WO2013181932A1 - 卫星导航信号及其生成方法、生成装置、接收方法和接收装置 - Google Patents

卫星导航信号及其生成方法、生成装置、接收方法和接收装置 Download PDF

Info

Publication number
WO2013181932A1
WO2013181932A1 PCT/CN2013/000675 CN2013000675W WO2013181932A1 WO 2013181932 A1 WO2013181932 A1 WO 2013181932A1 CN 2013000675 W CN2013000675 W CN 2013000675W WO 2013181932 A1 WO2013181932 A1 WO 2013181932A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
baseband
satellite navigation
phase
component
Prior art date
Application number
PCT/CN2013/000675
Other languages
English (en)
French (fr)
Inventor
姚铮
陆明泉
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015515370A priority Critical patent/JP5858511B2/ja
Priority to MYPI2014003393A priority patent/MY171170A/en
Priority to US14/400,506 priority patent/US9137081B2/en
Priority to EP13800415.5A priority patent/EP2866400B1/en
Application filed by 清华大学 filed Critical 清华大学
Priority to IN11129DEN2014 priority patent/IN2014DN11129A/en
Priority to KR1020157000396A priority patent/KR101595213B1/ko
Priority to BR112014029949A priority patent/BR112014029949B1/pt
Priority to AU2013271243A priority patent/AU2013271243B2/en
Priority to CA2875900A priority patent/CA2875900C/en
Priority to RU2014151751/07A priority patent/RU2579442C1/ru
Priority to CN201380029930.3A priority patent/CN104509052B/zh
Priority to NZ703463A priority patent/NZ703463A/en
Publication of WO2013181932A1 publication Critical patent/WO2013181932A1/zh
Priority to ZA2014/09535A priority patent/ZA201409535B/en
Priority to HK15104795.2A priority patent/HK1204401A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/31Acquisition or tracking of other signals for positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/02Details of the space or ground control segments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7087Carrier synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/12Channels characterised by the type of signal the signals being represented by different phase modulations of a single carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Definitions

  • Satellite navigation signal and its generation method, generating device, receiving method and receiving device Satellite navigation signal and its generation method, generating device, receiving method and receiving device
  • the present application relates to the field of satellite navigation, and more particularly, to a satellite navigation signal and method for generating the same, a generating device, a receiving method, and a receiving device.
  • Background technique
  • GNSS Global Navigation Satellite System
  • the HPA when the HPA is near the saturation point, if the input signal does not have a constant envelope, the output component will produce distortions such as amplitude modulation and amplitude and phase conversion, resulting in amplitude and phase distortion of the transmitted signal, which has a great impact on the performance of the receiving end. . Therefore, it is necessary to ensure the constant envelope characteristics of the synthesized signal.
  • the above techniques are mainly directed to constant envelope multiplexing of multiple signal components at the same frequency point.
  • Prior art such as the constant envelope AltBOC modulation technique (US Patent US 2006/0038716 A1) and the time division multiplexed AltBOC (TD-AltBOC) technology (Chinese Patent Publication No. CN102209056A) provide a solution for two different frequencies.
  • the DSSS signal is combined with the method of constant envelope multiplexing, for example, two sets of BPSK-R(IO) signals respectively modulated at frequencies separated by 30.69 MHz are combined into a composite constant envelope signal.
  • the AltBOC modulation technique needs to generate a phase map in advance and implement a constant envelope of the multiplexed signal by looking up the table.
  • the power of the DSSS signal components participating in the multiplexing must be equal.
  • the time division multiplexing used by this technique significantly degrades the multiple access performance between the multiplexed DSSS signal and other spread spectrum signals in the same frequency band.
  • the power of the signal components participating in the multiplexing must also be equal. This technical limitation reduces the flexibility of the use of AltBOC and TD-AltBOC. It is well known that in GNSS systems, since ranging is the primary purpose of signals, signal system design tends to allocate more power to the pilot channel than the data channel to improve the accuracy and robustness of pseudorange measurement and carrier phase tracking.
  • the signal component uses different spread chip waveforms (such as BPSK-R, sinusoidal phase BOC, cosine phase BOC, TMBOC, QMBOC, etc.) to exhibit different acquisition, tracking, and demodulation performance in the receiver. It is necessary to provide a more flexible dual-frequency constant envelope multiplexing technique for satellite navigation signals. Summary of the invention
  • a satellite navigation signal generating apparatus comprising: a baseband signal generator generates a first baseband signal S ,, the second baseband signal s 2, a third base band signal S 3, and the fourth baseband a signal S 4 ; a multiplexed signal generator for setting an in-phase baseband component of the multiplexed signal of the first baseband signal s the second baseband signal s 2 , the third baseband signal s 3 and the fourth baseband signal s 4 Generating a multiplexed signal having a constant envelope; and a modulator modulating the multiplexed signal having a constant envelope to a radio frequency to generate a satellite navigation signal, wherein the first baseband signal and the second baseband modulation signal S 2 to the first carrier frequency /; and a carrier phase orthogonal to each other, the third base band
  • the signal and the fourth baseband signal are modulated at a second carrier frequency / 2 and the carrier phases are orthogonal to each other.
  • a satellite navigation signal generating method including: generating a first baseband signal S a second baseband signal s 2 , a third baseband signal s 3 , and a fourth baseband signal S 4 ; a first baseband signal of the second baseband signal s 2, a third base band in-phase baseband signal s and the fourth baseband signals.
  • a satellite navigation signal generated by the aforementioned satellite navigation signal generating method or satellite navigation signal generating device is disclosed.
  • an apparatus comprising means for processing a satellite navigation signal generated by a satellite navigation signal, or a satellite navigation signal generating method or a satellite navigation signal generating apparatus.
  • a satellite navigation signal receiving apparatus which receives a satellite navigation signal generated by a satellite navigation signal as described above, or a satellite navigation signal generating method or a satellite navigation signal generating apparatus.
  • a signal receiving apparatus for receiving a satellite navigation signal generated by a satellite navigation signal, or a satellite navigation signal generating method or a satellite navigation signal generating apparatus, as described above, includes: a receiving unit that receives the a satellite navigation signal; a demodulation unit that demodulates a signal component modulated in the first carrier in the received satellite navigation signal, and demodulates the received signal component modulated on the second carrier; and a processing unit Demodulating the signal component modulated by the demodulation unit on the first carrier to obtain the first baseband signal and the second baseband signal s 2 and the demodulated signal component modulated on the second carrier, to obtain the third baseband signal s 3 and The fourth baseband signal s 4 .
  • a signal receiving method for receiving a satellite navigation signal generated by a satellite navigation signal, or a satellite navigation signal generating method or a satellite navigation signal generating device includes: receiving the satellite navigation signal Demodulating a signal component modulated in the first carrier in the received satellite navigation signal to obtain a first baseband signal 8, and a second baseband signal S 2 ; and a signal component modulated on the second carrier in the received satellite navigation signal to obtain a third baseband signal s 3 and a fourth baseband signal s 4 .
  • a signal receiving apparatus for receiving a satellite navigation signal generated by a satellite navigation signal, or a satellite navigation signal generating method or a satellite navigation signal generating apparatus, as described above, includes: a receiving unit that receives the a satellite navigation signal; a demodulation unit that demodulates the satellite navigation signal to obtain an in-phase baseband component and a quadrature baseband component of the multiplexed signal; and a processing unit that is responsive to the in-phase baseband component and the positive of the multiplexed signal
  • the amplitude and phase of the baseband component are obtained, and the first baseband signal s l5 the second baseband signal s 2 , the third baseband signal s 3 , and the fourth baseband signal s 4 are obtained .
  • a signal receiving method for receiving a satellite navigation signal generated by a satellite navigation signal, or a satellite navigation signal generating method or a satellite navigation signal generating device includes: receiving the satellite navigation signal Demodulating the satellite navigation signal to obtain an in-phase baseband component and a quadrature baseband component of the multiplexed signal; and obtaining an amplitude according to an amplitude and a phase of the in-phase baseband component and the orthogonal baseband component of the multiplexed signal a baseband signal 8 !, the second baseband signal S 2, a third base band signal S 3, and the fourth baseband signal S 4.
  • a program includes instructions for implementing the method, apparatus, device, or executable instructions for generating a satellite navigation signal as described above.
  • a machine readable memory storing a program as described above for implementing the method, apparatus, device, or executable instructions for generating a satellite navigation signal as described above is disclosed.
  • Fig. 1 shows a block diagram of a satellite navigation signal generating apparatus according to an embodiment of the present application.
  • FIG. 2 shows a block diagram of a baseband signal generator in accordance with an embodiment of the present application.
  • FIG. 3 shows a block diagram of a multiplexed signal generator in accordance with an embodiment of the present application.
  • FIG. 4 shows a block diagram of a modulator in accordance with an embodiment of the present application.
  • FIG. 5 shows a schematic diagram of a specific implementation of a satellite navigation signal generating apparatus according to an embodiment of the present application.
  • FIG. 6 is a diagram showing another specific implementation of a satellite navigation signal generating apparatus according to an embodiment of the present application.
  • Figure 8 illustrates the power spectral density of a multiplexed signal in accordance with an embodiment of the present application.
  • Figure 9 shows a flow chart of a method of satellite navigation signal generation in accordance with an embodiment of the present application.
  • Figure 10 shows a block diagram of a satellite navigation signal receiving apparatus in accordance with an embodiment of the present application.
  • Figure 11 is a diagram showing a specific implementation of a satellite navigation signal receiving apparatus according to an embodiment of the present application. Detailed ways
  • FIG. 1 shows a satellite navigation signal generating apparatus 1 according to an embodiment of the present application.
  • the signal generating device 1 includes a baseband signal generator 100, a multiplexed signal generator 200, and a modulator 300.
  • the baseband signal generator 100 generates a first baseband signal S a second baseband signal S 2 , a third baseband signal S 3 , and a fourth baseband signal S 4 .
  • the multiplexed signal generator 200 sets the in-phase baseband component of the multiplexed signal of the first baseband signal S, the second baseband signal S 2 , the third baseband signal S 3 and the fourth baseband signal S 4 / (t) And the amplitude and phase of the quadrature baseband components to generate a multiplexed signal with a constant envelope.
  • Modulator 300 modulates the multiplexed signal having a constant envelope to a radio frequency to generate a satellite navigation signal.
  • the first baseband signal second baseband signal s 2 is modulated at the first carrier frequency y; and the carrier phases are orthogonal to each other, and the third baseband signal and the fourth baseband signal are modulated to the second carrier frequency / 2 and the carrier The phases are orthogonal to each other.
  • constant envelope multiplexing of four signal components (S ⁇ S ⁇ Ss ⁇ ) on two frequency points (ff 2 ) can be realized.
  • the power parameters 2 ⁇ 3 and ⁇ of the respective baseband signals Si can be set according to actual needs, that is, the respective baseband signals can have different power parameters.
  • the power parameter may be the absolute power of each baseband signal, such as the transmit power actually employed by each baseband signal. It can be understood that since the absolute power of the signal will change after passing through a device such as an amplifier, according to another embodiment, the power parameter may be the relative power of each baseband signal. For example, when the power ratio of the respective baseband signals Cl: C2: c 3: c 4 1: 1: 1: 1, the relative power of the four baseband signals are 1.
  • the relative power of the four baseband signals are 1, 3, 1, 3.
  • any one, two or any three of the power band signals generated by the baseband signal generator 110 may be zero.
  • the multiplexed signal generator 200 can set the amplitude and phase of the in-phase baseband component and the orthogonal baseband component of the multiplexed signal in accordance with the power parameters of the respective baseband signals.
  • the baseband signal is a signal having a value of +/-1.
  • the multiplexed signal generator 200 can set the amplitude and phase of the in-phase baseband component and the quadrature baseband component of the multiplexed signal according to the values of the respective baseband signals.
  • baseband signal generator 100 can include source 110, spread spectrum modulator 120, and spread spectrum chip shaper 130, in accordance with an embodiment.
  • Source 1 10 generates information that needs to be advertised.
  • the synchronization word, time information, ephemeris, etc. required for positioning in the satellite navigation system are encoded and encoded into a bit stream.
  • the bit stream to which it is broadcast may be considered to be zero or constant at all without passing specific information.
  • the spread spectrum modulator 120 spreads and modulates the bit stream/information generated by the source using a spreading sequence to obtain a spread spectrum sequence in which the message information is modulated.
  • the spread code chip shaper 130 assigns each bit in the spread spectrum sequence in which the message information is modulated to a waveform.
  • This waveform can be a rectangular pulse, a return-to-zero waveform, a square wave, and a binary coded symbol (BCS) waveform commonly used in the field of satellite navigation.
  • BCS binary coded symbol
  • Technology in the field The operator can understand that the spread code chip waveforms used in BPSK-R, BOC, TMBOC and other modulations are special cases in the BCS waveform. It can be understood that the satellite navigation signal generating apparatus according to the present application can flexibly select the spread chip waveform used by each baseband signal component.
  • the output of the spread chip tuner 130 is a baseband signal having a value of +/-1. It will be understood by those skilled in the art that the amplitude of +/- 1 in the baseband signal is not a limiting description, and any amplification or reduction of the amplitude of the baseband signal does not depart from the scope of the present application.
  • the multiplexed signal generator 200 can calculate the multiplex according to the power parameters of the baseband signals SS 2 , S 3 and S 4 and the values of the baseband signals S, S 2 , S 3 and S 4 .
  • the amplitude and phase of the in-phase baseband component /(t) of the signal and the quadrature baseband component 2(t) are multiplexed to generate a multiplexed signal having a constant envelope.
  • the multiplexed signal generator 200 may further include a calculation unit 210, an in-phase branch generation unit 220, and a quadrature branch generation unit 230.
  • the calculating unit 210 calculates the in-phase baseband component / (the amplitude (t) of 0 according to the power parameters and values of the second baseband signal S 2 , the third baseband signal S 3 and the fourth baseband signal S 4 of the first baseband signal S l5 Phase (t), and calculate the quadrature baseband component ⁇ (the magnitude (t) and phase W of 0).
  • the in-phase branch generation unit 220 generates an in-phase baseband component /(t) according to the amplitude and phase ⁇ calculated by the calculation unit 210, and the in-phase baseband component /(t) is expressed as
  • the orthogonal branch generation unit 230 generates orthogonality according to the amplitude ⁇ t) and the phase ⁇ ⁇ calculated by the calculation unit 210.
  • Baseband component 2(t;), orthogonal baseband component is expressed as
  • the in-phase baseband component /(t) is a square wave function of amplitude t
  • the orthogonal baseband component is a square wave function of amplitude (t)
  • .
  • /2 Indicates the frequency of a square wave.
  • the calculation unit 210 calculates the amplitude (t) and the phase p(t) of the in-phase baseband component /(t) of the multiplexed signal according to the following formula, and the amplitude 'W and the phase W of the orthogonal baseband component.
  • the envelope is a constant value that does not change with time, and the signal is said to be a constant envelope signal.
  • the in-phase baseband component /(t) of the multiplexed signal and the amplitude and phase of the orthogonal baseband component ⁇ (0) are generated to generate a multiplexed signal having a constant envelope.
  • the multiplexed signal is a multiplexed signal having a constant envelope.
  • the first baseband signal S, and The second baseband signal S 2 is modulated at a carrier frequency and the carrier phases are orthogonal to each other, and the third base is The band signal and the fourth baseband signal are modulated at a carrier frequency and the carrier phases are orthogonal to each other.
  • each baseband signal 8 can be set according to actual needs, and, that is, each baseband signal can have different power parameters.
  • any one, any two or any three power parameters of each baseband signal generated by the baseband signal generator 110 may be zero, that is, any one, two or any three values of ⁇ and ⁇ may be zero.
  • modulator 300 modulates a multiplexed signal having a constant envelope onto a radio frequency carrier to generate a satellite introductory number.
  • the modulator 300 may include a carrier generator 310, a first multiplier 321, a second multiplier 322, and an adder 330.
  • the modulator 300 modulates the multiplexed signal having the constant envelope generated by the multiplexed signal generator 200 to the radio frequency transmission.
  • the in-phase baseband component of the multiplexed signal generated by the multiplexed signal generator 200 is modulated by a first multiplier 321 to a carrier having a center frequency of y ⁇ , for example, modulated to a carrier cos (2 ry ⁇ ;).
  • the orthogonal baseband component of the multiplexed signal generated by the multiplexed signal generator 200 is modulated by a second multiplier 322 to a carrier having a center frequency that is positively phased with the carrier modulated by the first multiplier 321 For example, modulation is applied to the carrier ⁇ (2; ⁇ ⁇ .
  • the outputs of the first multiplier 321 and the second multiplier 322 are passed through the adder 330 to obtain a satellite navigation signal having a constant envelope.
  • the satellite navigation signal S ⁇ can represent for
  • FIG. 5 shows a specific application of the satellite navigation signal generating apparatus 1 according to an embodiment of the present application.
  • the signal generating device 1 includes a baseband signal generator 100, a multiplexed signal generator 200, and a modulator 300.
  • the baseband signal generator 100 can include a source 110, a spread spectrum modulator 120, and a spread spectrum chip shaper 130.
  • the multiplexed signal generator 200 may include a computing unit 210, a non-inverting branch generator 220, a quadrature branch generator 230, and a modulator 300.
  • a carrier generator 310, a first multiplier 321, a second multiplier 322, a phase shifting circuit 323, and an adder 330 are included.
  • the source 110 generates four binary message data. Those skilled in the art will appreciate that if a pilot channel is required in some applications, the corresponding message data will always be 0 or 1 unchanged.
  • the four-way teletext data is sent to the spread-spectrum modulators 120-1, 120-2, 120-3, and 120-4 for spread spectrum modulation to obtain four spread spectrum sequences in which the teletext information is modulated.
  • the spread spectrum sequences in which the teletext information is modulated are supplied to the spread chip tuner 130-1, 130-2, 130-3, 130-4, respectively.
  • the spread spectrum of the input modulated teletext information is chip-shaped, and the output results are recorded as baseband signals (t), (t), (t), (t), respectively.
  • the calculation unit 210 receives the baseband signals A(t), s 2 (t) s 3 (t) , s 4 (t) from the spread chip composers 130-1, 130-2, 130-3, 130-4. ), according to the baseband signal (t), s 2 (t) . Si ⁇ t) . (t) power parameters and the current time A (t;), s 2 (t), s 3 (t), (t)
  • the value of the composite signal of the in-phase branch baseband is calculated as the amplitude and phase offset of the quadrature-branch baseband composite signal.
  • the power parameters of the baseband signals ;), (t), and s 3 (t) can be set to arbitrary values according to actual needs.
  • ⁇ P - atan 2 (t) + ⁇ 3 ( ' ( - ( )
  • ⁇ ' atan 2 ⁇ s 2 (t) + ⁇ s, (t), ⁇ i ( ⁇ ( )
  • the in-phase leg generator 220 receives the amplitude of the in-phase leg baseband composite signal from the computing unit 210 and the phase offset of the in-phase baseband component of the output multiplexed signal, i.e., the output of the in-phase leg generator 220 can be expressed as
  • the orthogonal branch generator 230 receives the amplitude (t) and the phase offset (/) of the quadrature tributary baseband composite signal from the computing unit 210, and outputs the orthogonal baseband component of the multiplexed signal, that is, the orthogonal branch
  • the output of generator 230 can be expressed as
  • the carrier generator 310 generates a carrier of frequency carrier, and the carrier signal is divided into two branches, wherein the output of the first branch 340 and the in-phase branch generator 220 is supplied to the first multiplier 321 .
  • the second branch 341 passes through the r/2 phase shifting circuit 323 and becomes a carrier orthogonal to the phase of the branch 340.
  • the output of the second branch 341 and the orthogonal branch generator 230 is supplied to the second multiplier 322, and the output of the two multipliers is supplied to the adder 330, and the output is obtained as a constant envelope satellite navigation signal 339.
  • Fig. 6 shows another specific application of the satellite navigation signal generating apparatus 1 according to an embodiment of the present application.
  • the drive clock for each module is derived from the reference frequency clock /.
  • the frequency division or multiplication is generated, and the clock synchronization method is adopted.
  • the baseband signal generator 100 may include a reference frequency clock 20, a frequency converter 21, a drive data information generator 22, a frequency converter 23, a spread spectrum modulator 24, a frequency converter 25, and a spread spectrum chip.
  • the multiplexed signal generator 200 may include a drive I branch state selector 27, a Q branch state selector 28, a frequency converter 29, a frequency converter 30, a first composite signal generator 31, and a second composite signal generation 32.
  • the modulator 300 may include a first multiplier 33, a second multiplier 34, an r/2 phase shifting circuit 35, a frequency converter 36, a first carrier generator 37, and a first adder 38.
  • the reference frequency clock 20 is converted to a frequency of / by the frequency converter 21.
  • the data driven clock, the drive data information generator 22 generates four binary message data. If pilot channels are required in some applications, the corresponding message data will always be 0 or 1 unchanged.
  • the reference frequency clock is converted into frequency-driven converters 23-1, 23-2, 23-3, and 23-4 into driving clocks of frequencies f, f cl , f c , respectively, to drive the spread spectrum modulator 24-1, 24-2, 24-3, and 24-4 generate four binary spreading sequences, each having a spreading rate of / d , 2 , / 3 , and f. Each spreading code rate is a positive integer multiple of f D .
  • the four pieces of telegram data generated by the data information generator 22 are respectively sent to the spread spectrum modulator 24-1.
  • the results of the modulo two-add operation are sent to the spread-spectrum chip formers 26-1, 26-2, 26-3, and 26-4, respectively.
  • the spread spectrum chip shaper is converted by the clock 20 into frequency converters 25-1, 25-2, 25-3, 25-4 to subcarrier drive clocks of frequencies d / f , f sc2 f sc , 4 ,
  • the clock 20 is converted to a drive clock of frequency f M by the frequency converter 29, and drives the I branch state selector 27 and the Q branch state selector 28.
  • the clock 20 is converted to a frequency ⁇ driving clock by the frequency converter 30, and the first composite signal generator 31 is driven to generate a square wave subcarrier of frequency, and the I branch state selector 27 combines the amplitude and phase offset of the composite signal.
  • the first composite signal generator 31 is sent to control the amplitude and phase offset of the square wave subcarrier generated by the first composite signal generator 31, that is, the output of the first composite signal generation 31 can be expressed as
  • the frequency driving clock drives the second composite signal generator 32 to generate a square wave subcarrier having a frequency of / s , and the Q branch state selector 28 sends the amplitude and phase offset values of the composite signal to the second composite signal generator 32, Controlling the square wave subcarrier generated by the second composite signal generator 32
  • the amplitude and phase offset that is, the output of the second composite signal generator 32 can be expressed as
  • the reference clock 20 is converted to a frequency driving clock by the frequency converter 36, and the first carrier generator 37 is driven to generate a carrier having a frequency of / ⁇ , and the carrier signal is divided into two branches, wherein the branch 40 and the first composite signal generator 31
  • the output is supplied to the first multiplier 33, and the other branch 41 becomes a carrier orthogonal to the phase of the branch 40 after passing through the r/2 phase shifting circuit 35, and the second multiplication is performed with the output of the second composite signal generator 32.
  • the output of the two-way multiplier is fed to the first adder 38 to add a constant envelope satellite navigation signal 39.
  • the composite signal at this time is a 16-PSK signal, but the constellation points are not evenly spaced.
  • c 2 : c 3 4 take other ratios, the number of constellation points and the distribution of constellation points may also be different from this embodiment.
  • PSD the two signal components at the same frequency point are superimposed and cannot be resolved, but the power of the upper side main lobe 51 of the center frequency is about 5.5 dB lower than the power of the lower side main lobe 50 with the center frequency of / 2 .
  • the method for generating a satellite navigation signal according to the present application can achieve the effect of constant envelope multiplexing of four signal components with different power ratios.
  • Another aspect of the present application provides a satellite navigation signal generating method according to which constant envelope multiplexing of four signal components (SS ⁇ SsA) at two frequency points (/;, f 2 ) can be achieved.
  • step 901 it generates a first baseband signal St, a second baseband signal S 2, a third base band signal S 3, and the fourth baseband signal S 4.
  • step 902 setting the first The amplitude and phase of the in-phase baseband component and the orthogonal baseband component of the multiplexed signal of a baseband signal S, the second baseband signal s 2 , the third baseband signal s 3 and the fourth baseband signal s 4 are generated to have a constant The multiplexed signal of the envelope.
  • step 903 the multiplexed signal having a constant envelope is modulated to a radio frequency to generate a satellite navigation signal.
  • first baseband signal and second baseband modulated signal S 2 to the first carrier frequency /; and a carrier phase orthogonal to each other, the third and the fourth baseband signals baseband signals and the carrier phase modulated second carrier frequency to another n / 2 cross.
  • each baseband signal Si power Cl, C2, c 3 and c 4 may each baseband signal Si power Cl, C2, c 3 and c 4 according to actual needs.
  • the amplitude and phase of the in-phase baseband component and the quadrature baseband component of the multiplexed signal may be further set according to the power parameters of the respective baseband signals.
  • the amplitude and phase of the in-phase baseband component and the quadrature baseband component of the multiplexed signal may be further set according to the values of the respective baseband signals.
  • the satellite navigation signal generating method further includes calculating the in-phase baseband according to the power parameters and values of the second baseband signal S 2 , the third baseband signal S 3 , and the fourth baseband signal S 4 of the first baseband signal.
  • the amplitude (t) and phase ⁇ ) of the component /(t) and calculate the amplitude (t) and phase of the orthogonal baseband component to generate an in-phase baseband component /() according to the calculated amplitude and phase, wherein the in-phase baseband component / ( t) expressed as
  • g(t) ⁇ '(t)xsgn[sin(2 ⁇ t + ⁇ '(t))_ where /
  • the satellite navigation signal generating method further includes calculating an in-phase baseband component / (amplitude ⁇ (t) and phase ⁇ of 0) according to the following formula, and calculating an orthogonal baseband component ( t) amplitude 'W and phase (0,
  • ⁇ ' atan 2 ⁇ 2 s 2 (t) + ⁇ s 4 ( ⁇ , (,) - ( )
  • Atan2 is a four-quadrant arctangent function
  • a signal receiving apparatus for a satellite navigation signal which receives the satellite navigation signal generating method or the satellite navigation signal generated by the generating apparatus.
  • signal components modulated on the first carrier and the second carrier may be separately processed.
  • the signal receiving apparatus 500 includes a receiving unit 510, The unit 520, and the processing unit 530.
  • the receiving unit 510 receives the satellite navigation signal, and the demodulation unit 521 demodulates the received signal component of the first carrier in the received satellite navigation signal, and demodulates the received signal modulated by the second carrier. component; and a processing unit 530, a demodulation unit demodulates the modulated baseband signal to obtain a first second baseband modulation signal S 2 and the signal component of the demodulated first carrier to a second carrier signal component to obtain a first three baseband signals S 3 and the fourth baseband signal S 4.
  • Figure 11 is a diagram showing a specific implementation of a satellite navigation signal receiving apparatus according to an embodiment of the present application.
  • the receiving unit 510 may include an antenna 61;
  • the demodulating unit 520 may include a filter amplifying unit 62, a down converter 63, and an analog to digital converter 64; and
  • the processing unit 530 may include a digital signal processing module 65.
  • the satellite navigation signal 60 is received through the antenna 61.
  • the antenna 61 inputs the received satellite navigation signal 60 to a filter amplification unit 62, which filters the satellite navigation signal 60 for blocking strong interference signals and out-of-band noise and amplifying the satellite navigation signal 60.
  • the center frequency of the filter is set nearby, and the bandwidth is greater than or equal to the bandwidth of the desired or (0 signal component) to ensure that the AW or signal component has sufficient energy to pass through the filter; If the W or signal component of the lower sideband is to be processed, the center frequency of the filter is set near / 2 , and the bandwidth is greater than or equal to the bandwidth of the signal component that is desired to be received, to ensure that the signal component has sufficient energy to pass the filter.
  • the center frequency of the filter is set near / 2 , and the bandwidth is greater than or equal to the bandwidth of the signal component that is desired to be received, to ensure that the signal component has sufficient energy to pass the filter.
  • the filter amplifying unit 62 inputs the filtered and amplified signal to the down converter 63 to convert the carrier frequency of the signal component to be processed to a corresponding intermediate frequency; and then sends it to the analog to digital converter 64 to complete sampling and quantization of the signal to obtain a digital intermediate frequency. signal.
  • the analog to digital converter 64 sends the digital intermediate frequency signal to the digital signal processing module 65.
  • the module can be implemented by an FPGA, an ASIC, a general purpose computing unit, or a combination of the above devices, and the corresponding capture of the baseband signal component to be processed is performed. , tracking, demodulation methods for processing functions.
  • a signal receiving method for a satellite navigation signal is provided, which is generated by receiving the satellite navigation signal generating method or the generating device. Satellite navigation signals.
  • the signal receiving method includes: receiving a satellite navigation signal; demodulating a signal component modulated in a first carrier in the received satellite navigation signal, obtaining a first baseband signal second baseband signal S 2 ; and demodulating the received satellite a navigation signal component of the second modulation carrier signal to obtain the baseband signal S 3 of the third and the fourth baseband signal S 4.
  • a signal receiving apparatus for a satellite navigation signal is provided, which receives the satellite navigation signal generating method or the satellite navigation signal generated by the generating apparatus.
  • the received satellite navigation signal having a center frequency of 0; + / 2 ) / 2 can be processed as a whole.
  • the signal receiving apparatus 500 includes a receiving unit 510, a demodulating unit 520, and a processing unit 530.
  • Receiving unit 510 receiving a satellite navigation signal; demodulating unit 520, demodulating the satellite navigation signal to obtain an in-phase baseband component and a quadrature baseband component of the multiplexed signal; and processing unit 530 according to the in-phase baseband of the multiplexed signal component and quadrature baseband amplitude and phase components, the first baseband signal to obtain a second base band signal S ,, S 2, a third base band signal S 3, and the fourth baseband signal S 4.
  • the processing unit 530 may correlate the local recurring in-phase baseband component and the local recurring orthogonal baseband component corresponding to the 16 combined states with the in-phase baseband component and the orthogonal baseband component of the multiplexed signal obtained by the demodulation unit 540. calculation, thereby determining 2, a third base band signal S 3, and a fourth value received baseband signal S to the first baseband signal S l 5 second of the baseband signal S. 4.
  • the receiver receives the satellite navigation signal 60 through the antenna 61 when receiving processing of the entire composite signal as a whole.
  • the antenna 61 inputs the received satellite navigation signal 60 to the filter amplification unit 62.
  • Filter amplification unit 62 performs filtering of satellite navigation signal 60 for blocking strong interference signals and out-of-band noise, and amplifying satellite navigation signal 60; the center frequency of the filter is set near (+/ 2 ;)/2 , the bandwidth is greater than or equal to 2:, at least to ensure that the entire composite signal has enough energy to pass through the filter, if the filter design allows, the power of the first main lobe of each signal component can be passed through the filter.
  • the filter amplifying unit 62 inputs the filtered and amplified signal to the down converter 63 to convert the carrier frequency of the signal component to be processed to a corresponding intermediate frequency; and then sends it to the analog to digital converter 64 to complete sampling and quantization of the signal to obtain a digital intermediate frequency. signal.
  • the analog to digital converter 64 sends the digital intermediate frequency signal to the digital signal processing module 65, which may be implemented by an FPGA, an ASIC, a general purpose computing unit, or a combination of the above.
  • the digital intermediate frequency signal is multiplied by the in-phase carrier and the orthogonal carrier generated by the receiver to remove the intermediate frequency and Doppler of the digital signal, and the receiver in-phase baseband signal SI(t) and the receiver quadrature baseband signal SQ(t) are obtained. .
  • the first group ( l, 2, .. , g) locally reproduces the in-phase baseband waveform /, (t) multiplied by the receiver in-phase baseband signal SI(t) and the receiver quadrature baseband signal SQ(t) signal, respectively And send the result to the integral clearing filter to perform the coherent integration of length TI, respectively, to obtain the ⁇ group ( , the first in-phase correlation value corrll, .
  • the second in-phase correlation value corr2I, . and the orthogonal correlation value corr2Q,; the seventh step, the first in-phase correlation value corrll of the first group (i l, 2, . - .
  • the rules are combined to obtain the in-phase combined correlation value of the first group/; and the orthogonal combination correlation value ⁇ ;, wherein the rule is:
  • a signal receiving method for a satellite navigation signal is provided, and the satellite navigation signal generating method or the satellite navigation signal generated by the generating device is received.
  • the signal receiving method includes: receiving a satellite navigation signal; demodulating the satellite navigation signal to obtain an in-phase baseband component and a quadrature baseband component of the multiplexed signal; and according to the in-phase baseband component and the orthogonal baseband component of the multiplexed signal amplitude and phase to obtain a first base band signal Si, the second baseband signal S 2, a third base band signal S 3, and the fourth baseband signal S 4.
  • embodiments of the present application are directed to any system, method, and apparatus for processing or receiving satellite navigation signals generated in an embodiment of a method and apparatus for producing satellite navigation signals in accordance with the present application.
  • Embodiments in accordance with the present application may be implemented in the form of hardware, software, or a combination thereof.
  • One aspect of the present application provides a computer program comprising executable instructions for implementing a satellite navigation generation method, a receiving device, a satellite navigation receiving method, a receiving device, a device, or a satellite navigation signal in accordance with an embodiment of the present application.
  • computer programs can be stored using any form of memory, such as an optical or magnetic readable medium, chip, ROM, PROM, or other volatile or nonvolatile device.
  • a machine readable memory storing such a computer program is provided. Exemplary embodiments of the present application have been described above with reference to the accompanying drawings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供了一种卫星导航信号及卫星导航信号生成方法、生成装置、接收方法和接收装置。卫星导航信号生成装置包括基带信号产生器,多路复用信号产生器和调制器,基带信号产生器,生成第一基带信号S1,第二基带信号S2,第三基带信号S3,以及第四基带信号S4;多路复用信号产生器,设置第一基带信号S1,第二基带信号S2,第三基带信号S3和第四基带信号S4的多路复用信号的同相基带分量和正交基带分量的幅度和相位,以生成具有恒包络的多路复用信号;以及调制器,将所述具有恒包络的多路复用信号调制到射频,生成卫星导航信号,其中,第一基带信号S1和所述第二基带信号S2调制于第一载波频率f 1且载波相位彼此正交,所述第三基带信号和所述第四基带信号调制于第二载波频率f 2且载波相位彼此正交。

Description

卫星导航信号及其生成方法、 生成装置、 接收方法和接收装置 技术领域
本申请涉及卫星导航领域, 更具体地, 本申请涉及卫星导航信号 及其生成方法、 生成装置、 接收方法和接收装置。 背景技术
随着全球导航卫星系统(GNSS )的持续建设, 导航服务需求在不 断扩展。 各卫星导航系统在同一频段上播发的信号数量越来越多, 使 得原本有限的卫星导航频谱变得愈加拥挤。 随着同一系统在同一频段 内播发信号数量的增加, 卫星载荷的复杂度不断提高。
如果一个频段内的不同服务信号使用彼此独立的发射天线及放大 器链路, 对天线设计的要求以及载荷的总功率、 成本、 体积、 重量等 方面都会带来较大的代价。 因此, 希望能够将多个信号在一个载波上 进行复用合成。 而同时, 在卫星发射功率受限的情况下, 为了在接收 端维持足够的接收功率, 希望星上的高功率发射机具有尽可能高的功 率效率。 这就要求卫星上的高功率放大器 (HPA )要工作在非线性饱 和区。 但当 HPA在饱和点附近时, 如果输入信号不具有恒定的包络, 那么输出分量会产生幅度调制和幅相转换等畸变, 造成发射信号的幅 相失真, 对接收端的性能造成很大的影响。 因此需要保证合成信号的 恒包络特性。
对于同一频点上的多个 DSSS信号的恒包络复用, 已有一些成熟 的技术, 例如, 可以将两个不同的 DSSS信号放置在载波的两个相互 正交的相位上从而构成一个 QPSK信号进行发射。 早期的 GPS中, L1 频点的 C/A 码信号和 P(Y)码信号的恒包络复用就是以这种方式实现 的。 但当信号数目增多时, 就需要使用一些更为复杂的恒包络复用技 术, 例如美国专利 US6430213 , 美国专利申请 US 2002/0075907 A1、 美国专利申请 US 2002/0150068 A1、 以及美国专利申请 US 2011/0051783 A1等等。但上述的这些技术主要针对同一频点上的多个 信号分量的恒包络复用。 现有技术, 例如恒包络 AltBOC 调制技术 ( 美国专利 US 2006/0038716 A1 ) 以及时分复用 AltBOC ( TD-AltBOC )技术 (中国 专利公开号 CN102209056A )提供了一种对于两个不同频点上的 DSSS 信号联合进行恒包络复用的方法, 例如将两个相隔 30.69MHz的频点 上分别调制的两组 BPSK-R(IO)信号组合成一个复合恒包络信号。 然 而, AltBOC调制技术需要预先生成相位映射表, 并通过查表的方式实 现多路复用信号的恒包络。 此外, AltBOC 调制技术中, 参与复用的 DSSS信号分量的功率必须是相等的。 而在 TD-AltBOC中, 这种技术 所使用的时分复用显著恶化了所复用的 DSSS信号与同一频段上的其 它扩频信号之间的多址性能。 而且 TD-AltBOC中, 参与复用的信号分 量的功率也必须是相等的。 技术上的这种限制降低了 AltBOC 和 TD-AltBOC使用的灵活性。 众所周知, 在 GNSS系统中, 由于测距是 信号的首要目的, 信号体制设计中更倾向于为导频信道分配比数据信 道更多的功率, 以提高伪距测量以及载波相位跟踪的精度和稳健性, 而且信号分量釆用不同的扩频码片波形 (例如 BPSK-R、 正弦相位 BOC、 余弦相位 BOC、 TMBOC、 QMBOC 等) 会在接收机中呈现出 不同的捕获、 跟踪、 解调性能, 因此有必要为卫星导航信号提供一种 更为灵活的双频恒包络复用技术。 发明内容
本申请的目的是提供一种至少能够部分改善上述现有技术中的缺陷 的一种卫星导航信号及其生成方法、 生成装置、 接收方法和接收装置。
根据本申请的一个方面, 公开了一种卫星导航信号生成装置, 包 括: 基带信号产生器, 生成第一基带信号 S,,第二基带信号 s2, 第三基带 信号 S3, 以及第四基带信号 S4; 多路复用信号产生器, 设置所述第一基 带信号 s 第二基带信号 s2, 第三基带信号 s3和第四基带信号 s4的多路 复用信号的同相基带分量和正交基带分量的幅度和相位, 生成具有恒包 络的多路复用信号; 以及调制器, 将所述具有恒包络的多路复用信号调 制到射频, 生成卫星导航信号, 其中, 所述第一基带信号 和所述第二 基带信号 S2调制于第一载波频率 /;且载波相位彼此正交, 所述第三基帶 信号和所述第四基带信号调制于第二载波频率/ 2且载波相位彼此正交。 根据本申请的一个方面, 公开了一种卫星导航信号生成方法, 包 括: 生成第一基带信号 S 第二基带信号 s2, 第三基带信号 s3, 以及第 四基带信号 S4; 设置所述第一基带信号 第二基带信号 s2, 第三基带 信号 s3和第四基带信号 s4的多路复用信号的同相基带分量和正交基带分 量的幅度和相位, 生成具有恒包络的多路复用信号; 以及将所述具有恒 包络的多路复用信号调制到射频, 生成卫星导航信号, 其中, 所述第一 基带信号 Si和所述第二基带信号 S2调制于第一载波频率 Λ且载波相位彼 此正交, 所述第三基带信号和所述第四基带信号调制于第二载波频率 /2 且载波相位彼此正交。
根据本申请的一个方面, 公开了一种通过前述卫星导航信号生成 方法或卫星导航信号生成装置所生成的卫星导航信号。
根据本申请的一个方面, 公开了一种设备, 包括处理如前述卫星 导航信号、 或者卫星导航信号生成方法或卫星导航信号生成装置所生 成的卫星导航信号的装置。
根据本申请的一个方面, 公开了一种卫星导航信号接收装置, 接 收由如前述卫星导航信号、 或者卫星导航信号生成方法或卫星导航信 号生成装置所生成的卫星导航信号。
根据本申请的一个方面,公开了一种接收由如前述卫星导航信号、 或者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导 航信号的信号接收装置, 包括: 接收单元, 接收所述卫星导航信号; 解 调单元, 解调所接收到的卫星导航信号中调制于第一载波的信号分量, 并解调所述接收到的调制于第二载波的信号分量; 以及处理单元, 根据 所述解调单元所解调的调制于第一载波的信号分量获得第一基带信号 和第二基带信号 s2以及所解调的调制于第二载波的信号分量, 获得第三 基带信号 s3和第四基带信号 s4
根据本申请的一个方面,公开了一种接收由如前述卫星导航信号、 或者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导 航信号的信号接收方法, 包括: 接收所述卫星导航信号; 解调所接收到 的卫星导航信号中调制于第一载波的信号分量, 获得第一基带信号 8,和 第二基带信号 S2; 以及解调所接收到的卫星导航信号中调制于第二载波 的信号分量, 获得第三基带信号 s3和第四基带信号 s4
根据本申请的一个方面,公开了一种接收由如前述卫星导航信号、 或者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导 航信号的信号接收装置, 包括: 接收单元, 接收所述卫星导航信号; 解 调单元, 解调所述卫星导航信号, 获得多路复用信号的同相基带分量和 正交基带分量; 以及处理单元, 根据所述多路复用信号的同相基带分量 和正交基带分量的幅度和相位, 获得第一基带信号 sl5第二基带信号 s2, 第三基带信号 s3, 以及第四基带信号 s4
根据本申请的一个方面,公开了一种接收由如前述卫星导航信号、 或者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导 航信号的信号接收方法, 包括: 接收所述卫星导航信号; 解调所述卫星 导航信号, 获得多路复用信号的同相基带分量和正交基带分量; 以及根 据所述多路复用信号的同相基带分量和正交基带分量的幅度和相位, 获 得第一基带信号8!,第二基带信号 S2, 第三基带信号 S3, 以及第四基带信 号 S4
根据本申请的一个方面, 公开了一种包括用于实现如前述方法、 装置、 设备或者用于生成如前述卫星导航信号的可执行指令的程序。
根据本申请的一个方面, 公开了一种存储如前述用于实现如前述 方法、 装置、 设备或者用于生成如前述卫星导航信号的可执行指令的 程序的机器可读存储器。 附图说明
图 1示出了根据本申请的一种实施方式的卫星导航信号生成装置 的方框图。
图 2 示出了根据本申请的一种实施方式的基带信号产生器的方框 图。
图 3 示出了根据本申请的一种实施方式的多路复用信号产生器的 方框图。
图 4示出了根据本申请的一种实施方式的调制器的方框图。 图 5示出了根据本申请的一种实施方式的卫星导航信号生成装置 的一种具体实现方式的示意图。
图 6 示出了根据本申请的一种实施方式的卫星导航信号生成装置 的另一种具体实现方式的示意图。
图 7 示出了根据本申请的一种实施方式的当四个信号分量功率比 为 Cl: c2: c3: c4=l: 2: 3: 8情况下复合基带信号的星座图。
图 8 示出了根据本申请的一种实施方式的多路复用信号的功率谱 密度。
图 9显示了根据本申请的一种实施方式的卫星导航信号生成方法的 流程图。
图 10显示了根据本申请的一种实施方式的卫星导航信号接收装置 的方框图。
图 11示出了根据本申请的一种实施方式的卫星导航信号接收装置 的一种具体实现方式的示意图。 具体实施方式
下面参照附图对本申请公开的卫星导航信号的恒包络复用方法、生 成装置以及接收方法进行详细说明。 为简明起见, 本申请各实施例的说 明中, 相同或类似的装置使用了相同或相似的附图标记。
图 1显示了根据本申请的一种实施方式的卫星导航信号生成装置 1。 如图所示, 信号生成装置 1 包括基带信号产生器 100, 多路复用信 号产生器 200, 以及调制器 300。 基带信号产生器 100生成第一基带信号 S 第二基带信号 S2, 第三基带信号 S3, 以及第四基带信号 S4。 多路复用 信号产生器 200设置第一基带信号 S,,第二基带信号 S2,第三基带信号 S3 和第四基带信号 S4的多路复用信号的同相基带分量 / (t)和正交基带分量 的幅度和相位, 以生成具有恒包络的多路复用信号。 调制器 300将 所述具有恒包络的多路复用信号调制到射频, 生成卫星导航信号。 其中, 第一基带信号 第二基带信号 s2调制于第一载波频率 y;且载波相位彼 此正交, 将第三基带信号和第四基带信号调制于第二载波频率 /2且载波 相位彼此正交。 根据本申请的卫星导航信号生成装置, 可以实现两个频 点 ( f f2 )上的四个信号分量 ( S^S^Ss^ ) 的恒包络复用。
根据一种实施方式, 可以根据实际需要设定各基带信号 Si的功率参 数 2^3和^, 即, 各基带信号可以具有不同的功率参数。根据一种实施 例, 功率参数可以是各基带信号的绝对功率, 例如各基带信号实际采用 的发射功率。 可以理解, 由于通过例如放大器等器件后, 信号的绝对功 率将会发生变化, 根据另一种实施例, 功率参数可以是各基带信号的相 对功率。 例如, 当各基带信号的功率比 Cl : C2 : c3 : c4为 1 : 1 : 1 : 1时, 四路 基带信号的相对功率均为 1。 当各基带信号的功率比 ^2 3 ^4为 1 : 3: 1 : 3 时, 四路基带信号的相对功率分别为 1, 3 , 1, 3。 此外, 基带信号产 生器 110生成的各基带信号中可以有任一个、 任两个或者任意三个功率 参数为零。
多路复用信号产生器 200可以根据各基带信号的功率参数, 设置多 路复用信号的同相基带分量和正交基带分量的幅度和相位。
根据本申请的一种实施方式, 基带信号是取值为 +/-1 的信号。 多路 复用信号产生器 200 可以根据各路基带信号的取值, 设置多路复用信号 的同相基带分量和正交基带分量的幅度和相位。 如图 2所示, 根据一种实施方式, 基带信号产生器 100可以包括信 源 110, 扩频调制器 120和扩频码片赋形器 130。
信源 1 10产生需要播发的信息。 例如卫星导航系统中完成定位所 需要的同步字、 时间信息、 星历等, 并将其编码成比特流。 本领域技 术人员可以理解, 对于某些专门用作测距用途的信号, 例如卫星导航 系统中的导频信道信号, 可以不传递具体信息而认为其播发的比特流 恒为 0或者恒为 1。
扩频调制器 120使用扩频序列对信源产生的比特流 /信息进行扩频 调制, 得到调制了电文信息的扩频序列。
扩频码片赋形器 130 将调制了电文信息的扩频序列中的每一比特 赋以一个波形。 这一波形可以是矩形脉沖、 归零波形、 方波、 以及在 卫星导航领域通常使用的二进制编码符号 (BCS ) 波形等。 本领域技 术人员可以理解, BPSK-R、 BOC、 TMBOC等调制所使用的扩频码片 波形都是 BCS波形中的特例。 可以理解, 根据本申请的卫星导航信号 生成装置可以灵活选择各基带信号分量所使用的扩频码片波形。
扩频码片赋形器 130的输出是取值为 +/-1 的基带信号。 本领域技术 人员可以理解, 基带信号中 +/-1 的幅度并不是限制性描述, 基带信号任 何幅度上的放大或缩小并不脱离本申请的范围。 根据一种实施方式,多路复用信号产生器 200可以根据基带信号 S S2, S3和 S4的功率参数以及基带信号 S,, S2, S3和 S4的取值, 计算多路 复用信号的同相基带分量 /(t)和正交基带分量 2(t)的幅度和相位,以生成 具有恒包络的多路复用信号。
如图 3 所示, 多路复用信号产生器 200 可以进一步包括计算单元 210, 同相支路生成单元 220和正交支路生成单元 230。
计算单元 210根据第一基带信号 Sl5第二基带信号 S2, 第三基带信号 S3和第四基带信号 S4的功率参数和取值, 计算同相基带分量 /(0的幅度 (t)和相位 (t), 并计算正交基带分量 ρ(0的幅度 (t)和相位 W。
同相支路生成单元 220根据计算单元 210 计算的幅度 和相位 φ{ή, 生成同相基带分量 /(t), 同相基带分量 /(t)表示为
J(t) = A(t)xsgn [sin {ΐπ fst + φ (/))] 正交支路生成单元 230根据计算单元 210 计算的幅度 ^t)和相位 φ{ή, 生成正交基带分量 2(t;), 正交基带分量 表示为
Figure imgf000008_0001
其中, /5.=|/;- /2|/2 , Sgn是符号函数
. λ ί+1, >0
sgn(x) = <
) 1 - 1, x<0
可以理解, 在本实施方式中, 同相基带分量 /(t)为幅度为 t)的方波 函数, 正交基带分量 为幅度为 (t)的方波函数, .=| - /2|/2表示方 波的频率。 根据一种实施方式, 计算单元 210根据以下公式计算多路复用信号 的同相基带分量 /(t)的幅度 (t)和相位 p(t),以及正交基带分量 的幅 度 ' W和相位 W,
A = -^(^. (0+ ( )2 +(V^¾ (0- ( )2
- atan 2 S、 (t) + ^3 (,) ' ( - ^4 ( )
Figure imgf000009_0001
其中, ^t),/ = 1,2,3,4 表示第 i路基带信号其取值为 +/-1,
路基带信号 的功率参数;
其中, atan2 四象限
Figure imgf000009_0002
本领域技术人员可以理解, 从时域上看, 多路复用信号产生器 200 所生成的多路复用信号可以表达为 S(t) = I(t) + jQ(t),其中 /(0为多路复用 信号的同相基带分量, 为多路复用信号的正交基带分量。 多路复用 信号的包络为 E = ^I2(t) + Q2(t),当信号的包络是一个恒定值不随时间变 化, 则称该信号为恒包络信号。 根据本申请的一种实施方式, 可以根 据基带信号 Si (i=l,2,3,4)的功率参数, 以及各基带信号 Si的取值, 计算 多路复用信号的同相基带分量 /(t)和正交基带分量 ρ(0的幅度和相位, 生成具有恒包络的多路复用信号。 例如, 在本实施例中, E = ^I2(t) + Q2(t) =^cl +c2+c3+c, , 即多路复用信号的包络不随时间变化, 因此生成的多路复用信号是具有恒包络的多路复用信号。 可以理解, 如 果从频域上看, 通过多路复用信号产生器 200, 可以将第一基带信号 S, 和第二基带信号 S2调制于载波频率 且载波相位彼此正交, 并将第三基 带信号和第四基带信号调制于载波频率 且载波相位彼此正交。
此外, 可以根据实际需要设定各基带信号 8;的功率参数£1 2, 和 , 即, 各基带信号可以具有不同的功率参数。 此外, 基带信号产生器 110 生成的各基带信号中可以有任一个、 任两个或者任意三个功率参数为零, 即 ^ 和^中可以有任一个、 任两个或者任意三个取值为零。 根据本申请的一种实施方式, 调制器 300将具有恒包络的多路复用 信号调制到射频载波上, 生成卫星导 言号。
如图 4所示,调制器 300可以包括载波生成器 310,第一乘法器 321, 第二乘法器 322,以及加法器 330。调制器 300将多路复用信号产生器 200 生成的具有恒包络的多路复用信号调制到射频发射。 其中, 载波生成器 310产生中心频率为 ^ = (/; + /2) /2的载波。 通过第一乘法器 321, 将由多 路复用信号产生器 200 产生的多路复用信号的同相基带分量 调制到 中心频率为 y ^的载波, 例如, 调制到载波 cos (2 ry^;)。 通过第二乘法器 322, 将由多路复用信号产生器 200产生的多路复用信号的正交基带分量 调制到中心频率为 的载波, 该载波与第一乘法器 321所调制的载 波相位正交, 例如, 调制到载波 ^ (2;τΛ 。 第一乘法器 321和第二乘法 器 322的输出通过加法器 330, 得到具有恒包络的卫星导航信号 。 其 中, 卫星导航信号 S^可以表示为
(t) = / (t) cos (2^t) - β (t) sin (2 τ/ )。 这样, 卫星所发射的卫星导^:信号 将是具有恒包络特性的卫星导 航信号。 图 5显示了根据本申请的一种实施方式的卫星导航信号生成装置 1 的一种具体的应用。
如图 5所示, 信号生成装置 1包括基带信号产生器 100, 多路复用 信号产生器 200 ,以及调制器 300。基带信号产生器 100可以包括信源 110、 扩频调制器 120、 扩频码片赋形器 130。 多路复用信号产生器 200可以包 括计算单元 210、 同相支路产生器 220、正交支路产生器 230,调制器 300 包括载波发生器 310, 第一乘法器 321, 第二乘法器 322, 2移相电路 323, 和加法器 330。
具体地, 信源 110生成四路二进制电文数据。 本领域技术人员可以 理解, 如果有些应用中需要导频信道, 则相应的那路电文数据恒为 0或 1 不变。 四路电文数据分别送入扩频调制器 120-1、 120-2、 120-3、 120-4 进行扩频调制, 得到四路调制了电文信息的扩频序列。 调制了电文信息 的扩频序列分别送入扩频码片赋形器 130-1、 130-2、 130-3、 130-4。 对输 入的调制有电文信息的扩频序列进行码片赋形, 输出结果分别记为基带 信号 (t)、 (t)、 (t)、 (t)。
计算单元 210接收来自扩频码片赋形器 130-1、 130-2、 130-3、 130-4 的基带信号 A(t)、 s2 (t) s3(t) , s4 (t) , 根据基带信号 (t)、 s2 (t) . Si{t) . (t)的功率参数以及当前时刻 A (t;)、 s2 (t) , s3 (t) , (t)的取值, 计算同相 支路基带复合信号的幅度 ^和相位偏移^正交支路基带复合信号的幅度 A'和相位偏移 。
其中, 基带信号 ;)、 (t)、 s3(t) , 的功率参数可以根据实际需 要设定为任意值。
计算规则可以表示为
A = 7 (0 ( ) + ( (0 - (0)
<P = - atan 2 (t) + ^3 ( ' ( - ( )
Figure imgf000011_0001
φ' = atan 2^s2 (t) + ^s, (t),^i ( ― ( )
同相支路产生器 220接收来自计算单元 210的同相支路基带复合信 号的幅度 ^和相位偏移^ 输出多路复用信号的同相基带分量, 即同相支 路产生器 220的输出可以表示为
7(t) = ^(t)xsgn sin (2;τ/ + (/))]
正交支路产生器 230接收来自计算单元 210的正交支路基带复合信 号的幅度 (t)和相位偏移 (/), 输出多路复用信号的正交基带分量, 即 正交支路产生器 230的输出可以表示为
Figure imgf000012_0001
载波发生器 310产生频率为 的载波, 载波信号被分为两个分支, 其中第一分支 340与同相支路产生器 220的输出送入第一乘法器 321。第 二分支 341经过 r / 2移相电路 323后变为与分支 340的相位正交的载波。 第二分支 341与正交支路产生器 230的输出送入第二乘法器 322,两路乘 法器的输出送入加法器 330, 输出得到恒包络卫星导航信号 339。 图 6显示了根据本申请的一种实施方式的卫星导航信号生成装置 1 的另一种具体的应用。 在该应用中, 各模块的驱动时钟均由基准频率时 钟/。分频或倍频生成, 并且采用了时钟同步的方式。
如图 6所示, 基带信号产生器 100可以包括基准频率时钟 20, 频率 转换器 21 , 驱动数据信息产生器 22, 频率转换器 23 , 扩频调制器 24, 频率转换器 25 , 扩频码片赋形器 26。 多路复用信号产生器 200可以包括 驱动 I支路状态选择器 27, Q支路状态选择器 28 , 频率转换器 29, 频率 转换器 30, 第一复合信号发生器 31和第二复合信号发生器 32。 调制器 300可以包括第一乘法器 33 , 第二乘法器 34, r/2移相电路 35 , 频率转 换器 36, 第一载波发生器 37和第一加法器 38。
具体地, 基准频率时钟 20经过频率转换器 21转换为频率为 /。的数 据驱动时钟, 驱动数据信息产生器 22生成四路二进制电文数据。 如果有 些应用中需要导频信道, 则相应的那路电文数据恒为 0或 1不变。 基准 频率时钟经过频率转换器 23-1、 23-2、 23-3、 23-4分别转换为频率为 ;,、 fcl、 fc 、 的驱动时钟, 分别驱动扩频调制器 24-1、 24-2, 24-3 , 24-4 产生四路二进制扩频序列, 各自的扩频码速率分别为/ d2、 /3、 f 。 每一个扩频码速率都是 fD的正整数倍。
数据信息产生器 22生成的四路电文数据分别送入扩频调制器 24-1、
24-2、 24-3、 24-4, 与扩频序列进行模二加运算。 模二加操作后的结果分 别送入扩频码片赋形器 26-1、 26-2、 26-3、 26-4。 扩频码片赋形器由时钟 20分别经过频率转换器 25-1、 25-2、 25-3、 25-4转换为频率为/d、 fsc2 fsc4的副载波驱动时钟驱动, 对输入的调制有电文信息的扩频序列 进行 BCS码片赋形,输出结果分别记为基带信号 s,W、 s2{t) . s3(t) . sA(t) . fsc、=K、fc、 , = K2fc2 , Λ, = K c3 , fsc = K CA , 其中 、 K κ 、 均 为大于等于 1的整数。
时钟 20经过频率转换器 29转变为频率 fM的驱动时钟, 驱动 I支路 状态选择器 27和 Q支路状态选择器 28。 ^大于 ,、 、 3、 fc4的 最小公倍数 , 且有/ M= , M为正整数。 可以确保每一 A(t) (i=l, 2, 3, 4) 的取值符号翻转点都是与 同步的。 在 te["//M,(" + l)//M)时间段 内, s, (ή的取值符号 Si n e {+1,-1}是保持不变的。
S](t) . s2{t) . s3{t) . (t)送入 I支路状态选择器 27, 状态选择器 27 根据各基带信号的功率参数以及当前时隙内 (t)、 s2(t) . s3(t) . W的取 值计算 I支路基带复合信号的幅度 和相位偏移 。 计算规则为
Figure imgf000013_0001
时钟 20经过频率转换器 30转变为频率 Λ的驱动时钟, 驱动第一复 合信号发生器 31产生频率为 的方波副载波, I支路状态选择器 27将复 合信号的幅度 ^和相位偏移 值送入第一复合信号发生器 31, 控制第一 复合信号发生器 31产生的方波副载波幅度和相位偏移, 即第一复合信号 发生 31的输出可以表示为
Figure imgf000013_0002
S (t) . s2{t) , s3{t) . (0送入 Q支路状态选择器 28, 状态选择器 28 根据各基带信号的功率参数以及当前时隙内 (t)、 s2(t) . s3(t) , 的取 值计 Q支路基带复合信号的幅度 和相位偏移 。 计算规则为
Figure imgf000013_0003
频率 的驱动时钟驱动第二复合信号发生器 32产生频率为 /s的方波 副载波, Q支路状态选择器 28将复合信号的幅度 和相位偏移 值送入 第二复合信号发生器 32,控制第二复合信号发生器 32产生的方波副载波 幅度和相位偏移, 即第二复合信号发生器 32的输出可以表示为
Q(t) = ^'xsgn[sin(2^ +
基准时钟 20经过频率转换器 36转变为频率 的驱动时钟, 驱动第 一载波发生器 37产生频率为/ ^的载波, 载波信号被分为两个分支, 其 中分支 40与第一复合信号发生器 31的输出送入第一乘法器 33, 另一个 分支 41经过 r/2移相电路 35后变为与分支 40的相位正交的载波, 与第 二复合信号发生器 32的输出送入第二乘法器 34,两路乘法器的输出送入 第一加法器 38相加, 生成的恒包络卫星导航信号 39。 图 7给出了当 ^ >3 4=1:2:3:8情况下复合基带信号的? 31½1星座 图, 可见此时的复合信号是一个 16-PSK信号, 但星座点间隔不均匀。 随 着 :c2 :c3 4取其它的比值, 星座点的个数以及星座点分布也可能与本实 施例不同。
图 8给出了当 Cl :c2 :C3 :C4=l:2:3:8, fc] = fc2 =fc3 = c4 =10.23 MHz, 各信 号分量均采用矩形脉冲扩频波形 (即 BPSK-R调制), s= 15.345 MHz情 况下多路复用基带信号的功率谱密度(PSD )。 在 PSD中, 同一频点上的 两个信号分量叠加在一起无法分辨, 但以 为中心频率的上边带主瓣 51 的功率比以 /2为中心频率的下边带主瓣 50功率约低 5.5dB, 正好对应着 本实施例中上边带信号分量总功率与下边带信号分量总功率之比为 (Cl+C2)/(C3+c4) = 3/ll ( -5.6dB )的设计指标。 可见, 根据本申请的卫星导 航信号的生成方法可以实现四个信号分量以不同的功率比进行恒包络复 用的效果。 本申请的另一个方面提供了一种卫星导航信号生成方法,根据该方 法可以实现两个频点 (/;, f2 )上的四个信号分量(S S^SsA) 的恒包 络复用。
图 9显示了根据本申请的一种实施方式的卫星导航信号生成方法的 流程图。 如图所示, 在步骤 901 中, 生成第一基带信号 St,第二基带信 号 S2, 第三基带信号 S3, 以及第四基带信号 S4。 在步骤 902中, 设置第 一基带信号 S,,第二基带信号 s2, 第三基带信号 s3和第四基带信号 s4的 多路复用信号的同相基带分量和正交基带分量的幅度和相位, 以生成具 有恒包络的多路复用信号。 在步骤 903 中, 将所述具有恒包络的多路复 用信号调制到射频, 生成卫星导航信号。 其中, 第一基带信号 和第二 基带信号 S2调制于第一载波频率 /;且载波相位彼此正交, 第三基带信号 和第四基带信号调制于第二载波频率/ 2且载波相位彼此正交。
根据一种实施方式, 可以根据实际需要设定各基带信号 Si的功率 Cl,C2,c3和 c4。 在步骤 902 中, 可以进一步根据各基带信号的功率参数, 设置多路复用信号的同相基带分量和正交基带分量的幅度和相位。
根据一种实施方式, 在步骤 902中, 可以进一步根据各基带信号的 取值, 设置多路复用信号的同相基带分量和正交基带分量的幅度和相位。
根据一种实施方式, 在步骤 903中可以将具有恒包络的多路复用信 号调制到中心频率为 =( + /2)/2的载波上, 生成卫星导航信号。
根据本申请一种实施方式, 卫星导航信号生成方法进一步包括根 据第一基带信号 第二基带信号 S2, 第三基带信号 S3和第四基带信号 S4的功率参数和取值, 计算同相基带分量 /(t)的幅度 (t)和相位 ζ^), 并 计算正交基带分量 的幅度 (t)和相位 根据计算的幅度 和 相位 小 生成同相基带分量 /(),其中同相基带分量 /(t)表示为
l(t) = A(t)xsgn [sin (lnfst + φ(ή)] , 以及 根据计算的幅度 ^t)和相位^小 生成正交基带分量 正交基带 分量 表示为
g(t) = ^'(t)xsgn[sin(2^t + ^'(t))_ 其中, / |/;- Λ|/2, sgn是符号函数
.、 ί+1, x>0
) [-1, <0 根据本申请一种实施方式, 卫星导航信号生成方法进一步包括根 据以下公式计算同相基带分量 /(0的幅度 ^(t)和相位 ^ ), 并计算正交基 带分量 (t)的幅度 'W和相位 (0,
Figure imgf000016_0001
ψ' = atan 2^2s2 (t) + ^s4 (ή , (,) - ( )
其中, t) , / = l,2,3,4表示第 i路基带信号 Si, c,表示第 i路基带信号 Si的功率参数;
其中, atan2是四象限反正切函数
Figure imgf000016_0002
atan 2 (^, ) = x < 0
一襲 s
Figure imgf000016_0003
虽然以上参照附图描述了卫星导航信号的生成装置和方法的具体实 施方式和具体应用方式, 但是上述实施方案仅仅是为了说明的目的而所 举的示例, 而不是用来进行限制。 本领域技术人员应当理解, 凡在本申 请的教导和权利要求保护范围下所作的任何修改、 等同替换等, 均应包 含在本申请要求保护的范围内。 以上所描述的本申请的实施方式集中在发射端, 即, 集中在卫星导 航信号的生成方法和生成装置。 不过, 本申请的实施方式也涉及通过诸 如上述卫星导航信号的生成方法和生成装置所生成的信号。
此外, 本领域技术人员应当理解, 能够采用相逆的系统、 方法和装 置来接收和处理本申请实施方式中生成的卫星导航信号。 因此, 本申请 的实施方式也涉及用于处理诸如上述卫星导航信号的系统、 方法和装置。 根据本申请的一种实施方式, 提供了一种卫星导航信号的信号接 收装置, 接收上述卫星导航信号生成方法或者生成装置所生成的卫星 导航信号。 在本实施方式中, 可以分别处理调制于第一载波和第二载波 的信号分量。 如图 10所示, 信号接收装置 500包括接收单元 510, 解 调单元 520, 以及处理单元 530。 其中, 接收单元 510, 接收卫星导航信 号; 解调单元 521 , , 解调所接收到的卫星导航信号中调制于第一载波的 信号分量, 并解调接收到的调制于第二栽波的信号分量; 以及处理单元 530, 根据解调单元所解调的调制于第一载波的信号分量获得第一基带信 号 第二基带信号 S2以及所解调的调制于第二载波的信号分量,获得 第三基带信号 S3和第四基带信号 S4
图 11示出了根据本申请的一种实施方式的卫星导航信号接收装置 的一种具体实现方式的示意图。 根据一种实施例, 接收单元 510 可以 包括天线 61 ; 解调单元 520可以包括滤波放大单元 62, 下变频器 63 , 以 及模数转换器 64; 处理单元 530可以包括数字信号处理模块 65。
参照图 11, 对某一信号分量单独接收时, 通过天线 61接收卫星导航 信号 60。 天线 61将接收到的卫星导航信号 60输入滤波放大单元 62, 滤 波放大单元 62对卫星导航信号 60进行滤波, 以用于阻挡强干扰信号和 带外噪声, 并对卫星导航信号 60进行放大。 如果要处理上边带的 W或 者 信号分量, 滤波器的中心频率设在 附近, 带宽大于等于希望接收 的 或者 (0信号分量的带宽,以确保 A W或者 信号分量有足够的 能量通过滤波器; 同理, 如果要处理下边带的 W或者 信号分量, 滤波器的中心频率设在 /2附近, 带宽大于等于希望接收的 或者 信号分量的带宽, 以确保 ^ W或者 (0信号分量有足够的能量通过滤波 器。
滤波放大单元 62将经过滤波和放大的信号输入下变频器 63 ,以将要 处理的信号分量的载频变换到相应的中频; 之后送入模数转换器 64完成 信号的采样与量化, 得到数字中频信号。
模数转换器 64将数字中频信号送入数字信号处理模块 65,该模块可 以由 FPGA、 ASIC, 通用计算单元或者上述几种器件的组合等实现, 完 成对要处理的基带信号分量使用相应的捕获、 跟踪、 解调方法进行处理 的功能。
此外, 根据本申请的一种实施方式, 提供了一种卫星导航信号的 信号接收方法, 接收上述卫星导航信号生成方法或者生成装置所生成 的卫星导航信号。 该信号接收方法包括: 接收卫星导航信号; 解调所接 收到的卫星导航信号中调制于第一载波的信号分量, 获得第一基带信号 第二基带信号 S2; 以及解调所接收到的卫星导航信号中调制于第二 载波的信号分量, 获得第三基带信号 S3和第四基带信号 S4。 根据本申请的一种实施方式, 提供了一种卫星导航信号的信号接 收装置, 接收上述卫星导航信号生成方法或者生成装置所生成的卫星 导航信号。 在本实施方式中, 可以整体处理接收到的中心频率为 0;+ /2 )/ 2的卫星导航信号。 如图 10所示, 信号接收装置 500包括接收 单元 510, 解调单元 520, 以及处理单元 530。 接收单元 510, 接收卫星 导航信号; 解调单元 520, 解调卫星导航信号, 获得多路复用信号的同相 基带分量和正交基带分量; 以及处理单元 530,根据多路复用信号的同相 基带分量和正交基带分量的幅度和相位, 获得第一基带信号 S,,第二基带 信号 S2, 第三基带信号 S3, 以及第四基带信号 S4
可以理解, 由于基带信号的取值为 +/-1,四路基带信号的取值组合 [Sb S2, S3, S4]最多共有 16种组合状态。 处理单元 530可以将这 16种组合 状态所对应的本地复现同相基带分量和本地复现正交基带分量与解调单 元 540获得的多路复用信号的同相基带分量和正交基带分量进行相关运 算, 从而确定接收到的第一基带信号 Sl 5第二基带信号 S2, 第三基带信号 S3 , 以及第四基带信号 S4的取值。
同样参照图 11, 当对整个复合信号作为一个整体进行接收处理时, 接收机通过天线 61接收卫星导航信号 60。 天线 61将接收到的卫星导航 信号 60输入滤波放大单元 62。 滤波放大单元 62完成对卫星导航信号 60 的滤波, 以用于阻挡强干扰信号和带外噪声, 并对卫星导航信号 60进行 放大; 滤波器的中心频率设在 ( +/2;)/2附近, 带宽大于等于 2:, 至少要 确保整个复合信号有足够的能量通过滤波器, 如果滤波器的设计允许, 应保证各信号分量的功率第一主瓣都可以通过滤波器。
滤波放大单元 62将经过滤波和放大的信号输入下变频器 63 ,以将要 处理的信号分量的载频变换到相应的中频; 之后送入模数转换器 64完成 信号的采样与量化, 得到数字中频信号。 模数转换器 64将数字中频信号送入数字信号处理模块 65,该模块可 以由 FPGA、 ASIC, 通用计算单元或者上述几种器件的组合等实现。 数 字中频信号与接收机内部生成的同相载波和正交载波相乘, 以除去数字 信号的中频和多普勒, 得到接收机同相基带信号 SI(t)和接收机正交基带 信号 SQ(t)。
在数字信号处理模块 65中生成经过扩频码片赋形后的四个信号分量 的扩频序列, 在每一时刻, 根据这四个信号分量的本地复现基带二值信 号所有可能的取值组合, 在数字信号处理模块 65中对应每一种组合生成 相应的本地复现同相基带波形I ~, (t)和本地复现正交基带波形 (ή。 记取 值组合的个数为 g, 容易计算, 如果 N个信号分量为数据信道, 则 g= 2w, 对于 g种取值组合中的每一种特定情况 S, = , /, (t)和 , (0的生 成规则为
, (i) = Ai x sgn [sin {2nfst + φί )]
Q, ( = A' x sgn [sin (2;r/ + φ')
Figure imgf000019_0001
第 组( =l,2,.. .,g )本地复现同相基带波形/, (t)分别与接收机同相基 带信号 SI(t)和接收机正交基带信号 SQ(t)信号相乘, 并将结果送入积分清 除滤波器进行长度为 TI的相干积分, 分别得到第 ζ·组 (
Figure imgf000019_0002
,2,...,g ) 的第 一同相相关值 corrll,.和正交相关值 corrlQ,.; 每一组本地复现正交基带波 形 也分别与接收机同相基带信号 SI(t)和接收机正交基带信号 SQ(t) 信号相乘, 并将结果送入积分清除滤波器进行长度为 TI的相干积分, 分 别得到第 组( =l,2,...,g )的第二同相相关值 corr2I,.和正交相关值 corr2Q,; 第七步, 第 组 ( i=l ,2,. - . ,g ) 的第一同相相关值 corrll,和第一正交 相关值 corrlQ,,第二同相相关值 con^I,和第二正交相关值 corr2Q,.按以下 规则进行组合, 得到第 组的同相组合相关值 /;和正交组合相关值 ρ;, 其 中, 规则为:
ί = cor ll- + corr\Qt
[Q' = corrll corr2Qi 让优选同相组合相关值 I'和优选正交组合相关值 Q'分别等于所有 i 组同相组合相关值 /;和正交组合相关值 0'
Figure imgf000020_0001
I'和 ρ'即可以使用传统的捕获方法及跟踪环路进行处理。 此外, 根据本申请的一种实施方式, 提供了一种卫星导航信号的 信号接收方法, 接收上述卫星导航信号生成方法或者生成装置所生成 的卫星导航信号。 该信号接收方法包括: 接收卫星导航信号; 解调卫星 导航信号, 获得多路复用信号的同相基带分量和正交基带分量; 以及根 据多路复用信号的同相基带分量和正交基带分量的幅度和相位, 获得第 一基带信号 Si,第二基带信号 S2, 第三基带信号 S3, 以及第四基带信号 S4。 虽然以上参照附图描述了卫星导航信号的接收装置和接收方法的具 体实施方式和具体应用方式, 但是上述实施方案仅仅是为了说明的目的 而所举的示例, 而不是用来进行限制。 本领域技术人员应当理解, 能够 采用相逆的系统、 方法和装置来接收和处理本申请卫星导航信号生产方 法和装置的实施方式中生成的卫星导航信号。 因此, 本申请的实施方式 涉及任何用于处理或者接收根据本申请卫星导航信号生产方法和装置的 实施方式中生成的卫星导航信号的系统、 方法和装置。 根据本申请的实施方式可以硬件、 软件或其组合的形式来实现。 本 申请的一个方面提供了包括用于实现根据本申请的实施方式的卫星导 航生成方法、 接收装置, 卫星导航接收方法、 接收装置、 设备, 或者 卫星导航信号的可执行指令的计算机程序。 此外, 此类计算机程序可 使用例如光学或磁性可读介质、 芯片、 ROM、 PROM或其它易失性或 非易失性设备的任何形式的存储器来存储。 根据本申请的一种实施例 提供了存储此类计算机程序的机器可读存储器。 以上参照附图对本申请的示例性的实施方案进行了描述。 本领域技 术人员应该理解, 上述实施方案仅仅是为了说明的目的而所举的示例, 而不是用来进行限制, 凡在本申请的教导和权利要求保护范围下所作的 任何修改、 等同替换等, 均应包含在本申请要求保护的范围内。

Claims

权利要求:
1. 一种卫星导航信号生成装置, 包括:
基带信号产生器, 生成第一基带信号 s 第二基带信号 s2, 第三基带 信号 s3, 以及第四基带信号 s4;
多路复用信号产生器, 设置所述第一基带信号 S,,第二基带信号 s2, 第三基带信号 s3和第四基带信号 s4的多路复用信号的同相基带分量和正 交基带分量的幅度和相位, 以生成具有恒包络的多路复用信号; 以及 调制器, 将所述具有恒包络的多路复用信号调制到射频, 生成卫星 导航信号,
其中, 所述第一基带信号 和所述第二基带信号 s2调制于第一载波 频率 /;且载波相位彼此正交,所述第三基带信号和所述第四基带信号调制 于第二载波频率 /2且载波相位彼此正交。
2. 根据权利要求 1所述的卫星导航信号生成装置, 其中, 所述多 路复用信号产生器根据各基带信号的功率参数, 设置多路复用信号的同 相基带分量和正交基带分量的幅度和相位。
3. 根据权利要求 2所述的卫星导航信号生成装置, 其中, 所述功 率参数为各基带信号的绝对功率或者各基带信号的相对功率。
4. 根据权利要求 3所述的卫星导航信号生成装置, 其中, 各基带 信号中有一路基带信号、 两路基带信号、 或者三路基带信号的功率参数 为零, 或者四路基带信号的功率参数均不为零。
5. 根据权利要求 2所述的卫星导航信号生成装置, 其中, 所述多 路复用信号产生器根据各基带信号的取值, 设置多路复用信号的同相基 带分量和正交基带分量的幅度和相位。
6. 根据权利要求 5所述的卫星导航信号生成装置, 其中, 所述多 路复用信号产生器包括:
计算单元, 根据第一基带信号 ,第二基带信号 s2, 第三基带信号 s3 和第四基带信号 s4的功率参数和取值,计算同相基带分量 /(0的幅度 0 和相位 ^0, 并计算正交基带分量 2(t)的幅度 (t)和相位 (t) ; 同相支路生成单元, 根据计算单元计算的幅度 t)和相位 (小 生成 同相基带分量 /(0, 其中同相基带分量 /()表示为
l(t) = A(t) sgn [sin {lnfst + φ (t))] . 以及 正交支路生成单元, 根据计算单元计算的幅度 (t)和相位 (t) , 生 成正交基带分量 2W, 正交基带分量 2(t)表示为
. Q(t) = A' (ί) χ sgn [sin {infjt +
Figure imgf000023_0001
其中, Λ=| - Λ|/2, sgn是符号函数
Figure imgf000023_0002
7. 根据权利要求 6所述的卫星导航信号生成装置, 其中, 所述计 算单元根据以下公式计算同相基带分量 /(t)的幅度 t)和相位 小 并计 算正交基带分量 2(t)的幅度 A' (t)和相位 φ ί、,
A = {ή+^ (t))2 + (0 - ^F^ ( )2
Figure imgf000023_0003
φ' = atan2(^2 (ή + ^4 (t),^i (0— ( )
其中, s,(t),/ = l,2,3,4表示第 i路基带信号 Si, c,表示第 i路基带信号 Si功率参数;
其中, atan2是四象限反正切函数 arccos (
Figure imgf000024_0001
atan2(^, ) '. -arccos , y ,
Figure imgf000024_0002
8. 根据权利要求 1所述的卫星导航信号生成装置, 其中, 所述基 带信号产生器包括:
信源, 产生需要播发的电文信息;
扩频调制器,使用扩频序列对信源产生的电文信息进行扩频调制; 以及
扩频码片赋形器,将调制了电文信息的扩频序列中的每一比特赋以 波形, 生成基带信号。
9. 根据权利要求 1所述的卫星导航信号生成装置, 其中, 所述调 制器包括:
载波生成器, 产生射频载波;
第一乘法器, 将由多路复用信号产生器产生的多路复用信号的同相 基带分量调制到射频载波;
第二乘法器, 将由多路复用信号产生器产生的多路复用信号的正交 基带分量调制到射频载波;
加法器, 将调制到射频载波的多路复用信号的同相基带分量和调制 到射频载波的多路复用信号的正交基带分量进行加法运算, 生成卫星导 航信号。
10. 一种卫星导航信号生成方法, 包括:
生成第一基带信号 S 第二基带信号 s2, 第三基带信号 s3, 以及第 四基带信号 s4;
设置所述第一基带信号 S,, 第二基带信号 S2, 第三基带信号 S3和第 四基带信号 s4的多路复用信号的同相基带分量和正交基带分量的幅度和 相位, 以生成具有恒包络的多路复用信号; 以及 将所述具有恒包络的多路复用信号调制到射频, 生成卫星导航信号, 其中, 所述第一基带信号 Si和所述第二基带信号 s2调制于第一载波 频率 y;且载波相位彼此正交,所述第三基带信号和所述第四基带信号调制 于第二载波频率 /2且载波相位彼此正交。
1 1. 根据权利要求 10所述的卫星导航信号生成方法, 其中, 所述 设置多路复用信号的同相基带分量和正交基带分量的幅度和相位的步骤 进一步包括: 根据各基带信号的功率参数, 设置多路复用信号的同相基 带分量和正交基带分量的幅度和相位。
12. 根据权利要求 1 1所述的卫星导航信号生成方法, 其中, 所述 功率参数为各基带信号的绝对功率或者各基带信号的相对功率。
13. 根据权利要求 12所述的卫星导航信号生成方法, 其中, 各基 带信号中有一路基带信号、 两路基带信号、 或者三路基带信号的功率参 数为零, 或者四路基带信号的功率参数均不为零。
14. 根据权利要求 1 1所述的卫星导航信号生成方法, 其中, 所述 设置多路复用信号的同相基带分量和正交基带分量的幅度和相位的步骤 进一步包括: 根据各基带信号的取值, 设置多路复用信号的同相基带分 量和正交基带分量的幅度和相位。
15. 根据权利要求 14所述的卫星导航信号生成方法,进一步包括: 根据第一基带信号 ,第二基带信号 S2,第三基带信号 S3和第四基带 信号 S4的功率参数和取值, 计算同相基带分量 / (t)的幅度 (t)和相位 φ (t), 并计算正交基带分量 ρ(0的幅度 (t)和相位 φ人 ή ', 根据计算的幅度 0和相位 ^(小 生成同相基带分量 (0 , 其中同相 基带分量 /(0表示为
I (t) = A (t) x sgn [sin {infjt + φ (t)) · 以及 根据计算的幅度^ 和相位 ^小 生成正交基带分量 正交基带 分量 表示为
Q(t) = A'(t) sgn sin(2r/st + '(t))] 其中, Λ=|7Ϊ- Λ|/2, sgn是符号函数
χ>0
Figure imgf000026_0001
x<0
16. 根据权利要求 15所述的卫星导航信号生成方法,进一步包括: 根据以下公式计算同相基带分量 /(t)的幅度 ^t)和相位 ^t;), 并计算 正交基带分量 e(t)的幅 和相位 (t) ,
Figure imgf000026_0002
ψ' = atan 2 (t) + (t), ^s、 (t) - (t))
其中, ^t), = 1,2,3,4表示第 i路基带信号 Si, c,表示第 i路基带信号
Si的功率参数;
其中, atan2是四象限反正切函数
arccos ^ 1 j, x > 0, Χ2 + y2 >0 atan 2 ) = | - arccos 2), χ < 0 ο, 7 <^x2++y2 =0
17. 根据权利要求 10所述的卫星导航信号生成方法, 其中, 所述 生成第一基带信号 Sl第二基带信号 S2, 第三基带信号 S3, 以及第四基带 信号 S4的步骤包括:
产生需要播发的电文信息;
使用扩频序列对信源产生的电文信息进行扩频调制; 以及 将调制了电文信息的扩频序列中的每一比特赋以波形, 生成基带 信号。
18. 根据权利要求 10所述的卫星导航信号生成方法, 其中, 所述 将具有恒包络的多路复用信号调制到射频, 生成卫星导航信号的步骤包 括:
产生射频载波;
将多路复用信号的同相基带分量调制到射频载波;
将多路复用信号的正交基带分量调制到射频载波;
将调制到射频载波的多路复用信号的同相基带分量和调制到射频载 波的多路复用信号的正交基带分量进行加法运算, 生成卫星导航信号。
19. 一种通过如前述任一权利要求中所述的卫星导航信号生成方 法或卫星导航信号生成装置所生成的卫星导航信号。
20. 一种设备, 包括处理如前述任一权利要求中所述的卫星导航 信号、 或者卫星导航信号生成方法或卫星导航信号生成装置所生成的 卫星导航信号的装置。
21. 一种卫星导航信号接收装置, 接收由如前述任一权利要求中 所述的卫星导航信号、 或者卫星导航信号生成方法或卫星导航信号生 成装置所生成的卫星导航信号。
22. 一种接收由如前述任一权利要求中所述的卫星导航信号、 或 者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导航 信号的信号接收装置, 包括:
接收单元, 接收所述卫星导航信号;
解调单元, 解调所接收到的卫星导航信号中调制于第一载波的信号 分量, 并解调所述接收到的调制于第二载波的信号分量; 以及
处理单元, ^据所述解调单元所解调的调制于第一载波的信号分量 获得第一基带信号 Si和第二基带信号 S2以及所解调的调制于第二载波的 信号分量, 获得第三基带信号 s3和第四基带信号 s4
23. 一种接收由如前述任一权利要求中所述的卫星导航信号、 或 者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导航 信号的信号接收方法, 包括:
接收所述卫星导航信号;
解调所接收到的卫星导航信号中调制于第一载波的信号分量, 获得 第一基带信号 和第二基带信号 S2; 以及
解调所接收到的卫星导航信号中调制于第二载波的信号分量, 获得 第三基带信号 S3和第四基带信号 S4
24. 一种接收由如前述任一权利要求中所述的卫星导航信号、 或 者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导航 信号的信号接收装置, 包括:
接收单元, 接收所述卫星导航信号;
解调单元, 解调所述卫星导航信号, 获得多路复用信号的同相基带 分量和正交基带分量; 以及
处理单元, 根据所述多路复用信号的同相基带分量和正交基带分量 的幅度和相位,获得第一基带信号 第二基带信号 S2,第三基带信号 S3, 以及第四基带信号 S4
25. 一种接收由如前述任一权利要求中所述的卫星导航信号、 或 者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导航 信号的信号接收方法, 包括:
接收所述卫星导航信号;
解调所述卫星导航信号, 获得多路复用信号的同相基带分量和正交 基带分量; 以及
根据所述多路复用信号的同相基带分量和正交基带分量的幅度和相 位, 获得第一基带信号 ,第二基带信号 S2, 第三基带信号 S3, 以及第四 基带信号 S4
26. 一种接收由如前述任一权利要求中所述的卫星导航信号、 或 者卫星导航信号生成方法或卫星导航信号生成装置所生成的卫星导航 信号的信号接收方法, 包括:
接收卫星导航信号对其进行滤波放大, 滤波器的中心频率设在
Figure imgf000029_0001
将要处理的信号分量的载频变换到相应的中频, 再进行数模转换完 成信号的釆样与量化;
将转换后的数字中频信号分别与同相载波和正交载波相乘, 得到接 收机同相基带信号 和接收机正交基带信号 5·ρ(^;
将转换后的数字中频信号在数字信号处理器中生成经过扩频码片赋 形后的四个信号分量的扩频序列, 在每一时刻, 根据这四个信号分量的 本地复现基带二值信号所有可能的取值组合, 对应每一种组合生成相应 的本地复现同相基带波形 和本地复现正交基带波形 ¾ (t), 记取值组 合的个数为 g, g≤l 6 , 对于 g 种取值组合中的每一种特定情况
S, = { , w,i )} , W和 ¾ ( 的生成规则为 l ~q (0 = Χ sgn [sin ( W + )]
¾ (0 = x sgn[sin(2^/ + φ )]
其中,
Figure imgf000029_0002
c;. ( = 1, 2,3, 4 ) 为 路基带信号的功率参数;
将每一组本地复现同相基带波形 / O分别与接收机同相基带信号 S/ (t)和接收机正交基带信号 信号相乘, 并将结果进行长度为 TI 的 相干积分, 分别得到第 组( =l,2,—,g )的第一同相相关值 corrlI和第 一正交相关值 corrlQ;每一组本地复现正交基带波形 也分别与接收 机同相基带信号 和接收机正交基带信号^^ 信号相乘, 并将结果进 行长度为 ΤΙ的相干积分, 分别得到第 g组( 1,2, ...,g)的第二同相相关 值 con^ 和正交相关值 corr2(¾;
将第一同相相关值 corrll^和第一正交相关值 corrl(¾, 第二同相相关 值 con^I^和第二正交相关值 00 2(¾按以下规则进行组合:
Figure imgf000030_0001
得到第 组的同相组合相关值 和正交组合相关值 Qq';
取所有 q组中满足^ 2+ 最大取值的一组 和 ,对 /'和 ρ'即可以 使用传统的捕获方法及跟踪环路进行处理。
27. 一种包括用于实现如前述任一权利要求所述的方法、 装置、 设备或者用于生成如前述任一权利要求所述的信号的可执行指令的程 序。
28. 一种存储如权利要求 27所述的程序的机器可读存储器。
29. 导航信号的恒包络复用方法, 包括:
生成各个信号分量的基带扩频信号 / = 1, 2,3,4, ^(0和 (0载波 相位彼此正交, 和 W载波相位彼此正交;
在频率为 fM的驱动时钟的驱动下将各路基带扩频信号 进行多路 波形复用, 根据 时间段内的 (t)的符号^ e{+l,-l}的取值, 生成多路复 合后的同相基带波形 /(0和多路复合后的正交基带波形 2(0,其中, ^为 A W的符号最小保持时间的倒数的最小公倍数, 以确保每一 ^t)的符号翻 转点都与 同步, te["//M,(" + l)//M), "是大于等于零的整数, 在 时间 段内 的符号^ ^+1,-1}保持不变;
在频率为 = i+/2)/2的载波驱动时钟驱动下,利用载波生成器生成 相位彼此正交的两路载波 C0S(2r fPt)和 sin (2π ft) , 并分别与多路复合后的 同相基带波形 / W和多路复合后的正交基带波形 β W相乘并相加, 从而得 到满足恒包络条件的射频信号 W, 其中, 为 ^^和^ )在最终调制 到射频上的恒包络复合信号中的中心频点, /2为 ( 和 (0在最终调制到 射频上的恒包络复合信号中的中心频点。
30、 根据权利要求 29所述的导航信号的恒包络复用方法, 其中, 所 述多路 合后的同相基带波形 / (t)和多路复合后的正交基带波形 2(t)为: l{t) , s2n, s3t1 , s4n ))
Figure imgf000031_0001
Q(t) = A'{^sXn , s2n , n , s4n ) x sgn ^sin {i fj + φ'^ η , s2n , s3n ,
在上式中, Λ=( ;-/2)/2, sgn是符号函数
Figure imgf000031_0002
Figure imgf000031_0003
φ' ( n, s2,n , ¾„ , s4 n ) )
Figure imgf000031_0004
式中的 atan2是四象限反正切函数
arccos , y x≥ 0, jx2 + y2 > 0
atan2(^, ): - arccos x<0
Figure imgf000031_0005
PCT/CN2013/000675 2012-06-07 2013-06-06 卫星导航信号及其生成方法、生成装置、接收方法和接收装置 WO2013181932A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
KR1020157000396A KR101595213B1 (ko) 2012-06-07 2013-06-06 위성 항법 신호 및 그 생성방법, 생성장치, 수신방법과 수신장치
US14/400,506 US9137081B2 (en) 2012-06-07 2013-06-06 Satellite navigational signal generating method generating device receiving method and receiving device
EP13800415.5A EP2866400B1 (en) 2012-06-07 2013-06-06 Satellite navigation signal and generation method, generation device, receiving method and receiving device therefor
AU2013271243A AU2013271243B2 (en) 2012-06-07 2013-06-06 Satellite navigation signal and generation method, generation device, receiving method and receiving device therefor
IN11129DEN2014 IN2014DN11129A (zh) 2012-06-07 2013-06-06
MYPI2014003393A MY171170A (en) 2012-06-07 2013-06-06 Satellite navigation signal, generating method, generating device, receiving method and receiving device
BR112014029949A BR112014029949B1 (pt) 2012-06-07 2013-06-06 dispositivo e método gerador de sinal de navegação por satélite, dispositivo e método de recepção de sinal de navegação por satélite
JP2015515370A JP5858511B2 (ja) 2012-06-07 2013-06-06 衛星ナビゲーション信号、及びその生成方法、生成装置、受信方法、受信装置
CA2875900A CA2875900C (en) 2012-06-07 2013-06-06 Satellite navigation signal, generating method, generatiing device, receiving method and receiving device
RU2014151751/07A RU2579442C1 (ru) 2012-06-07 2013-06-06 Сигнал спутниковой навигации, способ и устройство для генерации такого сигнала и способ и устройство для приема такого сигнала
CN201380029930.3A CN104509052B (zh) 2012-06-07 2013-06-06 卫星导航信号及其生成方法、生成装置、接收方法和接收装置
NZ703463A NZ703463A (en) 2012-06-07 2013-06-06 Satellite navigation signal, generating method, generating device, receiving method and receiving device
ZA2014/09535A ZA201409535B (en) 2012-06-07 2014-12-23 Satellite navigation signal and generation method,generation device ,receiving method and receiving device therefor
HK15104795.2A HK1204401A1 (zh) 2012-06-07 2015-05-20 衛星導航信號及其生成方法、生成裝置、接收方法和接收裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210186757.5A CN102694569B (zh) 2012-06-07 2012-06-07 导航信号的恒包络复用方法、生成装置以及接收方法
CN201210186757.5 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013181932A1 true WO2013181932A1 (zh) 2013-12-12

Family

ID=46859865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000675 WO2013181932A1 (zh) 2012-06-07 2013-06-06 卫星导航信号及其生成方法、生成装置、接收方法和接收装置

Country Status (15)

Country Link
US (1) US9137081B2 (zh)
EP (1) EP2866400B1 (zh)
JP (1) JP5858511B2 (zh)
KR (1) KR101595213B1 (zh)
CN (2) CN102694569B (zh)
AU (1) AU2013271243B2 (zh)
BR (1) BR112014029949B1 (zh)
CA (1) CA2875900C (zh)
HK (1) HK1204401A1 (zh)
IN (1) IN2014DN11129A (zh)
MY (1) MY171170A (zh)
NZ (1) NZ703463A (zh)
RU (1) RU2579442C1 (zh)
WO (1) WO2013181932A1 (zh)
ZA (1) ZA201409535B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037448A (zh) * 2016-02-03 2017-08-11 清华大学 双频恒包络导航信号的生成方法和装置、接收方法和装置
CN111381265A (zh) * 2018-12-29 2020-07-07 泰斗微电子科技有限公司 一种定位解算方法、装置及卫星导航接收机

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694569B (zh) * 2012-06-07 2014-05-14 清华大学 导航信号的恒包络复用方法、生成装置以及接收方法
CN103023598B (zh) * 2012-11-23 2016-03-30 清华大学 双频四分量扩频信号的恒包络复用方法、装置及接收方法
CN104702311B (zh) 2013-12-06 2017-08-11 清华大学 扩频信号的生成方法、生成装置、接收方法和接收装置
US9197478B2 (en) * 2014-01-10 2015-11-24 Deere & Company Method and receiver for receiving a composite signal
CN104539567B (zh) * 2014-12-23 2017-10-17 电子科技大学 一种基于相位调制的1090es信号扩容方法
CN105005057B (zh) * 2015-08-03 2017-02-22 北京理工大学 一种北斗导航系统d1导航电文的捕获方法
CN105589083A (zh) * 2015-12-04 2016-05-18 航天恒星科技有限公司 导航卫星定位解算方法及装置
CN105676252B (zh) * 2016-01-19 2018-11-20 施浒立 一种用于信号遮挡区域的导航信号源
CN106772484B (zh) * 2016-12-29 2019-09-06 西安空间无线电技术研究所 卫星导航信号多分量间功率配比和载波相位关系调整方法
KR20180097048A (ko) 2017-02-22 2018-08-30 국방과학연구소 계층 다상 부호를 사용한 신호구조의 서비스 멀티플렉싱 시스템 및 방법
CN111025349A (zh) * 2018-10-09 2020-04-17 泰斗微电子科技有限公司 Boc信号解调方法及其芯片、设备
CN111107029B (zh) * 2018-10-25 2022-10-14 深圳市中兴微电子技术有限公司 正交频分复用解调器、解调方法及接收机
CN109412995B (zh) * 2018-11-29 2020-05-12 北京邮电大学 基于可变子载波带宽的多流准恒包络多载波传输方法
CN110071887B (zh) * 2019-05-14 2021-08-10 济南市半导体元件实验所 载波相位密集调制装置及方法
CN112068159B (zh) * 2020-08-25 2024-03-26 西安空间无线电技术研究所 一种导航卫星信号质量在轨优化方法
KR102400812B1 (ko) * 2020-10-19 2022-05-23 한국항공우주연구원 신호 다중화 방법, 신호 송신 방법 및 인공위성
CN114137583A (zh) * 2021-11-02 2022-03-04 中国科学院国家授时中心 一种基于卫星平台的导航通信一体化信号设计方法
CN114337728B (zh) * 2021-12-06 2024-04-26 泰提斯电子科技(上海)有限公司 一种恒包络扩频信号的捕获方法
CN114785378B (zh) * 2022-03-09 2023-06-20 北京遥感设备研究所 一种远距离交会对接微波雷达快速同步的系统与方法
KR20230171289A (ko) * 2022-06-13 2023-12-20 한국전자통신연구원 3개 동일전력 신호의 상수포락선다중화 장치 및 방법
KR20240037492A (ko) * 2022-09-15 2024-03-22 한국전자통신연구원 무선 통신 시스템에서의 상수포락선 다중화 방법 및 장치
GB2624195A (en) * 2022-11-09 2024-05-15 Qinetiq Ltd Signal processor
CN116094630B (zh) * 2023-04-07 2023-08-08 湖南国天电子科技有限公司 一种高精度信号延迟计算方法
CN116980031B (zh) * 2023-09-25 2023-11-24 中国电子科技集团公司第五十四研究所 一种低轨卫星通信系统的下行扩频信号生成方法
CN117200813B (zh) * 2023-11-07 2024-03-15 成都飞机工业(集团)有限责任公司 一种无线电导航系统突发信号的检测方法及检测系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075907A1 (en) 2000-09-27 2002-06-20 Cangiani Gene L. Methods and apparatus for generating a constant-envelope composite transmission signal
US6430213B1 (en) 1999-05-26 2002-08-06 The Aerospace Corporation Coherent adaptive subcarrier modulation method
US20060038716A1 (en) 2002-12-13 2006-02-23 Centre National D' Etudes Spatiales (C.N.E.S.) Method and device for generating a constant envelope navigation signal with four independent codes
US20110051783A1 (en) 2009-08-25 2011-03-03 Charles Robert Cahn Phase-Optimized Constant Envelope Transmission (POCET) Method, Apparatus And System
CN102209056A (zh) 2011-04-15 2011-10-05 华中科技大学 一种导航信号调制方法
CN102394850A (zh) * 2011-09-21 2012-03-28 清华大学 一种导航信号的调制方式及解调方法
CN102437985A (zh) * 2011-12-29 2012-05-02 中国人民解放军国防科学技术大学 一种双正交相移键控信号的调制方法和调制装置
CN102694569A (zh) * 2012-06-07 2012-09-26 清华大学 导航信号的恒包络复用方法、生成装置以及接收方法
CN103023598A (zh) * 2012-11-23 2013-04-03 清华大学 双频四分量扩频信号的恒包络复用方法、装置及接收方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075810A (en) * 1998-01-28 2000-06-13 The Aerospace Corporation NRZ and biphase-L formatted hexaphase modulated GPS transmission method
US7120198B1 (en) * 1999-05-26 2006-10-10 The Aerospace Corporation Quadrature product subcarrier modulation system
US7260369B2 (en) * 2005-08-03 2007-08-21 Kamilo Feher Location finder, tracker, communication and remote control system
US7023900B2 (en) * 2001-03-02 2006-04-04 Samsung Electronics Co., Ltd. System and method for modifying peak-to-average power ratio in CDMA transmitters
US7039122B2 (en) * 2001-10-17 2006-05-02 Itt Manufacturing Enterprises, Inc. Method and apparatus for generating a composite signal
GB0320352D0 (en) * 2003-09-01 2003-10-01 Secr Defence Digital modulation waveforms for use in ranging systems
US7505506B1 (en) * 2005-02-25 2009-03-17 Itt Manufacturing Enterprises, Inc. System and method for generating single sideband, constant envelope, spread spectrum signals with multiple spreading codes
TW200636631A (en) * 2005-04-15 2006-10-16 Mitac Int Corp Satellite navigation device for real-time route planning
EP1894306B1 (en) * 2005-06-09 2011-05-11 ITT Manufacturing Enterprises, Inc. Multi-carrier constant envelope signal scheme for power and bandwidth efficient communications
DE212005000081U1 (de) * 2005-08-03 2008-03-27 Feher, Kamilo, El Macero Mehrzweck-Standortbestimmungs-, Kommunikations-, medizinisches und Steuersystem
US7672645B2 (en) * 2006-06-15 2010-03-02 Bitwave Semiconductor, Inc. Programmable transmitter architecture for non-constant and constant envelope modulation
US7868819B2 (en) * 2007-09-07 2011-01-11 The Board Of Trustees Of The Leland Stanford Junior University Arrangements for satellite-based navigation and methods therefor
US20090086016A1 (en) 2007-09-27 2009-04-02 Wei Su Stereoscopic image display employing solid state light sources
US8044853B2 (en) 2007-12-20 2011-10-25 Qualcomm Incorporated Navigation receiver
US7961141B2 (en) * 2008-12-09 2011-06-14 Navcom Technology, Inc. Methods and systems to increase accuracy in the navigation of single frequency receivers
US8730925B2 (en) * 2009-04-09 2014-05-20 Motorola Mobility Llc Method and apparatus for generating reference signals for accurate time-difference of arrival estimation
US7948929B1 (en) * 2009-05-18 2011-05-24 Itt Manufacturing Enterprises, Inc. System for generating constant envelope simultaneous data and ranging waveform with anti-jam properties
US8830123B2 (en) * 2011-05-12 2014-09-09 Accord Software & Systems Pvt. Ltd. Satellite navigation system for optimal time to first fix using code and carrier diversity

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430213B1 (en) 1999-05-26 2002-08-06 The Aerospace Corporation Coherent adaptive subcarrier modulation method
US20020075907A1 (en) 2000-09-27 2002-06-20 Cangiani Gene L. Methods and apparatus for generating a constant-envelope composite transmission signal
US20060038716A1 (en) 2002-12-13 2006-02-23 Centre National D' Etudes Spatiales (C.N.E.S.) Method and device for generating a constant envelope navigation signal with four independent codes
US20110051783A1 (en) 2009-08-25 2011-03-03 Charles Robert Cahn Phase-Optimized Constant Envelope Transmission (POCET) Method, Apparatus And System
CN102209056A (zh) 2011-04-15 2011-10-05 华中科技大学 一种导航信号调制方法
CN102394850A (zh) * 2011-09-21 2012-03-28 清华大学 一种导航信号的调制方式及解调方法
CN102437985A (zh) * 2011-12-29 2012-05-02 中国人民解放军国防科学技术大学 一种双正交相移键控信号的调制方法和调制装置
CN102694569A (zh) * 2012-06-07 2012-09-26 清华大学 导航信号的恒包络复用方法、生成装置以及接收方法
CN103023598A (zh) * 2012-11-23 2013-04-03 清华大学 双频四分量扩频信号的恒包络复用方法、装置及接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2866400A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037448A (zh) * 2016-02-03 2017-08-11 清华大学 双频恒包络导航信号的生成方法和装置、接收方法和装置
CN107037448B (zh) * 2016-02-03 2019-10-15 清华大学 双频恒包络导航信号的生成方法和装置、接收方法和装置
CN111381265A (zh) * 2018-12-29 2020-07-07 泰斗微电子科技有限公司 一种定位解算方法、装置及卫星导航接收机
CN111381265B (zh) * 2018-12-29 2022-07-29 泰斗微电子科技有限公司 一种定位解算方法、装置及卫星导航接收机

Also Published As

Publication number Publication date
EP2866400B1 (en) 2019-05-22
AU2013271243A1 (en) 2015-01-29
CN104509052B (zh) 2017-10-03
CA2875900A1 (en) 2013-12-12
ZA201409535B (en) 2015-05-27
JP2015527563A (ja) 2015-09-17
KR20150024886A (ko) 2015-03-09
KR101595213B1 (ko) 2016-02-19
EP2866400A1 (en) 2015-04-29
CA2875900C (en) 2018-06-12
MY171170A (en) 2019-09-30
US9137081B2 (en) 2015-09-15
BR112014029949B1 (pt) 2019-12-24
IN2014DN11129A (zh) 2015-09-25
HK1204401A1 (zh) 2015-11-13
NZ703463A (en) 2016-03-31
US20150172084A1 (en) 2015-06-18
RU2579442C1 (ru) 2016-04-10
EP2866400A4 (en) 2016-03-09
JP5858511B2 (ja) 2016-02-10
CN102694569A (zh) 2012-09-26
BR112014029949A2 (pt) 2017-06-27
CN104509052A (zh) 2015-04-08
CN102694569B (zh) 2014-05-14
AU2013271243B2 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2013181932A1 (zh) 卫星导航信号及其生成方法、生成装置、接收方法和接收装置
RU2628529C2 (ru) Способ и устройство генерирования двухчастотного сигнала с постоянной огибающей, содержащего четыре расширяющих сигнала, и способ и устройство приема такого сигнала
JP4875072B2 (ja) 電力効率および帯域幅効率に優れた通信のためのマルチキャリア一定エンベロープ信号方式
JP2001028578A (ja) スペクトル拡散通信装置およびその方法
JP4978942B2 (ja) 無線通信システム
JP2012004801A (ja) 通信システム、受信装置、送信装置
JP5395223B1 (ja) 受信装置および受信方法
Wenli et al. Ultra-narrowband wireless communication technology based on QVMCK modulation
KR19990004246A (ko) 파이/4 qpsk 디지털 복조 방법 및 장치
JP2007282156A (ja) 無線中継装置
JPH08228168A (ja) スペクトラム拡散通信装置
JPH09223984A (ja) スペクトラム拡散通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14400506

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2875900

Country of ref document: CA

Ref document number: 2015515370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157000396

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014151751

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013271243

Country of ref document: AU

Date of ref document: 20130606

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014029949

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014029949

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141128