WO2013181926A1 - 一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用 - Google Patents

一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用 Download PDF

Info

Publication number
WO2013181926A1
WO2013181926A1 PCT/CN2013/000606 CN2013000606W WO2013181926A1 WO 2013181926 A1 WO2013181926 A1 WO 2013181926A1 CN 2013000606 W CN2013000606 W CN 2013000606W WO 2013181926 A1 WO2013181926 A1 WO 2013181926A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
phosphor
nano
solution
light
Prior art date
Application number
PCT/CN2013/000606
Other languages
English (en)
French (fr)
Inventor
钟海政
陈冰昆
邹炳锁
王美旭
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2013181926A1 publication Critical patent/WO2013181926A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • Wood invention relates to a package material containing non-rare earth nanocrystalline phosphor, preparation method and//: J, I Ding luminescence and illumination technology field .
  • 'j is compared to the hairpin. --: Level tube (LED) foot 'I'J about energy ⁇ potential of the same photo. 'j ⁇ ) t .1 ⁇ 2 i ; (WLED) via fj'Ll;'; £il , Chuan WLED glow 3 ⁇ 4 ⁇
  • the color of the WLED ⁇ '3 ⁇ 4 ⁇ '1 is divided into warm white light (2500 ⁇ ) -3800 :), iK light (3800K-6500 :), and cool white light (5600-10000K ⁇ ⁇ 10000 ⁇ to 1'.).
  • Ideal WLED ⁇ .l ready to be too light-like wide spectrum, people
  • H body nano-products are not rare earth elements, the color of the light is adjustable, the absorption is small, the light and heat stability is good, 3 ⁇ 4 ⁇ " ⁇ 1 ⁇ !! ⁇ .] 3 ⁇ 4 butyl thorium material CdSe, ⁇ -- conductive nano materials, Alivisatos developed the first ')' ⁇ ': I.HD Bulovic Study team I qe I.HD ship traveling on this, ⁇ towel ⁇ ,' ⁇ 1 ⁇
  • WLED also nj' to make blue (CdZnS), 3 ⁇ 4 (ZnSe/CdSe/ZnS core/shell/shell), red (CdSe/ZnS core/shell) luminescent nanocrystals into colloidal layer, to 1'
  • the mark is (0, 35, 0.41) and the 3 ⁇ 4 color index is 86.
  • 43 ⁇ 41 0 also ⁇ '
  • Banxi nano-powder phosphor materials such as copper-steel sulfur (Cu-In-S) and copper-indium-selenium (Cu-ln-Sc), foot 1 ⁇ : excellent photoelectric functional materials, mountains and The ten-member cable and the ⁇ j' adjustment characteristic of the light-emitting range have a very broad /, V: Sichuan prospect and market in the field of white LED. It has been reported in the prior art that the LED chip is an excitation light source, and the white indium-sulfur (Cu-In-S) nano-powder phosphor is used as a light-converting layer of white light, the copper-indium-sulfur (Cu-In-S) nanometer.
  • Cu-In-S copper-steel sulfur
  • Cu-ln-Sc copper-indium-selenium
  • the phosphor powder is limited to the yellow phosphor, and the obtained ll-:D color index is low, the color is small, the nj' tone is adjusted, and the luminescence is obtained; ⁇
  • the invention fails to prepare the base ⁇ C U -I n -Zn x for the prior art.
  • nanocrystalline phosphor is made of Cu-In-ZivE/ZnS nano-powder as a light conversion material, and is made of tantalum, epoxy resin, poly( 1 -based)-enic acid Hi ester ( ⁇ ) as encapsulation material, nj l Ding Baiguang LED ⁇ .
  • the second aspect of the present invention is to provide the packaging material containing the non-thin nanometer nanometer phosphor powder.
  • the encapsulating material is an encapsulating material commonly used in the field of LEDs; the red light and the green light are not thin Nana Yingying)) tt powder is a material for converting light to light;
  • UU:: ⁇ '' The amount of material of the copper-copper salt as described:: The material of the indium-indium salt is 88: 88 :: 11 ⁇ 11 :: 88 ;;
  • the substance of the salt salt: the sum of the sum is 1166:: 11 ⁇ 22:: 11 ::
  • the copper and copper salt described above is a nanometer nano crystal fluorescein powder technology technology, and the preparation of the nanometer product fluorescein powder is made by Chuanchuan.
  • the usual routine duties such as:: iodine iodization industry copper and copper, vinegar acetic acid industry copper copper or nitrite nitrate and so on. .
  • Indium-indium salt is a commonly used indium-indium salt for the use of nano-nano-crystal fluorescein powder technology. ,, for example:: or or indium nitrate indium nitrate. .
  • Sulfur and sulfur ⁇ is a conventional nanoalkane sulfur used for the nanometer nanometer product fluorescein powder technology technology to prepare the nanometer product fluorescent powder.
  • Sulfur it: ! , for example:: 1,4-Bu-2' alkyl thiol alcohol ((DDDDTT)) or or octyl thiol thiol alcohol. .
  • the acidity of the machine is used for the preparation of nano-meter products
  • the fluorescent material is used for the preparation of nano-meter products.
  • Octaenoene Chuanchuan acts as a solvent. .
  • the zinc salt, the long alkyl amine and the octadecene are mixed to obtain a cloudy mixed solution 2, and the mixed solution 2 is heated to 50 to 100 ° C and mixed for 30 minutes, and then the temperature is raised by 120 1 . 60 'C ' mixed solution 2 is changed to a clear source, and a zinc source is prepared;
  • the solvent is a ruthenium mixture of diphosphorylphosphine or dioctylphosphine or dibutylphosphonium and octadecene, a mixture of diphosphine and octadecene.
  • the substance of the zinc ⁇ material the substance of the long ⁇ 3 ⁇ 4 ⁇ mechanamine is 10: 1 ⁇ 0.25: 1 : FS ⁇ , ⁇ - - - the substance of the alkyl thiol:
  • the substance of the alkyl mercaptan in the first step the amount of the substance of the selenium source: the substance of the zinc source i'l'j !
  • the zinc salt is a nano-powder phosphor technology in the field of nanotechnology fluorescent powder to make Chuan's common ⁇ 'such as: ⁇ zinc acid, zinc stearate or ⁇ zinc silicate.
  • the alkane 3 ⁇ 4 oxime is a quinone alkaloid used in the preparation of nanometer phosphors in the field of nanocrystalline phosphors, such as: guanamine.
  • Step .. - system nanometer fluorescent material
  • the product is a colloidal solution 1 or 2; the product is a sputum solution 1 ⁇ , and a C 1 - Zn-Ii/ZnS nano-product )) material 1 1 'S is prepared, U
  • the pole piece solvent is a conventional cleaning electrode solvent for preparing a nanometer phosphor powder in the technical field of nanocrystalline phosphors, such as ⁇ .
  • the obtained Cu-In-Zn x -E/ZnS nano-product fluorescent material was dried at 40 to 70 ° C for 30 minutes to the nanocrystalline phosphor.
  • the nanometer phosphor powder is: the sum of 3 ⁇ 4 of zinc salt, steel and copper material is 100"/.
  • the Cu-In-ZrvSe/ZnS nano-powder phosphor prepared by the preparation of the material is 50% ⁇ 90% ,, I ⁇ . ⁇ > ⁇ ;
  • H)t is non-dilute.
  • the nano-product phosphor is prepared by the sum of the amounts of zinc salt, indium salt and copper salt material being 100 (1 ⁇ 4 i l., when the content of the zinc salt is 80 to 90%).
  • the encapsulating material is glue or ring resin -:
  • a method for preparing a seal material of a non-dilute ten nanometer phosphor according to the present invention the method of the method II:
  • the organic solvent is chloroform, toluene, benzene, oxime or chlorobenzene - -;
  • the non-rare ten. nanocrystalline phosphor is a red light, green light non-dilute ten nanometer fluorescent powder; the non-rare earth nano phosphor packaging material has a mass percentage of 5% to 80% ;
  • the solution is treated at 20 ⁇ 50 C, minus: Condition F for 10 ⁇ 60 min, to the encapsulating material containing the dilute nanometer phosphor according to the present invention; the negative k is small ⁇ ⁇ a large ⁇ k strong .
  • the i i ⁇ will be described as a non-rare-h nano-powder phosphor packaging material T-white LED:
  • the LED ⁇ "' is a patch, plug, human power or ⁇ strip LED:
  • the non-rare earth nano-powder phosphor is used for a patch, a ⁇ ' ⁇ ⁇ or a high power ⁇ LED ":, t3 ⁇ 4 material dripped into the groove of the center of the LED cup bowl 'bake at 120 ⁇ 150 °C for 0.5 ⁇ 3 hours''The phosphor powder is in the white 3 ⁇ 4 LED ⁇ j, V: Chuan;
  • the LBD cup bowl is a JV, ⁇ . plug or high-power LED cup bowl: -: a cup bowl h! ili heart-shaped groove, the bottom of the groove is backed by a blue or ultraviolet LED chip, cup bowl I'. iK negative pin.
  • the package material containing the non-thin ten nanometer phosphor powder is used, the l!j /ilib method:
  • the red light non-lean ten phosphor powder and the green non-rare earth phosphor powder encapsulating material are mixed and dissolved in chloroform to obtain a solution; the sum of the mass of the red and green non-rare earth phosphor powder accounts for 5 to 80% by mass of the encapsulating material.
  • nano-powder phosphor packaging material After the non-diluted I: nano-powder phosphor packaging material is evenly mixed, it is coated on the glass slide h,
  • the film is irradiated with a blue light source having a wavelength of 450 to 460 nm and a power of 10 mW, and the composite film is produced by IH)t.
  • the non-thin seven-crystal phosphor is in the white LED, /: l1j, the LED is the input ' ':
  • the coating material containing non-dilute ten. nanocrystalline phosphors is preferred, 3 ⁇ 4 i!J iii Bu - /;
  • the red light l thin ten nanometer phosphor powder encapsulation material is mixed and dissolved in a solvent to obtain a solution 1: ⁇ thin i the quality of the light encapsulating material: ⁇ ' ⁇ ratio is 5 ⁇ 8 ⁇ %;
  • the green light non-dilute ten nanometer phosphor powder is mixed with the encapsulating material to dissolve the solvent of the solution, and the solution 2 is obtained: the non-thin light h phosphor powder has the highest mass ratio of the package material of 5 to 80% ;
  • Red light non-dilute h nanometer phosphor powder quality green light non-dilute ten. nanocrystalline phosphor quality: 20 ⁇ 500;
  • the package material 1 of the H-thin nano-powder phosphor powder is stirred and hooked, and coated on a glass slide.
  • nano-powder phosphor powder is uniformly mixed, and then coated on a glass slide to form a film, and then removed to obtain a film 2:
  • Membrane 1 and let 2 are combined to obtain a composite strand, and a blue light source with a wavelength of 450-460 nm and a power of 10 mW to 3 W is irradiated to the composite film to generate tl light, thereby realizing the sealing material of the non-dilute ten-nano fluorescent powder.
  • a blue light source with a wavelength of 450-460 nm and a power of 10 mW to 3 W is irradiated to the composite film to generate tl light, thereby realizing the sealing material of the non-dilute ten-nano fluorescent powder.
  • a blue light source with a wavelength of 450-460 nm and a power of 10 mW to 3 W is irradiated to the composite film to generate tl light, thereby realizing the sealing material of the non-dilute ten-nano fluorescent powder.
  • the encapsulation material of the crucible is a transparent high molecular material, preferably PMMA. Benefit effect
  • Wood hair I provides a kind of encapsulating material containing non-thin ten-nano fluorescent powder, the light powder is small and small, and the smallness is small:
  • nano-powder phosphors U-Hui said, 1 ⁇ 2 will be I-lean-Cu-In-Zn x -S/ ZnS nano-powder powder 1 i: stock, epoxy resin or enamel material mixture ⁇ : curing, the non-dilute ten-nano-crystal phosphor nj solvent solvent is obtained by hooking the light powder glue, serving "thin ten. fluorescence
  • the powder can be added to the solution, i.e., the small solution] water and the organic solvent, and only the material can be physically mixed and then dispensed, and the phosphor glue and the encapsulating material are not uniform;
  • the wood invention provides a package material containing non-rare earth nanocrystalline luminescent powder in white LED ), ',,: Chuan' / Sichuan patch, : Jin, high power and film plastic LED, through adjustment The ratio of green light, red light nano product ⁇ ⁇ powder, the current color temperature nJ tone; the obtained LED j fi is more than 1 ⁇ 2 color number, color temperature can be ⁇ , hair j & frh, good thermal stability, life K:, Low energy consumption
  • Non-dilute ten-nano phosphors prepared by fine 2 l' l )t LED spectrum m 3 is the non-dilute ten nanometer fluorescent powder white obtained by the example 3, t LED spectrum; m 4 is the non-dilute ten nanometer fluorescent powder white LED prepared by the examples 4, 5 and 6. Color chart
  • 1*1 5 is a non-dilute ten-nano-product phosphor prepared by the method of Example 7.
  • Example 7 the nano-powder phosphor powder ⁇ ''" ' 201 1 10259596.3, Ming ⁇ called "- kinds of nano-crystalline phosphors" invention t Seven-nano fluorescent powder and t non-dilute nano-powder fluorescent powder: wherein Example 66, red non-dilute phosphor is the nanocrystalline phosphor prepared by the sputum in the sputum, green non-rare rare earth fluorescence The powder was the nano-product phosphor obtained in Example 7.
  • the obtained colloidal solution is added to 100 mL of centrifugation and ⁇ tube ⁇ , into the ⁇ , the substrate 1 and I: the medulla 1; 2 remove the bottom ⁇ I 1; ⁇ - to the ⁇ ⁇ 1 1 3 ml .
  • Step 4 preparing nanometer phosphor
  • the second step of the preparation process of the red light non-small nanometer phosphor powder is the same as the red light non-small nanometer phosphor powder.
  • Step 4 preparing nanometer phosphor
  • Example 7 ⁇ red light is not thin.
  • the phosphor is the nano-product phosphor prepared by the above-mentioned Example 10, and the green light is not thin.
  • the phosphor is the fluorescence of the nano-product obtained in the seventh embodiment. powder. Red light is not dilute I:
  • the preparation process of nanometer phosphor powder is as follows:
  • the liquid was separated by centrifugation to obtain the substrate 3 and the supernatant 3; 4 pour: I..
  • the LED cup bowl is a patch, 1'1: plug or human power LKD cup bowl:: bowl cup Ulil towel heart groove, I 11 ! W. f blue ultraviolet LED chip at the bottom of the groove, cup bowl I; Also ⁇ negative pin.
  • Example 1 Example 1
  • U rest such as:
  • Dissolve ⁇ diluted I nanometer phosphor powder in the grade imitation ⁇ , i add the shot material, and pass the glass rod into the glutinous stirrer; stir the rate to 2 ⁇ 3 I roll
  • the solution 3 ⁇ 4 ⁇ ' ⁇ 'one ten dry ⁇ , at 30V ilk ⁇ - ⁇ - Chuanchuan 1 60min, to the water containing the I buck h nano-powder phosphor packaging material: after defoaming W ⁇ , If the solution overflows, H discharge prevents overflow; after defoaming, remove the encapsulating material containing non-rare earth nanocrystalline phosphor, and imum is slowly stirred in the direction of 2 ⁇ 3 sec/min I for 5 minutes, avoiding mixing when stirring. bubble.
  • Step 2 dispensing
  • the encapsulating material containing the non-dilute ten-nano-crystal phosphor is transferred into a 5 mL syringe, and small bubbles are generated when pouring: an inlet pipe is installed to the syringe, and a force is applied to the intake pipe so that the non-thin ten-pass in the syringe ⁇
  • the product of the fluorescent powder 3 ⁇ 4 powder is slowly dropped into the P'l slot of the LED cup bowl, ffD: the packaging material of the powdered material is ⁇ -, state ('jl 1 '! ⁇ ', 11 !! I '- Qi), I.1-D ⁇ ⁇ ⁇ '''''''''''''''''''''''''''''''''''''''''''''''''''''''''
  • the LED integrated device of the assimilation 1 is placed in a dry box, and baked at 120 ° C for 3 hours to realize the fluorescent powder of the thin yellow nano solder in the white LED, the LHD is a patch.
  • Type LED The non-small nano-crystal phosphor white LED is tested.
  • test steps are as follows: ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Mode; put the LED at the entrance of the integrating sphere, the negative pole of the LED and the precision!, ⁇ ', i'L flow steady: the source is connected, and the iKl'J flow is applied to the LKD 20mA. Detection and measurement: ) ' ⁇ : ⁇ :. : Software ⁇ .
  • Nanocrystalline phosphor white light LED spectrum nj ⁇ out the characteristic peaks of the LED at 450nm (blue light region), 540nm (green light region), 635nm (red light region), indicating that the emitted light is composed of three colors: software analysis to obtain CIE chromaticity
  • the coordinates are (0.3122, 0.3850), the color index is 92, and the color temperature is 3770K, which proves that the light emitted by the LED is in the warm white area.
  • the non-rare earth nanocrystalline phosphor is dissolved in the middle benzoquinone, and the encapsulating material is added to the encapsulating material, and the glass rod is used for the injection of W: the stirring rate is 2 to 3 cabinets/second, and the mixture is stirred clockwise in one direction to avoid excessively bubbling the bovine , stirring 1 ⁇ ⁇ - 15 min to get a solution;
  • the encapsulating material is epoxy resin GL001A and epoxy resin GL001B, epoxy resin GL001 A hidden: The quality of the non-thin h nano-powder phosphor powder encapsulation material of ring 3 ⁇ 4 resin GL001B ⁇ : 1'1 points 3 ⁇ 4 is 20%
  • Step 2 dispensing
  • the encapsulating material containing the non-thin ten-nano fluorescent powder is transferred into a 5 mL syringe, and can be foamed when poured: the inlet tube is installed into the syringe, and the fk force is applied to the inlet tube, so that the syringe is not diluted.
  • Na The material of the phosphor is slowly dripped: l Insert the LHD cup bowl into the gutter of the heart, I'lD II.
  • the package material of the nano-powder phosphor powder is in a flat cup state in the cup bowl, and it is obtained.
  • 1 LED emergency device fl ::
  • Silica gel Ol: 6370HF A and silica gel OE 6370HF B were used as potting gel, and the two were mixed at a ratio of 1:1, dissolved in chloroform, stirred with a glass rod for 10 min, and then treated at 50 ° C under negative pressure. Minutes, after removing the solvent and defoaming, use a glass rod to slowly drain: in the plastic box of the glue filling machine, discharge a 'packing gel, ⁇ . to the needle spit out the glue ⁇ ⁇ [bubble, quickly insert LH1] The cup is filled into the irffi seal, and the inside of the gel is small ⁇ "'.
  • h phosphor white LED 1 ⁇ 213 ⁇ 4; nj U; the LED in the 450nm (blue light region), 546nm (green region), 640nm (red) region, several characteristic peaks, indicating that the emitted light consists of two colors:
  • the software analysis shows that the CIE chromaticity coordinates are (0.333, 0.344), the W. color index is 89.7, and the color temperature is 5568K, indicating that the light emitted by the LED is in the positive white region.
  • the encapsulating material containing the non-thin seven-nano-type phosphor powder, the preparation method and the U-body step are as follows:
  • the solution was placed in a vacuum oven, and the encapsulating material containing the non-dilute ten-nanocrystal phosphor was obtained at 3 (TC, i conditional conditions for 30 min: 1 ⁇ defoaming process, such as solution overflow, ⁇ ' (to prevent it from overflowing; after defoaming is completed, remove the encapsulating material containing non-small.
  • Nanocrystalline phosphor, and the glass rod is slowly stirred in the direction of '2-3 ⁇ /
  • Step 4 Move the packaging material of the M-thin nano-powder phosphor powder into the 5 mL needle, and pour it into the small-sized j-product/[bubble; install the needle into the syringe, apply it to the force], force the syringe
  • the encapsulating material containing non-thin nano-nano fluorescent powder is slowly dropped into the groove of the high-power LED cup bowl, ⁇ ' ⁇ : fMI: thin h nano-product fluorescing) ' ⁇ powder packaging material in cup bowl ⁇ ⁇
  • the state of the cup, the LED device before the W is obtained: Step 4
  • ⁇ Oli 6370HF A and silica gel OE 6370HF B as the irrigation ":, t-gel, the two according to 1:1 ' ⁇ ; 1;: ratio 3 ⁇ 4, dissolved in diterpene benzoquinone glass with 10 min , /j: 40 ° C, negative ik Bu 1 'i, t, remove the solvent and defoaming, ⁇ no bubble when.
  • U body is like a b. ⁇ Slurry solution preparation
  • the red non-rare earth nanocrystalline phosphor is mixed with the encapsulating material PMMA and dissolved in chloroform to obtain a solution 1; the red light is not thin.
  • the quality of the nanometer phosphor powder ⁇ The quality of the encapsulating material is 5%:
  • the quality of the green non-thin-k nano-ply phosphors is 5%
  • the solution 1 and the solution 2 are respectively allowed to stand at room temperature for 30 minutes at room temperature to obtain a package material 1 containing non-dilute seven-nano-powder powder and a package material 2 containing non-dilute ten-nano-crystal phosphors;
  • the encapsulating material 1 containing the non-thin ten nanometer phosphor powder is evenly mixed, it is coated on the glass slide h to form a strand, and then removed and then removed to obtain a thin stripping 1;
  • the " ⁇ non-thin h nano-powder phosphor powder encapsulation material 2 is evenly mixed, coated on the glass slide h to take off, and then simmered after a thousand to obtain a puffer 2;
  • Step four aponeurosis and photoexcitation
  • the thin strand 1 and the film 2 are stacked to obtain a composite strip, and the composite film is irradiated with a blue light source having a wavelength of 450 to 460 nm and a power of 1 W to produce white light, and the non-dilute ten nanocrystalline phosphor is now in the white LED.
  • the LED is a double film type LED o
  • the encapsulating material, preparation method and application of the non-thin ten nanometer phosphor powder according to the invention are as follows:
  • the red non-small nanometer phosphor powder is mixed with the encapsulating material PMMA and dissolved in chloroform to obtain a solution 1:
  • the quality of the red-light non-thin nano-product phosphor powder The encapsulation material has a mass ratio of 80%:
  • Solution 1 and solution 2 respectively: temperature, negative: I, at 30 min, to a package material containing non-thin tenth nano-products powder 1 and an armor material containing non-dilute ten-nano-type phosphor powder 2;
  • the non-rare earth nanocrystalline phosphor-containing encapsulating material 1 is uniformly stirred, it is coated on a glass slide h to form a strand, 14 is dried and then removed to obtain a thin stripping 1;
  • the composite K is obtained, and the wave K is 450 ⁇ 460nm, and the power is 1 W.
  • the light source is irradiated to the composite light to realize the non-dilute ten nanometer phosphor in the dawn LH ⁇ 1 '
  • the LED photoelectric color comprehensive test system was used to detect the LED, and the small non-dilute ten nano-crystal phosphor white LED color coordinate chart of Figure 4 was obtained; the CIE chromaticity coordinates were obtained (0.4696, 0.4173), and the software analysis was obtained.
  • the 1 ⁇ 2 color index is 86 and the color temperature is 2500K, which proves that the light emitted by the LED is in the warm I'.l
  • the sum of the red and green non-lean ten phosphors is 40% by mass of the encapsulating material.
  • the non-thin h nano-powder phosphor packaging material is evenly mixed / ⁇ , coated on a glass slide ⁇ ⁇ .
  • is a 450 ⁇ 460nm, power 10 mW light source illuminating the composite film to produce 1:1 light, 3 ⁇ 4 the non-rare earth nanocrystalline phosphor in the white LED ⁇ ⁇ , the LED is a single
  • the LED is detected, and the chromaticity coordinates of the small ⁇ - ⁇ ⁇ nano fluorescent powder white LED of Figure 4 are the coordinates of the ⁇ n n C chromaticity coordinates (0.3704, 0.3738) ), the software analysis obtained the color index of 84, the color is 4248 K, which proves that the LED is ⁇ ',
  • the encapsulating material containing the non-rare earth nanocrystalline phosphor according to the present invention, the preparation method and the method 1), the U body is as follows:
  • Nanocrystalline phosphors to dissolve ⁇ ⁇ ⁇ , and then add packaging materials, glass rod JiHr ⁇ ⁇ rate is 2 ⁇ 3 ⁇ / sec,
  • Cu-In-Se/ZnS red light non-dilute ten nanometer fluorescent powder quality Cu-In-S/ZnS green light non-dilute I: nano powder quality 3 ⁇ 4 1: 400:
  • the solution is placed in a vacuum drying oven, at 30 ° C, minus 1;: under conditions of 30 min, to obtain the encapsulating material of the non-dilute h nano-powder phosphor described herein; defoaming, such as Solution overflow, 1' '[ Lhji: overflow; defoaming ⁇ , take out the encapsulation material containing non-rare earth nanocrystalline phosphor, and stir the glass in a direction of 2-3 seconds in a slow direction for 5 minutes. Avoid production of foam.
  • the package material of the non-thin h nanometer phosphor powder is transferred into a 5 mL syringe ⁇ , and the pour is small nj.
  • the production is made [bubble; the inlet tube is installed with an inlet pipe, and the pressure is applied to the inlet to make the syringe ⁇
  • the packaging material containing the non-thin ten nanometer phosphor powder is slowly dropped into the groove of the high-power LED cup bowl, straight ⁇ H ⁇ thin
  • the encapsulation material of the ten nanocrystalline phosphor powder is in a flat cup state in the cup bowl, and the whole LED device before deuteration is obtained: Step 4, Assimilation
  • Example 1 The same test method, applying the determined il U flow 1, J, J 350mA, LHD for detection, and obtaining the non-dilute ten nanometer phosphor powder of the cabinet _'
  • the software analysis shows that the CIE chromaticity coordinates are (0.3144, 0.2549), the color index is 82, and the color temperature is 7591.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用,属于发光与照明技术领域。所述含非稀土纳米晶荧光粉的封装材料由红光、绿光非稀土纳米晶荧光粉和封装材料组成;本发明还提供了所述含非稀土纳米晶荧光粉的封装材料的制备方法,具体为将非稀土纳米晶荧光粉溶解于有机溶剂中,再经过去除溶剂与脱泡制备得到;所述含非稀土纳米晶荧光粉的封装材料可用于白光LED,具体为贴片、直插、大功率或薄膜型白光LED;所述非稀土纳米晶荧光粉可溶于有机溶剂得到均匀荧光粉胶,克服了稀土荧光粉不能实现溶液加工的缺陷;得到的LED具有较高的显色指数、色温可调、发光亮度高。

Description

-种含非稀土纳米晶荧光粉的封装材料、 制备方法和应用 技术领域 木发明涉及 -种含非稀土纳米晶荧光粉的封装材料、 制备方法和 、/: J, I 丁发光与照明技术领域。
背景技术
'j 统照叫相比, 发) . --:级管 (LED)足 ' I'J约能源 ίί潜力的同休照叫. 'j ^ΓΓ ) t .½ i;(WLED) 经 fj' ll; ' ;£il 、 川
Figure imgf000003_0001
WLED 发光 ¾^的^
I;小照叫委. (^会 (CIE)色品^标, W色^数, 色 和光效。 C1H 色 川来描述) t被人服感知的精确颜色, (0.33,0.33)是现想白光的 CIE坐标。 ^H ^ 数 映丫照明休复现颜色的能力, 通常取 ίΐϊ 0到 100之间, 色指数越人说 叫发) t越接近「_1光。 色温足光在 ¾ -温度 τ h"所 现出的颜色与黑休在某 - iii Τ(,下的颜色相同吋, 将!!体此时的温度 Τ„定义为光的色温。 WLED的色 ^ίΐ' ¾Π'1分为暖白光 (2500Κ-3800 :)、 iK 光 (3800K-6500 :)、和冷白光 (5600-10000K Ιλ 10000Κ以 1'.)。 理想的 WLED^.l备像太 光 -样的较宽光谱, 人
然 nil 人:多敉 WLF.D的 ¾^ 像荧光灯 -mmMWt] )t ,
' :现 Ι.Ί ti 'iv; I IJ的 JJU< ^将 J½光^光粉 Y,Ais012:C.V"(YAG: Ce) ' ',i : ( '/
450-470 nm)lnGa 发光」.极 ;芯 j Ί 合,' '':/Ι. N ) 。此类 粉 Π )t I.FD 的缺点在 J.. : 色指数不^, 很难实现 lljg白光。绿光荧光粉(例如: SrGa2S4: Γ.υ ) 和 光荧光粉 (ί列如: (Sr,Ca)S: Eu) 的出现弥补」 '中.粉 |Ί )t LED的小足. fll^ it! Γ红光荧) 粉荧光 子产率还较低,使得整个 光 LL-D亮度不高、效率降低 隨. ¾丌发新 荧光粉。 与以 YAG:Ce 为例的传统稀土荧光粉不问. H 体纳米品不 ^稀土元素, 发光颜色可调, 吸收小, 光与热稳定性好, ¾ 川 Γ·「ώ1体!! 明的]¾钍材料。 基丁 CdSe 、Γ--导体纳米品, Alivisatos率先研发出 ' ) 'ι': I.HD Bulovic研究 I队乂对这种 I.HD 舰行 进, λ巾 ίύ,'Ή1^
: : j' id
Figure imgf000003_0002
儿^ :^光' 4 纳^品½照
' i々' ii, 红、 ', ·:) 卜 Ί光, 通过 Λ变^种 ^休纳^品的川^ 比' 确调控发.) )t^。 例如, 将发蓝光、 绿光、 红光的 CdSc/ZnS (核 /壳) 纳米 i 制成 WLED, 这种 i[i致发光器件寿命很长。 WLED还 nj'以将蓝 (CdZnS合 ), ¾(ZnSe/CdSe/ZnS核 /壳 /壳)、 红 (CdSe/ZnS核 /壳)发光纳米晶制成胶体层, 到 1'|勺 WLED色品 标为 (0,35,0.41), ¾色指数为 86。 这种国内外专利所报道的量 /-人''.|4¾1 0也都^'|'在11 1、 III-V族景子点, 例 (ill: CdSe/ZnS、 CdSe/ZnSe. r(lSc,z('(lS、 ZnSe/ZnS, InP/ZnS '' 成多' A: '':, 但此类、 休纳米 ^:' t粉人^) 限在 A镉的材料, III j誦 忭, 限制 ί U:在白光 LBD屮的 、': 川 .)外也^掺杂量子点的报道, 例如: Mn:ZnSe, Cu: CdS等, 但卜.述小^ 镉的搽 ^量于点其木身稳定性还未解决, 此在白光 LED领域的应用受到限制..
/t半 休纳米品荧光粉材料, 如铜钢硫 (Cu-In-S) 和铜铟硒 (Cu-ln-Sc) , 足 1·:能优异的光电功能材料, 山于具冇不含稀十元索以及发光范围 π j'调 特点, 在白光 LED领域中具有非常广阔的/、 V:川前景与市场。 现有技术中已用 ) LED芯片为激发光源, 以锏铟硫(Cu-In-S)纳米品荧光粉为光转化层的白光 的报道, 所述铜铟硫 (Cu-In-S) 纳米品荧光粉仅限于黄色荧光粉, 所得 l.l-:D 色指数低、 色^小 nj'调、 发光'; ^ίΐ 发明内容 针对现有技术未能制备出基亍 CU-In-Znx-F7ZnS核 结构半导休纳米品荧光 扮 ί Ι光 LED的缺陷, 木发明的 u的之 在 τ·捉供- -种 Α非.稀上纳米品荧 粉的 装材料, 所述含非稀土纳米晶荧光粉的封装材料以 Cu-In-ZivE/ZnS纳米 )粉为光转化材料, 以砘胶、 环氧树脂、 聚 Π1基―内烯酸 Hi酯 (ΡΜΜΑ) 为封装 材料, nj l丁白光 LED屮。
本发明的 I I的之二在于提供所述含非稀十.纳米品荧光粉的封装材料的制各
^发叫的 11的之 -:在 n供所述 1卜稀 I纳术品 )t粉的封装材料 tV:i"l ) l.HD屮 川
水发明的 11的通过卜.述技术方案' '现。
-种含 稀土纳米晶荧光粉的封装材料, 所述含非稀七纳米品荧光粉的 、† 材料山红光、 绿光非稀土纳米晶荧光粉和封装材料绀成; 红光非稀土纳米 光粉的质」 ¾: 绿光非稀土纳米晶荧光粉的质量 =1:20^500;
所述封装材料为 LED领域中通常使用的封装材料; 所述红光、 绿光非稀上 纳纳 荧荧 ))tt粉粉为为光光转转化化材材料料;;
::巾巾,, 所所述述红红光光、、 绿绿光光非非稀稀土土纳纳米米品品荧荧光光粉粉为为 CCuu--IInn--ZZnnxx--EE//ZZnnSS纳纳米米品品荧荧光光 粉粉,, 来来 ||'' ||屮屮请请 为为 220011 111100225599559966..33,, 发发明明名名称称为为 "" 种种纳纳米米晶晶荧荧光光粉粉"" 的的发发明明 ''、、''利利屮屮^^:: 所所述述纳纳米米品品荧荧光光粉粉制制 法法如如 ::
^^骤骤 ··、、 制制 反反 ii源源
将将锏锏 ¾¾、、钢钢盐盐、、烷烷¾¾硫硫醇醇和和十十八八烯烯混混合合 到到混混合合溶溶液液 11,,在在隔隔绝绝 状状态态卜卜:: 将将¾¾合合溶溶液液 11加加热热到到 110000〜〜112200°°CC并并混混合合 3300分分钟钟,, 然然后后加加入入长长烷烷基基 机机酸酸,, ΐΐ\\:: IIWWii绝绝氧氧气气状状态态下下加加热热到到 110000〜〜112200 直直.. ::溶溶解解后后,, 升升高高温温度度至至 220000〜〜223300°°CC,, ''ΙΙχχίί温温 ίί»» 3300分分钟钟'' 商商 .. ::出出现现沉沉淀淀之之 停停止止反反应应,, 得得到到反反 ii、、VV::源源;;
UU::屮屮'' 所所述述铜铜盐盐的的物物质质的的量量 :: 铟铟盐盐的的物物质质的的 ΜΜ为为 88 :: 11〜〜11 :: 88 ;;
EE==SS时时:: 烷烷^^硫硫醇醇和和长长烷烷基基有有机机酸酸的的物物质质的的最最之之和和 :: 铜铜盐盐和和铟铟盐盐的的物物质质 的的 ::之之和和为为 1166:: 11〜〜22:: 11 ::
、、""ii HH==SSee llll、、jj.. :: 炕炕 ffiffi硫硫醉醉和和长长烷烷基基冇冇机机酸酸的的物物质质的的 ^^之之和和 :: 铜铜盐盐和和铟铟盐盐的的物物 的的 之之和和为为 88::卜卜 22:: 11 ;;
11ΙΙ ΨΨ ,, 所所述述铜铜盐盐为为纳纳米米晶晶荧荧光光粉粉技技术术领领域域制制备备纳纳米米品品荧荧光光粉粉所所使使川川的的常常规规 職職,, 如如:: 碘碘化化业业铜铜、、 醋醋酸酸业业铜铜或或硝硝酸酸锏锏等等。。
铟铟盐盐为为纳纳米米晶晶荧荧光光粉粉技技术术领领域域制制各各纳纳米米品品荧荧光光粉粉所所使使用用的的常常规规铟铟盐盐,, 如如:: 或或硝硝酸酸铟铟 。。
^^ 硫硫 ^^为为纳纳米米品品荧荧光光粉粉技技术术领领域域制制备备纳纳米米品品荧荧光光粉粉所所使使用用的的常常规规烷烷 硫硫 it:!,, 如如:: 十卜-二二'^烷基基硫硫醇醇 (( DDDDTT)) 或或辛辛基基硫硫醇醇 。。
冇冇机机酸酸为为纳纳米米品品荧荧光光粉粉技技术术领领域域制制备备纳纳米米品品荧荧光光粉粉所所使使用用的的常常觇觇 KΚ
Figure imgf000005_0001
八八烯烯川川作作溶溶剂剂。。
^骤 -、 制各胶体溶液
将锌盐、长烷基 ^机胺和十八烯混合得到浑浊的混合溶液 2, 在隔绝 ' 状 卜, 将混合溶液 2加热到 50〜100°C并混合 30分钟, 然后升高温度 120 1 60 'C ' 混合溶液 2变澄淸, 制备得到锌源;
"1 1--S IN' : 将所述锌源加入到歩骤 -制备得到的反)、 源屮, 在 200〜230Γ 'Ι·Μ ¾ )、 (0.5〜3小吋, 制备得到胶体溶液 1;
L E=Se \Π: 将硒粉溶解到溶剂中制备得到硒源, 将硒源加入到步骤一制^ i 到的反 v:源屮, 在 i 80〜23(TC†ii 反 、 ιΊ: 、:!Ι',现沉 之前 . i.h反^:. II Ij 休溶液 2 : 将所述锌源加入到胶体溶液 2屮, Λ; 200〜230°C恒温反)、 0.5 - 3小时. 制备得到胶体溶液 3。
j!:中, 所述溶剂为三 Γ基膦或二辛基膦或二丁¾膦和十八烯的浞合液 二 膦和十八烯混合液。
iC' i ' , 所述锌 ^的物质的 f : 长垸¾ ^机胺的物质的^为 10 : 1〜0.25: 1 : F-S吋, ^骤- -中烷基硫醇的物质的虽 : 锌源的物质的量为 1: 5〜1: 1 K=Se 吋, 歩骤一中烷基硫醇的物质的景 : 硒源的物质的量 : 锌源的物质 i'l'j !|!: ¾ 1: 0.5〜2: 1〜5。
il- ' K 所述锌盐为纳米品荧光粉技术领域制 纳术 荧光粉所使川的常觇 ' 如: ^酸锌、 硬脂酸锌或 ^原酸锌 。
烷¾冇机胺为纳米晶荧光粉技术领域制备纳米品荧光粉所使用的^规 κ 烷^冇机胺, 如: 汕胺等。
「 烯川作溶剂。
骤 .. -:、 制^纳米品荧光材料
将歩 '-得到的产物 U]极性溶剂进行洁洗, 通过离心 u降 n到
Cu-ln-Zn,-E/ZnS纳米品荧光材料;
所述产物为胶体溶液 1 或 2; 所述产物为胶休溶液 1 吋, 制备 ί'、ί.到的 C u-ln-Zn -Ii/ZnS纳米品荧)t材料 11 '的 S, U|J得到 Cu-ln-Znx-S/ZnS纳米 ιΊ,Ί ': k )'〔: 付抖; 所述产物为胶体溶液 3时, 制备 到的 Cu-In-ZivE/ZnS纳米品^ ) M 料屮的 E=Se, 即得到 Cu-In- Znx-Se /ZnS纳米品荧光材料。
所述极件溶剂为纳米晶荧光粉技术领域制备纳米品荧光粉的常规清洗极忭 溶剂, 如屮^成 。
所述 洗J、、J纳米品荧光粉技术领域制 fr纳米品荧 ) 粉的常规淸洗技术 '
^骤四、 制备纳米晶荧光粉
将^骤 -得到的 Cu-In-Znx-E/ZnS 纳米品荧光材料在 40〜70'C下: 卜燥 30分钟, 到所述纳米晶荧光粉。
光非稀十.纳米品荧光粉为:以锌盐、钢 和铜 物质的 ¾之和为 100 "/。 U ·, 梓盐的物质的 30〜50%时, 制各得到的 Cu- Ιη-Ζη、- S/ZnS纳米品荧)1 C粉, 屮, 0; 或以锌盐、 铟盐和铜盐物质的 之和为 100 %计, Zn Cu、 ίη、 η 素物质的¾为 50%〜90%吋, 制备得到的 Cu-In-ZrvSe/ZnS纳米品荧光粉, I 屮. \ >β;
H )t非稀十.纳米品荧光粉为-以锌盐、铟盐和铜盐物质的量之和为 100(¼ i l., 锌盐的物质的 为 80〜90%时, 制备得到的 Cu-In-ZivS/ZnS纳米晶荧光粉' 屮' x>0。
优选封装材料为 胶或环 树脂之 -:
种本发明所述的 非稀十纳米品荧光粉的封¾材料的制备 法, 所述 法歩骤 II :
歩骤一、 配制溶液
将非稀十.纳米晶荧光粉溶解于冇机溶剂中,再加入封装材料搅拌 10- 15 min, 到溶液; 冇机溶剂的川: ¾为将非稀 I:纳米品荧光粉溶解为 '(¾;
所述有机溶剂为氯仿、 屮苯、 」.屮苯、 ιΚ己烷或氯苯之 - -;
所述非稀十.纳米晶荧光粉为红光、 绿光非稀十纳米品荧光粉; 非稀土纳米 荧光粉 封装材料的质量百分数为 5%〜80%;
^骤 -、 Α除溶剂与脱泡
将溶液在 20〜50 C,负 :条件 F处理 10〜60min, W到本发明所述的含 稀卜. 纳米品荧光粉的封装材料; 所述负 k为小 Γ ·个大 的 ί k强。
优选对于色温在 2500K〜3800K的暖白 域白光 LED, 歩骤- '中红) 非稀 I·.纳^品荧光粉的质¾: 绿光非稀十纳米品荧光粉的质量 =1 :20~100; 红色和绿 k纳米品荧光粉 Λ封装材料的质 ift ι分数 10%〜50%;
优选对子色温在 3800Κ〜6500Κ的止白区域白光 LED, 步骤-一中红光非稀 h纳米品荧光粉的质最: 绿光非稀土纳米晶荧光粉的质: ¾=1: 100-300; 红色和 色非稀 h纳米晶荧光粉占封装材料的质量 ί'Ι分数为 10%〜50%;
优选对 色温在 6500Κ〜10000Κ以及 10000 以 I·的冷白区 ± 白光 L D , 光非稀 h纳米品荧光粉的 H 绿光非稀 h纳米品 H粉的质 S= l : 300〜500: 红色和绿色非稀土纳米晶荧光粉占封装材料的质量 I'l分数为 10%〜50%;
-种本发明所述的含非稀土纳米品荧光粉的封装材料的应用, 所述应 i i ^ 将听述 A非稀 -h纳米品荧光粉的封装材料川 T-白光 LED:
所述 LED π」'为贴片、 插、 人功率或^脱 光 LED:
优选对于贴片、 Ι'ί插或大功率 ^臼光 LED, 将所述含非稀土纳米品荧光粉 的」: ,t¾材料滴入 LED杯碗中心的凹槽内' 在 120〜150°C下烘烤 0.5~3小时' ' 现所述荧光粉胶在白 ¾ LED屮的 j、V:川;
所述 LBD杯碗为贴 JV、 ίϊ.插或大功率 LED杯碗: -:种杯碗 h !ili屮心均 槽, 槽底部背冇蓝光或紫外 LED芯片, 杯碗 I'.还设有 iK负极引脚。 优选、 'Ί所述含非稀十纳米品荧光粉的封装材料川十 铋膜 LED时, l !j /ili卜 .法:
' ' - ·、 溶液配制
将红光非稀十荧光粉、 绿光非稀土荧光粉封装材料混合后溶于氯仿得到溶 液; 红、 绿光非稀土荧光粉的质量之和占封装材料的质量百分比为 5〜80%。
红光非稀十荧光粉的质量: 绿光非稀十荧光粉的质量 ==1 :20〜500:
骤 -、 去除溶剂与脱泡
将溶液」·: 20〜50"C、 负压条件卜处 ¾ I 0~60min, 到含非稀十纳米 ) 粉的射装材料:
'p -:、 ^膜制各
将 非稀 I:纳米品荧光粉的封装材料搅拌均匀后, 涂覆在载玻片 h成脱,
ΙΊ然 iiv:卜后取卜得到 ^脱;
^骤四、 ^股 合与光激发
将薄膜用波长为 450〜460nm、功率为 10 mW的蓝光源照射 ^复合薄膜产 IH )t , 现所述非稀七纳米晶荧光粉在白光 LED屮的 、/: l1j,所述 LED为輸' ': 优选 Ί所述含非稀十.纳米晶荧光粉的射装材料川 r LED时, ¾ i!J iii卜- /;法:
步骤 、 配制溶液
将红光 l 稀十纳米品荧光粉 封装材料混合后溶 仃机溶剂, 得到溶液 1: κιμ稀 i 光粉的质 封装材料的质: ι'ί分比为 5〜8ο%;
将绿光非稀十纳米品荧光粉与封装材料混合后溶丁 W机溶剂, 得到溶液 2: 光非稀" h荧光粉的质最占封装材料的质 分比为 5〜80%;
红光非稀 h纳米品荧光粉的质景: 绿光非稀十.纳米晶荧光粉的质 : 20〜500;
.骤- - -、 去除溶剂与脱泡 将溶液 1、 溶液 2分别在 20~50°C、 负)k卜 处理 10〜60min , 翻 HI 稀十.纳 品荧) 粉的封装材料 1和t非稀十纳米品荧光粉的封装材料 2:
骤二、 ^膜制^
将 H 稀 h纳米品荧光粉的封装材料 1搅拌均勾后, 涂锼在载玻片
Figure imgf000009_0001
M然^十后取卜'得到 膜 1;
将^非稀十.纳米品荧光粉的封装材料 2搅拌均匀后, 涂覆在载玻片上成膜, 然^十后取下得到簿膜 2:
^骤^、 ^膜复合与光激发
謂膜 1 和讓 2 脅放后得到复合 股, 用波长为 450~460nm、 功率为 10mW〜3W 的蓝光源照射至复合薄膜产生 t l光, 实现所述 非稀十纳米品荧光 粉的封 ¾材料在双层 股型 LED 4吖讓 IJ。
u:屮, 、 所述含非稀十.纳米品荧光粉的封装材料川 r单 和双
1.HD时, 歩骤 -屮的封装材料为透明冇机高'分子材料, 优选为 PMMA。 冇益效果
1. 木发 I 提供 ·种含非稀十纳米品荧光粉的封装材料, 所述 光粉^小 稀 素、 ^性小:
2 - 木发明提供丫 -种含非稀十.纳米品荧光粉的 J::、 j装材料的制备 法, U-休 地说, ½将 I 稀十- Cu-In-Znx-S/ZnS 纳米品 光粉1 i:股、 环氧树脂或 ΡΜΜΛ 装材料混合 ί:固化, 所述非稀十纳米晶荧光粉 nj溶 机溶剂得到均勾^光 粉胶, 服」'稀十.荧光粉小能 现溶液加 i ., 即小溶 ] 水和有机溶剂, 只能 装材料物理混合再进行点胶, 荧光粉胶和封装材料 ^合不均匀的缺陷;
3. 木发明提供了一种含非稀土纳米晶炎光粉的封装材料在白光 LED 屮的 )、'、,:川' /川贴片、 :謹、 大功率和薄膜塑的 LED, 通过调节绿光、 红光纳米品^ ύ粉的配比, 现色温 nJ调; 得到的 LED j fi较^的½色桁数、 色温可^、 发 j & frh , 热稳定性好、 寿命 K:, 能耗低 附图说明
[^l 1为¾施例 1制备得到的非稀十.纳米品荧光粉白光 LED光 i 阁;
罔 2 . 細 2制备得到的非稀十纳米 荧光粉 l' l )t LED光谱 m 3为' 施例 3制各得到的非稀十纳米品荧光粉白 )t LED光谱图; m 4为¾施例 4、 5和 6制备得到的非稀十.纳米品荧光粉白光 LED的色 标图;
1*1 5为 施例 7制备 ^到的非稀十.纳米品荧光粉 ΙΊ光 LED光谱图。
具体实施方式
ύί' 施例 卜 7 屮, 所述纳米品荧光粉來 ΙΊ屮请 ''」 ' 201 1 10259596.3, 明 ^称为 " -种纳米晶荧光粉" 的发明 t利屮请, 为红光非稀七纳米品荧光粉和 ) t非稀 纳米品荧光粉: 其中实施例 卜 6 屮, 红光非稀 荧光粉为所述屮 中¾施例 1 制备得到的纳米晶荧光粉, 绿光非稀土荧光粉为实施例 7制 ^得到 的纳米品荧光粉。
红光非稀十纳米品荧光粉的制备过程如卜:
骤 ·、 制备反应源
将 0.19 g鹏化亚锏、 U 6 g醋酸钢、 5 mL十 :烷 硫 和 25 mL十八烯加 100 ml .的 - U烧瓶屮 ¾合,得到混合溶液 1,将^ 溶液 1 加热 120 C ^搅拌 30mi 然后加入 2.5 mL汕酸, 继 i' 120Γ 卜'搅拌 30min个:^个 ';容解厂 ΰ, 通入 ¾ί气保持 30min, 冉升温到 220"C , 溶液 Π浅.! ¾色变为深红色, †n i' 反'、 V: l h, 到反 )、V:源。
^骤二、 制^胶体溶液
将 2.64 g醋酸锌、 10 mL油胺和 l OmL十八烯混合得到浑浊混合溶液 2, 将 ^溶液 2 ¾空加热至 50Ό并搅拌 30分钟, 然后通入 ¾ 30分钟再升¾)温^
120°C , ^浑浊混合溶液 2变澄清, 制各得到锌源; 在 220Γ下将所述锌源逐 滴) JH入到^骤 · 制备得到的反 .源屮进行反 )、:, 每次加入; 要 5min, ^次反应 1 5 min. 次, 制^ 到胶体溶液
^' :、 制各纳术品 '½光材料
将 制 得到的胶体溶液加入 l OOmL离心 ·屮^管^ 处, 进 ί丁 心分^, 到底 物 1和 I:髓 1 ; ②去除底^ I物 1; π - 向 卜.淸液 1加入 3 ml . 屮苯 心分^, 得到底 物 2和上洁液 2: ③去除底 物 2后, 向上沽液 2屮加 入 60mL内' «和 20 mL屮醇的混合液离心分^, 得到底 物 3和上淸液 3: 欄 I11: I-—消液 3, 底 / 物 3川 3mL ^苯溶解后, 加入 60mL |棚和 20 mL 混合 液¾心分^ 5, 洗涤两遍; ⑤用 60 mL「 醇洁洗 · ·遍, , 心分离, 倒掉 1:洁液4, W到纳米品荧光材料。
歩骤四、 制备纳米品荧光粉
将 :得到的纳米品荧光材料在 50Γ 卜 ϋ:干燥 lh得到所述红) l .
) 粉。
π ) w I:.纳米品荧光粉的制 ^过 : :
歩骤 .、 制^反应源
将 0.038 g碘化亚铜、 0.232 g醋酸铟、 0.176 g醋酸锌、 4mL十一' ¾硫醇 和 4mL 卜八烯加入到 50mL的三 IJ烧瓶屮混合, 得到'; ί..ι! 溶液 1, 将¾ 溶液 i i'i. '个:加热 120°C ji搅拌 30min; 然后加入 1 mL汕酸, 继续在真空 120。C H觉 J† 30min 个溶解后, 通入氮气保持 30min, 再升温到 230°C, 溶液 ^!浅 色 变为浅贫绿色, 恒温反应 30min, 得到反 源。
:、 制各胶体溶液
将 1.584 g醋酸锌、 2 mL汕胺和 2ml 十八烯混 ^到^浊混合溶液 2, 将 液'; ½介溶液 2 '(空加热 5CTC并搅摔 30分钟, 然后通入 ( ( 30分钟, Hf ' : 120。C, 浑浊混合溶液 2变澄沾 ·, 制各得到^源: 在 230Γ将所述锌源 逐滴加入到^骤一制备得到的反应源中, ^次加入需耍 5min. 每次反 15 min, 币: 四次, 制各得到胶体溶液。
; K 、 制备纳米品荧光材料
桉照红光非稀士纳米品荧光粉制备过程的歩骤二进^。
骤四、 制备纳米品荧光粉
按照红) 非稀土纳米 荧光粉制各过^的歩骤四 jiH丁, 得到所述 ) \\
\Y' ) 粉。
施例 7屮, 红光非稀十.荧光粉为所述屮 ^屮¾施例 10制备得到的纳米品 荧光粉, 绿光非稀十.荧光粉为实施例 7 制各得到的纳米品荧光粉。 红光非稀 I: 纳米品荧光粉的制备过程如卜:
、 制各反) 源
0.038 gii與化业钋; )、 0.232 g醋酸 i , 1 mL十 : 'j i: 硫醇和 10 mL 卜八' '川入到 50 niL的三 U烧瓶屮混合,得到混合溶液 1,将 ί½合溶液 1真空的加热个: 12(TC并搅拌 30min; 然后加入 0.5 mL汕酸, 继续在 .' : 120Ό下搅拌 30min : / 溶解后, 通入 气保持 30min, 再升¾到210°(:: 溶液 i'-j浅黄色变为深红色, 'Ι'π温反应 l h , 得到反应源。
骤 '.、 制 胶体溶液
将 0.352 g 10 mL汕胺和 10 ml, 卜八烯¾ ί 得到^浊混合溶液 2, 将 夜 2 A'. :加热 SO jm 30分钟, 通入 l I 40分钟, 再升^ 个: 140。C, 至浑浊混合溶液 2变澄淸, 制各得到锌源: 将 0.5 mmol硒粉溶解在三 J ' ¾膦中制备得到硒源, 将硒源快速加入歩骤一制备得到的反应源中, 溶液的颜 色在 30秒钊', 浅黄色变为深红色, 在 180Ό恒温反、 | 出现沉淀之前停止 反)、 , 得到 红色的胶体溶液 1 : 再在 200Ό将所述锌源逐滴加入到胶体溶液 2 屮, 每次注入需要 5min, 每次反应 15 min, 承复四次, 制备得到胶体溶液 2。
复四次, 制各得到胶体溶液 2。
骤 -:、 制各纳米品荧光材料
将 骤 :制 得到的胶体溶液加入 l OOmL离心^屮 ^¾ t-处, tr 心分^ , 到底 物 1和 h淸液 1; ②去除底 U物 1 /|.) , 向 I-.淸液 1加入 3 ml. 屮苯 ¾心分 ¾, 得到底 /^物 2和 1 ·.沽液 2; ③去除底/ 物 2后, 向上清液 2屮加 入 60mL內酮和 20 mL甲醇的混合液离心分离, 得到底层物 3和上清液 3 ;④倒 : I..淸液 3, 底层物 3用 3mL甲苯溶解后, 加入 60mL丙酮和 20 mL「「- 1醇混合 液 心分离, 洗涤两遍; ⑤用 60 mL「P醇沾洗一遍, 离心分离, 倒掉上淸液 4, 得到纳米晶荧光材料。
^骤四、 制各纳米品荧光粉
将歩骤 .·:ί':到的纳米品荧光材料在 50"C 卜 ' 燥 l h, 得到所述红光 稀
I纳 品荧) 粉。
/|:':、棚卜 7屮, 用 LED光 色 介测试系统. 对制备得到的非稀 I ·.纳 ^:^荧光粉 光 LED进行检测; 所述测试系统包括: ^号为 W 305的粘密数 W l'l:流稳流稳 H电源、 型号为 HAAS-2000 的高精度快速光谱辊射计和^号 ¾ QHM- II -06 VER 1.0 2 0.8m的积分球:
对丁-贴片 LED, 釆用 20-80 mA的测试电流:
对于: 插型 LED, 采用 20-100 mA的测试电流:
对丁-大功率 LED, ¾!IJ 350-700 mA的测试 流,
施例卜 3和 7屮, 所述 LED杯碗为贴片、 1'1:插或人功率 LKD杯碗: :种杯碗 Ulill巾心均丌 Ή槽, I11!槽底部 W. f蓝光 紫外 LED芯片, 杯碗 I; 还 冇 负极引脚。 贴片 LED杯碗 W HKY-B002, ) '家为东^山盛^ 胶有限公 πΐ: |'|:插型 LED杯碗型号为 ΗΚΥ-Β002, 厂家为东莞市雅笋 子 限 公 n'J; 人功率: LED杯碗^ . ''-为 9I272EWG-3207YA(0.46) -ZY, 「家 J'、J ^ 竞 力'电子 .限公「J。 实施例 1
种木发明所述的 A非稀十纳米品荧光粉的封装材料、 制备方法和 /、wn,
U休 骤如卜:
' M' 、 制溶液
将 ιμ稀 I:纳米品荧光粉溶解于级仿屮, i 加入射装材料, 川玻璃棒进 ί丁搅 伴; 搅拌速率为 2〜3 I卷 |/秒, 向一个力―向顺吋针搅拌, 避免产生过多的气泡, 投 拌 lOmin 到溶液;
红光非稀土纳米晶荧光粉的质量: 绿光非稀土纳米品荧光粉的质 :fft=l:50; 所述封装材料为硅胶 OE6551A和砘胶 OE6551B, ^胶 ΟΕ6551Λ的质 ^胶 OE6551B 的质量 =1:2: 非稀土纳米品荧光粉 , 封装材料的质量 ΐ分数 10%.
骤 .、 -除溶剂 ^脱泡
将溶液 ¾ ί'ΐ '个:十燥 屮, 在 30V ilk^ -卜-处川160min, 到水 所 述的含 I卜稀 h纳米品荧光粉的封装材料: 在脱泡过 W屮, 如溶液溢出, H放 阻止 溢出; 脱泡完毕, 取出含非稀土纳米晶荧光粉的封装材料, imum 以 2〜3秒 /降 I的速度按照 -个方向缓慢搅枠 5分钟, 搅拌时避免产生气泡。
歩骤二、 点胶
将含非稀十纳米晶荧光粉的封装材料移入到 5 mL针筒中,倒入的时候小 产 气泡: 给针筒安装进气管, 对进气管施加 (力, 使得针筒中的含非稀十纳 ^品荧¾粉的^装材料缓慢滴进贴片 LED杯碗屮心的 P'l槽内, ffD :稀 纳^ 粉的封装材料 杯碗屮 ― 、状态 ( 'jl1'!†',11!! I '-齐), 得到卜 ''1化 fjii的 I.1-D ^休器 ί'Ι:
^骤四、 化
将同化 1 —的 LED整体器件放入十燥箱屮, 在 120°C下烘烤 3小时, 实现所 述^稀七纳 ^品荧光粉在白光 LED屮的 Ϋ川, 所述 LHD为贴片型 LED。 对所述非稀士纳米晶荧光粉白光 LED进行检测, 测试步骤如下: 依次打丌 ^精度快速光 ^辐射计电源、精密数显直流稳流稳压 源和 LEDspec测试软件, 选抒常规测最模式; 将所述 LED放在积分球入口处, LED的 ΪΗ负极引脚与精密 !,ι', i'L流稳流 :屯源迕接, 对 LKD施加觇定的 iKl'J 流 20mA. 探 测 统测 : )'ύ通:^:。 :软件 Ι·. 小 光) ¾以及(Ί 1931 [^品坐标、 W ϋ 色温、 效率参数, ^出数据以及光^进行分析, 得到图 1 所小的非稀 I·. 纳米晶荧光粉白光 LED光谱图; nj^出所述 LED在 450nm (蓝光区域)、 540nm (绿光区域)、 635nm (红光区域) 冇特征峰, 说明发出的光由三种颜色 成: 软件分析得到 CIE 色品坐标为 (0.3122, 0.3850), 色指数为 92, 色温为 3770K, 证明 LED发出的光处于暖白区域。
¾施例 2
种木 H]所述的含— I卜:稀 纳米品荧 粉的 J::、†装材料、 制备 '法和'、 , !UK骤如 :
骤 ·、 ( 制溶液
将非稀土纳米晶荧光粉溶解于中苯屮, 冉加入封装材料, 用玻璃棒进 ί_Γ投 W: 搅拌速率为 2〜3阁 /秒, 向一个方向顺时针搅拌, 避免产牛过多的 泡, 搅 1†·- 15min得到溶液;
红光非稀十纳米晶荧光粉的质量: 绿光非稀土纳米品荧光粉的质量 =1: 200: 所述封装材料为环氧树脂 GL001A和环氧树脂 GL001B, 环氧树脂 GL001 A 隱 ¾: 环¾树脂 GL001B的质 非稀 h纳米品荧光粉 Λ封装材料的质^: 1'1分¾为 20%
骤 .、 除溶剂. ½脱泡
将溶液放 i't 十燥箱屮, 在 50C,负 Ik条件卜.处 lOmin, 得到水 明所 述的含非稀 h纳米晶荧光粉的封装材料; 在脱泡过 屮, 如溶液溢出, 迠 放 阻止其溢 ill; 脱泡完毕, 取出含非稀土纳米晶荧光粉的封装材料, ίΠ玻璃 以 2〜3秒 的速度按照 个方向缓慢搅拌 5分钟, 搅拌吋避免产生气泡。
骤二、 点胶
将含非稀十纳米品荧光粉的封装材料移入到 5 mL针筒中,倒入的时候小可 泡: 给针筒安装进气管, 对进气管施加 fk力, 使得针筒屮的含非稀 h纳 荧光粉的」 装材料缓慢滴进 :l 插 LHD杯碗屮心的 Ί槽内, I'lD II.稀 I·— 纳米品荧光粉的封装材料在杯碗中呈平杯状态, 得到卜 ',1化 的 LED整休器 fl::
^骤四、 冏化
将 化 ^的 LED整体器件放入千燥箱屮, 在 150Γ 卜'烘'烤 0.5小时:
^骤五、 画
将硅胶 Ol: 6370HF A与硅胶 OE 6370HF B作为灌封胶, 将两者按 1:1的 ¾比混合, 溶解于氯仿中用玻璃棒搅拌 10 min, 然后在 50°C、 负压下处理 50 分钟, 去除冇机溶剂与脱泡后, 用玻璃棒缓慢引流 :灌胶机的胶盒中, 排出一 '分 封胶, ί.到针头吐出的胶迕贯丄 〔泡为止, 迅速对 插 LH1〕杯碗进 irffi封, 胶内小 π」'产 〔泡。 然/ H在 8()1 化 lh, 14:于 ISOrpil化 lh, '¾ 现所述非稀 h纳米晶荧光粉在白光 LED屮的)、 V:片 j, 所述 LED为莨插 LED. 采川与 施例 1相 |nj的测试方法, 施加规定的. ||· ] 流 IF 20mA, 对所 述非稀十.荧光粉白光 LED进行检测,得到 |¥| 2所 的非稀. h荧光粉白光 LED ) ½1¾; nj U;所述 LED在 450nm (蓝光 域)、 546nm (绿光区域)、 640nm (红 ) 区域) 几冇特征峰, 说明发出的光由二种颜色组成:
软件分析得到 CIE 色品坐标为 (0.333, 0.344), W.色指数为 89.7, 色温为 5568K, 说明 LED发出的光处于正白区域。
Figure imgf000015_0001
种木发明所述的含非稀七纳米品荧光粉的封装材料、 制备方法和 川, U体步骤如下:
^骤 、 配制溶液
将非稀十.纳米品荧光粉溶解于二屮苯屮, 再加入封装材料, 用玻璃榨进 ί丁 跳 搅拌速率为 2〜3圈 /秒, 向 -个力 -向顺时针搅抨, 避免产生过多的气泡, 搅袢 12min得到溶液;
红光非稀十纳米晶荧光粉的质量: 绿光非稀土纳米品荧光粉的质量 =1: 500; 所述封装材料为^胶 OE6551A和 ίιΐΐ胶 OE6551B, fillip OE6551A的质 · : ii!:胶 OE6551 B 的质 !,!;= 1:2: 稀十-纳 ,Ί,Ί荧 ) 粉 JI装材料的质 .: I分数为
30%,
歩骤.:.、 去除溶剂与脱泡 将溶液放 ϊ'真空千燥筘屮, 在 3(TC,i 条件卜处 30min, 得到木发明所 述的含非稀十纳米晶荧光粉的封装材料: 1Ϊ脱泡过程屮, 如溶液溢出, 迠^放 '(阻止其溢出; 脱泡完毕, 取出含非稀士 .纳米晶荧光粉的封装材料, 川玻璃棒 以 2-3杪 /| 的速度按照- '个方向缓慢搅桦 5分钟, 投扑吋避免产生 . 〔泡
^骤 ::、 点胶
将 M 稀 h纳米品荧光粉的封装材料移入到 5 mL针简屮,倒入的时攸小 j 产 /〔泡; 给针筒安装进 ^符, 对进 施加】" 力, 使 针筒屮的含非稀 h纳 米品荧光粉的封装材料缓慢滴进大功率 LED杯碗屮心的 槽内, Ι'ΐ个: fMI:稀 h纳米品荧) 'ύ粉的封装材料在杯碗屮 ^杯状态,得到 W化前的 LED整休器件: 骤四、
将冏化前的 LED整体器件放入干燥筘屮, 在 130。C 卜烘烤 2小时。
骤丄、 灌封
将^胶 Oli 6370HF A与硅胶 OE 6370HF B作为灌」:、t胶, 将两者按 1:1的 'ΐΐ ;1;:比¾介, 溶解于二屮苯屮川玻璃榨搅伴 10 min, 然 /j: 40°C、 负 ik卜处 1 ' i、t, 去除^机溶剂与脱泡后, ^无 泡时 出。 将^封胶沿针筒内 缓^倒 入针 , 排出 ·部分灌封胶, :到针头 lil.ill的胶连 ' Ι.Λ^〔泡为止, :胶 i i M入计头, 对人功率^ LED杯碗进行灌 , 然后在 100Γ冏化 0.5h, f J" I20'C 化 2h, ¾现所述非稀 h纳米晶荧光粉在 1:1光 LED屮的应川, 所述 LED 人 功率型白 ) LED。
采川 ¾施例 1 相同的测试方法, 施加规定的 iKi''|ji[i流 IF 为 350mA, 对 I D迸行检测 , 得到阁 3所 的非稀十纳米品荧光粉 光 LED光谱图: nJ-^iJi 所述 LED 450nm (蓝光区域)、 566nm (! ¾) 区域) 几冇特征峰, 此] 区域
11 i红 、 H )t 稀土纳米品荧光粉发出的光 合而成, i兑明发出的光 1两种颔 色纠.成:
软件分析得到 CIE 品坐标为 (0.3500, 0.3120), Wfc指数为 85, 色^ 6670 , uJ-;njJ LED发 ili的光处于冷 A |x:域。
'i:施例 4
种本发明所述的 t非稀土纳米品 光粉的封装材料、 制备方法和 川,
U体 骤如卜.: ^骤 溶液配制
将红光非稀土纳米晶荧光粉与封装材料 PMMA混合后溶于氯仿, 得到溶液 1; 红光非稀十.纳米品荧光粉的质量 ^封装材料的质 Γί分比为 5%:
将绿 ) ιμ稀土纳米晶荧光粉与封装材料 ΡΜΜΑ ·Γτ ·溶丁 ·氯仿, m-α
2: 绿光非稀- k纳米品荧光粉的质量占 装材料的质 |'|分比为 5%;
红光非稀土纳米晶荧光粉的质量: 绿光非稀土纳米晶荧光粉的质 ¾= 1 :500: 歩骤二、 去除溶剂与脱泡
将溶液 1、 溶液 2分別在室温、 负 下处现 30min, 得到含非稀七纳米品荧 ) 粉的 装材料 1和含非稀十纳米晶荧光粉的封装材料 2;
步骤二、 ^膜制备
将含非稀十纳米品荧光粉的封装材料 1搅拌均匀后, 涂覆在载玻片 h成股, 然 Ι Γ卜后取下得到薄脱 1;
将"^非稀 h纳米品荧光粉的封装材料 2搅拌均匀 , 涂覆在载玻片 h成脱, ΙΊ然晾千后取卜得到蒲股 2;
步骤四、 溥膜复合与光激发
将薄股 1和薄膜 2叠放后得到复合 脱, 用波长为 450〜460nm、功率为 1 W 的蓝光源照射 复合薄膜产^白光, ¾现所述非稀十纳米晶荧光粉在白光 LED 屮的' 川, 所述 LED为双 薄膜型 LED o
U LED光屯色综合测试系统,对所述 LED进行检测,得到图 4所小的非 稀 h纳米品荧光粉白光 LED 的色品 标 m; 得到 CIH 色品坐标为 (0.2980. 0.3005 ) , 软件分析得到、 色指数为 87, 色温为 10000K , 证明 LED发出的光处 冷白 |χ:域 实施例 5
-种本发明所述的含非稀十纳米品荧光粉的封装材料、 制备方法和应用, U沐歩骤如 :
^骤 、 溶液配制
将红色非稀士纳米品荧光粉与封装材料 PMMA混合后溶于氯仿, 得到溶液 1: 红光非稀上纳米品荧光粉的质量 封装材料的质 分比为 80%:
将绿) 非稀七纳米品荧光粉与封装材料 PMMA混合后溶于氯仿, 得到溶液 2: ^光非稀 i:纳米品荧光粉的质量 ι'ί封装材料的质 l'l分比为 80%;
红) 非稀 1:纳米品荧光粉的质量: 绿光 I 稀十.纳米品 ^光粉的/ ¾ i:= l : 20:
)]骤 -、 除溶剂与脱泡
将溶液 1、 溶液 2分別 : 温、 负 : I、处现 30min , 到含非稀十.纳术品 ) 粉的封装材料 1和含非稀十纳米品荧光粉的対装材料 2;
骤二、 薄膜制备
将含非稀土纳米晶荧光粉的封装材料 1搅拌均匀后, 涂覆在载玻片 h成股, 14然晾干后取下得到薄脱 1;
将 ίΤ非稀十 .纳米品荧光粉的封装材料 2搅拌均匀后, 涂覆在载玻片 ΙΊΜ I'l然晾十后収卜得到薄股 2;
歩骤 i 、 薄膜复合与光激发
将續 1和簿膜 2 ^放后得到复合 ^脱, 波 K为 450〜460nm、功率为 1 W 的^光源照射 复合 脱产 光, 实现所述非稀十纳米品荧光粉在 Π光 LH 屮1' |j, 所述 LED为双 膜型 LED,,
采用 LED光电色综合测试系统,对所述 LED进行检测,得到图 4所小的非 稀十纳米晶荧光粉白光 LED色品坐标图;得到 CIE色品坐标为 (0.4696, 0.4173 ), 软件分析得到 ½色指数为 86,色温为 2500K,证明 LED发出的光处于暖 I'.l |x:域。 施例 6
-种本发明所述的 非稀土纳米品荧光粉的封装材料、 制备 '法和 yJ4J, 几体^骤如 :
·、 溶液配制
将红 ) H」稀土荧光粉、 ¾O 非稀十-荧光粉封装材料 PMMA 合后溶
W到溶液; 红、 绿光非稀十荧光粉的质¾之和占封装材料的质量百分比为 40% 红光非稀土荧光粉的质最: 绿光非稀 h荧光粉的质 S=l :200;
^骤- -:、 去除溶剂与脱泡
将溶液 :¾温、负) k卜处理 30min, W到 ίΤΦ稀 h纳米品 ^光粉的 装衬 :1 : 骤—- -'、 p !J-!¾制 ifr
将^非稀 h纳米品荧光粉的封装材料悅拌均匀 / ί, 涂蒗在载玻片 ι ·.成脱.
Ν然 i (十后収卜得到薄股; ^骤四、 膜复合与光激发
将薄膜川波! ^为 450~460nm、功率为 10 mW的 光源照射 复合^膜产 1:1光, ¾现所述非稀土纳米晶荧光粉在白光 LED屮的应 ίΠ, 所述 LED为单
LED。
M ' l LED光电色综合测试系统,对所述 LED进行检测,翻图 4所小的廿 - 稀卜纳米品荧光粉白光 LED 的色品坐标 1冬卜 n C 色品坐标为 (0.3704, 0.3738), 软件分析得到¥色指数为 84, 色 为 4248 K, 证明 LED发 Μ',的) t处
J il- I- I 。 施例 7
-种本发明所述的含非稀土纳米晶荧光粉的封装材料、 制备方法和应1」, U体 骤如下:
骤 、 配制溶液
将非稀卜.纳米晶荧光粉溶解丁 :.屮苯屮, 再加入封装材料, 玻璃棒 JiHr 跳 搅袢速率为 2〜3陶/秒, |i'J ·个方向顺吋针搅拌, 避免 过多的 〔泡, 投袢 12min得到溶液;
Cu-In-Se/ZnS红光非稀十纳米品荧光粉的质 Cu-In-S/ZnS绿光非稀 I:纳 粉的质 ¾=1: 400:
听述封装材料为 ::胶 OE6551A和硅胶 OE6551B, OE6551A ' i OE6551B 的质 =l:2; 非稀土纳米品荧光粉 封装材料的质量百分数为
30%。
骤—、 去除溶剂与脱泡
将溶液放于真空千燥箱屮, 在 30°C,负) 1;:条件下处现 30min, 得到本 所 述的 A非稀 h纳米品荧光粉的封装材料; 脱泡过^屮, 如溶液溢出, 、 1' '〔 Lhji:溢 ; 脱泡完^, 取出含非稀土纳米晶荧光粉的封装材料, 川玻璃 以 2-3秒 的速度按照 -个方向缓慢搅拌 5分钟, 悅拌时避免产 ^ 泡.
骤 、 胶
将^非稀 h纳米品荧光粉的封装材料移入到 5 mL针筒屮, 倒入的吋候小 nj. 产 〔泡; 给针筒安装进气管, 对进气符施加压力, 使得针筒屮的含非稀十.纳 米品荧光粉的封装材料缓慢滴进大功率型 LED杯碗屮心的 槽内, 直 ^ H^稀 十纳米晶荧光粉的封装材料在杯碗中呈平杯状态,得到冏化前的 LED整体器件: 歩骤四、 同化
将固化前的 LED 休器件放入千燥箱屮,在 130"C下烘烤 2小时。所述 I.HD 職 1上 D
-'- '、i:施例 1 相同的测试 法, 施加觇定的 i l U流 1,. J、、J 350mA, LHD进行检测, 得到阁 3所^的非稀十.纳米品荧光粉 |_'|光 LED光谱图; 【 屮, 所述 LED在 450nm (蓝光区域)、 577nm (黄光区域) 有特征峰, 此黄光 fe父 山红光、 绿光非稀土纳米晶荧光粉发出的光复合而成, 说明发出的光山两种颜 色^成;
软件分析得到 CIE色品坐标为 (0.3144, 0.2549), 色指数为 82,色温为 7591
K, 证明 LED发出的光处丁 -冷白区域。
综上所述, 以上仅为本发明的较佳¾施例而已, 并非用于限定本发明的保 .; '亂' 凡 |:木发明的粘神和 ^则之内, 所作的仟 H修 Λ、 Μ ^换、 麵 ';、 均 '、'、 ^ i 水发明的保护 m围之内。

Claims

l. -种.「τ I卜稀土纳米品荧光粉的封装材料, .- 所述含非稀 I纳 ' uW 粉的 装材料山红光、 绿光非稀 纳米品荧光粉和封装材料组成; 红 光非稀十-纳米品荧光粉的质量: 绿光非稀土纳米品荧光粉的质 ¾=1:20~500; 所述红光、 绿光非稀土荧光粉为 Cu-In-Zn,-E/ZnS纳米晶荧光粉, 制 ^ ―法
/ill卜:
-骤 、 制^反)、 V:源
将锏盐、铟盐、烷¾硫醇和十八烯混合^到混合溶液 1,在隔绝氧 z〔状态卜', 将 合溶液 1加热到 100〜1201 ^混合 30分钟, 然后加入长垸基有机酸, 在 l fe l L状态卜加热到 100〜12(TC ίϋ容解后, 升,' 200〜230°C, 'Ι'ι^', ■ c'、VH0分钟, ΐ:个: M;现沉淀之 iiij停止反 )、'、/:, 得到反 )、'、,〈源';
IL-'I'. 所述锏」 的物质的 : 铟盐的物质的: ffi为 8 : 1〜1 : 8:
' E=S时: 垸基硫醇和长炕基有机酸的物质的量之和 : 铜盐和铟盐的物质 的 ft之和为 16: 1〜2: 1;
Ί E-Se 时: 垸 ffi硫醇和 K:^¾ i机酸的物质的 :之和 : 铜盐和姻¾的物 ) 的 之和 8:卜 2: I:
骤二、 制备胶休溶液
将锌盐、 K:烷 机胺和十八烯混合^到浑浊的 合溶液 2, 在隔绝¼ '(状 态卜', 将¾ 溶液 2加热到 50〜100°C并混 30分钟, 然后升 度个: 120〜
1 0C, Ι'Ι: ϋί 溶液 2变澄^, 制备 到锌源:
时: 将所述锌源加入到步骤 -制备得到的反 源屮, 在 200〜230'C
'i: 温反应 0.5〜3小吋, 制备得到胶体溶液 1;
、"l E=Sc吋- 将硒粉溶解到溶剂屮制备得到硒源, 将納 -源加入到步骤 制^ 的反 源屮, 在 180〜230^|(温反1、'、/:, |ΊΆ出现沉淀之前停土反 、/:,
Figure imgf000021_0001
休溶液 2; 1^将所述锌源加入到胶体溶液 2屮, l: 200〜230°Cfc温反)、 0.5
3 'j、时, 制^ '.·到胶体溶液 3;
:屮, 所述溶剂为二丁基膦或 辛 膦或三 Γ¾膦和十八烯的混合液或 † ^膦和十 ^烯混合液:
.屮, 述锌盐的物质的 · : ^¾·1Ϊ机胺的物 的 M为 10: 1〜0.25: 1: 1-S时, ^骤…屮烷 ¾硫醇的物质的 ¾ : 锌源的物质的量为 1: 5~1: 1 E=Se 时, 歩骤一屮烷基硫醉的物质的虽 : 硒源的物质的量 : 锌源的物质 的環为 1: 0.5〜2: 1〜5。
骤三、 制 纳米晶荧光材料
将 ) 骤一得到的产物用极性溶剂进 tr洁洗, 通过离心沉降得到 Cu-ln-Znx-E/ZnS纳米品荧光材料;
所述产物为胶体溶液 1 或 2; 所述产物为胶体溶液 1 时, 制备得到的 Cu-In-Znx-E/ZnS纳米晶荧光材料中的 E=S, 即得到 Cu-ln-Znx-S/ZnS纳米晶荧光 材料; ^所述产物为胶体溶液 3时, 制备得到的 Cu-In- Znx-E/ZnS纳米晶荧光材 料中的 E=Se, 即得到 Cu-In-Znx-Se /ZnS纳米晶荧光材料;
步骤四、 制备纳米晶荧光粉
将歩骤 :得到的 Cu-In-Znx-E/ZnS 纳米品荧光材料在 40〜70°C下: 千燥 30分钟, 得到所述纳米晶荧光粉:
JP I ' , 红光非稀十.纳米品荧光粉为: 以锌盐、 铟盐和锏盐物质的¾之和为 100 %ih 锌盐的物质的量为 30〜50%时, 制备得到的 Cu-In-Znx-S/ZnS纳米品 荧光粉, U:屮. x 0; 或以锌盐、 铟盐和锏盐物质的 之和 %计, Ζη ,1, Cu、 In , Zn元素物质的量为 50〜90%吋, 制备得到的 Cu-In-Znx-Se/ZnS纳米品 荧光粉, 其屮, x >0;
绿光非稀- h纳米晶荧光粉为:以锌盐、铟盐和铜盐物质的量之和为 100%计, 锌盐的物质的量为 80〜90%吋, 制各得到的 Cu-In_Znx-S/ZnS纳米晶荧光粉, 屮' x>0。
2. 报据权利要求 1所述的 · -种含非稀 纳米晶荧光粉的封装材料, 讓": ά : 装材料为硅胶或环氧树脂。
3. 如权利要求 1或 2所述的一种含非稀土纳米晶 光粉的封装材料的制^ ^法, 特征在丁: 所述方法歩骤如 :
骤 、 111制溶液
将非稀十.纳米晶荧光粉溶解于有机溶剂中,再加入封装材料搅拌 10-15 mm, 得到溶液:
所述有机溶剂为氯仿、 甲苯、 二屮苯、 正己垸或 1苯之一;
所述非稀十.纳米品荧光粉为红光、 绿光非稀十纳米品荧光粉; 非稀 k纳) I 品 W光粉 11! _H装材料的质量 分数为 5%〜80%:
骤.―.、 去除溶剂与脱泡 将溶液在 20~50°C,负 H (条件下处 10~60min, 得到 -种含非稀士.纳米品 光粉的封装材料。
4. 根据杈利要求 3所述的 -种含非稀土纳米晶荧光粉的封装材料的制备 法, 特征在: Γ: 对于色温在 2500Κ〜3800Κ的暖白区域白光 LED, 歩骤一屮 光非稀十.纳米晶荧光粉的质量: 绿光非稀十.纳米品荧光粉的质量 =1:20 100; 红色和 ^色 |卜稀七纳米品荧光粉占封装材料的质 ¾ 分数为 10%〜50%。
5. 权利要求 3所述的一种含 ιμ稀十纳米品荧光粉的封装材料的制各 /J 法, K-特 ίιΙ·Ύ」'·:于: 对 Γ色温在 3800Κ〜6500Κ的正白 IX:域白光 LED, 骤 屮 红光非稀 纳米品荧光粉的质量: 绿光非稀 I:纳米品 ^光粉的质量 =1: 100-300; fcfll^色 II稀 h纳米品荧光粉 ^封装材料的质: l'l分数为 10%〜50%
6. 报据权利要求 3所述的一种含非稀十.纳米品荧光粉的封装材料的制备 法, 其特征在于: 对于色温在 6500K〜10000K以及 10000K以上的冷白区域 光 LED, 红光非稀土纳米晶荧光粉的质 ¾: 绿光非稀十纳米晶荧光粉的质量 =1: 300-500; 红色和绿色非稀十.纳米晶荧光粉 ι>Τ封装材料的质量百分数为 10%〜 50%—
7. 权利要求 1或 2所述的一种 非稀十.纳米品荧光粉的封装材料的)、 V:川, ! 1:在 J- 所述 非稀十纳米晶荧光粉的封装材料、ν:川 Γ白光 LED。
8. 根据权利要求 7所述的一种含非稀 1:纳米晶荧光粉的封装材料的 Y川, :特征在 Γ·: 所述白光 LED为贴片、 1'1:插、 人功率或^脱型白光 LED。
9. 报据权利耍求 8所述的 种 H稀十.纳米晶荧光粉的封装材料的)、 川, 其特征在丁-: 对于贴片、 插或大功率 白光 LED, 将所述含非稀土纳米品荧 光粉的封装材料滴入 LED杯碗中心的 槽内, 在 120~150°C下烘烤 0.5〜3小时, ¾现所述含 稀士纳米品荧光粉的封装材料在白光 LED中的应用;
所述 LED杯碗为贴 、 Ι-'ί:插或人功率 LED杯碗: 三种杯碗 I:.麵屮心 ij 'N1;, 底邰^ ι ^¾或紫外 I.KD芯 杯碗 h还&有止:负极引脚
10. 权利要求 8所述的 种 f t:稀 I:纳米品 )t粉的封装材料的^ ij, i 特征在 Γ: 所述含非稀 h纳米晶荧光粉的封装材料应川 T单层薄膜型 LED, 歩骤 ·、 溶液配制
将红光 稀土荧光粉、 绿光非稀.七荧光粉封装材料混合后溶于氯仿得到溶 液液:: 红红、、 绿绿光光非非稀稀土土荧荧光光粉粉的的质质量量之之和和占占封封装装材材料料的的质质量量!!^^分分比比为为 55〜〜8800%%;; 红红光光非非稀稀 荧荧光光粉粉的的质质量量:: 绿绿光光非非稀稀土土荧荧光光粉粉的的质质量量 11 ::2200~~550000;; 歩歩骤骤二二、、 去去除除溶溶剂剂与与脱脱泡泡
将将溶溶液液在在 2200~~5500°°CC、、 负负压压条条件件下下处处理理 II00~~6600mmiinn,, 得得到到含含非非稀稀土土纳纳米米晶晶荧荧光光 粉粉的的封封装装材材料料;;
骤骤二二..、、 膜膜制制备备
将将 ^^卜卜稀稀 hh纳纳米米品品荧荧光光粉粉的的封封装装材材料料悅悅拌拌均均匀匀 ,, 涂涂 在在载载玻玻片片卜卜..成成膜膜,, ΙΙΊΊ ff后后取取卜卜——得得到到薄薄膜膜;;
骤骤四四、、 膜膜复复合合与与光光激激发发
将将薄薄膜膜用用波波长长为为 445500〜〜446600nnmm、、功功率率为为 1100 mmWW的的蓝蓝光光源源照照射射至至复复合合薄薄膜膜产产^^ 11ΊΊ光光,, 实实现现所所述述非非稀稀土土纳纳米米晶晶荧荧光光粉粉在在单单层层白白光光 LLEEDD中中的的应应用用;;
其其屮屮,, 歩歩骤骤 --中中的的封封装装材材料料为为透透明明有有机机高高分分子子材材料料。。
1111.. 根根据据权权利利要要求求 88所所述述的的一一种种含含非非稀稀土土纳纳米米晶晶荧荧光光粉粉的的封封装装材材料料的的应应用用,, ΛΛ特特征征在在于于:: 所所述述含含非非稀稀土土纳纳米米晶晶荧荧光光粉粉的的封封装装材材料料应应用用于于双双层层薄薄膜膜型型 LLEEDD,, AA体体 ii、、 jj --法法如如下下::
骤骤 ··、、 配配制制溶溶液液
将将红红光光 HH::稀稀十十纳纳米米品品荧荧光光粉粉与与封封装装材材料料½½合合后后溶溶 丫丫 II机机溶溶剂剂,, 到到溶溶液液 11:: 红红光光非非稀稀十十荧荧光光粉粉的的质质量量占占封封装装材材料料的的质质:: ½½ ιι分分比比为为 55--8800%%;;
将将绿绿光光非非稀稀土土纳纳米米晶晶荧荧光光粉粉与与封封装装材材料料混混合合后后溶溶于于有有机机溶溶剂剂,, 得得到到溶溶液液 22;; 光光非非稀稀土土荧荧光光粉粉的的质质量量占占封封装装材材料料的的质质量量百百分分比比为为 55〜〜8800%%;;
红红光光非非稀稀 hh纳纳米米晶晶荧荧光光粉粉的的质质量量:: 绿绿光光非非稀稀十十纳纳米米晶晶荧荧光光粉粉的的质质 ¾¾ == 11 ::2200--550000;;
歩歩骤骤二二、、 去去除除溶溶剂剂与与脱脱泡泡
将将溶溶液液 11、、 溶溶液液 22分分别别在在 2200〜〜5500°° ((::、、 负负 ΗΗΓΓ卜卜^^ ^^处处理理 1100~~6600mmiinn,, 得得到到含含非非 MM ::纳纳米米品品荧荧光光粉粉的的封封装装材材料料 11和和含含 II 稀稀七七纳纳米米品品荧荧 )) 粉粉的的封封装装材材料料 22;;
ΗΗ¾¾ 、、 制制各各
将将含含非非稀稀十十..纳纳米米品品荧荧光光粉粉的的封封装装材材料料 11搅搅拌拌均均匀匀后后,, 涂涂覆覆在在载载玻玻片片上上成成脱脱,, ΠΠ然然晾晾干干后后取取下下得得到到薄薄膜膜 11;;
将将含含非非稀稀七七纳纳米米晶晶荧荧光光粉粉的的封封装装材材料料 22搅搅拌拌均均匀匀后后,, 涂涂覆覆在在载载玻玻片片 II::成成股股,,
Figure imgf000024_0001
歩骤四、 簿膜复合与光激发
将薄膜 1 和薄膜 2 叠放后得到复合薄脱, 用波长为 450~460ηπι、 功率为 10mW-3W 的\ 光源照射 复合薄膜产牛 \' \光, 实现所述含非稀土纳米品荧 )t 粉的封装材料 MI^W股 LED '| 'JJ YI|J;
屮, ^骤 屮的封装材料为透明 Y]机 分 J' -材料 ,.
12. 报 ';权利要求 10或 11所述的 '种 f' 稀 L.纳米品荧光粉的封装材料的 ι、ν.川, 其特征在于: 歩骤一中的封装材料为聚甲基內炕酸甲酯。
PCT/CN2013/000606 2012-06-08 2013-05-28 一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用 WO2013181926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210188599.7A CN102694110B (zh) 2012-06-08 2012-06-08 一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用
CN201210188599.7 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013181926A1 true WO2013181926A1 (zh) 2013-12-12

Family

ID=46859453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000606 WO2013181926A1 (zh) 2012-06-08 2013-05-28 一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用

Country Status (2)

Country Link
CN (1) CN102694110B (zh)
WO (1) WO2013181926A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694110B (zh) * 2012-06-08 2015-06-03 北京理工大学 一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用
CN103965912B (zh) * 2014-05-21 2015-09-09 吉林大学 基于水相半导体纳米粒子的一维自组装材料、制备方法及在led封装中的应用
CN104037310B (zh) * 2014-07-03 2017-01-18 吉林大学 基于碳量子点和ZnCuInS量子点的三原色匹配白光LED及其制备方法
CN105845810B (zh) * 2016-03-30 2018-12-07 深圳市聚飞光电股份有限公司 一种基于绿光量子点的高色域白光led灯珠的制作方法
CN105679921B (zh) * 2016-03-30 2018-12-07 深圳市聚飞光电股份有限公司 一种多量子点组合的高色域白光led灯珠的制作方法
CN105679894B (zh) * 2016-03-30 2018-08-28 深圳市聚飞光电股份有限公司 一种基于红光量子点的高色域白光led灯珠的制作方法
CN105742462B (zh) * 2016-03-30 2018-12-07 深圳市聚飞光电股份有限公司 一种紫外光与多量子点组合的高色域白光实现方式
CN107353895B (zh) * 2016-11-10 2020-10-09 北京理工大学 荧光粉复合物、led器件及其制备方法
CN110896124A (zh) * 2019-12-05 2020-03-20 厦门多彩光电子科技有限公司 一种生产硅胶透镜紫光全光谱灯珠的方法
CN112608687A (zh) * 2020-12-18 2021-04-06 广州光联电子科技有限公司 一种led封装用的无机胶及封装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564332A (zh) * 2004-03-30 2005-01-12 深圳市蓝科电子有限公司 白光二极管制造方法
CN101752490A (zh) * 2009-12-25 2010-06-23 彩虹集团公司 一种led用封装浆料及其制备方法
CN102433124A (zh) * 2011-09-05 2012-05-02 北京理工大学 一种纳米晶荧光粉及其制备方法
CN102694110A (zh) * 2012-06-08 2012-09-26 北京理工大学 一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266778C (zh) * 2003-01-10 2006-07-26 晶元光电股份有限公司 一种封装材料及以其封装而成的混光式发光二极管器件
JP2008520810A (ja) * 2004-11-16 2008-06-19 ナノクリスタル・ライティング・コーポレーション 光学上信頼できるナノ粒子を基礎とする高屈折率ナノ複合封止材料と光導波材料
CN101338187B (zh) * 2007-07-05 2011-08-31 中国科学院理化技术研究所 一种光致发光透明环氧纳米复合材料及其制备方法和用途
CN101434748B (zh) * 2008-12-04 2011-03-30 上海大学 纳米氧化锌改性的有机硅封装胶的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564332A (zh) * 2004-03-30 2005-01-12 深圳市蓝科电子有限公司 白光二极管制造方法
CN101752490A (zh) * 2009-12-25 2010-06-23 彩虹集团公司 一种led用封装浆料及其制备方法
CN102433124A (zh) * 2011-09-05 2012-05-02 北京理工大学 一种纳米晶荧光粉及其制备方法
CN102694110A (zh) * 2012-06-08 2012-09-26 北京理工大学 一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用

Also Published As

Publication number Publication date
CN102694110B (zh) 2015-06-03
CN102694110A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2013181926A1 (zh) 一种含非稀土纳米晶荧光粉的封装材料、制备方法和应用
CN105143235B (zh) 多面体低聚倍半硅氧烷纳米晶体稳定化配体
CN105189695B (zh) 苯氧基取代的二萘嵌苯‑3,4,9,10‑四羧酸二酰亚胺有机红光发射体、及使用其的发光器件
TWI586760B (zh) 量子點組合物
EP1733077B1 (en) Nanocrystal doped matrixes
US9082941B2 (en) Semiconductor nanoparticle-based materials for use in light emitting diodes, optoelectronic displays and the like
Kang et al. Warm white light emitting diodes with gelatin-coated AgInS2/ZnS core/shell quantum dots
CN105247010B (zh) 无溶剂的量子点交换方法
CN104037310B (zh) 基于碳量子点和ZnCuInS量子点的三原色匹配白光LED及其制备方法
CN102403426B (zh) 一种制造宽色域白光led的方法
KR20120035152A (ko) 나노구조의 분산을 위한 기능화된 매트릭스
WO2019153961A1 (zh) 核壳量子点及其制备方法、及含其的电致发光器件
JPWO2005071039A1 (ja) 波長変換器、発光装置、波長変換器の製造方法および発光装置の製造方法
KR20090038022A (ko) 나노결정 도핑된 매트릭스
JP6290232B2 (ja) 発光量子ドット
WO2018099080A1 (zh) 一种分层型量子点led灯珠的封装方法
CN107180908A (zh) 一种led、背光模组及液晶显示装置
WO2018099082A1 (zh) 一种包覆型量子点led灯珠的封装方法
CN105295387B (zh) 一类兼具发光和封装功能的有机/无机复合发光硅胶制备方法及其在led光源上应用
RU2655358C2 (ru) Оптическая композиция
CN105226146A (zh) 液态量子点led及其制备方法
Yang et al. Magic sol–gel silica films encapsulating hydrophobic and hydrophilic quantum dots for white-light-emission
CN111378430A (zh) 复合材料及其制备方法
CN106634947A (zh) 自钝化金属掺杂红光核壳量子点、led及制备方法
TWI829059B (zh) 光轉換材料、其製備方法、顯示裝置以及照明裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/04/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13800496

Country of ref document: EP

Kind code of ref document: A1