WO2013179350A1 - 制御方法およびそれを利用した制御装置 - Google Patents

制御方法およびそれを利用した制御装置 Download PDF

Info

Publication number
WO2013179350A1
WO2013179350A1 PCT/JP2012/003605 JP2012003605W WO2013179350A1 WO 2013179350 A1 WO2013179350 A1 WO 2013179350A1 JP 2012003605 W JP2012003605 W JP 2012003605W WO 2013179350 A1 WO2013179350 A1 WO 2013179350A1
Authority
WO
WIPO (PCT)
Prior art keywords
notification
storage battery
deterioration
unit
power
Prior art date
Application number
PCT/JP2012/003605
Other languages
English (en)
French (fr)
Inventor
泰生 奥田
岩▲崎▼ 利哉
靖弘 大上
池部 早人
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/384,313 priority Critical patent/US20150162768A1/en
Priority to EP12877987.3A priority patent/EP2857855A4/en
Priority to PCT/JP2012/003605 priority patent/WO2013179350A1/ja
Priority to JP2014518095A priority patent/JP5919566B2/ja
Publication of WO2013179350A1 publication Critical patent/WO2013179350A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3646Constructional arrangements for indicating electrical conditions or variables, e.g. visual or audible indicators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]

Definitions

  • the present invention relates to a control technique, and more particularly to a control method for a storage battery and a control device using the same.
  • the degree of deterioration is generally derived by charging and discharging a battery. Therefore, a usage method in which the degree of deterioration cannot be estimated or a battery in which a defect has occurred cannot measure the degree of deterioration. On the other hand, it is desirable to notify the degree of deterioration even with such a battery.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for notifying the degree of deterioration of a storage battery.
  • a control device acquires a deterioration degree that is a deterioration degree of a storage battery to which power is to be supplied to a load, and becomes a smaller value as the storage battery deteriorates.
  • a notification unit that executes notification if the degree of deterioration acquired by the acquisition unit is smaller than the first threshold value.
  • the notification unit performs notification if the elapsed period from the production of the storage battery is longer than the second threshold value.
  • Another aspect of the present invention is a control method.
  • This method includes a step of acquiring a deterioration degree of a storage battery to which power is to be supplied to a load, and a deterioration degree that decreases as the storage battery deteriorates, and the acquired deterioration degree is smaller than a first threshold value. And a step of executing notification. In the step of executing the notification, if the step of acquiring does not acquire the degree of deterioration over a predetermined period, the notification is executed if the elapsed period from the production of the storage battery is longer than the second threshold value.
  • the degree of deterioration of the storage battery can be notified.
  • FIGS. 1A to 1C are diagrams showing a configuration of a power distribution system according to an embodiment of the present invention. It is a figure which shows the structure of the conversion apparatus of Fig.1 (a)-(c). 3A to 3D are diagrams showing screens displayed on the display unit of FIG. FIGS. 4A and 4B are diagrams showing time transition of display in the display unit of FIG. FIGS. 5A to 5D are diagrams showing screens displayed on the display unit of FIG. It is a flowchart which shows the battery life notification procedure by the converter of FIG. It is a flowchart which shows the determination procedure by SOH of FIG. It is a flowchart which shows the determination procedure by the elapsed period of FIG.
  • Embodiments of the present invention relate to a distribution system that connects a solar cell in parallel with a commercial power system, supplies power from the commercial power source, the solar cell, and the storage battery to a load, and charges the storage battery.
  • the commercial power supply fails, power from the solar battery or storage battery is supplied to the load.
  • the storage battery may not be discharged. Since the performance of such a storage battery deteriorates, it is desired that the degree of deterioration and the life of the storage battery be notified in order to prevent a situation in which the storage battery cannot be used when it should be used.
  • the degree of deterioration and the life of the storage battery are determined by the degree of deterioration (SOH: State Of Health).
  • SOH is measured at the time of charging / discharging, but in order to cope with the discharge control in which SOH cannot be measured, the power distribution system according to the present embodiment, when SOH is not updated over a predetermined period, the elapsed time after manufacture Execute warning based on
  • FIGS. 1A to 1C show a configuration of a power distribution system 100 according to an embodiment of the present invention.
  • the power distribution system 100 includes a solar cell 10, a storage battery 12, a conversion device 14, a management device 16, a first SW 18, a second SW 20, a specific load 24, and a general load 26.
  • the power distribution system 100 is connected to a commercial power source 22.
  • the commercial power source 22 is an AC power source for supplying power from an electric power company.
  • FIG. 1A corresponds to the configuration of the power distribution system 100 when the commercial power supply 22 is not out of power (hereinafter referred to as “normal”).
  • the solar cell 10 is a power device that uses the photovoltaic effect to directly convert light energy into electric power.
  • a silicon solar cell a solar cell made of various compound semiconductors, a dye-sensitized type (organic solar cell), or the like is used.
  • the solar cell 10 outputs the generated power.
  • the storage battery 12 is charged with electric power generated based on a renewable energy source, that is, electric power generated in the solar battery 10 or electric power from the commercial power source 22.
  • the conversion device 14 connects the solar cell 10 to one end side.
  • route of the converter 14 and the solar cell 10 is branched on the way, and the storage battery 12 is connected to the branched path
  • the management device 16 outputs an instruction for controlling the operation of the storage battery 12 to the conversion device 14. Moreover, the converter 14 always monitors the voltage fluctuation on the path
  • the general load 26 is an AC drive type electric device.
  • the general load 26 is connected to a path branched from the path between the converter 14 and the commercial power supply 22.
  • a distribution board (not shown) is connected on the path between the converter 14 and the commercial power supply 22 and from the branch point to the commercial power supply 22 to the commercial power supply 22 side.
  • the first SW 18 and the second SW 20 are switches for changing a route in accordance with an instruction from the management device 16. On / off and switching of the first SW 18 and the second SW 20 are instructed by the conversion device 14. It may be instructed by the management device 16. In a normal state, the first SW 18 is turned on, and the second SW 20 is connected to the Y-side terminal. As a result, the Y-side terminal of the second SW 20 and the specific load 24 are connected.
  • the specific load 24 is an AC drive type electric device, like the general load 26.
  • the storage battery 12 is charged as follows.
  • the electricity rate for the night time zone is set lower than the electricity rate for the daytime time zone.
  • the daytime time zone is defined as from 7:00 to 23:00
  • the nighttime zone is defined as from 23:00 to 7:00 on the next day. Therefore, the electric power supplied from the commercial power source 22 is charged to the storage battery 12 via the first SW 18 and the converter 14 in the night time zone. At that time, the converter 14 converts the AC power input from the commercial power supply 22 into DC power, and outputs the DC power to the storage battery 12.
  • the electric power generated by the solar cell 10 during the daytime is output to the converter 14.
  • the converter 14 converts the DC power input from the solar cell 10 into AC power, and outputs the AC power to the first SW 18.
  • the electric power from the solar cell 10 is also supplied to the specific load 24 and the general load 26.
  • surplus electric power is charged in the storage battery 12.
  • FIG. 1B corresponds to the configuration of the power distribution system 100 when the commercial power supply 22 has a power failure (hereinafter referred to as “at the time of a power failure”).
  • the conversion device 14 detects a power failure.
  • the conversion device 14 controls the first SW 18 and the second SW 20. More specifically, during a power failure, the first SW 18 is turned off and the second SW 20 is connected to the X-side terminal. As a result, the specific load 24 is connected to the conversion device 14, but the general load 26 is disconnected from the conversion device 14.
  • the power from the solar cell 10 is output to the conversion device 14, and the power from the conversion device 14 is supplied to the specific load 24.
  • the electric power consumed in the specific load 24 is less than the electric power from the solar battery 10
  • surplus electric power is charged in the storage battery 12.
  • the storage battery 12 may output electric power.
  • the discharged power is also output to the converter 14, and the power from the converter 14 is supplied to the specific load 24.
  • the storage battery 12 may be a storage battery that supplies power to the load when the commercial power supply fails, and may not discharge to the specific load 24 during normal operation but may discharge to the specific load 24 only during a power failure.
  • the specific load 24 can receive power from the solar battery 10, the storage battery 12, and the commercial power supply 22 in a normal state, and can supply power from the solar battery 10 and the storage battery 12 in a power failure. It is possible to receive.
  • the general load 26 can receive power supply from the solar cell 10, the storage battery 12, and the commercial power source 22 at normal times, but cannot receive power supply at the time of a power failure.
  • FIG. 1C corresponds to the configuration of the power distribution system 100 when the commercial power source 22 is restored from a power failure to a state where the power failure has not occurred (hereinafter referred to as “at the time of restoration”).
  • the converter 14 detects the recovery.
  • the conversion device 14 controls the second SW 20. More specifically, at the time of recovery, the first SW 18 is kept off, and the second SW 20 is connected to the Y-side terminal.
  • the specific load 24 and the general load 26 are disconnected from the conversion device 14 and connected to the commercial power supply 22.
  • the electric power from the commercial power supply 22 is supplied to the specific load 24 and the general load 26.
  • the converter 14 since the specific load 24 and the general load 26 are not connected to the converter 14, the converter 14 does not output alternating current power.
  • the electric power generated in the solar cell 10 is supplied to the storage battery 12.
  • the conversion device 14 is executing the system linkage operation.
  • the converter 14 is performing a self-sustaining operation.
  • the grid interconnection operation is an operation in which the conversion device 14 generates AC power from DC power by using a frequency corresponding to the frequency of the power of the commercial power supply 22.
  • the autonomous operation is an operation in which the converter 14 generates AC power from DC power by using a frequency that is independent of the frequency of the power of the commercial power supply 22.
  • FIG. 2 shows the configuration of the conversion device 14.
  • the conversion device 14 includes a conversion unit 50, a detection unit 52, a display unit 58, an input unit 60, a control unit 66, an acquisition unit 68, and a storage unit 70.
  • the conversion unit 50 includes a DC side terminal 62 and an AC side terminal 64
  • the control unit 66 includes a setting unit 54 and a processing unit 56.
  • the converter 50 connects the solar cell 10 and the storage battery 12 of FIGS. 1A to 1C to the DC side terminal 62, and connects the first SW 18 of FIGS. 1A to 1C to the AC side terminal 64. . Therefore, the DC side terminal 62 corresponds to the DC power side, and the AC side terminal 64 corresponds to the AC power side.
  • the converter 50 inputs DC power at the DC side terminal 62, generates AC power from the DC power, and outputs AC power from the AC side terminal 64.
  • the DC power input to the DC side terminal 62 is output from the solar cell 10 and the storage battery 12 shown in FIGS.
  • the converter 50 inputs AC power at the AC side terminal 64, generates DC power from the AC power, and outputs DC power from the DC side terminal 62.
  • the AC power input to the AC side terminal 64 is output from the commercial power supply 22 via the first SW 18 in FIGS.
  • the former corresponds to an inverter function, and the latter corresponds to a converter function. Since a known technique may be used for the inverter function and the converter function, description thereof is omitted here.
  • the setting unit 54 sets the frequency of AC power when generating AC power from DC power.
  • the detection unit 52 receives AC power from the first SW 18, that is, AC power from the commercial power source 22, and detects the frequency of the AC power. At the time of a power failure or recovery, the detection unit 52 does not input AC power from the commercial power supply 22 and therefore does not detect the frequency of AC power. When detecting the frequency, the detection unit 52 outputs information regarding the detected frequency to the setting unit 54, and when not detecting the frequency, the detection unit 52 outputs the information to the setting unit 54.
  • the setting unit 54 receives information about the frequency or information about not detecting the frequency from the detection unit 52.
  • the setting unit 54 sets the frequency according to the frequency, that is, the frequency in the AC power of the commercial power supply 22.
  • the same frequency as the frequency in the AC power of the commercial power supply 22 is set. This corresponds to the above-described grid interconnection operation, and the setting unit 54 refers to a grid interconnection mode.
  • the setting unit 54 When the setting unit 54 receives information regarding the fact that the frequency has not been detected, the setting unit 54 sets a frequency that is independent of the frequency of the AC power of the commercial power supply 22 and that has been set in the system linkage mode that has been executed in the past. To do. This corresponds to the above-described self-sustained operation, and the setting unit 54 refers to the self-sustained mode. As described above, the setting unit 54 sets the frequency of the AC power to be generated by the conversion unit 50.
  • the acquisition unit 68 acquires the SOH of the storage battery 12 when the storage battery 12 is discharging a certain amount of power. Such SOH becomes smaller as the storage battery 12 deteriorates.
  • SOH is derived as follows.
  • SOH current full charge capacity / initial full charge capacity (1)
  • the current full charge capacity is derived as follows.
  • Current full charge capacity coefficient K ⁇ current integrated value I within a predetermined period I (2)
  • the coefficient K is preset by measurement or the like. Specifically, the coefficient K is determined based on a difference amount of a state of charge (hereinafter referred to as SOC) with respect to a preset voltage change.
  • SOC state of charge
  • V1 is a voltage corresponding to SOC 75%
  • V2 is a voltage corresponding to SOC 50%.
  • Current full charge capacity 4 x 10 Ah It becomes. As the battery deteriorates, the current that can flow decreases, so the integrated current value also decreases.
  • the acquisition unit 68 outputs the acquired SOH to the processing unit 56.
  • the coefficient K in the equation (2) cannot be obtained unless the voltage changes from V1 to V2, in other words, the SOC changes from 75% to 50%. For this reason, if a certain amount of electric power is not discharged from the storage battery 12 under normal conditions, the current full charge capacity is not obtained, and SOH is not estimated.
  • the processing unit 56 receives the SOH from the acquisition unit 68.
  • the processing unit 56 compares the first threshold value stored in the storage unit 70 and the first threshold value for the SOH with the SOH.
  • two first threshold values are stored, which are 63% and 60%.
  • the processing unit 56 determines a battery replacement notice display.
  • the processing unit 56 outputs a battery replacement notice display instruction to the display unit 58.
  • the processing unit 56 determines the display of the battery life warning when the SOH is smaller than the second first threshold value 60%.
  • the processing unit 56 outputs a battery life warning display instruction to the display unit 58.
  • the display unit 58 displays various screens according to the processing in the processing unit 56.
  • FIGS. 3A to 3D show screens displayed on the display unit 58.
  • FIG. 3A shows a screen when a battery replacement notice display instruction is received from the processing unit 56. This corresponds to a battery replacement notice display.
  • FIG. 3B shows a screen when the battery life warning display instruction is received from the processing unit 56. This corresponds to a battery life warning display.
  • the display unit 58 performs notification when the SOH is smaller than the first first threshold, and the SOH that is smaller than the first first threshold is the second first. When it becomes smaller than the threshold value, the display mode is changed. 3 (c)-(d) will be described later, and the description returns to FIG.
  • FIGS. 4A to 4B show time transitions of display on the display unit 58.
  • FIG. FIG. 4A shows the passage of time for the battery replacement notice display.
  • the display unit 58 displays a battery replacement notice at T0.
  • the input unit 60 receives an input from the user.
  • the processing unit 56 receives an input from the user via the input unit 60
  • the processing unit 56 displays the main screen on the display unit 58.
  • the display unit 58 displays the main screen and executes the normal screen state for one month. There is also an automatic backlight OFF function.
  • the display unit 58 displays a battery replacement notice. At that time, there is no automatic backlight OFF function.
  • the display unit 58 displays the main screen and executes the normal screen state for one month as before. There is also an automatic backlight OFF function.
  • the display unit 58 displays a battery replacement notice.
  • FIG. 4 (b) shows the elapsed time of the battery life warning display.
  • the display unit 58 displays a battery life warning at T0 '.
  • the input unit 60 receives an input from the user.
  • the processing unit 56 receives an input from the user via the input unit 60
  • the processing unit 56 displays the main screen on the display unit 58.
  • the display unit 58 displays the main screen. If there is no operation for one minute, at T2 ', the display unit 58 displays a battery life warning. At that time, there is no automatic backlight OFF function.
  • the display unit 58 displays the main screen as before. If there is no operation for one minute, at T4 ', the display unit 58 displays a battery life warning.
  • the display unit 58 increases the frequency of notification as the SOH decreases.
  • the processing unit 56 stores Information relating to when the storage battery 12 is manufactured (hereinafter referred to as “manufacturing date”) is acquired from the unit 70 and the storage battery 12.
  • the predetermined period is defined as one year.
  • the storage unit 70 stores the date of manufacture of the storage battery 12.
  • the processing unit 56 compares the second threshold value stored in the storage unit 70 and the second threshold value with respect to the elapsed period from the manufacturing date with the elapsed period from the manufacturing date.
  • two second threshold values are stored, which are 6.5 years and 7 years.
  • the processing unit 56 determines the battery replacement notice display.
  • the processing unit 56 outputs a battery replacement notice display instruction to the display unit 58.
  • the processing unit 56 determines the display of the battery life warning when the elapsed period from the manufacturing date has passed the second second threshold value 7 years.
  • the processing unit 56 outputs a battery life warning display instruction to the display unit 58.
  • the acquisition unit 68 may acquire an elapsed period from the manufacturing date, and the processing unit 56 may constantly compare the acquired elapsed period from the manufacturing date with the second threshold value. In this case, the processing unit 56 validates the comparison result when the period during which charging / discharging is not performed exceeds a predetermined period, and displays a battery replacement notice when the elapsed time exceeds the second threshold value 6.5 years. decide.
  • FIG. 3C shows a screen when a battery replacement notice display instruction is received from the processing unit 56. This corresponds to a battery replacement notice display.
  • FIG. 3D shows a screen when a battery life warning display instruction is received from the processing unit 56. This corresponds to a battery life warning display.
  • the display unit 58 performs notification when the elapsed period has exceeded the first first threshold, and the elapsed period that is longer than the first second threshold is the second. When it becomes longer than the second threshold value, the display mode is changed. Comparing FIG. 3 (a)-(b) with FIG. 3 (c)-(d), the case where notification is executed based on SOH and the case where notification is executed based on an elapsed period are shown.
  • the display unit 58 changes the notification mode, that is, the display content. Furthermore, the time lapse of the battery replacement notice display and the battery life warning display displayed on the display unit 58 is the same as that shown in FIGS. 4A to 4B, and the description thereof is omitted here. That is, the display unit 58 increases the frequency of notification as the elapsed period becomes longer. In addition, the process part 56 may stop discharge from the storage battery 12, when the battery life warning display is determined.
  • FIGS. 5A to 5D show screens displayed on the display unit 58.
  • FIG. 5A shows a screen displayed by the display unit 58 when the remaining dischargeable time is less than 10 minutes. This is equivalent to an SOC of 17%.
  • FIG. 5B shows a screen displayed by the display unit 58 when the discharge further proceeds from FIG. 5A and the discharge of the storage battery 12 is stopped. At this time, the SOC is less than 10%.
  • FIG. 5C shows a screen displayed by the display unit 58 when the remaining amount of the storage battery 12 is increased from the state of FIG.
  • the remaining amount of the storage battery 12 is increased by charging with the solar battery 10.
  • the remaining dischargeable time is 20 minutes or more.
  • FIG.5 (d) shows the screen displayed by the display part 58, when the residual amount of the storage battery 12 increases from the state of FIG.5 (c).
  • the remaining amount of the storage battery 12 is increased by charging with the solar battery 10, and the remaining dischargeable time is assumed to be 20 minutes or more.
  • the SOC is 24% or more.
  • This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
  • FIG. 6 is a flowchart showing a battery life notification procedure performed by the conversion device 14. If the acquisition unit 68 acquires SOH for a predetermined period (N in S10), the processing unit 56 executes determination by SOH (S12). On the other hand, if the acquisition unit 68 has not acquired SOH for a predetermined period (Y in S10), the display unit 58 performs determination based on the elapsed period (S14).
  • FIG. 7 is a flowchart showing a determination procedure by SOH. If SOH is smaller than 63% (Y in S20) and SOH is smaller than 60% (Y in S22), display unit 58 displays a battery life warning (S24). If SOH is not smaller than 60% (N in S22), the display unit 58 displays a battery replacement notice (S26). If SOH is not less than 63% (N in S20), steps 22 to 26 are skipped.
  • FIG. 8 is a flowchart showing a determination procedure based on the elapsed period. If 6.5 years have passed since the date of manufacture (Y in S30) and 7 years have passed since the date of manufacture (Y in S32), the display unit 58 displays a battery life warning (S34). If seven years have not passed since the date of manufacture (N in S32), the display unit 58 displays a battery replacement notice (S36). If 6.5 years have not elapsed since the date of manufacture (N in S30), steps 32 to 36 are skipped.
  • the notification is executed based on the elapsed period from the manufacturing date, so the degree of deterioration of the storage battery can be notified. Further, since the degree of deterioration of the storage battery is notified, it is possible to suppress the situation that the storage battery has reached the end of its life when it should be used in the event of an emergency such as a power failure. Further, since the battery replacement notice and the battery life warning are switched and displayed according to the degree of deterioration, the state of the storage battery can be clarified. Further, when the battery replacement warning is changed to the battery life warning, the frequency of notification is increased, so that the danger can be clearly notified. In addition, since the notification is changed depending on whether the determination is based on the SOH or the elapsed period, the determination criterion can be conveyed.
  • a solar cell 10 is provided to generate power.
  • the present invention is not limited thereto, and for example, a device for generating electric power based on a renewable energy source may be provided in addition to the solar battery 10.
  • a wind power generator for example, a wind power generator. According to this modification, the degree of freedom of the configuration of the power distribution system 100 can be improved.
  • the display unit 58 displays the notification.
  • the present invention is not limited to this.
  • a speaker may be provided and a voice notification may be made. According to this modification, the degree of freedom in designing the notification unit can be improved.
  • the outline of one embodiment of the present invention is as follows.
  • the control device includes an acquisition unit that acquires a deterioration level of a storage battery to which power is to be supplied to a load, and a deterioration value that decreases as the storage battery deteriorates, and a deterioration acquired by the acquisition unit.
  • a notification unit that performs notification if the degree is smaller than the first threshold value.
  • the notification unit performs notification if the elapsed period from the production of the storage battery is longer than the second threshold value.
  • the notification unit may change the notification mode when the degree of deterioration that has become smaller than the first threshold value is further reduced.
  • the notification unit may increase the frequency of notification as the degree of deterioration decreases.
  • the notification unit may change the notification mode when the elapsed period that is longer than the second threshold is further increased.
  • the processing unit may stop charging / discharging of the storage battery when the notification unit changes the notification mode.
  • the notification unit may increase the frequency of notification as the elapsed period becomes longer.
  • the notification unit changes the notification mode depending on whether the degree of deterioration acquired in the acquisition unit is smaller than the first threshold value or when the elapsed time since the storage battery is manufactured is longer than the second threshold value. May be.
  • the processing unit may stop charging / discharging of the storage battery when the notification unit changes the notification mode.
  • the acquisition unit may acquire the degree of deterioration of the storage battery that should supply power to the load when the commercial power supply fails.
  • Another aspect of the present invention is a control method.
  • This method includes a step of acquiring a deterioration degree of a storage battery to which power is to be supplied to a load, and a deterioration degree that decreases as the storage battery deteriorates, and the acquired deterioration degree is smaller than a first threshold value. And a step of executing notification. In the step of executing the notification, if the step of acquiring does not acquire the degree of deterioration over a predetermined period, the notification is executed if the elapsed period from the production of the storage battery is longer than the second threshold value.
  • the degree of deterioration of the storage battery can be notified.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

 取得部68は、電力を供給すべき蓄電池の劣化度であって、かつ蓄電池が劣化するほど小さい値になる劣化度を取得する。表示部58は、取得部68において取得した劣化度が第1しきい値よりも小さい場合に通知を実行する。一方、表示部58は、取得部68が所定期間にわたって劣化度を非取得である場合、蓄電池を製造してからの経過期間が第2しきい値よりも長い場合に通知を実行する。

Description

制御方法およびそれを利用した制御装置
 本発明は、制御技術に関し、特に蓄電池に対する制御方法およびそれを利用した制御装置に関する。
 従来、携帯可能な電子機器のような電子機器は、バッテリにより駆動可能である。このような電子機では、動作中にバッテリパックの残量電力量切れとなると、プログラムやデータが破壊するおそれがある。これを防ぐために、バッテリの残量電力量を表示する。しかしながら、バッテリの寿命や不良の表示自体はなされていないこともある。そのため、バッテリの不具合を検知し、バッテリの不具合に関する情報を検出し、これに基づきバッテリの不具合が判定されている(例えば、特許文献1参照)。
特開2005-321983号公報
 バッテリの不具合に関する情報の一例は、劣化度である。本発明者はこうした状況下、以下の課題を認識するに至った。劣化度は、一般的にバッテリを充放電することによって導出される。そのため、劣化度を推定できない使用方法や不具合が生じたバッテリは、劣化度を測定できない。一方、このようなバッテリであっても劣化の程度を通知することが望まれる。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、蓄電池の劣化の程度を通知する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の制御装置は、負荷に電力を供給すべき蓄電池の劣化度であって、かつ蓄電池が劣化するほど小さい値になる劣化度を取得する取得部と、取得部において取得した劣化度が第1しきい値よりも小さければ通知を実行する通知部とを備える。通知部は、取得部が所定期間にわたって劣化度を非取得である場合、蓄電池を製造してからの経過期間が第2しきい値よりも長ければ通知を実行する。
 本発明の別の態様は、制御方法である。この方法は、負荷に電力を供給すべき蓄電池の劣化度であって、かつ蓄電池が劣化するほど小さい値になる劣化度を取得するステップと、取得した劣化度が第1しきい値よりも小さければ通知を実行するステップとを備える。通知を実行するステップは、取得するステップが所定期間にわたって劣化度を非取得である場合、蓄電池を製造してからの経過期間が第2しきい値よりも長ければ通知を実行する。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、蓄電池の劣化の程度を通知できる。
図1(a)-(c)は、本発明の実施例に係る配電システムの構成を示す図である。 図1(a)-(c)の変換装置の構成を示す図である。 図3(a)-(d)は、図2の表示部に表示される画面を示す図である。 図4(a)-(b)は、図2の表示部における表示の時間遷移を示す図である。 図5(a)-(d)は、図2の表示部に表示される画面を示す図である。 図2の変換装置による電池寿命通知手順を示すフローチャートである。 図6のSOHによる判定手順を示すフローチャートである。 図6の経過期間による判定手順を示すフローチャートである。
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、太陽電池を商用電力系統と並列に接続し、商用電源、太陽電池、そして、蓄電池から負荷へ電力を供給するとともに、蓄電池を充電する配電システムに関する。商用電源が停電した場合、太陽電池や蓄電池からの電力が負荷に供給される。なお、商用電源が供給されている場合、蓄電池は放電しないものとしてもよい。このような蓄電池の性能は劣化していくので、使用すべきときに使用できないという事態を防止するために、蓄電池の劣化の程度や寿命が通知されることが望まれる。蓄電池の劣化の程度や寿命は、劣化度(SOH:State Of Health)によって判定される。SOHは充放電時に測定されるが、SOHを測定できない放電制御をしている場合に対応するために、本実施例に係る配電システムは、SOHが所定期間にわたって更新されない場合、製造後の経過時間をもとに警告を実行する。
 図1(a)-(c)は、本発明の実施例に係る配電システム100の構成を示す。図1(a)において配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、第1SW18、第2SW20、特定負荷24、一般負荷26を含む。配電システム100は、商用電源22に接続されている。商用電源22は、電力会社からの電力を供給するための交流電源である。図1(a)は、商用電源22が停電していない場合(以下、「正常時」という)における配電システム100の構成に相当する。
 太陽電池10は、光起電力効果を利用し、光エネルギーを直接電力に変換する電力機器である。太陽電池10として、シリコン太陽電池、さまざまな化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。太陽電池10は、発電した電力を出力する。蓄電池12は、再生可能エネルギー源をもとに発電した電力、つまり太陽電池10において発電した電力、あるいは商用電源22からの電力によって充電される。
 変換装置14は、一端側に太陽電池10を接続する。変換装置14と太陽電池10との経路は、途中で分岐されており、分岐された経路には、蓄電池12が接続される。つまり、変換装置14の一端側には、分岐点を介して、太陽電池10と蓄電池12とが並列に接続される。また、変換装置14は、他端側に商用電源22を接続する。変換装置14の動作は後述する。管理装置16は、蓄電池12の動作を制御するための指示を変換装置14に出力する。また、変換装置14は、第1SW18と商用電源22との間の経路上における電圧変動を常時監視しており、検出された電圧変動に基づき、商用電源22が停電か通電かを判断する。
 一般負荷26は、交流駆動型の電気機器である。一般負荷26は、変換装置14と商用電源22との間の経路から分岐された経路に接続される。なお、変換装置14と商用電源22との間の経路上であって、かつ商用電源22への分岐点から商用電源22側には、図示しない分電盤が接続される。
 第1SW18、第2SW20は、管理装置16からの指示に応じて経路を変更するためのスイッチである。第1SW18、第2SW20のオン/オフや切替は、変換装置14によって指示される。なお、管理装置16によって指示されてもよい。正常時において、第1SW18は、オンされ、第2SW20は、Y側の端子に接続される。その結果、第2SW20のY側の端子と特定負荷24とが接続される。なお、特定負荷24は、一般負荷26と同様に、交流駆動型の電気機器である。
 正常時の充電において、蓄電池12の充電は次のようになされる。電力会社が時間帯別電気料金制度を採用している場合、夜間の時間帯の電気料金は、昼間の時間帯の電気料金よりも低く設定される。また、一例として、昼間の時間帯は7時から23時であり、夜間の時間帯は23時から翌日の7時というように規定される。そのため、夜間の時間帯において、商用電源22から供給される電力は、第1SW18、変換装置14を介して蓄電池12に充電される。その際、変換装置14は、商用電源22から入力した交流電力を直流電力に変換し、直流電力を蓄電池12に出力する。
 また、昼間の時間帯において、太陽電池10が発電した電力は、変換装置14に出力される。変換装置14は、太陽電池10から入力した直流電力を交流電力に変換し、交流電力を第1SW18に出力する。その結果、太陽電池10からの電力も特定負荷24、一般負荷26に供給される。さらに、太陽電池10が発電した電力が、特定負荷24、一般負荷26において消費される電力よりも多い場合、余剰の電力が蓄電池12に充電される。
 正常時の放電において、蓄電池12は、一般に電気の使用量が大きくなる昼間の商用電力における使用量の最大値を下げる、いわゆるピークカットとして用いられる。また、図1(b)は、商用電源22が停電している場合(以下、「停電時」という)における配電システム100の構成に相当する。商用電源22からの電力の供給がなくなった場合、変換装置14は、停電を検出する。停電を検出した場合、変換装置14は、第1SW18、第2SW20とを制御する。具体的に説明すると、停電時において、第1SW18がオフされ、第2SW20は、X側の端子に接続される。その結果、特定負荷24は、変換装置14に接続されるが、一般負荷26は、変換装置14から切り離される。そのため、太陽電池10からの電力は、変換装置14に出力され、変換装置14からの電力が、特定負荷24に供給される。なお、太陽電池10からの電力よりも、特定負荷24において消費される電力が少ない場合、余剰の電力が蓄電池12に充電される。停電時において、蓄電池12は、電力を出力してもよい。放電した電力も、変換装置14に出力され、変換装置14からの電力が、特定負荷24に供給される。なお、蓄電池12は、商用電源が停電した場合に負荷に電力を供給する蓄電池として、正常時には特定負荷24に放電せず、停電時にのみ特定負荷24に放電してもよい。
 このように、特定負荷24は、正常時において、太陽電池10、蓄電池12、商用電源22から電力の供給を受けることが可能であり、停電時においても太陽電池10、蓄電池12から電力の供給を受けることが可能である。一方、一般負荷26は、正常時において太陽電池10、蓄電池12、商用電源22から電力の供給を受けることが可能であるが、停電時において電力の供給を受けることができない。
 図1(c)は、停電時から、商用電源22が停電していない状態に復旧した場合(以下、「復旧時」という)における配電システム100の構成に相当する。停電時において、商用電源22からの電力の供給が回復した場合、変換装置14は、復旧を検出する。復旧を検出した場合、変換装置14は、第2SW20を制御する。具体的に説明すると、復旧時において、第1SW18のオフが維持され、第2SW20は、Y側の端子に接続される。その結果、特定負荷24および一般負荷26は、変換装置14から切り離され、商用電源22に接続される。その結果、商用電源22からの電力は、特定負荷24、一般負荷26に供給される。なお、変換装置14には、特定負荷24および一般負荷26が接続されていないので、変換装置14は、交流電力を出力しない。太陽電池10において発電された電力は、蓄電池12に供給される。
 ここで、図1(a)の正常時において、変換装置14は、系統連携運転を実行している。一方、図1(b)の停電時、図1(c)の復旧時において、変換装置14は、自立運転を実行している。ここで、系統連系運転とは、変換装置14が、商用電源22の電力の周波数に応じた周波数を使用することによって、直流電力から交流電力を生成する動作である。一方、自立運転とは、変換装置14が、商用電源22の電力の周波数に非依存の周波数を使用することによって、直流電力から交流電力を生成する動作である。
 図2は、変換装置14の構成を示す。変換装置14は、変換部50、検出部52、表示部58、入力部60、制御部66、取得部68、記憶部70を含む。また、変換部50は、直流側端子62、交流側端子64を含み、制御部66は、設定部54、処理部56を含む。
 変換部50は、直流側端子62に図1(a)-(c)の太陽電池10および蓄電池12を接続し、交流側端子64に図1(a)-(c)の第1SW18を接続する。そのため、直流側端子62が直流電力側に相当し、交流側端子64が交流電力側に相当する。変換部50は、直流側端子62において直流電力を入力し、直流電力から交流電力を生成し、交流側端子64から交流電力を出力する。直流側端子62に入力される直流電力は、図1(a)-(c)の太陽電池10および蓄電池12から出力されている。
 また、変換部50は、交流側端子64において交流電力を入力し、交流電力から直流電力を生成し、直流側端子62から直流電力を出力する。交流側端子64に入力される交流電力は、図1(a)-(b)の第1SW18を介して商用電源22から出力されている。前者は、インバータ機能に相当し、後者は、コンバータ機能に相当する。インバータ機能とコンバータ機能には、公知の技術が使用されればよいので、ここでは説明を省略する。なお、直流電力から交流電力を生成する際の交流電力の周波数は、設定部54によって設定される。
 検出部52は、第1SW18からの交流電力、つまり商用電源22からの交流電力を入力し、交流電力の周波数を検出する。停電時や復旧時において、検出部52は、商用電源22からの交流電力を入力しないので、交流電力の周波数を検出しない。検出部52は、周波数を検出した場合、検出した周波数に関する情報を設定部54に出力し、周波数を検出しなかった場合、その旨を設定部54に出力する。
 設定部54は、検出部52から、周波数に関する情報あるいは周波数を検出しなかったことに関する情報を受けつける。設定部54は、周波数に関する情報を受けつけた場合、当該周波数、つまり商用電源22の交流電力における周波数に応じた周波数を設定する。ここでは、商用電源22の交流電力における周波数と同一の周波数が設定される。これは、前述の系統連系運転に相当し、設定部54では、系統連系モードという。
 設定部54は、周波数を検出しなかったことに関する情報を受けつけた場合、商用電源22の交流電力における周波数に非依存の周波数であり、かつ過去に実行した系統連携モードにて設定した周波数を設定する。これは、前述の自立運転に相当し、設定部54では、自立モードという。このように、設定部54は、変換部50において生成すべき交流電力の周波数を設定する。
 取得部68は、蓄電池12がある一定量の電力量を放電している場合に蓄電池12のSOHを取得する。このようなSOHは、蓄電池12が劣化するほど小さい値になる。SOHは、次のように導出される。
 SOH=現時点での満充電容量/初期の満充電容量 (1)
 ここで、現時点の満充電容量は、次のように導出される。
 現時点での満充電容量 = 係数K × 所定期間内の電流積算値I (2)
 次に、式(2)の算出方法を説明する。
 係数Kはあらかじめ計測等により設定されている。具体的には、係数Kは、あらかじめ設定された電圧変化に対する充電状態(State of charge:以下、SOC)の差分量にもとづいて決定される。例えば、あらかじめ設定された電圧をV1からV2(V1>V2)までの電圧変化として、V1はSOC75%に相当する電圧、V2はSOC50%に相当する電圧とした場合、
 係数K=100 / (75-50)= 4
と決定することができる。
 そして、ある所定の期間内での電圧がV1からV2(V1>V2)になるまで放電したときに流れた電流積算値が10Ahとした場合、
 現時点での満充電容量 = 4 × 10 Ah
となる。電池の劣化が進むと流せる電流が減少するため、電流積算値も減少していく。
 取得部68は、取得したSOHを処理部56に出力する。なお、前述のごとく、本実施例において、電圧がV1からV2まで、言い換えれば、SOCが75%から50%まで、変化しなければ式(2)における係数Kを求めることができない。そのため、正常時において、蓄電池12からある一定量の電力量が放電されなければ、現時点での満充電容量も求められず、SOHも推定されない。
 処理部56は、取得部68からSOHを受けつける。処理部56は、記憶部70に記憶した第1しきい値であって、かつSOHに対する第1しきい値と、SOHとを比較する。ここでは、一例として、ふたつの第1しきい値が記憶されており、63%と60%である。処理部56は、SOHが、ひとつ目の第1しきい値63%よりも小さい場合に、電池交換予告の表示を決定する。処理部56は、電池交換予告表示の指示を表示部58に出力する。さらに、処理部56は、SOHが、ふたつ目の第1しきい値60%よりも小さい場合に、電池寿命警告の表示を決定する。処理部56は、電池寿命警告表示の指示を表示部58に出力する。
 表示部58は、処理部56での処理にしたがって各種画面を表示する。図3(a)-(d)は、表示部58に表示される画面を示す。図3(a)は、処理部56から電池交換予告表示の指示を受けつけた場合の画面を示す。これは、電池交換予告表示に相当する。図3(b)は、処理部56から電池寿命警告表示の指示を受けつけた場合の画面を示す。これは、電池寿命警告表示に相当する。このように、表示部58は、SOHがひとつ目の第1しきい値よりも小さい場合に通知を実行するとともに、ひとつ目の第1しきい値よりも小さくなったSOHがふたつ目の第1しきい値よりも小さくなると、表示の態様を変更する。図3(c)-(d)の説明は後述し、図2に戻る。
 ここでは、表示部58に表示された電池交換予告表示と電池寿命警告表示との時間経過を説明する。図4(a)-(b)は、表示部58における表示の時間遷移を示す。図4(a)は、電池交換予告表示の時間経過を示す。表示部58は、T0において電池交換予告を表示する。T1において使用者が確認ボタンを押すと、入力部60は、使用者からの入力を受けつける。処理部56は、入力部60を介して使用者からの入力を受けつけると、表示部58にメイン画面を表示させる。その結果、表示部58は、メイン画面を表示するとともに、通常画面状態を1ヶ月実行する。なお、自動バックライトOFF機能もある。1ヶ月経過後のT2において、表示部58は、電池交換予告を表示する。その際、自動バックライトOFF機能はない。T3において使用者が確認ボタンを押すと、これまでと同様に、表示部58は、メイン画面を表示するとともに、通常画面状態を1ヶ月実行する。なお、自動バックライトOFF機能もある。1ヶ月経過後のT4において、表示部58は、電池交換予告を表示する。
 図4(b)は、電池寿命警告表示の時間経過を示す。表示部58は、T0’において電池寿命警告を表示する。T1’において使用者が確認ボタンを押すと、入力部60は、使用者からの入力を受けつける。処理部56は、入力部60を介して使用者からの入力を受けつけると、表示部58にメイン画面を表示させる。その結果、表示部58は、メイン画面を表示する。1分間無操作であれば、T2’において、表示部58は、電池寿命警告を表示する。その際、自動バックライトOFF機能はない。T3’において使用者が確認ボタンを押すと、これまでと同様に、表示部58は、メイン画面を表示する。1分間無操作であれば、T4’において、表示部58は、電池寿命警告を表示する。このように表示部58は、SOHが小さくなるほど、通知の頻度を高くする。図2に戻る。
 取得部68が所定期間にわたってSOHを非取得である場合、つまり所定期間にわたってSOHを取得できない放電制御をしている、もしくは蓄電池12に不具合が生じてSOHが取得できない場合、処理部56は、記憶部70や蓄電池12から、蓄電池12が製造されたときに関する情報(以下、「製造日」という)を取得する。例えば、所定期間は、1年のように規定される。記憶部70には、蓄電池12の製造日が記憶されている。
 処理部56は、記憶部70に記憶した第2しきい値であって、かつ製造日からの経過期間に対する第2しきい値と、製造日からの経過期間とを比較する。ここでは、一例として、ふたつの第2しきい値が記憶されており、6.5年と7年である。処理部56は、製造日からの経過期間が、ひとつ目の第2しきい値6.5年を経過している場合に、電池交換予告の表示を決定する。処理部56は、電池交換予告表示の指示を表示部58に出力する。さらに、処理部56は、製造日からの経過期間が、ふたつ目の第2しきい値7年を経過している場合に、電池寿命警告の表示を決定する。処理部56は、電池寿命警告表示の指示を表示部58に出力する。なお、取得部68は、製造日からの経過期間を取得して、処理部56は取得した製造日からの経過期間と第2しきい値を常時比較しても構わない。この場合、処理部56は充放電を行わない期間が所定期間を超えると比較結果を有効にし、経過時間が第2しきい値6.5年を経過している場合に電池交換予告の表示を決定する。
 図3(c)は、処理部56から電池交換予告表示の指示を受けつけた場合の画面を示す。これは、電池交換予告表示に相当する。図3(d)は、処理部56から電池寿命警告表示の指示を受けつけた場合の画面を示す。これは、電池寿命警告表示に相当する。このように、表示部58は、経過期間がひとつ目の第1しきい値を経過した場合に通知を実行するとともに、ひとつ目の第2しきい値よりも長くなった経過期間がふたつ目の第2しきい値よりも長くなると、表示の態様を変更する。図3(a)-(b)と、図3(c)-(d)とを比較すると、SOHをもとに通知を実行する場合と、経過期間をもとに通知を実行する場合とによって、表示部58は、通知の態様、つまり表示の内容を変更している。さらに、表示部58に表示された電池交換予告表示と電池寿命警告表示との時間経過は、図4(a)-(b)と同一であるので、ここでは、説明を省略する。つまり、表示部58は、経過期間が長くなるほど、通知の頻度を高くする。なお、処理部56は、電池寿命警告表示を決定した場合、蓄電池12からの放電を停止させてもよい。
 ここまでは、電池寿命を通知することを説明している。以下では、蓄電池12の残量がなくなる場合の表示を説明する。図5(a)-(d)は、表示部58に表示される画面を示す。図5(a)は、残り放電可能時間が10分未満になった場合に、表示部58によって表示される画面を示す。これは、SOCが17%相当である。図5(b)は、図5(a)からさらに放電が進むことになって、蓄電池12の放電が停止されている場合に、表示部58によって表示されている画面を示す。このとき、SOCは10%未満である。
 図5(c)は、図5(a)の状態から蓄電池12の残量が増加した場合に表示部58によって表示される画面を示す。蓄電池12の残量の増加は、太陽電池10による充電によってなされる。ここでは、残り放電可能時間が20分以上となっているものとする。図5(d)は、図5(c)の状態から蓄電池12の残量が増加した場合に表示部58によって表示される画面を示す。ここでも、蓄電池12の残量の増加は、太陽電池10による充電によってなされており、残り放電可能時間が20分以上となっているものとする。なお、SOCは24%以上である。図5(d)の画面が表示されている状態において、リセットスイッチが押されることによって、図5(c)の画面が表示される。
 この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
 以上の構成による配電システム100の動作を説明する。図6は、変換装置14による電池寿命通知手順を示すフローチャートである。取得部68が所定期間にわたってSOHを取得であれば(S10のN)、処理部56は、SOHによる判定を実行する(S12)。一方、取得部68が所定期間にわたってSOHを非取得であれば(S10のY)、表示部58は、経過期間による判定を実行する(S14)。
 図7は、SOHによる判定手順を示すフローチャートである。SOHが63%より小さく(S20のY)、SOHが60%より小さければ(S22のY)、表示部58は、電池寿命警告を表示する(S24)。SOHが60%より小さくなければ(S22のN)、表示部58は、電池交換予告を表示する(S26)。SOHが63%より小さくなければ(S20のN)、ステップ22から26はスキップされる。
 図8は、経過期間による判定手順を示すフローチャートである。製造日から6.5年経過しており(S30のY)、製造日から7年経過していれば(S32のY)、表示部58は、電池寿命警告を表示する(S34)。製造日から7年経過していなければ(S32のN)、表示部58は、電池交換予告を表示する(S36)。製造日から6.5年経過していなければ(S30のN)、ステップ32から36はスキップされる。
 本発明の実施例によれば、SOHを一定期間にわたって取得できない場合であっても、製造日からの経過期間をもとに通知を実行するので、蓄電池の劣化の程度を通知できる。また、蓄電池の劣化の程度が通知されるので、停電等の非常時が発生した場合において使用すべきときに蓄電池が寿命に達していたという事態を抑制できる。また、劣化の程度に応じて、電池交換予告、電池寿命警告を切りかえて表示するので、蓄電池の状態を明確にできる。また、電池交換予告から電池寿命警告に変わると、通知の頻度を高くするので、危険性を明確に通知できる。また、SOHで判定しているか、経過期間で判定しているかによって、通知を変えるので、判定基準を伝えることができる。
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本発明の実施例において、発電するために太陽電池10が設けられている。しかしながらこれに限らず例えば、太陽電池10以外に、再生可能エネルギー源をもとした電力を生成するための装置が設けられてもよい。例えば、風力発電機である。本変形例によれば、配電システム100の構成の自由度を向上できる。
 本発明の実施例において、表示部58が表示することによって、通知がなされている。しかしながらこれに限らず例えば、スピーカが備えられ、音声による通知がなされてもよい。本変形例によれば、通知手段の設計の自由度を向上できる。
 本発明の一態様の概要は、次の通りである。本発明のある態様の制御装置は、負荷に電力を供給すべき蓄電池の劣化度であって、かつ蓄電池が劣化するほど小さい値になる劣化度を取得する取得部と、取得部において取得した劣化度が第1しきい値よりも小さければ通知を実行する通知部とを備える。通知部は、取得部が所定期間にわたって劣化度を非取得である場合、蓄電池を製造してからの経過期間が第2しきい値よりも長ければ通知を実行する。
 通知部は、第1しきい値よりも小さくなった劣化度がさらに小さくなると、通知の態様を変更してもよい。
 通知部は、劣化度が小さくなるほど、通知の頻度を高くしてもよい。
 通知部は、第2しきい値よりも長くなった経過期間がさらに長くなると、通知の態様を変更してもよい。
 蓄電池の充放電を停止させる処理部をさらに備えてもよい。処理部は、通知部が通知の様態を変更させた場合に蓄電池の充放電を停止させてもよい。
 通知部は、経過期間が長くなるほど、通知の頻度を高くしてもよい。
 通知部は、取得部において取得した劣化度が第1しきい値よりも小さい場合と、蓄電池を製造してからの経過期間が第2しきい値よりも長い場合とによって、通知の態様を変更してもよい。
 蓄電池の充放電を停止させる処理部をさらに備えてもよい。処理部は、通知部が通知の様態を変更させた場合に蓄電池の充放電を停止させてもよい。
 取得部は、商用電源が停電した場合に負荷に電力を供給すべき蓄電池の劣化度を取得してもよい。
 本発明の別の態様は、制御方法である。この方法は、負荷に電力を供給すべき蓄電池の劣化度であって、かつ蓄電池が劣化するほど小さい値になる劣化度を取得するステップと、取得した劣化度が第1しきい値よりも小さければ通知を実行するステップとを備える。通知を実行するステップは、取得するステップが所定期間にわたって劣化度を非取得である場合、蓄電池を製造してからの経過期間が第2しきい値よりも長ければ通知を実行する。
 10 太陽電池、 12 蓄電池、 14 変換装置、 16 管理装置、 18 第1SW、 20 第2SW、 22 商用電源、 24 特定負荷、 26 一般負荷、 50 変換部、 52 検出部、 54 設定部、 56 処理部、 58 表示部、 60 入力部、 62 直流側端子、 64 交流側端子、 66 制御部、 68 取得部、 70 記憶部、 100 配電システム。
 本発明によれば、蓄電池の劣化の程度を通知できる。

Claims (10)

  1.  負荷に電力を供給すべき蓄電池の劣化度であって、かつ蓄電池が劣化するほど小さい値になる劣化度を取得する取得部と、
     前記取得部において取得した劣化度が第1しきい値よりも小さければ通知を実行する通知部とを備え、
     前記通知部は、前記取得部が所定期間にわたって劣化度を非取得である場合、蓄電池を製造してからの経過期間が第2しきい値よりも長ければ通知を実行することを特徴とする制御装置。
  2.  前記通知部は、第1しきい値よりも小さくなった劣化度がさらに小さくなると、通知の態様を変更することを特徴とする請求項1に記載の制御装置。
  3.  前記通知部は、劣化度が小さくなるほど、通知の頻度を高くすることを特徴とする請求項2に記載の制御装置。
  4.  前記通知部は、第2しきい値よりも長くなった経過期間がさらに長くなると、通知の態様を変更することを特徴とする請求項1に記載の制御装置。
  5.  前記蓄電池の充放電を停止させる処理部をさらに備え、
     前記処理部は、前記通知部が通知の様態を変更させた場合に前記蓄電池の充放電を停止させることを特徴とする請求項4に記載の制御装置。
  6.  前記通知部は、経過期間が長くなるほど、通知の頻度を高くすることを特徴とする請求項4に記載の制御装置。
  7.  前記通知部は、前記取得部において取得した劣化度が第1しきい値よりも小さい場合と、蓄電池を製造してからの経過期間が第2しきい値よりも長い場合とによって、通知の態様を変更することを特徴とする請求項1から4のいずれかに記載の制御装置。
  8.  前記蓄電池の充放電を停止させる処理部をさらに備え、
     前記処理部は、前記通知部が通知の様態を変更させた場合に前記蓄電池の充放電を停止させることを特徴とする請求項7に記載の制御装置。
  9.  前記取得部は、商用電源が停電した場合に負荷に電力を供給すべき蓄電池の劣化度を取得することを特徴とする請求項1から8のいずれかに記載の制御装置。
  10.  負荷に電力を供給すべき蓄電池の劣化度であって、かつ蓄電池が劣化するほど小さい値になる劣化度を取得するステップと、
     取得した劣化度が第1しきい値よりも小さければ通知を実行するステップとを備え、
     前記通知を実行するステップは、前記取得するステップが所定期間にわたって劣化度を非取得である場合、蓄電池を製造してからの経過期間が第2しきい値よりも長ければ通知を実行することを特徴とする制御方法。
PCT/JP2012/003605 2012-05-31 2012-05-31 制御方法およびそれを利用した制御装置 WO2013179350A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/384,313 US20150162768A1 (en) 2012-05-31 2012-05-31 Control method and control apparatus using the same
EP12877987.3A EP2857855A4 (en) 2012-05-31 2012-05-31 CONTROL METHOD AND CONTROL DEVICE THEREFOR
PCT/JP2012/003605 WO2013179350A1 (ja) 2012-05-31 2012-05-31 制御方法およびそれを利用した制御装置
JP2014518095A JP5919566B2 (ja) 2012-05-31 2012-05-31 制御方法およびそれを利用した制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003605 WO2013179350A1 (ja) 2012-05-31 2012-05-31 制御方法およびそれを利用した制御装置

Publications (1)

Publication Number Publication Date
WO2013179350A1 true WO2013179350A1 (ja) 2013-12-05

Family

ID=49672609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003605 WO2013179350A1 (ja) 2012-05-31 2012-05-31 制御方法およびそれを利用した制御装置

Country Status (4)

Country Link
US (1) US20150162768A1 (ja)
EP (1) EP2857855A4 (ja)
JP (1) JP5919566B2 (ja)
WO (1) WO2013179350A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132535A (ja) * 2015-01-20 2016-07-25 株式会社豊田自動織機 バッテリ式産業車両
JP2016144349A (ja) * 2015-02-03 2016-08-08 東芝テック株式会社 情報処理装置およびプログラム
JP2016205917A (ja) * 2015-04-20 2016-12-08 トヨタ自動車株式会社 二次電池システム
JP2020064030A (ja) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 表示装置及びそれを備える車両
JP2022011148A (ja) * 2020-06-29 2022-01-17 本田技研工業株式会社 バッテリ管理支援装置、及びバッテリ管理支援方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665566B1 (ko) * 2013-12-05 2016-10-12 주식회사 엘지화학 배터리 용량 퇴화 추정 장치 및 방법
JP6361949B2 (ja) * 2015-05-13 2018-07-25 パナソニックIpマネジメント株式会社 充放電制御装置
US10416753B1 (en) * 2015-12-10 2019-09-17 Amazon Technologies, Inc. Date-based computing device charge management
JP7191750B2 (ja) * 2019-03-26 2022-12-19 株式会社デンソーテン 電源制御装置
US11416055B2 (en) * 2020-06-11 2022-08-16 Dell Products, L.P. Compensating battery health readings at low temperatures
EP4374182A1 (en) * 2021-11-23 2024-05-29 Samsung Electronics Co., Ltd. Method and electronic device for managing battery
CN115421062A (zh) * 2022-08-30 2022-12-02 重庆长安汽车股份有限公司 一种蓄电池监控方法、系统、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022183A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 電池の劣化度算出装置および劣化度算出方法
JP2004271532A (ja) * 2004-04-12 2004-09-30 Omron Corp バッテリの寿命判定方法
JP2005321983A (ja) 2004-05-07 2005-11-17 Sony Corp 電子機器、バッテリーパック、電子機器の電源制御方法及びそのプログラム
JP2007187533A (ja) * 2006-01-12 2007-07-26 Sanyo Electric Co Ltd 電池の寿命判定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3638102B2 (ja) * 1999-09-30 2005-04-13 Necトーキン栃木株式会社 電池パック
JP4019734B2 (ja) * 2001-03-28 2007-12-12 株式会社ジーエス・ユアサコーポレーション 二次電池の運用方法及び二次電池装置
CA2348586A1 (en) * 2001-05-25 2002-11-25 Corporation Avestor Inc. Power management system
JP2003007348A (ja) * 2001-06-20 2003-01-10 Sony Computer Entertainment Inc バッテリー提供システム及びバッテリー提供方法
US7746242B2 (en) * 2004-07-21 2010-06-29 Honeywell International Inc. Low battery indicator
US7928735B2 (en) * 2007-07-23 2011-04-19 Yung-Sheng Huang Battery performance monitor
JP5076835B2 (ja) * 2007-11-26 2012-11-21 株式会社ニプロン 二次電池の劣化状態判定システム
US8084996B2 (en) * 2008-06-27 2011-12-27 GM Global Technology Operations LLC Method for battery capacity estimation
JP5223920B2 (ja) * 2008-07-11 2013-06-26 トヨタ自動車株式会社 バッテリの充放電制御装置、およびこれを備えたハイブリッド自動車
US8531160B2 (en) * 2010-08-11 2013-09-10 A123 Systems, Inc. Rechargeable battery management
US20120053871A1 (en) * 2010-08-31 2012-03-01 Michael Sirard Integrated Intelligent Battery Management System and Monitoring System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022183A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 電池の劣化度算出装置および劣化度算出方法
JP2004271532A (ja) * 2004-04-12 2004-09-30 Omron Corp バッテリの寿命判定方法
JP2005321983A (ja) 2004-05-07 2005-11-17 Sony Corp 電子機器、バッテリーパック、電子機器の電源制御方法及びそのプログラム
JP2007187533A (ja) * 2006-01-12 2007-07-26 Sanyo Electric Co Ltd 電池の寿命判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857855A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132535A (ja) * 2015-01-20 2016-07-25 株式会社豊田自動織機 バッテリ式産業車両
JP2016144349A (ja) * 2015-02-03 2016-08-08 東芝テック株式会社 情報処理装置およびプログラム
JP2016205917A (ja) * 2015-04-20 2016-12-08 トヨタ自動車株式会社 二次電池システム
JP2020064030A (ja) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 表示装置及びそれを備える車両
US11281417B2 (en) 2018-10-19 2022-03-22 Toyota Jidosha Kabushiki Kaisha Display device and vehicle comprising the same
US11301195B2 (en) 2018-10-19 2022-04-12 Toyota Jidosha Kabushiki Kaisha Display device and vehicle comprising the same
JP7183686B2 (ja) 2018-10-19 2022-12-06 トヨタ自動車株式会社 表示装置及びそれを備える車両
JP2022011148A (ja) * 2020-06-29 2022-01-17 本田技研工業株式会社 バッテリ管理支援装置、及びバッテリ管理支援方法

Also Published As

Publication number Publication date
JPWO2013179350A1 (ja) 2016-01-14
EP2857855A4 (en) 2015-06-24
US20150162768A1 (en) 2015-06-11
EP2857855A1 (en) 2015-04-08
JP5919566B2 (ja) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5919566B2 (ja) 制御方法およびそれを利用した制御装置
JP6067619B2 (ja) バッテリーを備えた無停電電源装置のエネルギー貯蔵システム及びその運転方法
JP5744307B2 (ja) 電力変換装置
JP6019614B2 (ja) 蓄電制御装置、蓄電制御装置の制御方法、プログラム、および蓄電システム
TWI587601B (zh) A reforming charging method and a charging device for a battery pack made of a leaded battery
JP6225905B2 (ja) 制御方法およびそれを利用した制御装置
WO2018008469A1 (ja) 蓄電装置、蓄電システム、並びに、電源システム
KR20120081930A (ko) 에너지 저장 시스템 및 이의 제어방법
JP2013042627A (ja) 直流電源制御装置および直流電源制御方法
WO2019155507A1 (ja) 直流給電システム
JP4717856B2 (ja) 電池システム、電池システム制御方法、電池システム制御プログラムおよびプログラム記録媒体
JP2009044794A (ja) 電力変換装置及び電力変換制御方法
JP5073436B2 (ja) 無瞬断バックアップ電源
JP2008072774A (ja) 自然エネルギー発電電力平準化装置
KR101663445B1 (ko) 에너지저장시스템을 이용한 무정전전원공급장치 및 상기 장치의 동작방법
JP5587941B2 (ja) 無停電電源装置及び無停電電源供給方法
JP6207196B2 (ja) 直流電源システム
JP2018042320A (ja) 蓄電システム
JP2017216789A (ja) 電源装置
WO2019163008A1 (ja) 直流給電システム
JP2017010813A (ja) 電力供給システム
JP5661576B2 (ja) 無停電電源システム
JP2014222982A (ja) 無停電電源装置
JP6902710B2 (ja) 管理装置
JP2018011462A (ja) 制御装置、配電システム、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518095

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012877987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14384313

Country of ref document: US