WO2013179575A1 - 真空処理装置、真空処理方法及び記憶媒体 - Google Patents
真空処理装置、真空処理方法及び記憶媒体 Download PDFInfo
- Publication number
- WO2013179575A1 WO2013179575A1 PCT/JP2013/002888 JP2013002888W WO2013179575A1 WO 2013179575 A1 WO2013179575 A1 WO 2013179575A1 JP 2013002888 W JP2013002888 W JP 2013002888W WO 2013179575 A1 WO2013179575 A1 WO 2013179575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- substrate
- oxygen
- plasma
- vacuum
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 17
- 238000003860 storage Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 156
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 79
- 239000001301 oxygen Substances 0.000 claims abstract description 79
- 229910052751 metal Inorganic materials 0.000 claims abstract description 58
- 239000002184 metal Substances 0.000 claims abstract description 58
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 27
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 27
- 239000007789 gas Substances 0.000 claims description 61
- 239000011777 magnesium Substances 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 37
- 238000004544 sputter deposition Methods 0.000 claims description 35
- 239000010936 titanium Substances 0.000 claims description 17
- 230000001590 oxidative effect Effects 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 238000002294 plasma sputter deposition Methods 0.000 abstract 1
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 37
- 229910001882 dioxygen Inorganic materials 0.000 description 37
- 238000000034 method Methods 0.000 description 18
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 238000005247 gettering Methods 0.000 description 9
- 230000005294 ferromagnetic effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000015654 memory Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- -1 for example Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3464—Sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/564—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/5853—Oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3447—Collimators, shutters, apertures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3322—Problems associated with coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
Definitions
- the present invention relates to a vacuum processing apparatus and a vacuum processing method for forming a metal oxide film by sputtering a metal target to form a metal film on a substrate and then oxidizing the metal film.
- MRAM Magneticoresistive
- the basic mechanism of the MRAM storage element is shown in FIG.
- the MRAM memory element has ferromagnetic layers 92a and 92b on both sides of the insulating film 91, the magnetization direction of the ferromagnetic layer 92a is variable, and the magnetization direction of the ferromagnetic layer 92b is fixed. As shown in FIG.
- a metal oxide film is used as the insulating film. However, if the resistance value of the metal oxide film varies, the characteristics of the MRAM change, and the magnitude of the current required for writing “0” or “1” described above. Fluctuates. Therefore, a strict allowable range is set for the resistance value of the metal oxide film of the MRAM.
- Japanese Patent Application Laid-Open No. 6-172789 describes a method of sputtering a target made of a metal oxide (reactive sputtering method). There is a problem of gradually oxidizing inside.
- Japanese Patent Application Laid-Open No. 2008-13829 describes a method of obtaining a metal oxide film on a substrate by sputtering a metal target while introducing oxygen gas into a sputtering apparatus. There is a problem that the surface is oxidized and the resistance value of the formed metal oxide film becomes unstable.
- JP-A-6-49633 describes a method of oxidizing a metal film by supplying oxygen in another oxygen supply chamber after forming the metal film in one processing chamber. Since two or more chambers are used, the throughput of the entire apparatus is lowered. Moreover, there is a concern that oxygen introduced into the oxygen supply chamber remains, and the resistance value of the metal oxide film varies between the substrates due to the residual oxygen.
- the metal oxide film formed by the method described in the above three publications has a problem that a high yield cannot be obtained because the resistance value between the substrates is not stable.
- Japanese Patent Application Laid-Open No. 2009-65181 describes a method of manufacturing an MRAM in which a processing chamber having two targets is used and gettering is performed before forming a metal oxide film. As such (MgO in the present invention) is directly used as a target, it does not motivate the present invention.
- the present invention has been made under such circumstances, and an object thereof is to provide a technique for forming a metal oxide film having a stable resistance value between substrates.
- the vacuum processing apparatus of the present invention is A target arranged so as to face the substrate on the mounting portion in the vacuum vessel is sputtered by ions in plasma obtained by converting plasma generating gas into plasma, and then a metal film is formed on the substrate.
- a first target made of a substance having a property of adsorbing oxygen
- a second target made of metal
- a power supply for applying a voltage to the first target and the second target
- a shutter for preventing particles from the one target from adhering to the other target when one of the first and second targets is sputtered
- a shielding member movable between a shielding position covering the substrate and a retreating position retracted from the position covering the substrate to prevent particles from the first target from adhering to the substrate;
- An oxygen supply unit for supplying a gas containing oxygen to the substrate on the mounting unit; Sputtering the first target by supplying a voltage for generating plasma to the first target in a state where the shielding member is set at a shielding
- a vacuum processing apparatus of the present invention is A target arranged so as to face the substrate on the mounting portion in the vacuum vessel is sputtered by ions in plasma obtained by converting plasma generating gas into plasma, and then a metal film is formed on the substrate.
- a target made of a metal having the property of adsorbing oxygen;
- a power supply for applying a voltage to the target;
- a shielding member movable between a shielding position covering the substrate and a retreating position retracted from the position covering the substrate to prevent particles from the target from adhering to the substrate;
- An oxygen supply unit for supplying a gas containing oxygen to the substrate on the mounting unit; Sputtering the target by supplying a voltage for generating plasma to the target in a state where the shielding member is set at a shielding position in order to attach target particles in the vacuum vessel, and then supplying voltage to the target.
- the vacuum processing method of the present invention comprises: A target arranged so as to face the substrate on the mounting portion in the vacuum vessel is sputtered by ions in plasma obtained by converting plasma generating gas into plasma, and then a metal film is formed on the substrate.
- a vacuum processing method for oxidizing a metal film Using a first target made of a substance having the property of adsorbing oxygen and a second target made of metal, In order to prevent particles from the first target from adhering to the substrate, the substrate on the mounting portion is covered with a shielding member, and particles from the first target adhere to the second target.
- a shutter Disposing a shutter at a position facing the second target in order to prevent Next, supplying a voltage for generating plasma to the first target to sputter the first target, thereby attaching the particles of the first target in a vacuum vessel; Next, a shutter is disposed at a position facing the first target in order to stop the voltage supply to the first target and prevent particles from the second target from adhering to the first target, and a shielding member. Retreating from a position covering the substrate; Then, supplying a voltage for generating plasma to the second target to sputter the second target, and forming a metal film on the substrate; And a step of supplying a gas containing oxygen to the substrate on the mounting portion.
- Another vacuum processing method of the present invention is as follows: A target arranged so as to face the substrate on the mounting portion in the vacuum vessel is sputtered by ions in plasma obtained by converting plasma generating gas into plasma, and then a metal film is formed on the substrate.
- a vacuum processing method for oxidizing a metal film Using a target made of a metal that has the property of adsorbing oxygen, Covering the substrate on the mounting portion with a shielding member to prevent particles from the target from adhering to the substrate; Next, a voltage for generating plasma is supplied to the target to sputter the target, thereby causing the target particles to adhere to the vacuum container; Thereafter, in a state where the shielding member is retracted from a position covering the substrate, a voltage for generating plasma is supplied to the target, the target is sputtered, and a metal film is formed on the substrate; And a step of supplying a gas containing oxygen to the substrate on the mounting portion.
- the storage medium of the present invention provides A target arranged so as to face the substrate on the mounting portion in the vacuum vessel is sputtered by ions in plasma obtained by converting plasma generating gas into plasma, and then a metal film is formed on the substrate.
- the present invention uses a first target, which is an oxygen gettering material having the property of adsorbing oxygen, and a second target made of a metal for film formation. Then, the first target is sputtered with the substrate covered with the shielding member to adhere the gettering material in the vacuum vessel, and then the second target is sputtered with the shielding member opened to deposit the metal on the substrate. Then, after closing the shielding member, oxygen is supplied to the substrate to oxidize the metal film. Therefore, since the metal film is formed in a state where the residual oxygen in the vacuum vessel is reduced, the amount of oxygen contained in the metal oxide film can be controlled with high accuracy. For this reason, the resistance of the metal oxide film between the substrates can be controlled. The value is stable.
- the vacuum processing apparatus includes a vacuum vessel 2 made of a conductive material, for example, stainless steel and grounded.
- the vacuum vessel 2 includes a cylindrical portion 2a and a protruding portion 2b.
- FIG. 2 is a view of the vacuum vessel 2 as viewed from above.
- a first target electrode 32a and a second target electrode 32b each having a circular shape and substantially the same size are provided horizontally on the ceiling of the cylindrical portion 2a, side by side (side by side in the x-axis direction). It has been.
- target electrodes 32 a and 32 b are joined to ring-shaped insulators 25 a and 25 b via ring-shaped holding bodies 34 a and 34 b, respectively, and the insulators 25 a and 25 b are joined to the ceiling portion of the vacuum vessel 2. Accordingly, the target electrodes 32a and 32b are disposed at positions where they are lowered below the upper surface of the cylindrical portion 2a while being electrically insulated from the vacuum vessel 2.
- the first target 31a is bonded to the lower surface of the first target electrode 32a, and the second target 31b is bonded to the lower surface of the second target electrode 32b.
- the targets 31a and 31b are formed in a rectangular shape such as a square having substantially the same size.
- FIG. 3 shows a plan view of the shutter 61 as seen from below.
- the shutter 61 is a circular plate larger than the projection areas of both the targets 31a and 31b, and is rotatably attached to the center of the upper surface of the cylindrical portion 2a via a rotation shaft 63.
- the shutter 61 is formed with a rectangular opening 62 having a size slightly larger than the target 31a (31b) at a position where the entire target 31a or 31b can be seen from below when the position in the rotation direction is matched.
- a rotation drive unit 64 having a magnet 64a is provided at a position corresponding to the rotation shaft 63 above the ceiling of the vacuum vessel 2, and magnetic coupling between the magnet 64a and the magnet provided on the rotation shaft 63 side allows The rotating shaft 63 rotates.
- the target electrodes 32a and 32b are connected to power supply units 33a and 33b, respectively, so that, for example, a negative DC voltage is applied.
- Switches 38a and 38b are interposed between the target electrode 32a and the power supply unit 33a and between the target electrode 32b and the power supply unit 33b, respectively.
- the material of the first target 31a is a member that absorbs oxygen and moisture (hereinafter referred to as “gettering member”).
- gettering member titanium (Ti), chromium (Cr), tantalum (Ta), zirconium (Zr), Magnesium (Mg), hafnium (Hf), or alloys thereof are used.
- the material of the target 31b is a film forming material for the substrate S.
- Mg aluminum (Al), nickel (Ni) gallium (Ga), manganese (Mn), copper (Cu), silver (Ag), zinc (Zn) ) And metals such as Hf.
- Ti is used as the gettering member and Mg is used as the film forming material.
- a placement unit 4 for placing the substrate S horizontally is provided so as to face the targets 31a and 31b.
- the mounting portion 4 is connected to a drive mechanism 41 disposed on the lower side of the vacuum vessel 2 via a shaft member 4a.
- the driving mechanism 41 has a role of rotating the mounting portion 4, a position at which the substrate S, which is a semiconductor silicon wafer, for example, is transferred to and from an external transfer mechanism (not shown) via the lift pins 41 a, and processing during sputtering It plays the role of moving up and down between positions.
- Reference numeral 42 denotes a seal portion.
- a heating mechanism (not shown) is incorporated in the mounting portion 4 so that the substrate S can be heated during sputtering.
- Three lifting pins 41a are provided so as to be supported at three positions from the lower surface of the substrate S, and are lifted and lowered by the lifting portion 41b via the support member 41c.
- Magnet array bodies 51a and 51b are provided above the target electrodes 32a and 32b so as to be close to the target electrodes 32a and 32b, respectively.
- the magnet arrays 51a and 51b are made of a material having high magnetic permeability, for example, an iron (Fe) base body 71 and N-pole magnet groups 72a to 72e and S-pole magnet groups 73a to 73d. It is comprised by arranging so that.
- FIG. 4 is a plan view of the N-pole magnet groups 72a to 72e and the S-pole magnet groups 73a to 73d as viewed from the targets 31a and 31b.
- the magnet arrays 51a and 51b are arranged at positions eccentric from the center in order to improve the erosion uniformity of the targets 31a and 31b, and are rotated about the centers of the targets 31a and 31b by the rotation mechanisms 53a and 53b. It has become.
- FIG. 5A is a top view of the cover plate 43.
- the cover plate 43 is configured to be pivotable in the horizontal direction around a support column 43a provided at an end, and pivots between a shielding position that covers the substrate S and a retreat position that is retracted from a position that covers the substrate S.
- the column 43 a penetrates the bottom of the vacuum vessel 2 and is rotatably supported by a rotation support unit 48 via a rotation drive unit 47.
- Reference numeral 44 denotes a seal mechanism.
- the cover plate 43 has a function of supplying oxygen (O 2 ) to the substrate S in addition to the above-described shielding function. Specifically, as shown in FIG. In addition, gas discharge ports 45 for discharging oxygen gas along the diameter are arranged at equal intervals.
- FIG. 6 is a diagram showing a detailed mechanism of the cover plate 43 and the column 43a.
- An oxygen gas supply path 46 is provided inside the cover plate 43 and the column 43 a, and a flexible tube 46 a forming a gas supply path is connected to the upstream end of the oxygen gas supply path 46.
- the flexible tube 46a is connected to an oxygen gas supply source 49 via a gas supply pipe 49b provided with a gas control device group 49a such as a valve or a flow meter.
- Oxygen gas from the oxygen gas supply source 49 is discharged from the gas discharge port 45 described above through the column 43 a and the gas supply path 46 in the cover plate 43.
- the gas supply path 46 and the gas discharge port 45 constitute an oxygen supply unit.
- the support portion 48 is provided with a slip ring 48b, and a power feed path 48c is provided in the column 43a, and the power feed path 48c and the external power supply portion 48a are electrically connected via the slip ring 48b.
- a heater 40 that constitutes a heating unit that is a temperature control mechanism connected to the power supply path 48c, and the oxygen gas in the gas supply path 46 is preheated by the heater 40.
- the arrangement area of the heater 40 is not limited to the cover plate 43 but may be provided in the support pillar 43a, or may be provided in both.
- the cover plate 43 and the column 43a may be hollow inside, and the gas supply path 46, the power supply path 48c, and the heater 40 may be provided in the cavity.
- the vacuum vessel 2 has an exhaust passage 21 connected to the bottom, and the exhaust passage 21 is connected to the vacuum exhaust device 22 via a pressure adjusting portion 21a.
- a gate valve 24 that opens and closes the loading / unloading port 23 for the substrate S is provided on the side surface of the vacuum vessel 2.
- an Ar gas supply path 28 for supplying an inert gas, for example, Ar gas, which is a gas for generating plasma, into the vacuum container 2 is provided on the upper side wall of the vacuum container 2.
- the Ar gas supply path 28 is connected to an Ar gas supply source 26 via a gas control device group 27 such as a valve and a flow meter.
- the vacuum processing apparatus includes a control unit 100 including a computer that controls each operation.
- the operation include power supply operation from the power supply units 33 a and 33 b, Ar gas supply operation from the Ar gas supply source 26, elevating operation and rotating operation of the mounting unit 4 by the elevating device 41, Examples include a rotation operation and an oxygen gas supply operation, a rotation operation of the magnet arrays 51a and 51b, a rotation operation of the shutter 61, and an exhaust operation inside the vacuum vessel 2 by the vacuum exhaust device 22.
- the control unit 100 executes an external storage medium such as a hard disk, a tape storage, a compact disk, a magneto-optical disk, a program in which a group of instructions for control necessary for forming a metal oxide film on the substrate S is performed. It is read via a memory card or the like and controls the entire vacuum processing apparatus.
- FIG. 1 the substrate S is loaded via the loading / unloading port 23 by a transfer mechanism provided in an external vacuum transfer chamber (not shown), placed on the placement unit 4, and the gate valve 24 is closed.
- the pressure adjusting unit 21a is fully opened, and the vacuum container 2 is pulled.
- FIG. 9 is an explanatory diagram showing a sequence in which the operations of the respective parts are arranged in time series.
- the shutter 61 is fully closed (the position is closed with respect to both the targets 31a and 31b).
- the cover plate 43 is placed at the shielding position (step 1).
- Ar gas is introduce
- the Ti target side power source 33a which is the first target 31a side is turned on, and a DC voltage of, for example, 380 V is applied to the target electrode 32a (step 2).
- the magnet array 51a is rotated, and the shutter 61 is rotated so that the first target 31a side is opened (step 3).
- Ar gas is turned into a high-density plasma by the electric field applied to the first target 31a and the magnetic field generated by the magnet array 51a, and the first target 31a is sputtered by this plasma and Ti particles are knocked out.
- Ti particles adhere to the wall surface, the upper surface of the cover plate 43, and the like to form a film.
- FIG. 7A shows this state. Sputtering of Ti particles into the vacuum vessel 2 is performed for 10 seconds, for example. Then, the voltage application to the target 31a and the supply of Ar gas are stopped, the magnet array 51a is stopped, and the shutter 61 is closed (step 4).
- Ti particles adhering to the inside of the vacuum vessel 2 by the above-described sputtering absorb oxygen molecules and water molecules present in the vacuum vessel 2 and become titanium oxide or the like. For this reason, the pressure inside the vacuum vessel 2 is reduced to 9 ⁇ 10 ⁇ 8 Pa. Since the pressure in the vacuum vessel 2 before sputtering the first target 31a is 4 ⁇ 10 ⁇ 7 Pa, it is confirmed that the gettering effect by Ti is great.
- Mg is sputtered on the substrate S.
- the supply of Ar gas is started again, and the pressure in the vacuum vessel 2 is set to 100 mPa (0.8 mTorr), for example.
- the magnet array 51b is rotated and a DC voltage of, for example, 300V is applied to the target electrode 32b (second target 31b) (step 5).
- the cover plate 43 is retracted from the placement unit 4 (step 6), and the shutter 61 is rotated so that the second target 31b side is opened while the placement unit 4 is rotated (step 7).
- the Ar gas is turned into plasma, the second target 31b is sputtered, Mg particles adhere to the substrate S, and an Mg film having a thickness of, for example, 3 mm (0.3 nm) is formed on the substrate S. Sputtering of Mg particles onto the substrate S is performed for about 10 seconds.
- FIG. 7B shows this state. Then, voltage application and Ar gas supply to the second target 31b are stopped (step 8), the magnet array 51b is stopped, and the shutter 61 is closed (step 9).
- oxygen gas from the oxygen gas supply source 27 is preheated by the heater 40 and discharged from the gas discharge port 45 of the cover plate 43 and supplied to the surface of the substrate S.
- pure oxygen gas is discharged at a flow rate of 1 sccm for 20 seconds (step 10).
- the flow rate of the pure oxygen gas is set in the range of 0.1 to 100 sccm, for example.
- Mg particle sputtering and supply of oxygen gas to the Mg film are repeated, for example, twice.
- Mg particle sputtering and supply of oxygen gas to the Mg film are repeated, for example, twice.
- three layers of 3 mm MgO film are formed, and a total of about 9 mm (0.9 nm) is formed.
- An MgO film is formed on the substrate S.
- the amount of oxygen supplied to the Mg film can be changed for each step, and the resistance value of the formed MgO film can be controlled by adjusting the oxygen flow rate for each step. is there.
- the flow rate of oxygen supplied to the Mg film is set to 0.1 sccm in the first step, 1 sccm in the second step, and 10 sccm in the third step.
- the oxygen flow rate is suitably 0.1 sccm to 40 sccm when the target 31b is Mg, and 10 sccm to 100 sccm when the target 31b is Ni.
- the flow rate of oxygen gas is adjusted for each step, for example, The flow rate of oxygen gas may be different between at least two divided films.
- the cover plate 43 as shown in FIG. 6 is used when supplying oxygen gas to the Mg film. Since oxygen is highly reactive, it has the property of easily reacting and adsorbing with substances in the vicinity of oxygen molecules. Therefore, when oxygen gas is supplied to the substrate S from a position far from the substrate S, it reacts with and adsorbs to a nearby substance before the oxygen gas reaches the substrate S, and as a result, oxygen is hardly supplied to the Mg film. Therefore, the amount of oxygen consumed is large, and stable supply onto the substrate becomes impossible. For this reason, oxygen gas is supplied onto the substrate S from the vicinity using the cover plate 43. When oxygen is introduced, the shutter 61 moves to the shielding position with respect to both the targets 31a and 31b from the viewpoint of preventing oxidation of the target.
- FIG. 8E shows this state.
- the inflow of oxygen from the outside can be suppressed by performing the MgO film forming process on one substrate with one vacuum vessel shown in FIG. Further, by performing sputtering of Ti while covering the substrate S with the cover plate 43 before and after the step of forming the MgO film on the substrate S and removing oxygen in the vacuum vessel 2, residual oxygen in the vacuum vessel 2 is reduced. In this state, the Mg film can be formed. Therefore, since the degree of oxidation of Mg can be controlled by the supply amount of oxygen gas, the resistance value between the substrates S is stabilized. Therefore, it is effective in terms of quality improvement in manufacturing a memory element or the like using an MgO film such as an MRAM memory element as an insulating film.
- the Mg film forming step and the step of oxidizing the Mg film to form the MgO film do not necessarily need to be repeated.
- the film forming material is not limited to Mg, and metals such as Al, Ni, Hf, Ga, Zn, and alloys thereof can be used.
- the distance from the upper surface of the cover plate 43 to the substrate S is, for example, 130 mm or less which is 1/2 or less with respect to 260 mm which is the distance between the target 31a and the substrate S. desirable.
- the shielding effect is increased by bringing the cover plate 43 closer to the substrate S, so that the diameter of the cover plate 43 can be reduced.
- the distance between the lower surface of the cover plate 43 and the substrate S is, for example, that the thickness of the cover plate 43 is 10 mm. In some cases, it is preferably 10 mm to 120 mm, for example, 30 mm.
- the distance between the ejection port 45 and the substrate S is adjusted by, for example, raising the placement unit 4. The reason for setting these distances is to reduce the amount of oxygen to be discharged as much as possible from the viewpoint of preventing oxygen molecules from adhering to the target and the chamber wall and from the viewpoint of reducing oxygen consumption.
- the oxygen gas discharge ports 45 may be arranged vertically or horizontally or concentrically within the projection region of the substrate, instead of being arranged on the line as in the above-described embodiment.
- the oxygen gas supply unit including the gas discharge port 45 and the oxygen gas supply path 46 is not limited to being integrated with the cover plate 43, and may be a separate body. In this case, the oxygen gas supply unit may be configured to be moved by the moving mechanism between the upper position of the substrate S and the position retracted from the upper position independently of the driving of the cover plate 43.
- the oxygen gas supply unit may be configured by, for example, a gas supply pipe penetrating the side wall of the vacuum vessel 2 and the position of the oxygen gas discharge port may be fixed.
- the discharge port for supplying oxygen gas from the oxygen gas supply unit to the substrate S may be positioned below the substrate.
- the oxygen gas is preheated, but it is not necessary to preheat.
- the cover plate 43 may be configured to move linearly in the lateral direction instead of turning. Further, depending on the apparatus configuration, the flow of the exhaust flow, and the arrangement of the exhaust ports, the targets 31a and 31b may not be closed by the shutter 61 when oxygen gas is supplied from the oxygen supply unit to the substrate S.
- the first and second targets 31 a and 31 b are arranged so as to be parallel to the substrate S on the placement unit 4.
- the present invention is not limited to such an arrangement, so that each end on the central axis of the substrate S in the first and second targets 31a and 31b is higher than the end opposite to the central axis.
- the first and second targets 31a and 31b may be inclined.
- the electric power applied to the target 31 may use alternating current power instead of direct current power, and the inert gas for generating plasma is Ar gas. It is not limited to.
- the method is not limited to using the magnet array 51, and may be a method of applying a high frequency bias to the mounting table while applying high frequency power to the target 31, for example.
- the target material is a metal to be deposited on the substrate S and absorbs oxygen and becomes an oxide, such as Hf and Mg, and alloys thereof.
- the target 31 is sputtered by sputtering the target 31 in a state where the shutter 61 is opened and the cover plate 43 is positioned on the mounting portion 4. And gettering oxygen and moisture.
- the cover plate 43 is retracted from the mounting portion 4, the target 31 is sputtered again, and the target particles are adhered onto the substrate S to form a metal film.
- the cover plate 43 is positioned again on the mounting portion 4, the shutter 61 is closed, oxygen gas is supplied onto the substrate S from the gas discharge port 45 of the cover plate 43, and the metal film on the substrate S is oxidized. To form a metal oxide film.
- the shutter 61 is opened with the cover plate 43 positioned on the mounting portion 4, the target 31 is sputtered and gettering is performed again, and then the substrate S is carried out of the vacuum container 2. Also in the second embodiment, the same effect as in the first embodiment can be obtained. Also in the second embodiment, the modification described above in the first embodiment can be applied.
- Example 2 Using the apparatus of the above-described embodiment, the metal oxide film was sequentially formed on 25 silicon wafers, and the resistance value of the oxide film was measured for each of the obtained substrates, and the variation was examined. Specifically, three layers of a 3 mm MgO film were laminated under the conditions described in the embodiment.
- -Target 31a (gettering member) material: Ti -Target 31b (film forming material) material: Mg ⁇
- a vacuum processing apparatus in which a chamber for performing sputtering (sputtering chamber) and a chamber for oxidizing (oxidation chamber) are separated was used.
- an Mg film is formed on the substrate S in the sputtering chamber, and then the substrate S is carried into the oxidation chamber in a vacuum state.
- the Mg film is oxidized into an MgO film in the oxidation chamber, and this process is repeated.
- the resistance value of the oxide film was measured for each of the 25 silicon wafers formed, and the fluctuations were examined.
- Mg is sputtered in a sputtering chamber to form a 3 mm (0.3 nm) Mg film, and then the substrate S is transported to the oxidation chamber. In the oxidation chamber, oxygen is supplied to the Mg film and MgO is supplied. A film was formed.
- the substrate S is returned to the sputtering chamber, Mg is sputtered again, a 3 mm (0.3 nm) Mg film is formed, the substrate S is transferred to the oxidation chamber, and oxygen is supplied to the Mg film in the oxidation chamber. An MgO film was formed. Further, the substrate S was returned to the sputtering chamber, and Mg was sputtered. The process was repeated, and a 9 mm (0.9 nm) MgO film was formed on the substrate S. The series of substrates S is transferred in a vacuum atmosphere. The MgO film was formed on 25 substrates S by the above method.
- FIG. 11 shows these results.
- the horizontal axis represents the substrate number
- the vertical axis represents the resistance value (unit: ⁇ / ⁇ m 2 )
- the variation in the resistance value between the substrates is shown.
- the resistance value of the metal oxide film increases in the comparative example, whereas in the example, the resistance value is around 1.50 to 1.55 ⁇ / ⁇ m 2 , indicating a stable value between the substrates. It was.
- This result is analyzed as follows. That is, in the comparative example, the sputtering chamber and the oxidation chamber are separated.
- the following results were obtained when the MgO film was formed under the same conditions except that the apparatus in which the target 31a was omitted from the apparatus of the first embodiment and the procedure of sputtering Ti from the target 31a was not performed. was gotten. Although the resistance value of the first sheet was 1.5 ⁇ / ⁇ m 2 , the resistance value increased as the substrate processing was continued, and it was confirmed that the 25th sheet exceeded 3 ⁇ / ⁇ m 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
Description
Random Access Memory)が注目されている。MRAM記憶素子の基本的なメカニズムを図12に示す。MRAM記憶素子は、絶縁膜91を挟んで両側に強磁性層92a及び92bを有し、強磁性層92aの磁化方向は可変であり、強磁性層92bの磁化方向は固定されている。図12(a)に示すように両側の強磁性層92a及び92bの磁化が逆方向のとき絶縁膜92の抵抗値は上昇し、強磁性層92aから92bに電流が流れにくくなる。MRAMは、この状態を記憶素子の「1」の状態として用いている。反対に図12(b)に示すように両側の強磁性層92a及び92bの磁化が同方向のとき絶縁膜92の抵抗値は低下し、強磁性層92aから92bに電流が流れやすくなる。MRAMは、この状態を記憶素子の「0」の状態として用いている。
真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理装置において、
酸素を吸着する性質を有する物質からなる第1のターゲットと、
金属からなる第2のターゲットと、
前記第1のターゲット及び第2のターゲットに電圧を印加する電源部と、
前記第1及び第2のターゲットの一方をスパッタしているときに当該一方のターゲットからの粒子が他方のターゲットに付着するのを防止するためのシャッターと、
前記第1のターゲットからの粒子が基板に付着するのを防止するために基板を覆う遮蔽位置と基板を覆う位置から退避した退避位置との間で移動自在な遮蔽部材と、
前記載置部上の基板に対して酸素を含むガスを供給するための酸素供給部と、
前記真空容器内に第1のターゲットの粒子を付着させるために、前記遮蔽部材を遮蔽位置に設定した状態で第1のターゲットにプラズマ発生用の電圧を供給して第1のターゲットをスパッタするステップと、次いで第1のターゲットに対する電圧供給を停止し、前記遮蔽部材を退避位置に設定した状態で、基板に金属膜を成膜するために、第2のターゲットにプラズマ発生用の電圧を供給して第2のターゲットをスパッタするステップと、続いて前記酸素供給部から酸素を含むガスを前記基板に供給するステップと、を実行するための制御部と、を備えたことを特徴とする。
また、本発明の別の真空処理装置は、
真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理装置において、
酸素を吸着する性質を有する金属からなるターゲットと、
前記ターゲットに電圧を印加する電源部と、
前記ターゲットからの粒子が基板に付着するのを防止するために基板を覆う遮蔽位置と基板を覆う位置から退避した退避位置との間で移動自在な遮蔽部材と、
前記載置部上の基板に対して酸素を含むガスを供給するための酸素供給部と、
前記真空容器内にターゲットの粒子を付着させるために、前記遮蔽部材を遮蔽位置に設定した状態でターゲットにプラズマ発生用の電圧を供給して当該ターゲットをスパッタするステップと、次いでターゲットに対する電圧供給を停止し、前記遮蔽部材を退避位置に設定した状態で、基板に金属膜を成膜するために、前記ターゲットにプラズマ発生用の電圧を供給して当該ターゲットをスパッタするステップと、続いて前記酸素供給部から酸素を含むガスを前記基板に供給するステップと、を実行するための制御部と、を備えたことを特徴とする。
真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理方法において、
酸素を吸着する性質を有する物質からなる第1のターゲットと、金属からなる第2のターゲットと、を用い、
前記第1のターゲットからの粒子が前記基板に付着するのを防止するために遮蔽部材により前記載置部上の前記基板を覆うと共に第1のターゲットからの粒子が第2のターゲットに付着するのを防止するために第2のターゲットに臨む位置にシャッターを配置する工程と、
次に、前記第1のターゲットにプラズマ発生用の電圧を供給して前記第1のターゲットをスパッタし、これにより第1のターゲットの粒子を真空容器内に付着させる工程と、
次いで前記第1のターゲットに対する電圧供給を停止すると共に第2のターゲットからの粒子が第1のターゲットに付着するのを防止するために第1のターゲットに臨む位置にシャッターを配置し、かつ遮蔽部材を前記基板を覆う位置から退避させる工程と、
その後、前記第2のターゲットにプラズマ発生用の電圧を供給して当該第2のターゲットをスパッタし、前記基板に対して金属膜を成膜する工程と、
続いて酸素を含むガスを前記載置部上の前記基板に供給する工程と、を含むことを特徴とする。
また、本発明の別の真空処理方法は、
真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理方法において、
酸素を吸着する性質を有する金属からなるターゲットを用い、
前記ターゲットからの粒子が前記基板に付着するのを防止するために遮蔽部材により前記載置部上の基板を覆う工程と、
次に前記ターゲットにプラズマ発生用の電圧を供給して当該ターゲットをスパッタし、これによりターゲットの粒子を真空容器内に付着させる工程と、
その後、前記遮蔽部材を前記基板を覆う位置から退避させた状態で、前記ターゲットにプラズマ発生用の電圧を供給して当該ターゲットをスパッタし、前記基板に対して金属膜を成膜する工程と、
続いて酸素を含むガスを前記載置部上の前記基板に供給する工程と、を含むことを特徴とする。
真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理に用いられるコンピュータプログラムが記録された記憶媒体であって、
前記コンピュータプログラムは、上述の真空処理方法を実施するためのものであることを特徴とする。
。動作の具体例としては、電源部33a及び33bからの電源供給動作、Arガス供給源26からのArガスの供給動作、昇降装置41による載置部4の昇降動作及び回転動作、カバープレート43の回転動作及び酸素ガス供給動作、マグネット配列体51a及び51bの回転動作、シャッター61の回転動作、真空排気装置22による真空容器2内部の排気動作などが挙げられる。そして制御部100は、基板S上に金属酸化膜の成膜を行うために必要な制御について命令群が組まれたプログラムが、外部記憶媒体、例えばハードディスク、テープストレージ、コンパクトディスク、光磁気ディスク、メモリーカードなどを介して読み込まれ、当該真空処理装置全体の制御を行う。
先ず図示しない外部の真空搬送室に設けられた搬送機構により基板Sを搬入出口23を介して搬入し、載置部4上に載置すると共に、ゲートバルブ24を閉じる。次いで圧力調整部21aを全開にして真空容器2内の引き切りを行う。
酸素ガスの吐出口45は、上述実施形態のようにライン上に配置される代わりに、基板の投影領域内にて縦横にあるいは同心円状に配置されていてもよい。またガス吐出口45及び酸素ガス供給路46を含む酸素ガス供給部はカバープレート43と一体になっていることに限られるものではなく、別体であってもよい。この場合酸素ガス供給部は、カバープレート43の駆動とは独立して、基板Sの上方位置と当該上方位置から退避した位置との間で移動機構により移動できるように構成してもよい。
以下に詳述する第2の実施形態において、上述の第1の実施形態と説明が同一である部分については、同一の符号を付し説明を省略する。第2の実施形態は、図10に示すように、第1の実施形態における第1のターゲット31aと第2のターゲット31bとが共通化されている構成である。この場合、ターゲットの材料は、基板Sに成膜する金属であって、酸素を吸収しかつ酸化物となる金属、例としてはHfやMgなど、並びにこれらの合金などが挙げられる。
第2の実施形態においても、第1の実施形態と同様の効果が得られる。この第2の実施形態においても、第1の実施形態で上述した変形例を適用することができる。
上述実施形態の装置を用い、25枚のシリコンウエハに対して順次金属酸化膜の成膜処理を行い、得られた基板について夫々、酸化膜の抵抗値を測定し、その変動を調べた。具体的には3ÅのMgO膜を実施形態に記載した条件で3層積層した。
・ターゲット31a(ゲッタリング部材)の素材:Ti
・ターゲット31b(成膜材)の素材:Mg
・基板S直径:300mm
・カバープレート43直径:450mm
・ターゲット電極32aへの印加電圧:380V
・ターゲット電極32bへの印加電圧:300V
・スパッタ時の基板Sとターゲット31a、31bとの距離:260mm
(比較例)
スパッタを行うチャンバ(スパッタ室)と酸化を行うチャンバ(酸化室)が分離している真空処理装置を用いた。そしてスパッタ室にてMg膜を基板S上に成膜し、その後真空状態にて酸化室に基板Sを搬入し、酸化室にてMg膜をMgO膜へと酸化し、このプロセスを繰り返すことにより成膜した25枚のシリコンウエハについて、夫々酸化膜の抵抗値を測定し、その変動を調べた。
Claims (14)
- 真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理装置において、
酸素を吸着する性質を有する物質からなる第1のターゲットと、
金属からなる第2のターゲットと、
前記第1のターゲット及び第2のターゲットに電圧を印加する電源部と、
前記第1及び第2のターゲットの一方をスパッタしているときに当該一方のターゲットからの粒子が他方のターゲットに付着するのを防止するためのシャッターと、
前記第1のターゲットからの粒子が基板に付着するのを防止するために基板を覆う遮蔽位置と基板を覆う位置から退避した退避位置との間で移動自在な遮蔽部材と、
前記載置部上の基板に対して酸素を含むガスを供給するための酸素供給部と、
前記真空容器内に第1のターゲットの粒子を付着させるために、前記遮蔽部材を遮蔽位置に設定した状態で第1のターゲットにプラズマ発生用の電圧を供給して第1のターゲットをスパッタするステップと、次いで第1のターゲットに対する電圧供給を停止し、前記遮蔽部材を退避位置に設定した状態で、基板に金属膜を成膜するために、第2のターゲットにプラズマ発生用の電圧を供給して第2のターゲットをスパッタするステップと、続いて前記酸素供給部から酸素を含むガスを前記基板に供給するステップと、を実行するための制御部と、を備えたことを特徴とする真空処理装置。 - 真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理装置において、
酸素を吸着する性質を有する金属からなるターゲットと、
前記ターゲットに電圧を印加する電源部と、
前記ターゲットからの粒子が基板に付着するのを防止するために基板を覆う遮蔽位置と基板を覆う位置から退避した退避位置との間で移動自在な遮蔽部材と、
前記載置部上の基板に対して酸素を含むガスを供給するための酸素供給部と、
前記真空容器内にターゲットの粒子を付着させるために、前記遮蔽部材を遮蔽位置に設定した状態でターゲットにプラズマ発生用の電圧を供給して当該ターゲットをスパッタするステップと、次いでターゲットに対する電圧供給を停止し、前記遮蔽部材を退避位置に設定した状態で、基板に金属膜を成膜するために、前記ターゲットにプラズマ発生用の電圧を供給して当該ターゲットをスパッタするステップと、続いて前記酸素供給部から酸素を含むガスを前記基板に供給するステップと、を実行するための制御部と、を備えたことを特徴とする真空処理装置。 - 前記酸素供給部は、前記遮蔽部材に設けられていることを特徴とする請求項1記載の真空処理装置。
- 前記酸素供給部から真空容器内に酸素を含むガスが吐出される前に当該ガスを加熱するための加熱部を備えていることを特徴とする請求項1記載の真空処理装置。
- 前記第1のターゲットは、チタン、クロム、タンタル、ジルコニウム、マグネシウム、またはハフニウムから選ばれる金属、あるいはこれらのうち1種以上を含む合金であることを特徴とする請求項1に記載の真空処理装置。
- 前記第2のターゲットは、マグネシウム、アルミニウム、ニッケル、ガリウム、マンガン、銅、銀、亜鉛、またはハフニウムから選ばれる金属であることを特徴とする請求項1に記載の真空処理装置。
- 真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理方法において、
酸素を吸着する性質を有する物質からなる第1のターゲットと、金属からなる第2のターゲットと、を用い、
前記第1のターゲットからの粒子が前記基板に付着するのを防止するために遮蔽部材により前記載置部上の前記基板を覆うと共に第1のターゲットからの粒子が第2のターゲットに付着するのを防止するために第2のターゲットに臨む位置にシャッターを配置する工程と、
次に、前記第1のターゲットにプラズマ発生用の電圧を供給して前記第1のターゲットをスパッタし、これにより第1のターゲットの粒子を真空容器内に付着させる工程と、
次いで前記第1のターゲットに対する電圧供給を停止すると共に第2のターゲットからの粒子が第1のターゲットに付着するのを防止するために第1のターゲットに臨む位置にシャッターを配置し、かつ遮蔽部材を前記基板を覆う位置から退避させる工程と、
その後、前記第2のターゲットにプラズマ発生用の電圧を供給して当該第2のターゲットをスパッタし、前記基板に対して金属膜を成膜する工程と、
続いて酸素を含むガスを前記載置部上の前記基板に供給する工程と、を含むことを特徴とする真空処理方法。 - 真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理方法において、
酸素を吸着する性質を有する金属からなるターゲットを用い、
前記ターゲットからの粒子が前記基板に付着するのを防止するために遮蔽部材により前記載置部上の基板を覆う工程と、
次に前記ターゲットにプラズマ発生用の電圧を供給して当該ターゲットをスパッタし、これによりターゲットの粒子を真空容器内に付着させる工程と、
その後、前記遮蔽部材を前記基板を覆う位置から退避させた状態で、前記ターゲットにプラズマ発生用の電圧を供給して当該ターゲットをスパッタし、前記基板に対して金属膜を成膜する工程と、
続いて酸素を含むガスを前記載置部上の前記基板に供給する工程と、を含むことを特徴とする真空処理方法。 - 前記酸素を含むガスは前記遮蔽部材中に設けられた酸素供給部から前記基板に供給されることを特徴とする請求項7記載の真空処理方法。
- 酸素を吸着するために用いる前記ターゲットの粒子を前記真空容器内に付着させる工程は、前記基板に金属酸化膜を形成した後、当該基板が真空容器内から搬出される前と、次の基板が入れ替わって前記真空容器内に搬入された後と、に行われることを特徴とする請求項7記載の真空処理方法。
- 酸素を吸着するために用いる前記ターゲットの粒子を前記真空容器内に付着させる前記工程と、前記基板にスパッタにて前記金属膜を形成する前記工程と、酸素を含むガスを前記載置部上の前記基板に供給する前記工程とを順次複数回繰り返し、互いに積層された金属酸化膜を成膜することを特徴とする、請求項7記載の真空処理方法。
- 互いに積層された複数の金属酸化膜の少なくとも2つの金属酸化膜については、酸素を含むガスを基板に供給するときの酸素の流量が互いに異なることを特徴とする請求項11記載の真空処理方法。
- 前記酸素供給部から真空容器内に酸素を含むガスが吐出される前に当該ガスを加熱することを特徴とする請求項7記載の真空処理方法。
- 真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理に用いられるコンピュータプログラムが記録された記憶媒体であって、
前記コンピュータプログラムは、請求項7記載の真空処理方法を実施するためのものであることを特徴とする記憶媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/403,833 US9790590B2 (en) | 2012-05-31 | 2013-04-30 | Vacuum-processing apparatus, vacuum-processing method, and storage medium |
KR1020147032112A KR101726031B1 (ko) | 2012-05-31 | 2013-04-30 | 진공 처리 장치, 진공 처리 방법 및 기억 매체 |
CN201380028671.2A CN104350174B (zh) | 2012-05-31 | 2013-04-30 | 真空处理装置、真空处理方法和存储介质 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012125531A JP5998654B2 (ja) | 2012-05-31 | 2012-05-31 | 真空処理装置、真空処理方法及び記憶媒体 |
JP2012-125531 | 2012-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013179575A1 true WO2013179575A1 (ja) | 2013-12-05 |
Family
ID=49672806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/002888 WO2013179575A1 (ja) | 2012-05-31 | 2013-04-30 | 真空処理装置、真空処理方法及び記憶媒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9790590B2 (ja) |
JP (1) | JP5998654B2 (ja) |
KR (1) | KR101726031B1 (ja) |
CN (1) | CN104350174B (ja) |
TW (1) | TWI573887B (ja) |
WO (1) | WO2013179575A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016033244A (ja) * | 2014-07-31 | 2016-03-10 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
EP3064609A4 (en) * | 2013-10-30 | 2017-04-19 | Tokyo Electron Limited | Deposition device and deposition method |
KR20200018278A (ko) | 2018-08-10 | 2020-02-19 | 도쿄엘렉트론가부시키가이샤 | 성막 장치 및 성막 방법 |
CN114381700A (zh) * | 2020-10-06 | 2022-04-22 | 东京毅力科创株式会社 | 磁控溅射装置和磁控溅射方法 |
US11410837B2 (en) | 2016-11-04 | 2022-08-09 | Tokyo Electron Limited | Film-forming device |
US11495446B2 (en) | 2018-04-24 | 2022-11-08 | Tokyo Electron Limited | Film formation device and film formation method |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9564348B2 (en) * | 2013-03-15 | 2017-02-07 | Applied Materials, Inc. | Shutter blade and robot blade with CTE compensation |
JP6422074B2 (ja) * | 2014-09-01 | 2018-11-14 | 株式会社アルバック | 真空処理装置 |
JP6741564B2 (ja) | 2016-12-06 | 2020-08-19 | 東京エレクトロン株式会社 | 成膜装置 |
CN107740058B (zh) * | 2017-10-13 | 2019-06-11 | 西安交通大学 | 具有垂直阵列结构的金属/非金属复合薄膜的制备方法 |
CN109778147B (zh) * | 2017-11-14 | 2021-05-07 | 北京北方华创微电子装备有限公司 | 反应腔室及半导体加工设备 |
JP6955983B2 (ja) * | 2017-12-05 | 2021-10-27 | 東京エレクトロン株式会社 | 基板処理装置 |
JP7001448B2 (ja) * | 2017-12-05 | 2022-01-19 | 東京エレクトロン株式会社 | Pvd処理方法およびpvd処理装置 |
CN108060406B (zh) * | 2018-01-29 | 2023-09-08 | 北京北方华创微电子装备有限公司 | 遮挡压盘组件、半导体加工装置和方法 |
US11251028B2 (en) * | 2018-05-12 | 2022-02-15 | Applied Materials, Inc. | Pre-clean chamber with integrated shutter garage |
CN108711556B (zh) * | 2018-05-25 | 2020-06-19 | 北京北方华创微电子装备有限公司 | 去气腔室以及去气方法 |
JP7134112B2 (ja) * | 2019-02-08 | 2022-09-09 | 東京エレクトロン株式会社 | 成膜装置および成膜方法 |
JP7361497B2 (ja) * | 2019-05-28 | 2023-10-16 | 東京エレクトロン株式会社 | 成膜装置 |
JP7420365B2 (ja) * | 2019-08-08 | 2024-01-23 | 有限会社アルファシステム | 半導体成膜装置及びその成膜方法並びにそれを用いた半導体装置の製造方法 |
JP7325278B2 (ja) * | 2019-09-18 | 2023-08-14 | 東京エレクトロン株式会社 | スパッタ方法およびスパッタ装置 |
JP7424854B2 (ja) * | 2020-02-14 | 2024-01-30 | アルバックテクノ株式会社 | 成膜処理用部品及び成膜装置 |
CN115427606B (zh) * | 2020-04-01 | 2024-01-02 | 佳能安内华股份有限公司 | 成膜设备、成膜设备的控制设备以及成膜方法 |
JP2022129119A (ja) * | 2021-02-24 | 2022-09-05 | 東京エレクトロン株式会社 | スパッタリング処理を行う装置、及び方法 |
JP7572127B2 (ja) | 2021-04-21 | 2024-10-23 | 東京エレクトロン株式会社 | 真空処理装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499271A (ja) * | 1990-08-10 | 1992-03-31 | Olympus Optical Co Ltd | 多層薄膜の作製方法およびその装置 |
JP2007173843A (ja) * | 2005-12-22 | 2007-07-05 | Magic Technologies Inc | トンネルバリア層およびその形成方法並びにmtj素子およびその製造方法 |
JP2009084622A (ja) * | 2007-09-28 | 2009-04-23 | Tokyo Electron Ltd | 成膜装置の制御方法、成膜方法、成膜装置、有機el電子デバイスおよびその制御プログラムを格納した記憶媒体 |
WO2010074076A1 (ja) * | 2008-12-26 | 2010-07-01 | キヤノンアネルバ株式会社 | 基板処理方法及び基板処理装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3521053A1 (de) * | 1985-06-12 | 1986-12-18 | Leybold-Heraeus GmbH, 5000 Köln | Vorrichtung zum aufbringen duenner schichten auf ein substrat |
JPH0649633A (ja) | 1992-08-05 | 1994-02-22 | Ulvac Japan Ltd | スパッタリング装置 |
JPH06172989A (ja) | 1992-12-09 | 1994-06-21 | Canon Inc | 金属酸化膜成膜方法 |
JP4221526B2 (ja) * | 2003-03-26 | 2009-02-12 | キヤノンアネルバ株式会社 | 金属酸化物を基板表面上に形成する成膜方法 |
JP4494047B2 (ja) * | 2004-03-12 | 2010-06-30 | キヤノンアネルバ株式会社 | 多元スパッタ成膜装置の二重シャッタ制御方法 |
US20060042930A1 (en) * | 2004-08-26 | 2006-03-02 | Daniele Mauri | Method for reactive sputter deposition of a magnesium oxide (MgO) tunnel barrier in a magnetic tunnel junction |
CN101395732A (zh) | 2006-03-03 | 2009-03-25 | 佳能安内华股份有限公司 | 磁阻效应元件的制造方法以及制造设备 |
JP4782037B2 (ja) * | 2006-03-03 | 2011-09-28 | キヤノンアネルバ株式会社 | 磁気抵抗効果素子の製造方法及び製造装置 |
JP2008013829A (ja) | 2006-07-07 | 2008-01-24 | Fujitsu Ltd | 金属酸化膜の成膜方法 |
JP4537479B2 (ja) * | 2008-11-28 | 2010-09-01 | キヤノンアネルバ株式会社 | スパッタリング装置 |
JP5454575B2 (ja) * | 2009-09-17 | 2014-03-26 | 東京エレクトロン株式会社 | プラズマ処理装置およびプラズマ処理装置用ガス供給機構 |
CN103924206B (zh) * | 2010-03-26 | 2017-01-04 | 佳能安内华股份有限公司 | 一种溅射设备 |
KR101022014B1 (ko) * | 2010-05-18 | 2011-03-16 | (주) 디바이스이엔지 | 웨이퍼 보관용기 세정장치 |
-
2012
- 2012-05-31 JP JP2012125531A patent/JP5998654B2/ja active Active
-
2013
- 2013-04-30 CN CN201380028671.2A patent/CN104350174B/zh active Active
- 2013-04-30 WO PCT/JP2013/002888 patent/WO2013179575A1/ja active Application Filing
- 2013-04-30 US US14/403,833 patent/US9790590B2/en active Active
- 2013-04-30 KR KR1020147032112A patent/KR101726031B1/ko active IP Right Grant
- 2013-05-30 TW TW102119045A patent/TWI573887B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499271A (ja) * | 1990-08-10 | 1992-03-31 | Olympus Optical Co Ltd | 多層薄膜の作製方法およびその装置 |
JP2007173843A (ja) * | 2005-12-22 | 2007-07-05 | Magic Technologies Inc | トンネルバリア層およびその形成方法並びにmtj素子およびその製造方法 |
JP2009084622A (ja) * | 2007-09-28 | 2009-04-23 | Tokyo Electron Ltd | 成膜装置の制御方法、成膜方法、成膜装置、有機el電子デバイスおよびその制御プログラムを格納した記憶媒体 |
WO2010074076A1 (ja) * | 2008-12-26 | 2010-07-01 | キヤノンアネルバ株式会社 | 基板処理方法及び基板処理装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3064609A4 (en) * | 2013-10-30 | 2017-04-19 | Tokyo Electron Limited | Deposition device and deposition method |
US10309005B2 (en) | 2013-10-30 | 2019-06-04 | Tokyo Electron Limited | Deposition device and deposition method |
JP2016033244A (ja) * | 2014-07-31 | 2016-03-10 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
US11410837B2 (en) | 2016-11-04 | 2022-08-09 | Tokyo Electron Limited | Film-forming device |
US11495446B2 (en) | 2018-04-24 | 2022-11-08 | Tokyo Electron Limited | Film formation device and film formation method |
KR20200018278A (ko) | 2018-08-10 | 2020-02-19 | 도쿄엘렉트론가부시키가이샤 | 성막 장치 및 성막 방법 |
US11512388B2 (en) | 2018-08-10 | 2022-11-29 | Tokyo Electron Limited | Film forming apparatus and film forming method |
CN114381700A (zh) * | 2020-10-06 | 2022-04-22 | 东京毅力科创株式会社 | 磁控溅射装置和磁控溅射方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150187546A1 (en) | 2015-07-02 |
CN104350174A (zh) | 2015-02-11 |
KR20150016945A (ko) | 2015-02-13 |
US9790590B2 (en) | 2017-10-17 |
TWI573887B (zh) | 2017-03-11 |
KR101726031B1 (ko) | 2017-04-11 |
JP2013249517A (ja) | 2013-12-12 |
TW201413020A (zh) | 2014-04-01 |
JP5998654B2 (ja) | 2016-09-28 |
CN104350174B (zh) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5998654B2 (ja) | 真空処理装置、真空処理方法及び記憶媒体 | |
JP6016946B2 (ja) | 酸化処理装置、酸化方法、および電子デバイスの製造方法 | |
US20070209926A1 (en) | Sputter Deposition System and Methods of Use | |
WO2007066511A1 (ja) | 成膜装置及び成膜方法 | |
JP5745699B2 (ja) | トンネル磁気抵抗素子の製造装置 | |
CN101098980A (zh) | 溅射装置和成膜方法 | |
US10361363B2 (en) | Method of manufacturing tunnel magnetoresistive effect element and sputtering apparatus | |
TW201241957A (en) | Manufacturing apparatus | |
KR102304166B1 (ko) | 산화 처리 모듈, 기판 처리 시스템 및 산화 처리 방법 | |
JP5026715B2 (ja) | 金属とSiO2の混合膜の成膜方法 | |
KR102470195B1 (ko) | 스퍼터링 장치 및 이를 이용한 막 형성 방법 | |
JP7325278B2 (ja) | スパッタ方法およびスパッタ装置 | |
US12077848B2 (en) | Vacuum processing apparatus | |
TWI541371B (zh) | Sputtering method and manufacturing method of functional element | |
TW201725767A (zh) | 磁阻元件之製造方法及磁阻元件之製造系統 | |
JP5624931B2 (ja) | スピネルフェライト薄膜の製造方法 | |
JP2023032920A (ja) | 真空処理装置及び基板処理方法 | |
WO2020161957A1 (ja) | 成膜装置および成膜方法 | |
JP2015226032A (ja) | プラズマ処理方法 | |
JP2008103026A (ja) | 金属保護膜の形成方法及び金属保護膜の成膜システム | |
JP2011168828A (ja) | 基板処理装置及び半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13797905 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147032112 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14403833 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13797905 Country of ref document: EP Kind code of ref document: A1 |