WO2013183400A1 - 光音響波測定器 - Google Patents

光音響波測定器 Download PDF

Info

Publication number
WO2013183400A1
WO2013183400A1 PCT/JP2013/063232 JP2013063232W WO2013183400A1 WO 2013183400 A1 WO2013183400 A1 WO 2013183400A1 JP 2013063232 W JP2013063232 W JP 2013063232W WO 2013183400 A1 WO2013183400 A1 WO 2013183400A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoacoustic wave
pulsed light
light output
photoacoustic
measuring instrument
Prior art date
Application number
PCT/JP2013/063232
Other languages
English (en)
French (fr)
Inventor
泰一郎 伊田
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2014519891A priority Critical patent/JP5841663B2/ja
Priority to CN201380012448.9A priority patent/CN104168832B/zh
Priority to EP13800243.1A priority patent/EP2856943B1/en
Priority to US14/382,596 priority patent/US9453761B2/en
Publication of WO2013183400A1 publication Critical patent/WO2013183400A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1708Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids with piezotransducers

Definitions

  • the present invention relates to a photoacoustic sensor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-229660
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-229660
  • an object of the present invention is to reduce noise superimposed on a photoacoustic signal obtained by a photoacoustic wave measuring instrument.
  • the photoacoustic wave measuring instrument includes a pulsed light output unit that outputs pulsed light, and an arrangement that transmits the pulsed light and is disposed between a pulsed light output end of the pulsed light output unit and a measurement target.
  • a photoacoustic wave detection unit that receives a photoacoustic wave generated in the measurement target by the pulsed light and converts the photoacoustic wave into an electrical signal, and the photoacoustic wave detection unit is more than the pulsed light output end.
  • the arrangement member is configured to have a sufficient thickness.
  • the pulsed light output unit outputs pulsed light.
  • the arrangement member through which the pulsed light is transmitted is arranged between the pulsed light output end of the pulsed light output unit and the measurement target.
  • a photoacoustic wave detection part receives the photoacoustic wave which generate
  • the photoacoustic wave detection unit is further away from the measurement object than the pulsed light output end.
  • the noise detected after the photoacoustic wave detection time in the photoacoustic wave detection unit is sufficiently thick to start being detected after the photoacoustic wave detection end time.
  • the arrangement member has.
  • the pulsed light output unit may be an optical fiber.
  • the photoacoustic wave detection unit may be a piezoelectric element.
  • FIG. 1 is a cross-sectional view of a photoacoustic wave measuring instrument 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the photoacoustic wave measuring instrument 1 according to the comparative example (a) (see FIG. 2 (a)), and a cross-sectional view of the photoacoustic wave measuring instrument 1 according to the comparative example (b) (second view).
  • FIG. FIG. 3 shows detection by the photoacoustic wave measuring device 1 (see FIG. 2) according to the comparative examples (a) and (b) and the photoacoustic wave measuring device 1 (see FIG. 1) according to the embodiment of the present invention. It is a graph which shows a waveform.
  • FIG. 1 is a cross-sectional view of a photoacoustic wave measuring instrument 1 according to an embodiment of the present invention.
  • the photoacoustic wave measuring instrument 1 includes a case 10, a backing material 12, a piezoelectric element (photoacoustic wave detection unit) 14, an electrode 16, a spacer 18, an optical fiber (pulsed light output unit) 20, an external spacer (arrangement member) 32, 34 and 36 are provided.
  • the case 10 is a case that houses the backing material 12, the piezoelectric element 14, the electrode 16, and the spacer 18.
  • the spacer 18 is in contact with the bottom surface of the case 10, the electrode 16 is placed on the spacer 18, the piezoelectric element 14 is placed on the electrode 16, and the backing material 12 is placed on the piezoelectric element 14.
  • the backing material 12 is an epoxy resin backing material.
  • the piezoelectric element (photoacoustic wave detection unit) 14 receives pressure such as a dense wave and converts it into a voltage.
  • the electrode 16 receives a voltage from the piezoelectric element 14 and applies the voltage to an external measuring device (not shown) (for example, an oscilloscope).
  • the electrode 16 is, for example, a gold electrode.
  • the spacer 18 transmits dense waves, and is a transparent spacer made of, for example, polystyrene.
  • the optical fiber (pulse light output unit) 20 outputs the pulsed light P from the pulsed light output end 20a.
  • the optical fiber 20 is connected to a pulse light source (not shown) outside the photoacoustic wave measuring instrument 1.
  • the optical fiber 20 passes through the case 10, the backing material 12, the piezoelectric element 14, the electrode 16, and the spacer 18.
  • the external spacers (arrangement members) 32, 34, and 36 transmit the pulsed light P, and are disposed between the pulsed light output end 20 a and the measurement target 2.
  • the external spacer 32 is in contact with the case 10 and the pulsed light output end 20a.
  • the external spacer 36 is in contact with the measurement object 2.
  • An outer spacer 34 is disposed between the outer spacer 32 and the outer spacer 36.
  • the external spacer (arrangement member) 32 is, for example, a white polycarbonate spacer having a thickness of 1.5 mm.
  • the external spacers (arrangement members) 34 and 36 are polystyrene transparent spacers having a thickness of 4 mm. However, the outer spacers 32, 34, and 36 may be integrated.
  • the measurement object 2 is, for example, the belly of a human finger.
  • the measurement object 2 includes a blood vessel 2a. When the blood vessel 2a receives the pulsed light P, a photoacoustic wave W is generated.
  • the piezoelectric element 14 receives the photoacoustic wave W and converts it into an electrical signal (for example, voltage).
  • the piezoelectric element 14 is farther from the measuring object 2 than the pulsed light output end 20a.
  • an external pulse light source (not shown) emits pulsed light P
  • the pulsed light P passes through the optical fiber 20, and the pulsed light P is output from the pulsed light output end 20a.
  • the pulsed light P passes through the external spacers 32, 34 and 36 and is given to the measurement object 2.
  • the pulsed light P reaches the blood vessel 2a of the measuring object 2.
  • the blood vessel 2a absorbs the pulsed light P, is warmed, and adiabatically expands. Thereby, a dense wave (photoacoustic wave W) is output from the blood vessel 2a.
  • FIG. 2 is a cross-sectional view of the photoacoustic wave measuring instrument 1 according to the comparative example (a) (see FIG. 2 (a)), and a cross-sectional view of the photoacoustic wave measuring instrument 1 according to the comparative example (b) (second view).
  • FIG. 2 is a cross-sectional view of the photoacoustic wave measuring instrument 1 according to the comparative example (a) (see FIG. 2 (a)), and a cross-sectional view of the photoacoustic wave measuring instrument 1 according to the comparative example (b) (second view).
  • the external spacers 32 and 36 are removed from the photoacoustic wave measuring instrument 1 shown in FIG.
  • the external spacer 36 is removed from the photoacoustic wave measuring instrument 1 shown in FIG.
  • FIG. 3 shows detection by the photoacoustic wave measuring device 1 (see FIG. 2) according to the comparative examples (a) and (b) and the photoacoustic wave measuring device 1 (see FIG. 1) according to the embodiment of the present invention. It is a graph which shows a waveform.
  • the detected waveforms in the comparative examples (a) and (b) and the embodiment of the present invention all include noise A, photoacoustic wave W, and noise B.
  • the photoacoustic wave W is a photoacoustic wave generated in the blood vessel 2 a of the measurement target 2. This photoacoustic wave is a waveform to be detected. The photoacoustic wave W is detected during the period indicated by the double-headed arrow.
  • Noise A is noise that is detected before time t ⁇ b> 1 at which the photoacoustic wave W starts to be detected in the piezoelectric element 14. The noise A does not overlap the photoacoustic wave W in the comparative example (a), the comparative example (b), and the embodiment of the present invention.
  • Noise B is noise detected after time t1 when the photoacoustic wave W starts to be detected in the piezoelectric element 14.
  • the noise B overlaps the photoacoustic wave W because the thickness of the external spacer is insufficient.
  • the noise B does not overlap the photoacoustic wave W. That is, in the embodiment of the present invention, since the thickness of the outer spacers 32, 34, and 36 is sufficient, the time t3 when the noise B starts to be detected is later than the time t2 when the detection of the photoacoustic wave W ends. .
  • the thickness of the external spacer is (comparative example (a)) ⁇ (comparative example (b)) ⁇ (embodiment of the present invention).
  • the time taken for the photoacoustic wave W to reach the piezoelectric element 14 becomes longer as the thickness of the external spacer increases. Therefore, the detection start time of the photoacoustic wave W is slower in the comparative example (b) than in the comparative example (a), and is slower in the embodiment of the present invention than in the comparative example (b).
  • the detection start time of the noise B is also delayed as the thickness of the external spacer is increased. However, the delay in the detection start time of the noise B due to the increase in the thickness of the external spacer is significantly greater than the delay in the detection start time of the photoacoustic wave W. It's been found.
  • the photoacoustic wave generated in the vicinity of the pulsed light output end 20a is reflected by the boundary surface between the external spacer 36 and the measurement object 2 and reaches the piezoelectric element 14 as the source of the noise B. It seems that it is because it is. In this case, the detection start time of the noise B is delayed about twice as much as the thickness of the external spacer.
  • the time t3 when the noise B starts to be detected is the end of the detection of the photoacoustic wave W. After time t2. Thereby, the noise superimposed on the photoacoustic signal obtained by the photoacoustic wave measuring instrument 1 can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本発明による光音響波測定器は、パルス光出力部と、配置部材と、光音響波検知部と、を備えている。前記パルス光出力部はパルス光を出力する。前記配置部材が、前記パルス光を透過し、前記パルス光出力部のパルス光出力端と測定対象との間に配置される。そして、光音響波検知部が、前記パルス光により前記測定対象において発生した光音響波を受けて、電気信号に変換する。なお、前記光音響波検知部が前記パルス光出力端よりも前記測定対象から離れており、前記光音響波検知部において前記光音響波が検知され始める時間よりも後で検知されるノイズが、前記光音響波の検知終了の時間よりも後で検知され始めるための充分な厚さを前記配置部材が有している。

Description

光音響波測定器
 本発明は、光音響センサに関する。
 従来より、パルス光を被測定物(例えば、生体)に照射することにより得られる光音響信号を測定する光音響センサ(例えば、特許文献1(特開2011−229660号公報)を参照)が知られている。
 しかしながら、光音響センサにより得られる光音響信号にはノイズが重畳してしまう。
 そこで、本発明は、光音響波測定器により得られる光音響信号に重畳するノイズを減じることを課題とする。
 本発明にかかる光音響波測定器は、パルス光を出力するパルス光出力部と、前記パルス光が透過し、前記パルス光出力部のパルス光出力端と測定対象との間に配置された配置部材と、前記パルス光により前記測定対象において発生した光音響波を受けて、電気信号に変換する光音響波検知部と、を備え、前記光音響波検知部が前記パルス光出力端よりも前記測定対象から離れており、前記光音響波検知部において前記光音響波が検知され始める時間よりも後で検知されるノイズが、前記光音響波の検知終了の時間よりも後で検知され始めるための充分な厚さを前記配置部材が有しているように構成される。
 上記のように構成された光音響波測定器によれば、パルス光出力部が、パルス光を出力する。前記パルス光が透過する配置部材が、前記パルス光出力部のパルス光出力端と測定対象との間に配置されている。光音響波検知部が、前記パルス光により前記測定対象において発生した光音響波を受けて、電気信号に変換する。しかも、前記光音響波検知部が前記パルス光出力端よりも前記測定対象から離れている。また、前記光音響波検知部において前記光音響波が検知され始める時間よりも後で検知されるノイズが、前記光音響波の検知終了の時間よりも後で検知され始めるための充分な厚さを前記配置部材が有している。
 なお、本発明にかかる光音響波測定器は、前記パルス光出力部が、光ファイバであるようにしてもよい。
 なお、本発明にかかる光音響波測定器は、前記光音響波検知部が、圧電素子であるようにしてもよい。
 第1図は、本発明の実施形態にかかる光音響波測定器1の断面図である。
 第2図は、比較例(a)にかかる光音響波測定器1の断面図(第2図(a)参照)、比較例(b)にかかる光音響波測定器1の断面図(第2図(b)参照)である。
 第3図は、比較例(a)、(b)にかかる光音響波測定器1(第2図参照)および本発明の実施形態にかかる光音響波測定器1(第1図参照)による検出波形を示すグラフである。
 以下、本発明の実施形態を図面を参照しながら説明する。
 第1図は、本発明の実施形態にかかる光音響波測定器1の断面図である。光音響波測定器1は、ケース10、バッキング材12、圧電素子(光音響波検知部)14、電極16、スペーサ18、光ファイバ(パルス光出力部)20、外部スペーサ(配置部材)32、34、36を備える。
 ケース10は、バッキング材12、圧電素子14、電極16およびスペーサ18を収容するケースである。スペーサ18はケース10の底面に接し、電極16はスペーサ18に載せられ、圧電素子14は電極16に載せられ、バッキング材12は圧電素子14に載せられている。
 バッキング材12は、エポキシ樹脂の裏打ち材である。圧電素子(光音響波検知部)14は、疎密波などの圧力を受け、電圧に変換する。電極16は、圧電素子14から電圧を受け、図示省略した外部の測定装置(例えば、オシロスコープ)に与える。電極16は、例えば、金の電極である。スペーサ18は、疎密波を透過するものであり、例えばポリスチレンの透明なスペーサである。
 光ファイバ(パルス光出力部)20は、パルス光出力端20aからパルス光Pを出力する。なお、光ファイバ20は、光音響波測定器1の外部のパルス光源(図示省略)に接続されている。光ファイバ20は、ケース10、バッキング材12、圧電素子14、電極16およびスペーサ18を貫通する。
 外部スペーサ(配置部材)32、34、36は、パルス光Pが透過し、パルス光出力端20aと測定対象2との間に配置されている。なお、外部スペーサ32が、ケース10およびパルス光出力端20aに接している。外部スペーサ36が、測定対象2に接している。外部スペーサ34が、外部スペーサ32と外部スペーサ36との間に配置されている。
 外部スペーサ(配置部材)32は、例えば、1.5mmの厚さの白ポリカーボネイトのスペーサである。外部スペーサ(配置部材)34、36は、4mmの厚さのポリスチレンの透明なスペーサである。ただし、外部スペーサ32、34、36は、一体であってもよい。
 なお、測定対象2は、例えば人間の指の腹である。測定対象2には血管2aがあり、血管2aがパルス光Pを受けると、光音響波Wを発生する。圧電素子14は、光音響波Wを受けて、電気信号(例えば、電圧)に変換する。圧電素子14は、パルス光出力端20aよりも測定対象2から離れている。
 次に、本発明の実施形態の動作を、比較例と比較しながら説明する。
 まず、外部のパルス光源(図示省略)がパルス光Pを発し、パルス光Pが光ファイバ20を通過して、パルス光出力端20aからパルス光Pが出力される。パルス光Pは、外部スペーサ32、34、36を通過して、測定対象2に与えられる。
 パルス光Pは測定対象2の血管2aに到達する。すると、血管2aがパルス光Pを吸収し、暖められ、断熱膨張する。これにより、血管2aから疎密波(光音響波W)が出力される。
 光音響波Wは、測定対象2、外部スペーサ36、34、32、スペーサ18および電極16を透過し、圧電素子14に到達する。圧電素子14は、光音響波Wによる圧力を、電気信号(例えば、電圧)に変換する。この電圧が電極16を介して、外部に取り出され、オシロスコープなどに与えられる。
 第2図は、比較例(a)にかかる光音響波測定器1の断面図(第2図(a)参照)、比較例(b)にかかる光音響波測定器1の断面図(第2図(b)参照)である。
 比較例(a)は、第1図に示す光音響波測定器1から外部スペーサ32、36を除去したものである。比較例(b)は、第1図に示す光音響波測定器1から外部スペーサ36を除去したものである。
 第3図は、比較例(a)、(b)にかかる光音響波測定器1(第2図参照)および本発明の実施形態にかかる光音響波測定器1(第1図参照)による検出波形を示すグラフである。
 比較例(a)、(b)および本発明の実施形態における検出波形には、いずれも、ノイズA、光音響波WおよびノイズBが含まれている。
 光音響波Wが、測定対象2の血管2aにおいて発生した光音響波である。この光音響波が、検出すべき波形である。両羽矢印で表した期間において、光音響波Wが検出される。
 ノイズAは、圧電素子14において光音響波Wが検知され始める時間t1よりも前に検知されるノイズである。ノイズAは、比較例(a)および比較例(b)においても、本発明の実施形態においても、光音響波Wには重ならない。
 ノイズBは、圧電素子14において光音響波Wが検知され始める時間t1よりも後で検知されるノイズである。比較例(a)および比較例(b)においては、外部スペーサの厚さが不足しているため、ノイズBが光音響波Wに重なっている。
 しかし、本発明の実施形態においては、ノイズBが光音響波Wに重ならない。すなわち、本発明の実施形態においては、外部スペーサ32、34、36の厚さが充分なため、ノイズBが検知され始める時間t3が、光音響波Wの検知終了の時間t2よりも後である。
 外部スペーサの厚さは、(比較例(a))<(比較例(b))<(本発明の実施形態)である。光音響波Wが圧電素子14に到達するためにかかる時間は、外部スペーサの厚さが厚くなるほど長くなる。よって、光音響波Wの検出開始の時間が、比較例(a)よりも比較例(b)の方が遅く、比較例(b)よりも本発明の実施形態の方が遅くなる。
 ノイズBの検出開始の時間も、外部スペーサの厚さが厚くなるほど遅くなる。しかし、外部スペーサの厚さが厚くなることによるノイズBの検出開始の時間の遅れは、光音響波Wの検出開始の時間の遅れよりも甚だしいことが、第3図に示す検出波形から新たに発見された。
 これは、パルス光出力端20a近傍で発生してしまった光音響波が、外部スペーサ36と測定対象2との境界面で反射され、圧電素子14に到達したものがノイズBのもととなっているからではないかと思われる。この場合、ノイズBの検出開始時間は、外部スペーサの厚さのおよそ2倍程度遅れることとなる。
 本発明の実施形態にかかる光音響波測定器1によれば、外部スペーサ32、34、36の厚さが充分なため、ノイズBが検知され始める時間t3が、光音響波Wの検知終了の時間t2よりも後となる。これにより、光音響波測定器1により得られる光音響信号に重畳するノイズを減じることができる。

Claims (3)

  1. パルス光を出力するパルス光出力部と、
     前記パルス光が透過し、前記パルス光出力部のパルス光出力端と測定対象との間に配置された配置部材と、
     前記パルス光により前記測定対象において発生した光音響波を受けて、電気信号に変換する光音響波検知部と、
     を備え、
     前記光音響波検知部が前記パルス光出力端よりも前記測定対象から離れており、
     前記光音響波検知部において前記光音響波が検知され始める時間よりも後で検知されるノイズが、前記光音響波の検知終了の時間よりも後で検知され始めるための充分な厚さを前記配置部材が有している、
     光音響波測定器。
  2. 請求項1に記載の光音響波測定器であって、
     前記パルス光出力部が、光ファイバである、
     光音響波測定器。
  3. 請求項1に記載の光音響波測定器であって、
     前記光音響波検知部が、圧電素子である、
     光音響波測定器。
PCT/JP2013/063232 2012-06-04 2013-05-02 光音響波測定器 WO2013183400A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014519891A JP5841663B2 (ja) 2012-06-04 2013-05-02 光音響波測定器
CN201380012448.9A CN104168832B (zh) 2012-06-04 2013-05-02 光声波测定器
EP13800243.1A EP2856943B1 (en) 2012-06-04 2013-05-02 Photoacoustic wave measurement device
US14/382,596 US9453761B2 (en) 2012-06-04 2013-05-02 Photoacoustic wave measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-127056 2012-06-04
JP2012127056 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013183400A1 true WO2013183400A1 (ja) 2013-12-12

Family

ID=49711800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063232 WO2013183400A1 (ja) 2012-06-04 2013-05-02 光音響波測定器

Country Status (5)

Country Link
US (1) US9453761B2 (ja)
EP (1) EP2856943B1 (ja)
JP (1) JP5841663B2 (ja)
CN (1) CN104168832B (ja)
WO (1) WO2013183400A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501306A (ja) * 2017-10-27 2021-01-14 フンボルト‐ウニヴェルズィテート ズ ベルリンHumboldt−Universitat Zu Berlin 干渉信号抑制を改善した光音響センサヘッドおよび光音響測定装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168833B (zh) * 2012-06-04 2016-03-09 株式会社爱德万测试 光声波测定装置和方法
JP6161941B2 (ja) * 2013-04-15 2017-07-12 株式会社アドバンテスト 光音響波測定器、光音響波測定装置、方法、プログラム、記録媒体
JP7428597B2 (ja) * 2020-06-18 2024-02-06 株式会社アドバンテスト 光超音波測定装置、方法、プログラム、記録媒体
CN113281265B (zh) * 2021-05-31 2022-05-20 华中科技大学 一种适用于宽膜厚范围样品的激光超声测量系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183149A (ja) * 2010-02-09 2011-09-22 Canon Inc 測定装置
JP2011229660A (ja) 2010-04-27 2011-11-17 Canon Inc 生体検査装置
JP2012024460A (ja) * 2010-07-27 2012-02-09 Canon Inc 画像情報取得装置及びその制御方法
JP2012029715A (ja) * 2010-07-28 2012-02-16 Canon Inc 光音響診断装置
JP2012086037A (ja) * 2008-08-27 2012-05-10 Canon Inc 光音響装置および光音響波を受信するための探触子
US20120130222A1 (en) * 2010-11-19 2012-05-24 Canon Kabushiki Kaisha Measuring apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751490B2 (en) * 2000-03-01 2004-06-15 The Board Of Regents Of The University Of Texas System Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit
US8326388B2 (en) * 2002-10-31 2012-12-04 Toshiba Medical Systems Corporation Method and apparatus for non-invasive measurement of living body characteristics by photoacoustics
JP2004351023A (ja) * 2003-05-30 2004-12-16 Olympus Corp 光音響プローブ
JP4829934B2 (ja) * 2008-07-11 2011-12-07 キヤノン株式会社 検査装置
JP4900979B2 (ja) * 2008-08-27 2012-03-21 キヤノン株式会社 光音響装置および光音響波を受信するための探触子
JP2010125260A (ja) 2008-12-01 2010-06-10 Canon Inc 生体検査装置
JP5692986B2 (ja) * 2008-12-25 2015-04-01 キヤノン株式会社 被検体情報取得装置
JP6161941B2 (ja) 2013-04-15 2017-07-12 株式会社アドバンテスト 光音響波測定器、光音響波測定装置、方法、プログラム、記録媒体
JP6029521B2 (ja) 2013-04-15 2016-11-24 株式会社アドバンテスト 光音響波測定装置、方法、プログラム、記録媒体
JP6139234B2 (ja) 2013-04-15 2017-05-31 株式会社アドバンテスト 光音響波測定器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086037A (ja) * 2008-08-27 2012-05-10 Canon Inc 光音響装置および光音響波を受信するための探触子
JP2011183149A (ja) * 2010-02-09 2011-09-22 Canon Inc 測定装置
JP2011229660A (ja) 2010-04-27 2011-11-17 Canon Inc 生体検査装置
JP2012024460A (ja) * 2010-07-27 2012-02-09 Canon Inc 画像情報取得装置及びその制御方法
JP2012029715A (ja) * 2010-07-28 2012-02-16 Canon Inc 光音響診断装置
US20120130222A1 (en) * 2010-11-19 2012-05-24 Canon Kabushiki Kaisha Measuring apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2856943A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501306A (ja) * 2017-10-27 2021-01-14 フンボルト‐ウニヴェルズィテート ズ ベルリンHumboldt−Universitat Zu Berlin 干渉信号抑制を改善した光音響センサヘッドおよび光音響測定装置
JP7242075B2 (ja) 2017-10-27 2023-03-20 フンボルト‐ウニヴェルズィテート ズ ベルリン 干渉信号抑制を改善した光音響センサヘッドおよび光音響測定装置

Also Published As

Publication number Publication date
EP2856943A1 (en) 2015-04-08
JP5841663B2 (ja) 2016-01-13
EP2856943B1 (en) 2022-08-24
CN104168832A (zh) 2014-11-26
US20150075288A1 (en) 2015-03-19
JPWO2013183400A1 (ja) 2016-01-28
CN104168832B (zh) 2016-04-06
EP2856943A4 (en) 2016-01-20
US9453761B2 (en) 2016-09-27

Similar Documents

Publication Publication Date Title
JP5841663B2 (ja) 光音響波測定器
US9517016B2 (en) Object information acquiring apparatus and method of controlling the same
US20140018661A1 (en) Photoacoustic image generating apparatus and photoacoustic image generating method
JP2013188465A5 (ja)
JP5809749B2 (ja) 光音響波測定装置、方法、プログラム、記録媒体
JP6161941B2 (ja) 光音響波測定器、光音響波測定装置、方法、プログラム、記録媒体
JP6452110B2 (ja) 手持ち式プローブ
KR20210062031A (ko) 초음파 변환기에 통합된 실링 멤브레인을 갖춘 순간 탄성측정법 프로브
JP2011072567A5 (ja)
JP6059232B2 (ja) 光音響波測定器
JP6388821B2 (ja) 圧電素子、音波プローブ、光音響装置
JP6826732B2 (ja) 光音響計測装置
JP6408163B2 (ja) 光音響計測用プローブ並びにそれを備えたプローブユニットおよび光音響計測装置
US20170319077A1 (en) Sample information acquisition apparatus
JP6429711B2 (ja) 探触子、及びそれを用いた被検体情報取得装置
JP2010213896A (ja) 音響インピーダンス測定方法、音響インピーダンス測定装置、物体特性評価方法、及び物体特性評価装置
WO2020008824A1 (ja) 音響波プローブおよび音響波プローブの設置方法
JP2016036652A (ja) 光音響画像化装置
US20220110556A1 (en) Component Concentration Measuring Device
JP5868458B2 (ja) 測定装置
JP2017108993A (ja) 被検体情報取得装置および披検体情報の取得方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380012448.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519891

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14382596

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE