部36は、上記の環状部32におけるアキシャル方向の後端部32ebに一体に連続しつつラジアル方向の外方に円環状に突出した突出部36であり、例えば、突出部36の外周面36aをハウジング3の取り付け孔3h(図7)の内周面に全周に亘って当接させながら同孔3hに嵌合され、これにより外輪30はハウジング3に固定される。そして、この固定状態においては、軸部材5に作用するラジアル荷重は、内輪20及び転動体50を介して外輪30の環状部32及び固定部36に順次伝達され、当該固定部36を通して速やかにハウジング3に伝達される(図7を参照)。よって、軸部材5に作用するラジアル荷重をハウジング3に確実に支持させることができる。
 環状部32の転動面30aは、環状部32の全周に亘ってアキシャル方向と平行に形成されている。また、環状部32の厚さは、少なくとも転動面30aの形成部分については一定厚さに設定されており、図4の例では、アキシャル方向の前端部32efの面取り部を除き、環状部32の全長且つ全周に亘って一定厚さに設定されている。なお、この厚さは、例えば後述する設計式1等に基づいて計算され、これにより環状部32は、加圧流体の供給圧に基づいてラジアル方向に円滑に弾性縮径変形可能に設計されている。
 かかる外輪30の素材としては、鋼製が望ましい。そして、鋼製にすれば、その機械的性質に基づいて、上記の供給圧に応じて円滑に弾性縮径変形し、またラジアル荷重を確実に受けてハウジング3に速やかに伝達することができる。
 環状部32の外周面32bには、転動体50を内輪20及び外輪30に圧接する圧接機構が設けられている。圧接機構は、外輪30の環状部32の外周面32bとの間に所定の隙間Gをあけながら対向配置されたリング状部材40を本体とし、かかるリング状部材40と環状部32との間には円環状の圧力室R40が区画されている。よって、図5A及び図5Bに示すように、圧力室R40に加圧流体を供給して環状部32を縮径変形することにより、環状部32の転動面30aにて転動体50は内輪20の転動面20aの方へ押圧されて、その結果、転動体50は外輪30及び内輪20に圧接された状態となる。
 そして、上述から明らかなように、かかる圧接過程においては、金属接触部分同士の相対移動はほぼ皆無であり、スティックスリップ現象は概ね生じない。そのため、加圧流体の供給圧の増減に連動して、転動体50と外輪30及び内輪20との圧接力は円滑且つ速やかに変化するようになる。その結果、圧接力を正確に付与することができて、圧接力の管理(つまり予圧管理)を容易且つ正確に行うことができる。
 図4に示すように、かかるリング状部材40は、アキシャル方向の長さが環状部32とほぼ同長の円環状部材であり、これにより、環状部32のアキシャル方向の略全長に亘って円環状の圧力室R40が区画されている。また、リング状部材40のアキシャル方向に沿った断面の形状は、周方向の全周に亘って同形状に揃っている。よって、縮径変形の際の変形の偏りは全周に亘って概ね発生せず、これにより、転動体50と外輪30及び内輪20との圧接力は、周方向の全周に亘ってほぼ均等に作用する。
 また、リング状部材40におけるアキシャル方向の両端部には、それぞれ、圧力室R40から外部への加圧流体の漏出を防ぐパッキン47,47(シール部材に相当)が設けられている。すなわち、リング状部材40の内周面の両端部には、それぞれ全周に亘って溝40t,40tが形成され、各溝40tには環状のパッキン47が挿入され、同パッキン47は、環状部32の外周面32bと溝40tの底面との両者に当接されつつ若干弾性圧縮変形した状態でこれら環状部32とリング状部材40との間に介装されており、これにより、圧力室R40からの加圧流体の漏出は有効に防止される。また、かかるパッキン47の介装によって、環状部32とリング状部材40とは非接触状態に保持されており、これにより、環状部32とリング状部材40との接触に起因したスティックスリップ現象も有効に回避されている。
 ここで、望ましくは、かかるパッキン47は、ゴム製或いは樹脂製であると良い。そうすれば、金属接触に起因したスティックスリップ現象の発生を確実に回避可能となる。すなわち、上述の圧接過程において環状部32が縮径変形する際には、環状部32とパッキン47とは若干摺動することになるが、パッキン47はゴム製或いは樹脂製であるので、スティックスリップ現象は、より発生し難くなる。より詳しく説明すると、ゴム製或いは樹脂製のパッキン47の弾性変形内の変形量では、スティックスリップ現象の発生は無いが、弾性変形を超える変形量では、スティックスリップ現象は生じ得る。但し、その変形量は、ゴムや樹脂の弾性変形量に対して微量であるため、それに起因したスティックスリップ現象は、概ね無視できる。
 なお、かかるリング状部材40の素材としては、加圧流体の供給圧に耐えられれば、一般的な金属材料で構わない。
 圧力室R40への加圧流体の供給は、リング状部材40に穿孔された供給孔40hを通して行われる。図4の例では、ラジアル方向に沿って供給孔40hがリング状部材40を貫通して形成されている。そして、かかる供給孔40hにリング状部材40の外方から、加圧流体の流路となる配管やマニホールド部材等を接続することで、圧力室R40へ加圧流体を供給可能となる。供給孔40hの数は、図3Bの例のように一つでも良いし、複数でも良い。また、加圧流体としては、油圧に用いる作動油が一般的であるが、圧縮空気でも良いし、これら以外の流体でも良い。
 また、不図示であるが、本実施形態では、上記の加圧流体の流路に、加圧流体の供給源となるポンプが接続されており、また、同流路のうちでポンプと供給孔40hとの間の部分には圧力調整弁が配置されている。そして、圧力調整弁は、圧力室R40への供給圧を調整する。よって、かかる供給圧の調整により、転動体50と外輪30及び内輪20との圧接力を所望の任意値に調整することができる。
 ところで、上述において簡単に触れたように、環状部32と固定部36とを有する外輪30は単一部材で構成されている。つまり、当該外輪30は、別部材同士が溶接等で接合・連結などされて形成されたものではない。そして、かかる単一部材の場合には、この外輪30を、無垢材から旋盤による削り出しで形成することができて、そうすれば、外輪30の取り付け基準面をなす固定部36の外周面36aと、環状部32の転動面30aとを互いに同一の加工チャンスで切削加工することができる。よって、転動面30aの加工を、外輪30の仮想中心C30に対して高い同芯度で施すことができて、回転精度の高い転がり軸受10を製造可能となる。また、図4に示すように、外輪30の断面形状をラジアル方向の片側だけ見た場合には、L字型をなしている。よって、その内径や外径に係る基準面が明確であり、これにより、その加工を容易に行うことができる。
 また、図3Aの下部に示すように、圧接機構の本体をなすリング状部材40の外周面40aは、外輪30のうちで最大径をなす固定部36の外周面36aの位置よりもラジアル方向の内方に位置している。よって、固定部36の外周面36aを含めこの外周面36aを仮想的にアキシャル方向に延長してなる包絡面36vを転がり軸受10の外形面10vとした場合には、この転がり軸受10の外形面10vよりも内方にリング状部材40は収まっており、つまり転がり軸受10内にリング状部材40たる圧接機構が内蔵されていると言うこともできる。そして、このように圧接機構が転がり軸受10に内蔵されている場合には、転がり軸受10の外形形状を一般の転がり軸受の標準規格や業界規格等の各種規格に準拠させることができる。
 例えば、転がり軸受10の外形面10vを上述のように捉えた場合には、図3Aの下部の三点鎖線を参照してわかるように、本実施形態の転がり軸受10の断面形状は、一般的な転がり軸受の断面形状と同様に略矩形形状をなしていることになる。より詳しくは、転がり軸受10の内周面10iを規定する内輪20の内径は、アキシャル方向の全長に亘って同径であり、転がり軸受10の上記外形面10vの外径も、アキシャル方向の全長に亘って同径である。また、外輪30のアキシャル方向の両端の位置と、内輪20のアキシャル方向の両端の位置とは互いに揃っており、更に、保持器60も、外輪30のアキシャル方向の両端から突出しておらず両端の内方に収まっている。よって、転がり軸受10の取り付け関係寸法を、図3A及び図3Bに示すように、一般に転がり軸受10で用いられる軸受外径D、軸受内径d、及び幅W(アキシャル方向の長さW)で規定することができて、これにより、標準品の転がり軸受と同じ容易さで、本実施形態の如き圧接機構を有した転がり軸受10を工作機械等の各種装置に使用することができる。
 なお、図4に示すように、望ましくは、圧力室R40におけるアキシャル方向の中央位置PCR40よりも、アキシャル方向に関して固定部36の逆側に寄った位置(図4では、前方に寄った位置)に、転動体50の中央位置PC50が位置するように転動体50を配置すると良い。つまり、転動体50を、外輪30の固定部36から離れた位置に配置すると良い。そうすれば、当該転動体50は、環状部32のうちで固定部36から離れた部分32pの縮径変形によってラジアル方向の圧接力が付与されることになる。そして、そのときには、固定部36から離れているため、上記の離れた部分32pには、固定部36を介して環状部32に及び得る固定対象部材3起因のラジアル方向の拘束力が作用し難く、結果、当該離れた部分32pは、同部分32pのアキシャル方向の全長に亘って略均等に縮径変形する。これにより、転動体50に作用するラジアル方向の圧接力が、片当たり状の偏りを持つことを有効に防ぐことができて、つまり、当該圧接力を、アキシャル方向に関して略均等分布で付与可能となり、その結果、当該転がり軸受10の回転精度及び回転剛性を高めることができる。
 ところで、先に、「環状部32の厚さは、加圧流体の供給圧に基づいて縮径変形可能になるように設計される」旨を述べたが、ここで、これについて説明する。先ず、外輪30の環状部32は、図6Aのようなラジアル方向の外方から圧力Pを受ける円筒体32としてモデル化することができる。そして、この圧力Pを受ける円筒体32において半径rの位置での縮径量Z(mm)は、下式1で表される。 
Figure JPOXMLDOC01-appb-I000001
 なお、式1中及び図6A中の各パラメータの意味は、次の通りである。Pは、ラジアル方向の外方から円筒体32に作用する圧力(MPa)であり、r1は円筒体32の内半径(mm)であり、r2は円筒体32の外半径(mm)であり、nは内半径と外半径との比(=r1/r2)であり、Eは円筒体32の縦弾性係数(MPa)である。
 そして、例えば、上式1のPに市販の密封容器の耐圧仕様を代入するとともに、rにr1を代入し、そして、r1及びr2をパラメータとして変化させて、圧接に必要な縮径量Zとなるr1の値及びr2の値を算出すれば、その減算値(=r2―r1)として環状部32の厚さの設計値が求められる。
 ちなみに、式1中の各パラメータに、転がり軸受10の実現に必要な諸条件、すなわち外輪30の環状部32の必要寸法(内径、外径)や圧接に必要な縮径量Zを代入することで、当該必要な条件を満足する圧力Pの値を試算してみたところ、当該圧力Pの試算値は、市販の密封容器の耐圧仕様の範囲内であった。よって、圧接に必要な縮径量Zが実現可能な数値であることは確認済みである。
 また、上述の縮径量Zの実現可否の検討に併せて、環状部32の剛性を確保可能か否かについても検討している。図6Bはその説明図であり、ハウジング3に転がり軸受10の外輪30及び転動体50を介して軸部材5が支持された状態をモデル化したものである。先ず、軸部材5にラジアル荷重W(N)が作用した際の外輪の環状部32の撓み量δ(mm)は、下式2で表される。 
Figure JPOXMLDOC01-appb-I000002
 なお、式2中及び図6B中の各パラメータの意味は、次の通りである。Wは、転動体50の中央位置PC50から環状部32に入力されるラジアル荷重(N)であり、Lは外輪30の固定部36と転動体50の中央位置PC50との間のアキシャル方向の距離(mm)であり、Eは外輪30の環状部32の縦弾性係数(MPa)である。また、D1は外輪30の環状部32の外径(mm)であり、d1は環状部32の内径(mm)である。
 そして、この式2中の各パラメータに、転がり軸受10の実現に必要な諸条件、すなわち転がり軸受10の外輪30の環状部32の必要寸法(外径D1、外径d1)やラジアル荷重Wの想定値、外輪30の固定部36と転動体50の中央位置PC50との間の距離Lの想定値等を代入して、その撓み量δを試算したところ、ラジアル荷重Wが10000(N)の場合に、撓み量δは数ミクロンであるとの結果を得た。よって、環状部32の剛性も、十分使用に耐え得るレベルに設定可能なことが確認された。
 図7は、本実施形態の転がり軸受10の適用例の概略中心断面図である。この例では、工作機械において軸部材5としての主軸5をハウジング3に支持する支持構造に本実施形態の転がり軸受10が適用されている。ちなみに、同図では、当該支持構造が、軸部材5の軸芯C5に関して鏡像関係にあることから、当該軸芯C5に関してラジアル方向の片側(図7中では上側)だけを図示し、もう片側については不図示としている。また、軸部材5の軸芯C5は、転がり軸受10のアキシャル方向に沿っており、以下では、アキシャル方向の両端のうちで工具が取り付けられる側(図7中では左側)のことを「一端側」と言い、その逆側(図7中では右側)のことを「他端側」と言う。
 本実施形態の転がり軸受10は、既述のように単列円筒ころ軸受の範疇に属するものである。そのため、当該転がり軸受10は、ラジアル荷重の支持に特化しており、アキシャル荷重については支持することができない。よって、この適用例では、アキシャル荷重を支持可能にすべく一対の単列アンギュラ玉軸受110,110が組み合わせられて、工作機械の主軸5を支持している。そして、かかる工作機械では、主軸5におけるアキシャル方向の一端部5eaに、不図示の工具が取り付けられることから、当該一端部5eaに大きなラジアル荷重が作用する。そのため、一端側に本実施形態の転がり軸受10たる円筒ころ軸受10が設けられ、その逆側の他端側には一対の単列アンギュラ玉軸受110,110が設けられている。
 なお、図7の例では、一対の単列アンギュラ玉軸受110,110が背面組み合わせで配置されているが、何等これに限るものではない。すなわち、背面組み合わせと同様に、両方向のアキシャル荷重を受け止め可能な正面組み合わせで一対の単列アンギュラ玉軸受110,110を配置しても良い。ちなみに、単列アンギュラ玉軸受110は、内輪120と、外輪130と、これら内輪120及び外輪130の両者に所定の接触角αで接触する複数の球状の転動体150と、を有する。
 以下、この適用例の構成について説明する。 
 ハウジング3は、軸支対象の軸部材5を収容する収容孔3hとしてアキシャル方向の一端から他端に沿った貫通孔3hを有する。そして、かかる貫通孔3h内に軸部材5を収容した状態で、円筒ころ軸受10及び一対の単列アンギュラ玉軸受110,110を介して軸部材5をその軸芯C5回りに回転自在に支持している。なお、以下では、ハウジング3の一端面3eaに露出した貫通孔3hの開口部3heaのことを「第1開口部3hea」と言い、他端面3ebに露出した開口部3hebのことを「第2開口部3heb」と言う。
 図7に示すように、円筒ころ軸受10の外輪30は、ハウジング3の一端面3eaの第1開口部3heaから貫通孔3h内に挿入されている。ここで、この貫通孔3hの内径は、一端側の第1開口部3heaからアキシャル方向の所定位置までの範囲Aeaに亘り外輪30の固定部36の外径とほぼ同径であり、その嵌め合い公差は、この装置(工作機械)の運転下において貫通孔3hの内周面と外輪30の固定部36の外周面36aとが全周に亘って当接するような公差に設定されている。これにより、貫通孔3hに挿入された外輪30は、ハウジング3に対してラジアル方向に相対移動不能に固定される。また、貫通孔3hの上記所定位置には、貫通孔3hの内径が縮径してなる段差面3hs1が形成されている。よって、この段差面3hs1に外輪30の固定部36の他端面が当接し、そして、第1開口部3heaの側からは、抜け止め用の押さえ部材4aに押されたカラー部材4cが外輪30の固定部36の一端面に当接し、これにより外輪30はハウジング3に対してアキシャル方向に相対移動不能に固定される。なお、押さえ部材4aは、螺着やボルト止め等でハウジング3に移動不能に固定されている。
 一方、円筒ころ軸受10の内輪20の内周側には、軸支対象の軸部材5が挿通されている。ここで、軸部材5の外径は、同軸部材5の略他端からアキシャル方向の一端側の所定位置までの範囲に亘って内輪20の内径とほぼ同径であり、その嵌め合い公差は、この装置の運転下において内輪20の内周面と軸部材5の外周面とが全周に亘って当接するような公差に設定されている。これにより、軸部材5が挿入された内輪20は、軸部材5に対してラジアル方向に相対移動不能に固定される。また、軸部材5の上記所定位置には、軸部材5の外径が拡径してなる段差面5s1が形成されている。よって、この段差面5s1に内輪20の一端面が当接し、更に内輪20の他端面には、後述のスペーサー9aが当接し、これにより内輪20は軸部材5に対してアキシャル方向に相対移動不能に固定される。
 一対のアンギュラ玉軸受110,110の各外輪130は、それぞれハウジング3の他端面3ebの第2開口部3hebから貫通孔3h内に挿入される。ここで、この貫通孔3hの内径は、第2開口部3hebからアキシャル方向の所定位置までの範囲Aebに亘り各外輪130の外径とほぼ同径であり、その嵌め合い公差は、この装置の運転下において貫通孔3hの内周面と各外輪130の外周面とが全周に亘って当接するような公差に設定されている。これにより、貫通孔3hに挿入された各外輪130は、ハウジング3に対してラジアル方向に相対移動不能に固定される。また、貫通孔3hの上記所定位置には、貫通孔3hの内径が縮径してなる段差面3hs2が形成されている。よって、この段差面3hs2に、一対のアンギュラ玉軸受110,110のうちで一端側に位置するアンギュラ玉軸受110の外輪130の一端面が当接し、そして、第2開口部3hebの側からは、抜け止め用の押さえ部材6aが、他端側に位置するアンギュラ玉軸受110の外輪130の他端面に当接し、これにより一対のアンギュラ玉軸受110,110の各外輪130はハウジング3に対してアキシャル方向に相対移動不能に固定される。なお、押さえ部材6aは、螺着やボルト止め等でハウジング3に移動不能に固定されている。また、図示例では、外輪130,130同士の間に環状のカラー部材8cが介装されているが、このカラー部材8cは無くても良い。
 一方、一対のアンギュラ玉軸受110,110の各内輪120の内周側には、軸支対象の軸部材5が挿通されている。ここで、軸部材5の外径は、少なくとも同軸部材5の他端から上記所定位置までの範囲に亘って内輪20の内径とほぼ同径であり、その嵌め合い公差は、この装置の運転下において各内輪20の内周面と軸部材5の外周面とが全周に亘って当接するような公差に設定されている。これにより、軸部材5が挿入された各内輪120は、軸部材5に対してラジアル方向に相対移動不能に固定される。また、軸部材5における円筒ころ軸受10の内輪20とアンギュラ玉軸受110の内輪120との間の部分には、筒状のスペーサー9aが軸部材5の外周面を覆って配されており、かかるスペーサー9aのアキシャル方向の全長は、上述した貫通孔3hの段差面3hs1と段差面3hs2との間の距離Lsと概ね同値に設定されている。よって、このスペーサー9aの一端面に円筒ころ軸受10の内輪20の他端面が当接し、同スペーサー9aの他端面には、一対のうちで一端側に位置するアンギュラ玉軸受110の内輪120の一端面が当接し、更に一対のうちで他端側に位置するアンギュラ玉軸受110の内輪120の他端面には、ナット部材6nやカラー部材6c等を有した適宜な抜け止め用の押さえ部材6bが当接し、これにより各内輪120は軸部材5に対してアキシャル方向に相対移動不能に固定される。なお、押さえ部材6bは、螺着等で軸部材5に移動不能に固定されている。また、図示例では、内輪120,120同士の間に筒状のカラー部材9cが介装されているが、前述の外輪130,130同士の間の環状のカラー部材8cが省略される場合には、この内輪120,120同士の間のカラー部材9cも省略される。
 ところで、図7に示すように、円筒ころ軸受10の外輪30の環状部32の外方には、既述の圧接機構をなすリング状部材40が設けられている。そして、図7の下部に示すように、リング状部材40の外周面40aは、ハウジング3の貫通孔3hの内方に位置する押さえ部材4a及びカラー部材4cの各内周面4aa,4caと対向しているが、図示例では、これら各内周面4aa,4caとリング状部材40の外周面40aとの間には、環状の隙間G3が設けられている。すなわち、リング状部材40の外周面40aの外方には、その全面に亘って空間SP3が隣接している。
 ここで、この空間SP3は、リング状部材40の弾性拡径変形を許容する空間(以下、許容空間SP3とも言う)として機能する。すなわち、転動体50にラジアル方向の圧接力を付与すべく圧力室R40に加圧流体を供給する際には、外輪30の環状部32の縮径変形に伴ってリング状部材40は弾性拡径変形するが、その際の弾性拡径変形が、当該許容空間SP3内に収まるように同空間SP3のサイズが予め設定されており、これにて、リング状部材40の外周面40aが押さえ部材4a及びカラー部材4cの各内周面4aa,4caと接触しないようにされている。よって、リング状部材40の外周面40aの外方には、ハウジング3などの反力を取り得る部材が何も存在していない状態となっており、それ故に、圧力室R40に加圧流体を供給した際には、かかる圧力室R40内の加圧流体の供給圧が忠実にラジアル方向の圧接力に変換されることとなる。そして、これにより、環状部32は、加圧流体の供給圧のみに基づいて縮径変形するので、同環状部32は、その全周に亘って概ね均等に縮径変形するようになり、結果、転動体50に付与される圧接力も、円筒ころ軸受10の全周に亘って略均等化される。そして、円筒ころ軸受10の回転精度及び回転剛性の向上を図ることができる。
 ちなみに、同図に示すように、外輪30の固定部36の外周面36aがハウジング3の貫通孔3hの内周面に当接されて固定されていることから、上述の許容空間SP3のサイズは、固定部36の外径に応じて変化する。よって、上述のような許容空間SP3を確保する設定の仕方については、次のように表現することができる。すなわち、「固定部36を固定対象部材たるハウジング3に固定した際に、リング状部材40の外周面40aに隣接してその外方にリング状部材40の弾性拡径変形を許容する空間SP3が形成されるような大きさに、固定部36の外径が設定される」と表現することができる。
 また、加圧流体の圧力室R40への供給は、既述のようにリング状部材40に穿孔された供給孔40hを介してなされるが、この供給孔40hまでの加圧流体の供給は、ハウジング3及び外輪30の固定部36に穿孔された加圧流体の流路3k、及び、この流路3kとリング状部材40の供給孔40hとを接続するホース等の可撓変形可能な管部材95を用いて行われる。
 ===その他の実施の形態===
 以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
 上述の実施形態では、図4に示すように、加圧流体の供給孔40hをリング状部材40に形成していたが、何等これに限るものではない。例えば、図8の概略中心断面図に示すように、外輪30内に圧力室R40に連通する流路30hを穿孔し、この流路30hを加圧流体の供給孔30hとして用いて、加圧流体を圧力室R40へ供給しても良い。
 上述の実施形態では、転動体50や保持器60の素材について述べていなかったが、転動体50については、使用中に遠心力の影響を直接受けるので、鋼製に代えてセラミック製としても良い。一方、保持器60については、転動体50からの負荷が軽微なことや、遠心力の影響を考慮すると、その素材として、金属以外に、プラスチックやカーボンファイバーなどの非金属を使用することもできる。
 上述の実施形態では、転がり軸受10として円筒ころ軸受を例示し、つまり転動体50として円柱体を使用していたが、何等これに限るものではない。例えば、転動体50として球体を用いても良く、つまり、本発明を、玉軸受(アンギュラ玉軸受、四点接触玉軸受、深溝玉軸受等)に適用しても良い。
3 ハウジング(固定対象部材)、3ea 一端面、3eb 他端面、3h 貫通孔、3hea 第1開口部、3heb 第2開口部、3hs1 段差面、3hs2 段差面、3k 流路、4a 押さえ部材、4aa 内周面、4c カラー部材、4ca内周面、5 主軸(軸部材)、5ea 一端部、5s1 段差面、6a 押さえ部材、6b 押さえ部材、6c カラー部材、6n ナット部材、8c カラー部材、9a スペーサー、9c カラー部材、10 円筒ころ軸受(転がり軸受)、10i 内周面、10v 外形面、20 内輪、20a 転動面、20t 溝部、20tb 底面、20ts 側面、30 外輪、30a 転動面、30h 流路、32 環状部、32b 外周面、32ef 前端部、32eb 後端部(端部)、32p 固定部から離れた部分、36 固定部(突出部)、36a 外周面、36v 包絡面、40 リング状部材、40a 外周面、40h 供給孔、40t 溝、47 パッキン(シール部材)、50 転動体、60 保持器、95 管部材、C5 軸芯、C30 仮想中心、C50 回転軸、G 隙間、G3 隙間、110 アンギュラ玉軸受、120 内輪、130 外輪、150 転動体、R40 圧力室(環状空間)、SP3 空間、PC50 中央位置、PCR40 中央位置、

Claims (4)

  1.  外輪と、内輪と、ラジアル方向から前記外輪及び前記内輪に接触して転動する複数の転動体と、を有した転がり軸受であって、
     前記外輪は、
     前記転動体が転動する転動面を内周面に有する環状部と、
     前記外輪を所定の固定対象部材に固定するための固定部として、前記環状部におけるアキシャル方向の端部に一体に連続しつつ前記ラジアル方向の外方に突出して設けられた突出部と、を有し、
     前記環状部の外周面の外方には、前記外周面を全周に亘って覆いつつ該外周面との間に環状空間を区画するリング状部材が設けられており、
     前記環状空間に供給された加圧流体によって、前記環状部が前記ラジアル方向に弾性縮径変形されて、前記転動体が前記外輪及び前記内輪に圧接されることを特徴とする転がり軸受。
  2.  請求項1に記載の転がり軸受であって、
     前記環状部と前記リング状部材との間にこれら両者に当接しつつ介装されて、前記環状空間からの前記加圧流体の漏出を防ぐ環状のシール部材を有し、
     前記シール部材は、前記リング状部材における前記アキシャル方向の両端部にそれぞれ配置されており、
     前記シール部材は、ゴム製又は樹脂製であることを特徴とする転がり軸受。
  3.  請求項1又は2に記載の転がり軸受であって、
     前記環状空間における前記アキシャル方向の中央位置よりも、前記アキシャル方向に関して前記固定部の逆側に寄った位置に、前記転動体の中央位置が位置していることを特徴とする転がり軸受。
  4.  請求項1乃至3の何れかに記載の転がり軸受であって、
     前記リング状部材は、前記環状空間への前記加圧流体の供給によって弾性拡径変形をし、
     前記突出部のうちで該突出部の外周面が、前記固定対象部材に当接して固定される部分であり、
     前記突出部を前記固定対象部材に固定した際に、前記リング状部材の外周面に隣接してその外方に、前記リング状部材の弾性拡径変形を許容する空間が形成されるような大きさに、前記突出部の外径が設定されていることを特徴とする転がり軸受。
PCT/JP2013/064897 2012-06-08 2013-05-29 転がり軸受 WO2013183517A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147035365A KR101990174B1 (ko) 2012-06-08 2013-05-29 구름 베어링
EP13800708.3A EP2860417B1 (en) 2012-06-08 2013-05-29 Rolliing bearing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-131172 2012-06-08
JP2012131172A JP5899056B2 (ja) 2012-06-08 2012-06-08 転がり軸受

Publications (1)

Publication Number Publication Date
WO2013183517A1 true WO2013183517A1 (ja) 2013-12-12

Family

ID=49711909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064897 WO2013183517A1 (ja) 2012-06-08 2013-05-29 転がり軸受

Country Status (5)

Country Link
EP (1) EP2860417B1 (ja)
JP (1) JP5899056B2 (ja)
KR (1) KR101990174B1 (ja)
TW (1) TWI585311B (ja)
WO (1) WO2013183517A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115949670A (zh) * 2023-03-09 2023-04-11 中国航发四川燃气涡轮研究院 用于轴承轴向压紧的弹性结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012715A1 (ja) * 2018-07-11 2020-01-16 日本精工株式会社 軸受装置及び工作機械の主軸装置
TWI781520B (zh) * 2020-02-21 2022-10-21 美商希瑪有限責任公司 減少氣體放電腔室支撐裝置中之腐蝕

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738719A (en) * 1970-08-04 1973-06-12 Snecma Ball bearing
JPS51132351A (en) * 1975-05-13 1976-11-17 Koyo Seiko Co Ltd Pre-pressure adjusting type bearing device
US4033645A (en) * 1976-04-26 1977-07-05 Koyo Seiko Company, Limited Bearing device
JPH06173714A (ja) * 1992-12-11 1994-06-21 Toyota Motor Corp ガスタービン発電装置
JPH08174306A (ja) 1994-12-27 1996-07-09 Ntn Corp 予圧可変式軸受ユニット
JPH08177852A (ja) * 1994-12-28 1996-07-12 Ntn Corp 予圧可変式軸受ユニット
JP2003139134A (ja) * 2001-11-06 2003-05-14 Ishikawajima Harima Heavy Ind Co Ltd スクィーズフィルムダンパ軸受
JP2004162743A (ja) * 2002-11-11 2004-06-10 Honda Motor Co Ltd 軸受装置
JP2004169756A (ja) * 2002-11-18 2004-06-17 Nsk Ltd センサ付軸受装置
JP2008039228A (ja) * 2006-08-03 2008-02-21 Ntn Corp 空気サイクル冷凍機用タービンユニット
JP2008121788A (ja) * 2006-11-13 2008-05-29 Jtekt Corp 転がり軸受及び転がり軸受装置
DE102009058355A1 (de) * 2009-12-15 2011-06-16 Aktiebolaget Skf Wälzlagervorrichtung mit einer Ringkolbenhülse, Lageranordnung und Verfahren zum Einstellen der Anstellung einer hydraulisch anstellbaren Lageranordnung
DE102010048381A1 (de) * 2010-10-13 2012-04-19 Schaeffler Technologies Gmbh & Co. Kg Loslager mit Dämpfungsfunktion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2107002A (en) * 1981-10-02 1983-04-20 Rolls Royce Journal bearing
US4611934A (en) * 1985-09-09 1986-09-16 Cincinnati Milacron Inc. Device for preloading bearings
DE8703335U1 (de) * 1987-03-05 1987-07-09 Schiess AG, 4000 Düsseldorf Drehtischlagerung
JP5419392B2 (ja) * 2007-08-24 2014-02-19 Ntn株式会社 転がり軸受装置
GB2459268B (en) * 2008-04-16 2010-02-24 Rolls Royce Plc A squeeze-film damper arrangement

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738719A (en) * 1970-08-04 1973-06-12 Snecma Ball bearing
JPS51132351A (en) * 1975-05-13 1976-11-17 Koyo Seiko Co Ltd Pre-pressure adjusting type bearing device
US4033645A (en) * 1976-04-26 1977-07-05 Koyo Seiko Company, Limited Bearing device
JPH06173714A (ja) * 1992-12-11 1994-06-21 Toyota Motor Corp ガスタービン発電装置
JPH08174306A (ja) 1994-12-27 1996-07-09 Ntn Corp 予圧可変式軸受ユニット
JPH08177852A (ja) * 1994-12-28 1996-07-12 Ntn Corp 予圧可変式軸受ユニット
JP2003139134A (ja) * 2001-11-06 2003-05-14 Ishikawajima Harima Heavy Ind Co Ltd スクィーズフィルムダンパ軸受
JP2004162743A (ja) * 2002-11-11 2004-06-10 Honda Motor Co Ltd 軸受装置
JP2004169756A (ja) * 2002-11-18 2004-06-17 Nsk Ltd センサ付軸受装置
JP2008039228A (ja) * 2006-08-03 2008-02-21 Ntn Corp 空気サイクル冷凍機用タービンユニット
JP2008121788A (ja) * 2006-11-13 2008-05-29 Jtekt Corp 転がり軸受及び転がり軸受装置
DE102009058355A1 (de) * 2009-12-15 2011-06-16 Aktiebolaget Skf Wälzlagervorrichtung mit einer Ringkolbenhülse, Lageranordnung und Verfahren zum Einstellen der Anstellung einer hydraulisch anstellbaren Lageranordnung
DE102010048381A1 (de) * 2010-10-13 2012-04-19 Schaeffler Technologies Gmbh & Co. Kg Loslager mit Dämpfungsfunktion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860417A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115949670A (zh) * 2023-03-09 2023-04-11 中国航发四川燃气涡轮研究院 用于轴承轴向压紧的弹性结构
CN115949670B (zh) * 2023-03-09 2023-06-30 中国航发四川燃气涡轮研究院 用于轴承轴向压紧的弹性结构

Also Published As

Publication number Publication date
KR20150021048A (ko) 2015-02-27
KR101990174B1 (ko) 2019-06-17
JP5899056B2 (ja) 2016-04-06
EP2860417B1 (en) 2020-12-23
JP2013253682A (ja) 2013-12-19
TWI585311B (zh) 2017-06-01
EP2860417A4 (en) 2015-11-18
EP2860417A1 (en) 2015-04-15
TW201413127A (zh) 2014-04-01

Similar Documents

Publication Publication Date Title
US8540433B2 (en) Bearing, and methods of handling the bearing
US10221888B2 (en) Tensioner and method for preloading a bearing
EP2035722B1 (en) Tapered roller bearing with displaceable rib
JP5899056B2 (ja) 転がり軸受
TW201520444A (zh) 軸承機構
JP2007290681A (ja) 駆動輪支持用ハブユニットとその製造方法
US20140373656A1 (en) Disengaging gear unit
CN105626698A (zh) 密封装置和具有密封装置的轴承组件
JP5842982B2 (ja) 軸受装置、及び工作機械の回転テーブル並びにスピンドル装置
US11933403B2 (en) Metallic sealing assembly for sealing between a rotating shaft and a fixed frame
JP5899055B2 (ja) 玉軸受
JP4293371B2 (ja) リリーフ弁
JP5760498B2 (ja) 軸受装置、及び工作機械の回転テーブル並びにスピンドル装置
JP6455276B2 (ja) 圧延ロール
JP2006342830A (ja) 複列円すいころ軸受ユニットの予圧付与方法
JP2009162277A (ja) ベアリング装置
JP5181910B2 (ja) 転がり軸受装置
JPH04316715A (ja) 環状体の取付装置
CN117730211A (zh) 安装拆卸组件、轴和轴承组件、安装方法及拆卸方法
CN104421330B (zh) 滚动轴承装置、结构组合件以及滚动轴承装置的制造方法
JPH04282024A (ja) 環状体の取付装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147035365

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013800708

Country of ref document: EP