WO2016125781A1 - 手持ち式プローブ - Google Patents

手持ち式プローブ Download PDF

Info

Publication number
WO2016125781A1
WO2016125781A1 PCT/JP2016/053034 JP2016053034W WO2016125781A1 WO 2016125781 A1 WO2016125781 A1 WO 2016125781A1 JP 2016053034 W JP2016053034 W JP 2016053034W WO 2016125781 A1 WO2016125781 A1 WO 2016125781A1
Authority
WO
WIPO (PCT)
Prior art keywords
light absorber
subject
light
hand
probe according
Prior art date
Application number
PCT/JP2016/053034
Other languages
English (en)
French (fr)
Inventor
阿部 浩
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to EP16746612.7A priority Critical patent/EP3254628B1/en
Publication of WO2016125781A1 publication Critical patent/WO2016125781A1/ja
Priority to US15/658,836 priority patent/US20170319178A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4455Features of the external shape of the probe, e.g. ergonomic aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/06Arrangements of multiple sensors of different types
    • A61B2562/066Arrangements of multiple sensors of different types in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image

Definitions

  • the present invention relates to a hand-held probe.
  • Photoacoustic imaging is known as a technique for imaging a light absorber in a subject (for example, a blood vessel inside a living body).
  • Photoacoustic imaging is a technique that uses the fact that a photoacoustic wave is generated from a light absorber due to a photoacoustic effect when light is irradiated on an object, and converts the distribution of the light absorber into image data.
  • blood vessels in a living body can be imaged by using hemoglobin as a light absorber.
  • ultrasonic imaging is known as a method for rendering structural information in a subject.
  • ultrasonic waves are transmitted to a subject from many detection elements (transducers) arranged on the probe. Then, image data is generated by receiving a reflected wave generated at the acoustic impedance interface in the subject.
  • Non-Patent Document 1 describes a technique for acquiring an image obtained by photoacoustic imaging and an image obtained by ultrasonic imaging using the same handheld probe.
  • the photoacoustic probe has a circuit configuration dedicated to reception, and it is necessary to add an ultrasonic transmission circuit in order to use it for ultrasonic imaging.
  • this increases manufacturing costs.
  • noise may be generated by a switch circuit for switching between transmission and reception.
  • reception characteristics may be deteriorated.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a hand-held probe suitable for photoacoustic imaging and ultrasonic imaging and having a simple configuration.
  • the present invention employs the following configuration. That is, A gripping part; A plurality of detection elements that receive acoustic waves and output electrical signals; A detection surface on which the plurality of detection elements are arranged; A light absorber support part in which a light absorber that absorbs light emitted from a light source and generates an acoustic wave is disposed; It is a hand-held probe characterized by having.
  • a hand-held probe suitable for photoacoustic imaging and ultrasonic imaging and having a simple configuration can be provided. Further features of the present invention will become apparent from the following embodiments (and attached reference drawings).
  • FIG. 3 is a diagram illustrating a configuration example of a handheld probe according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the handheld probe according to the first embodiment.
  • FIG. 3 is a diagram illustrating a processing flow according to the first embodiment. The figure which shows the mode of the received signal of Embodiment 1.
  • FIG. FIG. 6 is a diagram illustrating a configuration example of a cover member according to a second embodiment.
  • FIG. 6 is a diagram illustrating a hand-held probe according to a third embodiment. The block diagram which showed the structure of the subject information acquisition apparatus.
  • the present invention relates to a technique for detecting acoustic waves propagating from a subject, generating characteristic information inside the subject, and acquiring the characteristic information. Therefore, the present invention can be understood as a subject information acquisition apparatus or a control method thereof, a subject information acquisition method, or a signal processing method. The present invention can also be understood as a program that causes an information processing apparatus including hardware resources such as a CPU to execute these methods, and a storage medium that stores the program.
  • the subject information acquisition apparatus of the present invention irradiates a subject with light (electromagnetic waves) and receives (detects) an acoustic wave generated and propagated at a specific position in the subject or on the subject surface according to the photoacoustic effect.
  • Such an object information acquiring apparatus can also be called a photoacoustic imaging apparatus because it obtains characteristic information inside the object in the form of image data or the like based on photoacoustic measurement.
  • the subject information acquisition apparatus of the present invention transmits an acoustic wave to a subject, receives a reflected wave (echo wave) reflected inside the subject, and obtains subject information as image data. Includes devices that use.
  • the characteristic information in the photoacoustic device is the distribution of the source of acoustic waves generated by light irradiation, the initial sound pressure distribution in the subject, or the optical energy absorption density distribution, absorption coefficient distribution, and tissue derived from the initial sound pressure distribution.
  • the concentration distribution of the constituent substances is shown. Specifically, it is a blood component distribution such as an oxygenated / reduced hemoglobin concentration distribution, an oxygen saturation distribution obtained therefrom, or a distribution of fat, collagen, and water.
  • the characteristic information may be obtained as distribution information of each position in the subject, not as numerical data. That is, distribution information such as an absorption coefficient distribution and an oxygen saturation distribution may be used as the subject information.
  • the characteristic information derived from the photoacoustic wave can also be called function information indicating a difference in function due to the substance inside the subject.
  • the characteristic information acquired by the ultrasonic echo device is information reflecting the difference in acoustic impedance of the tissue inside the subject.
  • the characteristic information derived from the ultrasonic echo can also be called morphological information reflecting the structure inside the subject.
  • the acoustic wave referred to in the present invention is typically an ultrasonic wave, and includes an elastic wave called a sound wave and an acoustic wave.
  • An acoustic wave generated by the photoacoustic effect is called a photoacoustic wave or an optical ultrasonic wave.
  • An electric signal converted from an acoustic wave by a probe or the like is also called an acoustic signal.
  • photoacoustic wave refers to a photoacoustic wave generated from a light absorber inside or on the surface of a subject.
  • the photoacoustic wave generated from the light absorber disposed on the probe is called “transmitted ultrasonic wave”.
  • they are also called “subject-derived photoacoustic waves” and “probe-derived photoacoustic waves”, respectively.
  • an echo wave in which the transmitted ultrasonic wave is reflected on the subject surface or inside is called an “ultrasonic echo”.
  • these names are for facilitating the distinction and are not intended to limit the wavelength of each elastic wave.
  • FIG. 1 is a diagram illustrating a configuration example of a hand-held (hand-held) probe according to the present embodiment.
  • the hand-held probe 1 has a cylindrical holding part 2 for an operator to hold.
  • the grip portion 2 also functions as a housing that holds various components.
  • the grip 2 is not limited to a cylindrical shape. For example, an elliptical column shape or a rectangular column shape may be used, and unevenness may be provided so that the operator can easily grasp the shape.
  • the detection surface 3 is a surface that intersects the central axis 5 of the grip portion 2.
  • a plurality of detection elements 4 are provided on the detection surface 3.
  • the hand-held probe 1 of FIG. 1 can irradiate a subject with light guided by an optical system 6 from a light source (not shown) from an emission end 6 a disposed substantially at the center of the detection surface 3.
  • the detection surface 3 is a curved surface that is recessed with respect to the subject.
  • the detection surface 3 By making the detection surface 3 a curved surface, it is possible to obtain an effect that the measurement target of ultrasonic imaging can be focused on the region of interest in the subject.
  • the curved surface a shape of a part of an ellipsoid is preferable, and a spherical crown shape is more preferable.
  • the detection surface 3 may be a flat surface. The hand-held probe 1 is pressed against the subject so that the detection surface 3 faces the subject.
  • the plurality of detection elements 4 receive photoacoustic waves and ultrasonic echoes propagating from the subject, convert them into electrical signals, and output them.
  • the arrangement method of the plurality of detection elements 4 is not particularly limited. For example, various arrangement methods such as a square lattice shape, a rectangle, a pentagon or more polygon, a circle, an ellipse, a sector, and a concentric circle can be used.
  • the arrangement of the detection elements 4 may be a concentric ring. As a result, the symmetry of the element arrangement is increased and a good reconstructed image can be obtained.
  • the elements are preferably arranged concentrically around the light emitting end.
  • a piezoelectric element As the detecting element 4, a piezoelectric element, cMUT (Capacitive micromachined transducers), PVDF (Polyvinylidene DiFluoride), Fabry-Perot sensor, or the like can be used.
  • the element size and the arrangement interval may be determined from the viewpoint of reception sensitivity and directivity according to the application.
  • the detection surface 3 is covered by the plurality of detection elements 4 arranged on the detection surface 3, and more preferably 85% or more of the detection surface 3 is covered. Accordingly, photoacoustic waves and ultrasonic echoes propagating from the subject can be efficiently received from various angles, and highly accurate image data can be generated.
  • each detection element 4 has an equal solid angle with respect to the region of interest. Therefore, it is desirable that the detection elements 4 are arranged in an equally distributed manner, such as a spiral arrangement or a Fibonacci arrangement. Further, in order to increase the number of arrangement of the detection elements 4 and increase the SNR, it is desirable to arrange the detection elements 4 concentrically with respect to the emission end 6a.
  • a pulse laser device is suitable as a light source (not shown).
  • the laser light light having a wavelength at which the light absorber in the subject has absorption characteristics is preferable.
  • near infrared light is suitable for hemoglobin in blood.
  • a wavelength tunable laser that generates light of a plurality of wavelengths, detailed information such as oxygen saturation can be acquired.
  • a flash lamp or LED can be used instead of the laser device.
  • optical system 6 that propagates light from the light source. Then, the propagated light is irradiated to the subject from the emission end 6a such as the end of the fiber bundle.
  • a cover member 7 is provided on the side of the hand-held probe 1 that contacts the subject.
  • the light absorber 8 in the figure is disposed on the cover member 7. That is, in this embodiment, a cover member functions as a light absorber support part.
  • FIG. 2 is a cross-sectional view of the hand-held probe 1 in a state of being in contact with the subject.
  • the detection surface 3 is concave, a gap is formed when the casing is pressed against the subject 10.
  • the cover member 7 is a member that contacts the subject 10 at that time. In other words, a sealed space is formed between the cover member 7 and the detection surface 3 on which the detection element 4 is provided.
  • the sealed space is filled with a coupling agent 9 for acoustically matching the detection element 4 and the subject 10.
  • a coupling agent 9 for acoustically matching the detection element 4 and the subject 10.
  • the coupling agent 9 one having an acoustic impedance close to that of the subject 10 is suitable.
  • water or castor oil can be suitably used as the coupling agent 9.
  • the coupling agent 9 one having a high transmittance with respect to the irradiation light is used in order to propagate the light to the subject 10.
  • the cover member 7 preferably has flexibility so as not to inhibit the propagation of photoacoustic waves and ultrasonic echoes.
  • a flexible film-like member such as rubber is preferable.
  • a light transmissive material is used in order to propagate the irradiation light to the subject 10.
  • the cover member 7 is filled with the coupling agent 9, the detection element and the subject are acoustically matched.
  • the cover member 7 also prevents direct contact between the subject 10 and the coupling agent 9. In FIG. 2, when the cover member 7 filled with the coupling agent is pressed against the subject 10, the cover member 7 is deformed along the shape of the subject 10 and is in close contact with the subject 10.
  • a coupling agent may be further applied between the subject 10 and the cover member 7.
  • adhesion and acoustic consistency between the subject 10 and the cover member 7 are enhanced.
  • the relative movement of the probe 1 with respect to the subject 10 becomes smooth during measurement.
  • the cover member 7 may be configured to be detachable from the probe 1 as a bag-shaped member. It is useful in terms of hygiene to replace the bag-like cover member 7 filled with the coupling agent in advance for each measurement or for each subject, for example.
  • a cover member enclosing a coupling agent may be provided from the viewpoints of protection of the detection element, improvement in acoustic impedance matching, improvement in the comfort of the subject, and the like. preferable.
  • the cover member 7 has a dot-shaped light absorber 8.
  • the transmission ultrasonic wave S101 is generated by the photoacoustic effect.
  • This transmitted ultrasonic wave reaches the subject 10 and is reflected by the region of interest 10a or the like to become an ultrasonic echo S103.
  • the detection element By receiving this with the detection element, ultrasonic imaging is realized.
  • the remaining irradiation light reaches the subject and generates a photoacoustic wave. Photoacoustic imaging is realized by the detection element receiving this.
  • ultrasonic imaging and photoacoustic imaging can be performed with a single probe that has a simple configuration and does not have an ultrasonic transmission function.
  • the light absorber 8 is preferably disposed on the central axis 5 (on the optical axis) with high light intensity.
  • the dot size of the light absorber 8 affects the frequency of transmitted ultrasonic waves. Therefore, it is preferable to determine the dot size of the absorber so that the frequency of the transmitted ultrasonic wave is within the band sensitivity of the detection element 4.
  • the dot size when the cover member 7 has a thickness of 500 ⁇ m, the dot of the light absorber 8 has a diameter of about 400 ⁇ m. Thereby, unevenness with respect to the subject surface can be reduced.
  • the material of the light absorber 8 for example, a material that efficiently generates transmission ultrasonic waves such as a material containing carbon is used. Further, if the light absorber 8 completely absorbs light, the photoacoustic imaging is affected. Therefore, the size and material of the light absorber 8 are determined so that part of the light avoids or passes through the light absorber 8 and reaches the subject 10. As an example, consider a case where a light irradiation region has a diameter of 15 mm in a hand-held probe having a detection surface 3 having a diameter of about 500 mm. If the light absorber 8 having a diameter of about 400 ⁇ m as described above is used with this probe, most of the irradiation light can reach the subject, so that it hardly affects the photoacoustic imaging.
  • the cover member 7 when the cover member 7 can be replaced as described above, a plurality of cover members having different materials, sizes, numbers, positions, etc. of the light absorber may be prepared and replaced according to the measurement contents.
  • the cover member 7 is good also as a structure which has inlets like a valve.
  • the coupling agent can be filled between the cover member 7 and the detection surface via the injection port only at the time of measurement.
  • the inlet is preferably provided at the edge of the detection surface so as not to hinder measurement.
  • FIG. 3A shows a main processing flow.
  • FIG. 3B is a detailed description of step S302
  • FIG. 3C is a detailed description of step S305.
  • Step S301 Preparation for measurement
  • settings are made such as starting up the apparatus, attaching the cover member 7 to the hand-held probe 1, and applying an ultrasonic gel to the probe to contact the subject. Thereby, it will be in the state which can be measured as shown to the schematic diagram of FIG.
  • a region of interest (ROI) 10a in the subject 10 is a measurement target.
  • Step S302 Light irradiation
  • the light transmitted from the optical system 6 after being irradiated from the light source is irradiated from the emission end 6a.
  • the light absorber disposed on the cover member 7 absorbs light, thereby generating a probe-derived photoacoustic wave (transmission ultrasonic wave) S101.
  • a part of the transmitted ultrasonic wave is received by the detection element 4 via the coupling agent 9.
  • Another part of the transmitted ultrasonic wave is reflected by an acoustic impedance interface such as a structure inside the region of interest 10a or the surface of the subject to become an ultrasonic echo S103, which is received by the detection element 4.
  • the light irradiation process may be repeated a plurality of times.
  • the subject-derived photoacoustic wave S102 is generated by the light absorber of the region of interest 10a absorbing the light.
  • the photoacoustic wave is received by the detection element 4 via the region in the subject and the coupling agent 9.
  • FIG. 4 shows a representative example of an electrical signal based on the acoustic wave detected by the detection element 4.
  • the horizontal axis represents the elapsed time after light irradiation.
  • the electrical signal is determined according to the length of the path through which the acoustic wave has passed after generation and the sound speed of the area through which the acoustic wave has passed.
  • the vertical axis represents the strength of the electrical signal.
  • a signal with a high intensity is first observed. This corresponds to the transmission ultrasonic wave S101 derived from the light absorber 8 arranged in the cover member.
  • the next observed signal corresponds to the photoacoustic wave S102 generated from the light absorber in the region of interest.
  • the next observed signal corresponds to the ultrasound echo S103, where the transmitted ultrasound S101 is reflected by a structure in the region of interest.
  • the photoacoustic wave S102 generated from the region of interest is also reflected by the structure. However, since the energy generated by this reflected wave is small, the signal intensity is small and is generally ignored or not observed. At this time, if the size of the region of interest is small relative to the distance from the dot-shaped light absorber disposed in the cover member, the signals are not observed at the same time.
  • Step S304 signal processing
  • signal processing according to need is performed on the electrical signals output from each detection element. For example, amplification processing, digitization processing for an analog electric signal, gain processing according to the path length and light amount of acoustic waves, correction processing of element characteristics, and the like can be given.
  • Step S305 Image reconstruction
  • photoacoustic imaging processing using photoacoustic waves and ultrasonic imaging processing using ultrasonic echoes are performed.
  • Various known techniques can be used for image reconstruction in steps S3051 and S3053.
  • the processing in this step is not limited to the flow shown in FIG. 3C, and an ultrasonic image and a photoacoustic image may be generated in parallel.
  • a back projection algorithm in a three-dimensional space can be applied to the reconstruction of the photoacoustic wave.
  • the initial sound pressure distribution p 0 (r) is estimated in time space by the following equation (1).
  • the term b (r 0 , t) corresponding to the projection data is shown in Expression (2).
  • Equation (3) the solid angle term d ⁇ 0 of the receiver for an arbitrary data region is expressed by Equation (3).
  • p (r) is the photoacoustic wave signal acquired in S100
  • r is the position of each detection element
  • t is time
  • is the angle formed by the receiver and an arbitrary data area.
  • the projection data term b (r 0 , t) may be expressed by the equation (4).
  • the position of the light absorber 8 provided on the cover member 7 may be changed as compared with the case where the cover member 7 is not in contact with the subject. Therefore, the influence of the displacement of the light absorber 8 on the signal may be corrected.
  • the position information of the light absorber can be acquired based on the photoacoustic wave S ⁇ b> 101 that directly enters the detection element from the light absorber 8.
  • the back projection algorithm was applied in the three-dimensional space as well as the photoacoustic image when calculating the image reconstruction I (r) of the reflected ultrasound (formula (5)).
  • is a delay time obtained by dividing the sum of the distance from the light absorber in the film to the projection position voxel and the distance from the i-th detection element to the projection position voxel by the acoustic propagation velocity.
  • is a weight factor such as a window function, and is changed according to the directivity of the detection element, the desired resolution of the reconstructed image, and SN.
  • sampling data Si having the same phase with respect to the projection position voxel can be extracted from the time-series signals received by the detection elements, and summed to obtain an image.
  • Step S306 Image display
  • a display device such as a liquid crystal display.
  • any method may be used such as displaying both images in a superimposed manner, displaying them side by side, or displaying them alternately.
  • the effect of the present invention can be obtained even if the image is stored as image data without being displayed.
  • components derived from the light absorber of the cover member are included even in the RAW data output from the detection element before the image reconstruction and the electric signal in a state where only the correction processing is performed. Therefore, the effect of the present invention can be obtained.
  • ultrasonic imaging and photoacoustic imaging can be performed with a simple probe including only a single detection element that does not have an ultrasonic transmission function. Therefore, in the diagnosis using a plurality of modalities, it is possible to expect a cost reduction, an improvement in operating rate, and an easy maintenance.
  • the degree of attenuation of the transmitted ultrasonic wave increases, which may affect the S / N ratio of the reconstructed image.
  • the intensity of the transmitted ultrasonic wave decreases as the distance between the light emitting end and the light absorber increases due to the attenuation of the irradiation light, which may affect the S / N ratio of the reconstructed image.
  • the position in the digital signal of the signal component derived from the reflected wave propagated from the region of interest can be known, and appropriate reconstruction can be performed.
  • correction such as gain processing can be performed for the attenuation of the transmission acoustic wave itself and the decrease of the transmission ultrasonic wave intensity corresponding to the attenuation of the irradiation light. Therefore, in this modification, a method for grasping the position of the light absorber in advance in a state where the probe is pressed against the subject (contact state) will be described.
  • the user performs preliminary light irradiation in the contact state.
  • photoacoustic waves are generated not only from the light absorber in the cover member but also from the light absorber in the subject, but they can be identified because they have different detection times and intensities.
  • image reconstruction is performed using an electrical signal derived from the light absorber in the cover member. As a result, the position information of the light absorber can be acquired.
  • the position of the light absorber disposed on the cover member it is possible to grasp the position of the light absorber disposed on the cover member and realize an appropriate image reconstruction.
  • the light irradiation for obtaining position information and the light irradiation for image reconstruction are not necessarily performed separately. That is, after acquiring the electrical signal as shown in FIG. 4, first, the position of the light absorber is grasped by image reconstruction using the portion of S101, and S102 (corresponding to the subject-derived photoacoustic wave) and S103 ( It may be used for image reconstruction (corresponding to ultrasonic echo).
  • the cover member is a bag-like member.
  • the matching agent When the matching agent is sealed in a region defined by the detection surface and the film-like cover member, it may be necessary to waterproof the detection element 4.
  • the cover member As a bag-shaped member.
  • the bag-shaped cover member can be configured to be detachable from the grip portion.
  • an injection port for injecting the matching agent may be provided.
  • FIG. 5 shows a state in which the cover member 7 of the present embodiment is viewed from the subject side.
  • the cover member 7 includes a light absorber 1 (8a), a light absorber 2 (8b), a light absorber 3 (8c), a light absorber 4 (8d), and a light absorber 5 (8e) having different light absorption characteristics. ) Is arranged.
  • the arrangement position of each light absorber is preferably within a range in which light from the emission end strikes. In FIG. 5, the emission end and the detection element existing on the opposite side across the cover member are omitted.
  • a wavelength tunable laser device is used as the light source. Then, for each pulse or time unit, light having a wavelength suitable for each of the light absorbers is irradiated to generate a transmission ultrasonic wave (probe-derived photoacoustic wave), and an ultrasonic echo is detected. As a result, five types of received signals having different sound source positions are obtained. Thereafter, an image with a high S / N ratio is obtained by averaging the acoustic signals stored in the memory or averaging the reconstructed images generated from the respective acoustic signals.
  • a transmission ultrasonic wave probe-derived photoacoustic wave
  • the photoacoustic signals derived from the subject included in the above five types of received signals are caused by irradiation light having different wavelengths, and the signal type can be identified from the spectrum information. Therefore, by using these signals, highly accurate photoacoustic imaging can be executed. For example, an oxygen saturation distribution image can be acquired with high accuracy if light of a wavelength that is easily absorbed by each of oxyhemoglobin and reduced hemoglobin is included in five types of light.
  • photoacoustic imaging and ultrasonic imaging can be realized in a wide area inside the subject with a single probe having a simple configuration.
  • five types of light absorbers indicated by reference numerals 8a to 8e are provided, but the number and arrangement are not limited thereto.
  • the matching agent is sealed in the cover member 7.
  • the probe of the present embodiment uses a gel member 11 that is a medium having acoustic impedance close to that of soft biological tissue and transmitting irradiation light. Thereby, reflection and loss of acoustic waves between the detection element and the subject can be reduced.
  • FIG. 6A is a cross-sectional view showing the configuration of the hand-held probe 1 according to this embodiment.
  • One side of the gel member 11 has a shape along the curved surface of the detection surface 3 so that air does not enter.
  • the side in contact with the subject 10 has a shape suitable for the subject surface.
  • a sheet-like light absorber 12 having a curvature substantially equal to that of the detection surface 3 is disposed on the center line 5 of the optical path inside the gel member 11. That is, in this embodiment, a gel member functions as a light absorber support part.
  • FIG. 6B shows a state where the gel member 11 is viewed from the subject side.
  • the sheet-like light absorber 12 is disposed so as to cover the optical axis. Therefore, when determining the material, thickness, size, etc. of the sheet-like light absorber 12, it is designed not to absorb all of the irradiation light but to transmit part of it to the subject.
  • the sheet-like light absorber is also required to be permeable to acoustic waves. For example, a thin film of gold, silver or aluminum can be used as the material of the sheet-like light absorber.
  • the propagated wave (transmission ultrasonic wave) traveling to the opposite side of the detection element propagates to the center of curvature of the sheet-like light absorber 12. Accordingly, if the center of curvature of the detection surface 3 and the center of curvature of the sheet-like light absorber 12 coincide, the transmitted ultrasonic wave propagates so as to converge toward the center of curvature. As a result, a strong signal amplitude is formed at the center of curvature, and highly accurate image data is obtained. In addition, since the reception focus of the photoacoustic wave is at the center of curvature, artifacts are suppressed and the SN ratio of the image is increased. As a result, an effect that an image in the region of interest can be obtained satisfactorily is obtained.
  • the gel member 10 When the gel member 10 is replaceable as described above, a plurality of gel members having different materials, thicknesses, sizes, positions, etc. of the sheet-like light absorber are prepared and replaced according to the measurement contents. Also good. For example, the thicker the light absorber, the lower the frequency of the generated photoacoustic wave. In this case, since the photoacoustic wave is not easily attenuated, the photoacoustic wave reaches the deep part of the subject, and a deep part can be imaged. On the other hand, the thinner the light absorber, the higher the frequency of the photoacoustic wave. In this case, although the attenuation is easy, the measurement resolution is improved. Therefore, the frequency of the photoacoustic wave can be changed by exchanging the gel member according to the depth and size of the measurement target.
  • an ultrasonic image and a photoacoustic image of a subject can be obtained with high definition using a probe having a single and simple configuration.
  • a subject information acquisition apparatus using the hand-held probe 1 shown in the above embodiments will be described with reference to FIG.
  • This apparatus can generate image data inside a subject with two modalities of ultrasonic imaging and photoacoustic imaging.
  • the processing flow in FIG. 3 is actually executed by a subject information acquisition apparatus as in this embodiment.
  • the measurement object of the apparatus is the subject 10.
  • the apparatus includes a probe 1, a light source 13, a signal processing unit 14, an information processing unit 15, and a display unit 16.
  • the display unit 16 is not always necessary, and the reconstructed image data may be stored in the memory.
  • the probe 1 and the light source 13 described above are used.
  • the signal processing unit 14 performs the process in step S304 in FIG.
  • an amplifier, an AD converter, various correction circuits, and the like can be used.
  • the information processing unit 15 an information processing apparatus that includes a CPU, a memory, and the like and operates according to a program or the like, for example, a PC or a workstation is preferable.
  • the display unit 16 any image display device such as a liquid crystal display or an organic EL display can be used.
  • the present invention can also be implemented by a computer (or a device such as a CPU or MPU) of a system or apparatus that implements the functions of the above-described embodiments by reading and executing a program recorded in a storage device.
  • the present invention can be implemented by a method including steps executed by a computer of a system or apparatus that implements the functions of the above-described embodiments by reading and executing a program recorded in a storage device.
  • the program is stored in the computer from, for example, various types of recording media that can serve as the storage device (ie, computer-readable recording media that holds data non-temporarily).
  • the computer including devices such as CPU and MPU), the method, the program (including program code and program product), and the computer-readable recording medium that holds the program non-temporarily are all present. It is included in the category of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 把持部と、音響波を受信して電気信号を出力する複数の検出素子と、前記複数の検出素子が配置された検出面と、光源から照射された光を吸収して音響波を発生させる光吸収体が配置された光吸収体支持部を有する手持ち式プローブを用いる。

Description

手持ち式プローブ
 本発明は、手持ち式プローブに関する。
 被検体内の光吸収体(例えば、生体内部の血管)を画像化する技術として、光音響イメージング(PAI:Photoacoustic Imaging)が知られている。光音響イメージングは、被検体に光が照射されると光音響効果により光吸収体から光音響波が発生することを利用し、光吸収体の分布を画像データ化する技術である。例えば光吸収体としてヘモグロビンを利用することで、生体内の血管を画像化できる。
 一方、被検体内の構造情報を描出する方法として、超音波イメージングが知られている。超音波イメージングにおいては、プローブに多数配置された検出素子(トランスデューサ)から被検体に超音波を送信する。そして、被検体内の音響インピーダンスの界面で生じる反射波を受信することで画像データを生成する。
 非特許文献1には、光音響イメージングによる画像と超音波イメージングによる画像とを、同一のハンドヘルド(手持ち式)プローブで取得する技術が記載されている。
J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging 24, 436-440(2005)
 一般的に、光音響プローブは受信専用の回路構成であり、超音波イメージングに利用するためには超音波送信用の回路を追加する必要がある。しかし、これにより製造コストが増大する。また、送受信を切り替えるためのスイッチ回路によりノイズが発生する可能性がある。さらに、検出素子に送信特性を持たせるために受信特性が低下する可能性もある。
 本発明は上記課題に鑑みてなされたものであり、光音響イメージングおよび超音波イメージングに好適、かつ構成が簡易な手持ち式プローブの提供を目的とする。
 本発明は、以下の構成を採用する。すなわち、
 把持部と、
 音響波を受信して電気信号を出力する複数の検出素子と、
 前記複数の検出素子が配置された検出面と、
 光源から照射された光を吸収して音響波を発生させる光吸収体が配置された光吸収体支持部と、
を有することを特徴とする手持ち式プローブである。
 本発明によれば、光音響イメージングおよび超音波イメージングに好適、かつ構成が簡易な手持ち式プローブを提供できる。
 本発明のさらなる特徴は、後述の実施形態(および添付された参照図面)により明らかになるであろう。
実施形態1の手持ち式プローブの構成例を示す図。 実施形態1の手持ち式プローブの断面図。 実施形態1の処理フローを示す図。 実施形態1の受信信号の様子を示す図。 実施形態2のカバー部材の構成例を示す図。 実施形態3の手持ち式プローブを示す図。 被検体情報取得装置の構成を示したブロック図。
 以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。よって、この発明の範囲を以下の記載に限定する趣旨のものではない。
 本発明は、被検体から伝播する音響波を検出し、被検体内部の特性情報を生成し、取得する技術に関する。よって本発明は、被検体情報取得装置またはその制御方法、あるいは被検体情報取得方法や信号処理方法として捉えられる。本発明はまた、これらの方法をCPU等のハードウェア資源を備える情報処理装置に実行させるプログラムや、そのプログラムを格納した記憶媒体としても捉えられる。
 本発明の被検体情報取得装置は、被検体に光(電磁波)を照射し、光音響効果に従って被検体内または被検体表面の特定位置で発生して伝搬した音響波を受信(検出)する、光音響トモグラフィー技術を利用した装置を含む。このような被検体情報取得装置は、光音響測定に基づき被検体内部の特性情報を画像データ等の形式で得ることから、光音響イメージング装置とも呼べる。
 本発明の被検体情報取得装置には、被検体に音響波を送信し、被検体内部で反射した反射波(エコー波)を受信して、被検体情報を画像データとして取得する超音波エコー技術を利用した装置を含む。
 光音響装置における特性情報とは、光照射によって生じた音響波の発生源分布、被検体内の初期音圧分布、あるいは初期音圧分布から導かれる光エネルギー吸収密度分布や吸収係数分布、組織を構成する物質の濃度分布を示す。具体的には、酸化・還元ヘモグロビン濃度分布や、それらから求められる酸素飽和度分布などの血液成分分布、あるいは脂肪、コラーゲン、水分の分布などである。また、特性情報は、数値データとしてではなく、被検体内の各位置の分布情報として求めてもよい。すなわち、吸収係数分布や酸素飽和度分布などの分布情報を被検体情報としてもよい。光音響波に由来する特性情報は、被検体内部の物質に起因する機能の違いを示す機能情報とも呼べる。
 超音波エコー装置により取得される特性情報は、被検体内部の組織の音響インピーダンスの違いを反映した情報である。超音波エコーに由来する特性情報は、被検体内部の構造を反映する形態情報とも呼べる。
 本発明でいう音響波とは、典型的には超音波であり、音波、音響波と呼ばれる弾性波を含む。光音響効果により発生した音響波のことを、光音響波または光超音波と呼ぶ。探触子等により音響波から変換された電気信号を音響信号とも呼ぶ。
[実施形態1]
 続いて本発明の実施形態1について、図面を参照しつつ説明する。以下の記載において、特に断りがなければ、「光音響波」とは被検体内部または表面の光吸収体から発生した光音響波のことを指す。一方、プローブに配置された光吸収体から発生した光音響波のことは、「送信超音波」と呼ぶ。両者の区別を明確にする必要がある場合、それぞれ「被検体由来光音響波」および「プローブ由来光音響波」とも呼ぶ。また、送信超音波が被検体表面や内部で反射したエコー波を、「超音波エコー」と呼ぶ。ただしこれらの名称は区別を容易にするためのものであり、各弾性波の波長を限定する趣旨ではない。
<プローブの構成>
 図1は、本実施形態の手持ち式(ハンドヘルド型)プローブの構成例を示す図である。手持ち式プローブ1は、操作者が把持するための、円筒形状の把持部2を有する。把持部2は、各種の構成部品を保持する筐体としても機能する。把持部2は円筒形状に限られない。たとえば、楕円柱形状や、矩形柱形状でもよいし、操作者が把持しやすいように凹凸を設けても良い。
 検出面3は、把持部2の中心軸5と交差する面である。検出面3上には、複数の検出素子4(トランスデューサ)が設けられる。図1の手持ち式プローブ1は、不図示の光源から光学系6により導かれた光を、検出面3の略中央に配置された出射端6aから被検体に照射できる。
 図1において、検出面3は被検体に対して凹んだ形状の曲面である。検出面3を曲面とすることにより、超音波イメージングの測定対象を被検体内の関心領域にフォーカスできるという効果が得られる。曲面としては楕円体の一部の形状が好適であり、球冠状がより好ましい。ただし検出面3は平面であっても良い。手持ち式プローブ1は、検出面3が被検体と対向するように被検体に押し当てられる。
 複数の検出素子4は、被検体から伝搬する光音響波および超音波エコーを受信し、電気信号に変換して出力する。複数の検出素子4の配置方法は特に限定されない。例えば正方形の格子状や、矩形、5角形以上の多角形、円形、楕円形、扇形、同心円状など、様々な配置方法が利用できる。検出素子4の配列は、同心環状でも良い。これにより素子配置の対称性を高めて良好な再構成画像を得られる。またその際、光の出射端を中心として同心環状に素子を配置すると良い。
 検出素子4として、圧電素子、cMUT(Capacitive micromachined ultrasonic transducers)、PVDF(PolyVinylidene DiFluoride)、ファブリペローセンサ等を利用できる。素子サイズや配置間隔は、用途に応じて受信感度と指向性の観点から決定すればよい。 
 検出面3に配される複数の検出素子4によって、検出面3の70%以上を覆うことが好ましく、さらには、検出面3の85%以上を覆うことが好ましい。これにより、被検体から伝搬する光音響波および超音波エコーを様々な角度から効率的に受信し、精度の高い画像データを生成できる。
 それぞれの検出素子4は、関心領域に対して等しい立体角を有することが望ましい。そのため、検出素子4は、らせん配置やフィボナッチ配置のように、等分散的に配置されることが望ましい。また、検出素子4の配置数を増やしてSNRを高めるためには、出射端6aに対して検出素子4を同心環状に配置することが望ましい。
 不図示の光源としてはパルスレーザ装置が好適である。レーザ光としては、被検体内の光吸収体が吸収特性を有する波長の光が好ましい。たとえば血液中のヘモグロビンであれば、近赤外光が好適である。また複数の波長の光を発生させる波長可変レーザを用いることで、酸素飽和度などの詳細な情報を取得できる。ただしレーザ装置に代えて、フラッシュランプやLEDなども利用できる。
 光源からの光を伝搬する光学系6としては、ファイバ束、ミラー、プリズム、導波管など、各種の光学部材を利用できる。そして伝搬された光は、ファイバ束の末端のような出射端6aから被検体に照射される。
 詳しくは後述するが、手持ち式プローブ1の被検体に接する側には、カバー部材7が設けられている。図中の光吸収体8は、カバー部材7上に配置される。すなわち本実施形態では、カバー部材が光吸収体支持部として機能する。手持ち式プローブ1の検出面3が被検体と対向するように押し当てられるとき、カバー部材は被検体と検出面の間に位置する。
 図2は、被検体に当接された状態における手持ち式プローブ1の断面図である。本実施形態では検出面3が凹面状であるため、被検体10に筐体を押し当てると空隙が形成される。カバー部材7は、そのとき被検体10に当接する部材である。言い換えると、カバー部材7と、検出素子4が設けられた検出面3との間に、密閉空間が形成される。
 この密閉空間には、検出素子4と被検体10を音響的にマッチングさせるためのカップリング剤9が充填される。カップリング剤9としては音響インピーダンスが被検体10に近いものが適している。カップリング剤9として例えば、水やひまし油を好適に利用できる。カップリング剤9には、光を被検体10まで伝搬させるために、照射光に対する透過率が高いものを用いる。
 カバー部材7は、光音響波および超音波エコーの伝搬を阻害しないように、可撓性を有することが好ましい。例えばゴムのように柔軟性の有る膜状部材が好適である。また、照射光を被検体10まで伝搬させるために、光透過性を有する材料を用いる。カバー部材7にカップリング剤9が充填されることで、検出素子と被検体が音響的にマッチングする。カバー部材7はまた、被検体10とカップリング剤9の直接接触を防ぐ。図2において、カップリング剤が充填されたカバー部材7を被検体10に押し当てると、カバー部材7は被検体10の形状に沿って変形し、被検体10に密着する。
 被検体10とカバー部材7との間に、さらにカップリング剤を塗布してもよい。これにより被検体10とカバー部材7との密着性や音響整合性が高まる。さらに、測定時にプローブ1の被検体10に対する相対移動が滑らかになる。カバー部材7を袋状の部材として、プローブ1に対して着脱可能に構成しても良い。あらかじめカップリング剤が充填された袋状のカバー部材7を、たとえば測定ごとや被検体ごとに交換することは、衛生面で有用である。
 なお、検出面3が平面状である場合でも、検出素子の保護、音響インピーダンス整合性の向上、被検者の快適性の向上などの観点から、カップリング剤を封入したカバー部材を設けることが好ましい。
<光吸収体>
 カバー部材7は、ドット状の光吸収体8を有している。出射端6aからの光の一部が光吸収体8に照射されると、光音響効果により送信超音波S101が発生する。この送信超音波が被検体10に到達し、関心領域10aなどで反射して超音波エコーS103となる。これを検出素子で受信することで、超音波イメージングが実現される。一方、残りの照射光は被検体に到達し、光音響波を発生させる。これを検出素子が受診することで、光音響イメージングが実現される。このように超音波イメージングと光音響イメージングが、単一の、しかも超音波送信機能を持たない簡易な構成のプローブで実施できる。
 送信超音波を効率的に発生させる観点から、光吸収体8は、光強度の高い中心軸5の上(光軸上)に配置されることが好ましい。光吸収体8のドットサイズは、送信超音波の周波数に影響を与える。従って、発生する送信超音波の周波数が検出素子4の帯域感度内に収まるように、吸収体のドットサイズを決定することが好ましい。ドットサイズの一例として、カバー部材7の厚さは500μmとするとき、光吸収体8のドットを直径約400μmとする。これにより被検体面に対する凹凸を少なくできる。
 光吸収体8の材質としては例えば、カーボンを含有する材料など、送信超音波を効率的に発生させるものを用いる。また、光吸収体8が光を完全に吸収してしまうと光音響イメージングに影響が出る。そこで、一部の光が光吸収体8を回避または透過して被検体10まで到達するように、光吸収体8のサイズや材質を決定する。一例として、検出面3の直径が500mm程度の手持ち式プローブにおいて、光照射領域が直径15mmの場合について検討する。このプローブで上述したような直径約400μmの光吸収体8を使用すれば、照射光の大部分は被検体まで到達できるので、光音響イメージングへの影響はほとんど生じない。
 被検体との接触により光吸収体8の位置が中心軸5から大きくずれると、送信超音波の信号強度が低下する。そこで、カバー部材7を作成する際に、把持部2との近傍部のみに部分的に固い材質を用いると良い。なお、このような位置ずれに対処するために、カバー部材上に複数のドットを配置して、少なくともいずれかのドットは光軸上に存在するような構成も考えられる。ただし、複数のドットがあると、取得した超音波エコーがどのドットに由来するものかの判別が難しくなる。そのため、ドットは1個だけ配置することがより好ましい。
 また、上述したようにカバー部材7を交換可能とする場合、光吸収体の材質、サイズ、個数、位置などが異なる複数のカバー部材を用意しておき、測定内容に応じて付け替えても良い。また、カバー部材7は、弁のような注入口を有する構成としても良い。これにより、カバー部材7と検出面との間には、測定の際にのみ注入口を介してカップリング剤を充填することができる。その結果、保管時や輸送時におけるカバー部材7の破損によるカップリング剤の漏出を防止できる。注入口は、測定に支障をきたさないように、検出面の辺縁部に設けることが好ましい。
<処理フロー>
 次に、図3を参照しつつ、本実施形態に係る測定シーケンスを説明する。図3(a)は主な処理フローを示す。図3(b)はステップS302の詳細な説明であり、図3(c)はステップS305の詳細な説明である。
(ステップS301:測定準備)
 本ステップでは、装置を立ち上げる、手持ち式プローブ1にカバー部材7を取り付ける、当該プローブに超音波ジェルを塗布して被検体に接触させるなどのセッティングを行う。これにより、図2の模式図に示したような、測定が可能な状態になる。この例では、被検体10内の関心領域(ROI)10aが測定対象である。
(ステップS302:光照射)
 ステップS3021では、光源から照射されたのち光学系6により伝送された光が、出射端6aから照射される。ステップS3022では、カバー部材7に配置された光吸収体が光を吸収することで、プローブ由来光音響波(送信超音波)S101が発生する。送信超音波のうち一部は、カップリング剤9を経由して検出素子4により受信される。送信超音波の別の一部は、関心領域10a内部の構造体や被検体表面などの音響インピーダンス界面で反射して超音波エコーS103となり、検出素子4により受信される。光照射の工程は、複数回繰り返し行っても良い。
 さらに、関心領域10aの光吸収体が光を吸収することで、被検体由来光音響波S102が発生する。光音響波は被検体内の領域やカップリング剤9を経由して検出素子4により受信される。
(ステップS303:音響波受信)
 図4に、検出素子4が検出した音響波に基づく電気信号の代表例を示す。横軸は光照射後の経過時間を表す。電気信号は、音響波が発生後に通過した経路の長さと、通過した領域の音速に応じて定まる。縦軸は電気信号の強度を表す。
 図4において、まず強度の大きい信号が観察される。これはカバー部材内に配置した光吸収体8に由来する、送信超音波S101に対応する。次に観察される信号は、関心領域内の光吸収体から発生した、光音響波S102に対応する。次に観察される信号は、送信超音波S101が関心領域内の構造体によって反射された、超音波エコーS103に対応する。
 なお正確には、関心領域内から発生した光音響波S102も、構造体によって反射する。しかしこの反射波の発生エネルギーは小さいため、信号強度は小さく、一般的には無視されるか、観察されない。また、このとき関心領域の大きさが、カバー部材内に配置されたドット状の光吸収体との距離に対して小さければ、信号同士が同時に観察されることはない。
(ステップS304:信号処理)
 本ステップでは、各検出素子から出力された電気信号に対して、必要に応じた信号処理が施される。例えば、増幅処理、アナログ電気信号に対するデジタル化処理、音響波の経路長や光量に応じたゲイン処理、素子特性の補正処理などが挙げられる。
(ステップS305:画像再構成)
 本ステップでは、光音響波を用いた光音響イメージング処理や、超音波エコーを用いた超音波イメージング処理が行われる。ステップS3051やS3053における画像再構成の際には、既知の各種の手法を利用できる。なお、本ステップの処理は図3(c)で示した流れに限らず、超音波画像と光音響画像を並列に生成してもよい。
 光音響波の再構成には、三次元空間におけるバックプロジェクションアルゴリズムが適用できる。例えばUBP法(Universal Back-Projection)であれば初期音圧分布p(r)は次式(1)により時間空間上で推定される。
Figure JPOXMLDOC01-appb-M000001

 このとき投影データに相当する項b(r,t)を、式(2)に示す。
Figure JPOXMLDOC01-appb-M000002
 また、任意のデータ領域に対する受信器の立体角の項dΩは、式(3)となる。
Figure JPOXMLDOC01-appb-M000003

 ここで、p(r)はS100で取得した光音響波信号、rは各検出素子の位置、tは時間であり、θは受信器と任意のデータ領域とがなす角度である。
 また音源の大きさに比べて、音源と測定位置の距離が十分大きい場合、投影データ項b(r,t)は、式(4)のようにしてもよい。
Figure JPOXMLDOC01-appb-M000004
 カバー部材7は、被検体に接触することで変形するため、カバー部材7に設けられた光吸収体8の位置が、被検体に接触していない場合と比べて変わっている場合がある。そこで、この光吸収体8の変位による信号への影響を補正しても良い。光吸収体の位置情報は、ステップ3052において、光吸収体8から検出素子に直接入射する光音響波S101に基づいて取得できる。ステップS3053において、反射超音波の画像再構成I(r)算出する際にも、光音響画像と同様に三次元空間においてバックプロジェクションアルゴリズムを適用した(式(5))。

 ここでτは、膜内の光吸収体から投影位置ボクセルまでの距離と、i番目の検出素子からの投影位置ボクセルまでの距離の和を音響伝搬速度で割ることで求まる遅延時間となる。
 ωは窓関数などの重みファクターなどであり検出素子の指向性や再構成画像の所望の解像度やSNに応じて変更される。
 このとき被検体内部の変位が考慮された投影データとして、各検出素子が受信した時系列の信号から投影位置ボクセルに対して位相が揃うサンプリングデータSiを抽出して和を取ることで画像化できる。
(ステップS306:画像表示)
 画像再構成により生成された超音波画像データおよび光音響画像データは、液晶ディスプレイなどの表示装置に表示される。表示方法としては、両画像を重畳表示したり、並べて表示したり、交互に表示するなど、任意の手法を利用して良い。ただし、画像を表示せずに画像データとして保存しても、本発明の効果は得られる。さらに、画像再構成を行う前の、検出素子から出力されたRAWデータや、補正処理のみ施された状態の電気信号であっても、カバー部材の光吸収体に由来する成分は含まれているので、本発明の効果は得られる。
 以上述べたように、本実施形態によれば、超音波イメージングと光音響イメージングが、単一の、しかも超音波送信機能を持たない検出素子のみを備える簡易な構成のプローブで実施できる。したがって、複数のモダリティを用いた診断における、コスト低下、稼働率向上、メンテナンスの容易化などを期待できる。
[変形例]
 カバー部材7として可撓性のある材質を用いた場合、被検体にプローブを押し当てる際の強度や方向に応じてカバー上の光吸収体の位置が変化する。その結果、音源となる光吸収体と被検体との位置関係が変化して、音源から被検体への送信超音波到達時間や、超音波エコーの検出素子までの到達時間が変化する。すると、デジタル化された電気信号中において、関心領域からの反射波由来の成分が含まれる位置がずれてしまい、再構成の精度に影響を及ぼす可能性がある。
 また、音源と関心領域の距離が離れるほど送信超音波の減衰の度合いが大きくなるので、再構成画像のSN比に影響を及ぼす可能性がある。さらに、照射光の減衰により、光の出射端と光吸収体との距離が離れるほど送信超音波の強度が小さくなるので、再構成画像のSN比に影響を及ぼす可能性がある。
 ここで、カバー部材の変形による光吸収体の位置の変化が把握できていれば、関心領域から伝搬した反射波由来の信号成分のデジタル信号中の位置が分かり、適切な再構成を行える。また、送信音響波自体の減衰や、照射光の減衰に応じた送信超音波強度の低下に対して、ゲイン処理などの補正を行える。そこで本変形例では、プローブを被検体に押し当てた状態(当接状態)で光吸収体の位置を予め把握する方法を説明する。
 ユーザはまず、当接状態で予備的な光照射を行う。これにより、カバー部材中の光吸収体だけでなく、被検体内の光吸収体からも光音響波が発生するが、両者は検出時間や強度が異なるため識別可能である。そして、カバー部材中の光吸収体に由来する電気信号を用いて画像再構成を行う。その結果、光吸収体の位置情報が取得できる。
 本変形例によれば、カバー部材に配置された光吸収体の位置を把握して、適切な画像再構成を実現できる。なお本変形例において、位置情報取得用の光照射と画像再構成用の光照射とは、必ずしも別々に行う必要はない。すなわち、図4のような電気信号を取得した後に、まずS101の部分を用いた画像再構成により光吸収体の位置を把握して、S102(被検体由来光音響波に相当)と、S103(超音波エコーに相当)の画像再構成に利用してもよい。
 また別の変形例として、光の出射端が把持部の筐体に含まれない構成も考えられる。この場合、プローブとは別に光を出射する光学部材が必要になるが、光の照射位置と光吸収体の位置関係の自由度が増す。
 さらに別の変形例として、カバー部材を袋状の部材とする構成も考えられる。検出面と膜状のカバー部材とで規定される領域にマッチング剤を封入する場合、検出素子4に対して防水処理を施す必要が生じ得る。しかし、カバー部材を袋状の部材とすることで、検出素子4に防水処理を施す必要性を低減できる。この場合も、袋状のカバー部材を把持部から着脱可能に構成できる。袋状のカバー部材の場合にも、マッチング剤を注入するための注入口を設けても良い。
[実施形態2]
 実施形態1では、カバー部材上に光吸収体のドットを1個だけ設けた。この場合、光吸収体から発生する送信超音波が届きにくい領域が被検体内部にあると、当該領域の再構成画像の精度が低下する。このような減少は、光吸収体の位置と関心領域とが離れている場合や、送信超音波が減衰しやすい周波数を有している場合に起こりえる。そこで本実施形態では、カバー部材7に、互いに異なる吸収波長ピークを有する光吸収体のドットを複数配置した。
 図5に、本実施形態のカバー部材7を被検体側から見た様子を示す。カバー部材7には、それぞれ光吸収特性の異なる光吸収体1(8a)、光吸収体2(8b)、光吸収体3(8c)、光吸収体4(8d)、光吸収体5(8e)が配置されている。各光吸収体の配置位置は、出射端からの光が当たる範囲内が好ましい。なお図5では、カバー部材を挟んで逆側に存在する出射端および検出素子は省略している。
 本実施形態では、光源として波長可変レーザ装置を用いる。そして、パルス毎や時間単位毎に、光吸収体のそれぞれに適した波長の光を照射し、送信超音波(プローブ由来光音響波)を発生させ、超音波エコーを検出する。この結果、音源の位置が互いに異なる5種類の受信信号が得られる。その後、メモリに保存された音響信号を平均化したり、音響信号それぞれから生成される再構成画像を平均化したりすることで、SN比の高い画像が得られる。
 なお、上記の5種類の受信信号に含まれる被検体由来の光音響信号は、それぞれ異なる波長の照射光に起因しており、スペクトル情報から信号の種類の識別が可能である。そこで、これらの信号を用いることで、高精度な光音響イメージングを実行できる。例えば5種類の光の中に、酸化ヘモグロビンと還元ヘモグロビンのそれぞれに吸収されやすい波長の光が含まれていれば、酸素飽和度分布画像が高精度に取得できる。
 本実施形態によれば、単一の、しかも簡易な構成のプローブによって、被検体内部の広い領域について光音響イメージングと超音波イメージングを実現できる。なお図5では符号8a~8eで示される5種類の光吸収体を設けたが、数や配置はこれに限定されない。
[実施形態3]
 上述の各実施形態では、カバー部材7にマッチング剤を封入していた。いっぽう本実施形態のプローブには、軟生物組織に近い音響インピーダンスを有し、照射光を透過する媒質であるゲル部材11を使用する。これにより、検出素子と被検体間での音響波の反射及び損失を低減できる。
 図6(a)は、本実施形態に係る手持ち式プローブ1の構成を示す断面図である。ゲル部材11の一方の側は、空気が入らないように検出面3の曲面に沿った形状とする。一方被検体10に接する側は、被検体表面に適した形状とする。また、ゲル部材を取り外せるようにすれば、被検体ごとの交換が可能で衛生的である。さらに、このゲル部材11の内部に、検出面3と略等しい曲率を有するシート状光吸収体12を、光路の中心線5上に配置した。すなわち本実施形態では、ゲル部材が光吸収体支持部として機能する。
 ゲル部材11を被検体側から見た様子を図6(b)に示す。送信超音波を効率的に発生させるために、シート状光吸収体12は光軸上を覆うように配置される。そのため、シート状光吸収体12の材質、厚み、サイズ等を決定する際は、照射光の全てを吸収するのではなく、一部は被検体まで透過させるように設計する。シート状光吸収体には、音響波に対する透過性も求められる。シート状光吸収体の材質として例えば、金、銀やアルミの薄膜が利用できる。
 シート状光吸収体12で発生した光音響波のうち、検出素子と反対側に進行する伝搬したもの(送信超音波)は、シート状光吸収体12の曲率中心に伝搬する。従って、検出面3の曲率中心とシート状光吸収体12の曲率中心が一致していれば、送信超音波は当該曲率中心に向って集束するように伝搬する。その結果、曲率中心において強い信号振幅が形成され、精度の高い画像データが得られる。また、光音響波の受信フォーカスが曲率中心にあることから、アーティファクトが抑制され、画像のSN比が高くなる。その結果、関心領域内の画像が良好に得られるという効果が得られる。
 なお、上述したようにゲル部材10を交換可能とする場合、シート状の光吸収体の材質、厚み、サイズ、位置などが異なる複数のゲル部材を用意しておき、測定内容に応じて付け替えても良い。例えば、光吸収体が厚ければ厚いほど、発生する光音響波の周波数が低くなる。この場合、光音響波が減衰しにくいため、被検体の深部まで到達し、深い部位を画像化できる。一方、光吸収体が薄くなるほど、光音響波の周波数は高くなる。この場合、減衰はし易いものの、測定の解像度は向上する。よって、測定対象の深度や大きさに応じてゲル部材を交換して光音響波の周波数を変化させられる。
 本実施形態によれば、単一の、かつ簡易な構成のプローブを用いて、被検体の超音波画像と光音響画像が高精細に得られる。
[変形例]
 ここではシート状光吸収体について述べたが、ゲル部材の内部や表面付近に、ドット状や球状などの光吸収体を埋め込む構成でも良い。この場合でも、光音響波を送信超音波として用いる超音波イメージングを簡易な構成で実現できる。またその際、互いに光吸収特性の異なる複数の光吸収体を埋め込んでも良い。
[実施形態4]
 本実施形態では、図7を用いて、上記各実施形態で示した手持ち用プローブ1を用いた被検体情報取得装置について説明する。この装置は、超音波イメージングと光音響イメージングという2つのモダリティで被検体内部の画像データを生成できる。図3の処理フローは、実際には本実施形態のような被検体情報取得装置によって実行される。
 装置の測定対象は被検体10である。装置は、プローブ1、光源13、信号処理部14、情報処理部15、表示部16を備える。ただし表示部16は必ずしも必要でなく、再構成された画像データをメモリに格納する構成でも良い。
 プローブ1および光源13については上述したものを用いる。信号処理部14は、図3のステップS304における処理を行う。信号処理部14としては、増幅器、AD変換器、各種の補正回路などが利用できる。情報処理部15としては、CPUやメモリ等を備え、プログラム等に従って動作する情報処理装置、例えばPCやワークステーションが好適である。表示部16としては、液晶ディスプレイや有機ELディスプレイなど、任意の画像表示装置を利用できる。
 <その他の実施形態>
 記憶装置に記録されたプログラムを読み込み実行することで前述した実施形態の機能を実現するシステムや装置のコンピュータ(又はCPU、MPU等のデバイス)によっても、本発明を実施することができる。また、例えば、記憶装置に記録されたプログラムを読み込み実行することで前述した実施形態の機能を実現するシステムや装置のコンピュータによって実行されるステップからなる方法によっても、本発明を実施することができる。この目的のために、上記プログラムは、例えば、ネットワークを通じて、又は、上記記憶装置となり得る様々なタイプの記録媒体(つまり、非一時的にデータを保持するコンピュータ読取可能な記録媒体)から、上記コンピュータに提供される。したがって、上記コンピュータ(CPU、MPU等のデバイスを含む)、上記方法、上記プログラム(プログラムコード、プログラムプロダクトを含む)、上記プログラムを非一時的に保持するコンピュータ読取可能な記録媒体は、いずれも本発明の範疇に含まれる。
 以上、典型的な実施形態を参照して本発明を記述したが、本発明は典型的な実施形態に開示された範囲に限定されないことは理解されるべきである。後述する請求の範囲は、それら全ての変形や等価な構造および機能を含むような最も広い解釈が許容されるべきである。
 本出願は、2015年2月6日に出願された、日本国特許出願第2015-022248号の優先権を主張し、その全体が参照により本出願に組み込まれている。

Claims (17)

  1.  把持部と、
     音響波を受信して電気信号を出力する複数の検出素子と、
     前記複数の検出素子が配置された検出面と、
     光源から照射された光を吸収して音響波を発生させる光吸収体が配置された光吸収体支持部と、
    を有することを特徴とする手持ち式プローブ。
  2.  前記検出面に配置された、前記光を照射する出射端をさらに有する
    ことを特徴とする請求項1に記載の手持ち式プローブ。
  3.  前記光吸収体支持部は、前記検出面が被検体に対向するように前記手持ち式プローブが前記被検体に押し当てられるとき、前記被検体と前記検出面の間に位置する
    ことを特徴とする請求項1または2に記載の手持ち式プローブ。
  4.  前記検出面は、前記被検体に対して凹んだ形状である
    ことを特徴とする請求項3に記載の手持ち式プローブ。
  5.  前記光吸収体支持部は膜状の部材であり、
     前記光吸収体は前記膜に設けられている
    ことを特徴とする請求項1ないし4のいずれか1項に記載の手持ち式プローブ。
  6.  前記光吸収体支持部と前記検出面の間に充填されたカップリング剤をさらに有する
    ことを特徴とする請求項5に記載の手持ち式プローブ。
  7.  前記光吸収体支持部は、袋状の部材であり、
     前記光吸収体が前記袋に設けられている
    ことを特徴とする請求項1乃至4のいずれか1項に記載の手持ち式プローブ。
  8.  前記袋状の部材に充填されたカップリング剤をさらに有する
    ことを特徴とする請求項7に記載の手持ち式プローブ。
  9.  前記光吸収体はドット状である
    ことを特徴とする請求項5ないし8のいずれか1項に記載の手持ち式プローブ。
  10.  互いに光吸収特性が異なる複数の前記光吸収体を有する
    ことを特徴とする請求項5ないし9のいずれか1項に記載の手持ち式プローブ。
  11.  前記光吸収体支持部は膜状の部材であり、
     前記光吸収体は前記膜の、前記出射端からの光軸上に設けられている
    ことを特徴とする請求項2に記載の手持ち式プローブ。
  12.  前記光吸収体支持部はゲルであり、
     前記光吸収体は前記ゲルの内部に設けられている
    ことを特徴とする請求項1ないし4のいずれか1項に記載の手持ち式プローブ。
  13.  前記光吸収体は、シート状である
    ことを特徴とする請求項12に記載の手持ち式プローブ。
  14.  前記シート状の光吸収体は、前記検出面と略等しい曲率を有する
    ことを特徴とする請求項13に記載の手持ち式プローブ。
  15.  前記光吸収体支持部は、前記把持部に対して着脱可能である
    ことを特徴とする請求項1ないし14のいずれか1項に記載の手持ち式プローブ。
  16.  請求項1ないし15のいずれか1項に記載の手持ち式プローブと、
     情報処理部と、
    を有し、
     前記情報処理部は、前記検出面が被検体に対向するように前記手持ち式プローブが前記被検体に押し当てられた状態で前記被検体から伝搬した前記音響波に由来する前記電気信号を用いて、前記被検体内部の特性情報を取得する
    ことを特徴とする被検体情報取得装置。
  17.  前記情報処理部は、前記光吸収体支持部に配置された前記光吸収体から発生した前記音響波が前記被検体により反射したエコー波に由来する前記電気信号を用いた前記特性情報と、前記光を照射された前記被検体内部から発生した光音響波に由来する前記電気信号を用いた前記特性情報と、を取得する
    ことを特徴とする請求項16に記載の被検体情報取得装置。
PCT/JP2016/053034 2015-02-06 2016-02-02 手持ち式プローブ WO2016125781A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16746612.7A EP3254628B1 (en) 2015-02-06 2016-02-02 Handheld probe
US15/658,836 US20170319178A1 (en) 2015-02-06 2017-07-25 Handheld-type probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-022248 2015-02-06
JP2015022248A JP6452110B2 (ja) 2015-02-06 2015-02-06 手持ち式プローブ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/658,836 Continuation US20170319178A1 (en) 2015-02-06 2017-07-25 Handheld-type probe

Publications (1)

Publication Number Publication Date
WO2016125781A1 true WO2016125781A1 (ja) 2016-08-11

Family

ID=56564122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053034 WO2016125781A1 (ja) 2015-02-06 2016-02-02 手持ち式プローブ

Country Status (4)

Country Link
US (1) US20170319178A1 (ja)
EP (1) EP3254628B1 (ja)
JP (1) JP6452110B2 (ja)
WO (1) WO2016125781A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103396B1 (en) * 2015-06-10 2018-10-24 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Device and method for hybrid optoacoustic tomography and ultrasonography
JP6929048B2 (ja) * 2016-11-30 2021-09-01 キヤノン株式会社 表示制御装置、表示方法、及びプログラム
JP6913011B2 (ja) * 2017-12-04 2021-08-04 株式会社日立製作所 超音波撮像プローブおよびその製造方法ならびに超音波撮像装置
CN108261209B (zh) * 2018-01-23 2021-07-23 湖南大学 改进型的高分辨声聚焦光声内窥成像反投影成像的方法
US20220047168A1 (en) * 2018-10-29 2022-02-17 Ithera Medical Gmbh Device for optoacoustic imaging and corresponding control method
CN114271851B (zh) * 2021-12-22 2023-08-29 武汉中旗生物医疗电子有限公司 基于凹阵探头的成像方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084923A (ja) * 2011-09-27 2013-05-09 Fujifilm Corp レーザ光源ユニット及び光音響画像生成装置
JP2013172810A (ja) * 2012-02-24 2013-09-05 Fujifilm Corp 光音響画像処理装置、及び方法
JP2013208422A (ja) * 2012-02-28 2013-10-10 Fujifilm Corp 画像生成装置及び方法
JP2013233238A (ja) * 2012-05-08 2013-11-21 Fujifilm Corp 光音響計測装置および光音響計測装置用プローブ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052787A (ko) * 2009-11-13 2011-05-19 채희천 초음파 프로브용 착탈식 겔 패드 결합장치
JP5709399B2 (ja) * 2010-04-02 2015-04-30 キヤノン株式会社 被検体情報取得装置およびその制御方法、ならびにプログラム
JP5661451B2 (ja) * 2010-12-27 2015-01-28 キヤノン株式会社 被検体情報取得装置及び被検体情報取得方法
EP2742854B1 (en) * 2012-12-11 2021-03-10 iThera Medical GmbH Handheld device and method for tomographic optoacoustic imaging of an object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084923A (ja) * 2011-09-27 2013-05-09 Fujifilm Corp レーザ光源ユニット及び光音響画像生成装置
JP2013172810A (ja) * 2012-02-24 2013-09-05 Fujifilm Corp 光音響画像処理装置、及び方法
JP2013208422A (ja) * 2012-02-28 2013-10-10 Fujifilm Corp 画像生成装置及び方法
JP2013233238A (ja) * 2012-05-08 2013-11-21 Fujifilm Corp 光音響計測装置および光音響計測装置用プローブ

Also Published As

Publication number Publication date
EP3254628A4 (en) 2018-10-03
JP2016144523A (ja) 2016-08-12
EP3254628B1 (en) 2019-12-11
US20170319178A1 (en) 2017-11-09
EP3254628A1 (en) 2017-12-13
JP6452110B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2016125781A1 (ja) 手持ち式プローブ
JP6174658B2 (ja) 対象体の断層光音響撮像用の手持ち式装置及び方法
JP5751769B2 (ja) 画像情報取得装置及びその制御方法
JP5855994B2 (ja) 音響波検出用のプローブおよびそれを備えた光音響計測装置
JP5863345B2 (ja) 被検体情報取得装置および被検体情報取得方法
JP2009066110A (ja) 測定装置
EP2482713B1 (en) Photoacoustic measuring apparatus
JP6478572B2 (ja) 被検体情報取得装置および音響波装置の制御方法
US10582910B2 (en) Information acquisition apparatus and information acquisition method
US20170281125A1 (en) Processing system, signal processing method, and non-transitory storage medium
JP2019509852A5 (ja)
US10092187B2 (en) Photoacoustic wave measuring apparatus
JP4739878B2 (ja) 脳循環血流測定装置
JP2015213533A (ja) 被検体情報取得装置
JP2017047056A (ja) 被検体情報取得装置
US20170296063A1 (en) Photoacoustic measurement probe and probe unit and photoacoustic measurement apparatus including the same
JP6005211B2 (ja) 画像情報取得装置及び画像情報取得方法
US10582857B2 (en) Ultrasonic apparatus
WO2020008824A1 (ja) 音響波プローブおよび音響波プローブの設置方法
JP2019005560A (ja) 情報処理装置およびシステム
JP2017202312A (ja) 音響波受信装置
JP2018175497A (ja) 情報処理装置、被検体情報取得装置および情報処理方法
JP2015006288A (ja) 被検体情報取得装置、被検体情報取得装置の作動方法、およびプログラム
JP2017108993A (ja) 被検体情報取得装置および披検体情報の取得方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016746612

Country of ref document: EP