WO2013179115A1 - Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation - Google Patents

Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation Download PDF

Info

Publication number
WO2013179115A1
WO2013179115A1 PCT/IB2013/001057 IB2013001057W WO2013179115A1 WO 2013179115 A1 WO2013179115 A1 WO 2013179115A1 IB 2013001057 W IB2013001057 W IB 2013001057W WO 2013179115 A1 WO2013179115 A1 WO 2013179115A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
equal
steel sheet
temperature
manufacturing
Prior art date
Application number
PCT/IB2013/001057
Other languages
English (en)
Other versions
WO2013179115A8 (fr
Inventor
Lan Alberto ZUAZO RODRIGUEZ
Astrid Perlade
Xavier Garat
Original Assignee
ArcelorMittal Investigación y Desarrollo, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/404,750 priority Critical patent/US10900105B2/en
Priority to EP13732225.1A priority patent/EP2855725B1/fr
Application filed by ArcelorMittal Investigación y Desarrollo, S.L. filed Critical ArcelorMittal Investigación y Desarrollo, S.L.
Priority to BR112014029177-2A priority patent/BR112014029177B1/pt
Priority to CN201380027985.0A priority patent/CN104350169B/zh
Priority to IN9576DEN2014 priority patent/IN2014DN09576A/en
Priority to MA37508A priority patent/MA37508B1/fr
Priority to KR1020167030369A priority patent/KR20160129916A/ko
Priority to JP2015514609A priority patent/JP6074031B2/ja
Priority to UAA201414024A priority patent/UA111285C2/uk
Priority to CA2873578A priority patent/CA2873578C/fr
Priority to ES13732225.1T priority patent/ES2594328T3/es
Priority to RU2014153550A priority patent/RU2614491C2/ru
Priority to KR1020177010838A priority patent/KR20170053727A/ko
Priority to MX2014014613A priority patent/MX359361B/es
Priority to KR1020147034966A priority patent/KR20150003918A/ko
Publication of WO2013179115A1 publication Critical patent/WO2013179115A1/fr
Priority to ZA2014/08109A priority patent/ZA201408109B/en
Publication of WO2013179115A8 publication Critical patent/WO2013179115A8/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a rolled steel sheet having a mechanical strength greater than or equal to 600 MPa and an elongation at break greater than or equal to 20% and its manufacturing method.
  • the present invention relates to the first option, namely the reduction of the weight of motorized vehicles. In this very specific area, there is a two-way alternative:
  • the second way is to reduce the density of steels by combining them with other lighter metals.
  • the low-density iron-aluminum alloys have interesting mechanical and physical properties while at the same time weight.
  • Low or low density means a density of less than or equal to 7.3.
  • the addition of aluminum to iron because of its low density relative to the latter, has allowed to expect substantial weight reductions for automotive structural parts.
  • the patent application EP2128293 describes a hot or cold rolled sheet of composition 0.2-0.8% C, 2-10% Mn, 3-15% AI, and a structure containing less 99% ferrite and more than 1% residual austenite.
  • the sheet has a mechanical strength in the range 600-1 OOOMPa and a density less than 7.2 and is coated.
  • the method of manufacturing the hot-rolled sheet consists of heating at 1000 ° to 1200 ° C., rolling at a rolling end temperature of between 700 and 850 ° C and winding at a temperature below 600 ° C.
  • the hot-rolled sheet is cold-rolled with a reduction of between 40 and 90%, and is heated at a rate of between 1 and 20 ° C./s at a temperature between the recrystallization temperature and 900.degree. C for 10 to 180 seconds.
  • This patent application aims to prevent creasing and the appearance of cracks rolling by limiting the Mn / AI ratio to a value between 0.4 and 1, 0. It appears that beyond a ratio of 1.0, the cold laminability leads to the appearance of cracks.
  • the patent application JP2006118000 is for a light steel and having a high strength and good ductility.
  • the composition of the proposed steel contains in weight percentage: 0.1 to 1.0% C, less than 3.0% Si, 10.0 to 50.0% Mn, less than 0.01 % P, less than 0.01% S, 5.0 to 15.0% Al and 0.001 to 0.05% N, the remainder being iron and unavoidable impurities, equation (1) below in front of be satisfied, the steel will have a density less than or equal to 7.0.
  • the patent application WO2007 / 024092 aims to provide easily rolled hot-rolled sheets.
  • This application relates to a sheet containing 0.2-1% C, 8-5% Mn, with a product of mechanical strength by elongation of 24000 MPa. It appears that this application is a totally austenitic structure, but this type of microstructure is particularly difficult to roll.
  • the invention aims to solve these difficulties by proposing hot-rolled or cold-rolled steel sheets simultaneously presenting:
  • One of the aims of the invention is also to provide a method of manufacturing these sheets that is compatible with usual industrial applications while being insensitive to manufacturing conditions.
  • the invention firstly relates to a rolled steel sheet whose density is less than or equal to 7.3 and whose composition comprises, the contents being expressed by weight:
  • the composition comprises, the content being expressed by weight:
  • the composition comprises, the content being expressed by weight:
  • the composition comprises, the content being expressed by weight:
  • the composition comprises, the content being expressed by weight:
  • the composition comprises, the content being expressed by weight:
  • the sheet according to the invention is such that the tensile strength is greater than or equal to 600 MPa and the elongation at break is greater than or equal to 20%.
  • the subject of the invention is a method for manufacturing a rolled steel sheet having a density of less than or equal to 7.3, which comprises the steps of:
  • the last rolling pass will be at an end temperature of TFL rolling greater than or equal to 850 ° C.
  • the invention also relates to a method of manufacturing a rolled sheet such that said semi-finished product is cast directly in the form of thin slabs or thin strips.
  • the end of rolling temperature T F L is between 900 and 980 ° C.
  • the cooling rate V re n is less than or equal to 55 ° C / s.
  • the winding temperature is between 450 and 550 ° C.
  • the invention also relates to a method for manufacturing a cold-rolled and annealed steel sheet with a density of less than or equal to 7.3, which comprises the steps of:
  • the temperature T m is between 800 and 900 ° C.
  • the cooling rate V re f2 is greater than or equal to 30 ° C / s.
  • the cooling rate ⁇ re12 is maintained up to a temperature of between 500 ° C and 460 ° C.
  • the cooled sheet is coated with zinc, a zinc alloy or a zinc-based alloy.
  • the steel sheets according to the invention may be used for the manufacture of structural parts or skin parts for motorized land vehicles.
  • FIG. 1 illustrates the microstructure of a hot rolled steel sheet according to the invention.
  • FIG. 2 illustrates the microstructure of a hot-rolled steel sheet that does not satisfy the conditions according to the invention.
  • FIG. 3 shows the mechanical behavior in hot traction representing the hot rollability as a function of the traction temperature in ° C.
  • FIG. 4 illustrates the microstructure of a hot-rolled steel sheet not satisfying the conditions according to the invention.
  • FIG. 5 illustrates the microstructure of a cold-rolled steel sheet according to the invention.
  • FIG. 6 shows a zone-axis diffraction pattern [110] having made it possible to identify the Kappa precipitate on a hot-rolled steel sheet according to the invention.
  • FIG. 7 illustrates a microstructure of cold sheet which does not satisfy the conditions of the invention.
  • FIG. 8 illustrates the evolution of the density as a function of the aluminum content.
  • the present invention relates to hot-rolled or cold-rolled steel sheets having a reduced density relative to conventional steels and less than or equal to 7.3, while retaining mechanical properties of shaping, of mechanical strength. , weldability and satisfactory coating.
  • the invention also relates to a manufacturing method for hot or cold rolling the steel of the invention to obtain a hot or cold sheet having a microstructure comprising ferrite, austenite and up to to 5% of Kappa precipitates in surface fraction.
  • the carbon content is between 0.10 and 0.30%.
  • Carbon is a gamma element. It favors, with Mn, the appearance of austenite and, with aluminum, the formation of Kappa precipitates based on stoichiometry (Fe, Mn) 3 AIC x , where x is strictly less than 1. Below of 0.10%, the mechanical strength of 600 MPa is not reached. If the carbon content is greater than 0.30%, the formation of Kappa precipitates will be excessive because above 5% and the rolling of the steel sheet will lead to cracks. Preferably, it will limit the carbon content to 0.21% included to minimize the risk of occurrence of cracks rolling. Preferably, the minimum carbon content will also be greater than or equal to 0.18% to more easily reach the mechanical strength of 600 MPa.
  • Manganese must have a content of between 6.0% and 15.0%. This element is also gamma. The addition of manganese will therefore essentially serve to obtain a structure containing austenite in addition to ferrite. It also has a hardening effect in solid solution and stabilizing on the austenite. The ratio of the manganese content to that of aluminum will have a strong influence on the structures obtained at the end of rolling. For an Mn content of less than 6.0%, the elongation at break of 20% is not reached, in addition the austenite will be insufficiently stabilized with the risk of prematurely turning into martensite during rapid cooling, both hot roll output and a annealing line.
  • Mn excessively increases the volume fraction of austenite, effectively reducing the carbon concentration of the austenitic phase, which would prevent reaching the 600 MPa of resistance.
  • the addition of Mn to 10.0% will be limited.
  • the Mn content will be 7.0% in order to reach the elongation of 20% more easily.
  • the ratio of the weight content of manganese to that of aluminum is essential because it governs the stability of the austenite and the nature of the structures formed during the manufacturing cycle. Below a ratio equal to 1.0, the nature of the phases formed depends too much on the cooling rate, both after the hot rolling and after the recrystallization annealing for the cold-rolled sheet. It is thus possible to form martensite from austenite or even to see it disappear in favor of ferrite and precipitates Kappa as shown in Figure 7.
  • the microstructure of the sheet of the invention eliminates the presence of martensite and ensures the presence of stable austenite. So, we do not want to have an Mn
  • the sheet produced is insensitive to the manufacturing conditions while being easily laminated both hot and cold. This decrease in sensitivity is improved by increasing the ratio, so it is preferred a ratio greater than or equal to 1, 1, preferably, a ratio greater than or equal to 1, 5 or even more preferably, a higher ratio or equal to 2.0.
  • silicon is an element that reduces the density of steel and reduces the stacking fault energy. This reduction makes it possible to obtain a TRIP effect known to those skilled in the art. Nevertheless its content is limited to 2.0%, because beyond this element tends to form strongly adherent oxides generating surface defects. Indeed, the presence of surface oxides leads to wettability defects during a possible zinc deposition operation by dipping, for example.
  • the Si will be limited to 1%.
  • micro-alloy elements such as titanium, vanadium and niobium may be added in amounts of less than 0.2%, 0.6% and 0.3%, respectively, in order to obtain additional hardening by precipitation.
  • titanium and niobium make it possible to control grain size during solidification. A limitation is however necessary because beyond this, a saturation effect is obtained.
  • cerium, boron, magnesium, or zirconium may be added alone or in combination in the following proportions: Ce ⁇ 0.1%, B ⁇ 0.01, Mg ⁇ 0.010, and Zr ⁇ 0.010. Up to the maximum levels indicated, these elements make it possible to refine the ferritic grain during solidification.
  • the rest of the composition consists of iron and unavoidable impurities resulting from the elaboration.
  • the microstructure of the sheet according to the invention consists of ferrite, austenite and up to 5% Kappa precipitates in surface fraction. Ferrite exhibits increasing carbon solubility with temperature. However, carbon in solid solution is very weak for low-density steels because it further reduces dislocation mobility already low due to the presence of aluminum. A saturation of carbon in the ferrite can therefore lead to the activation of a twinning mechanism within the latter. Thus, without being bound by this theory, the inventors argue that austenite and precipitates serve as effective carbon traps and facilitate rolling in the intercritical domain.
  • the surface density of the Kappa precipitates can be up to 5% because above 5%, the ductility drops and the 20% breaking elongation of the invention is not reached.
  • less than 2% Kappa precipitates are contemplated. It is specified that the microstructure being uniform, the surface fraction is equal to the volume fraction.
  • the casting can be carried out either in ingot, or continuously or in the form of slabs or thin strips. That is to say with a thickness ranging from about 220 mm for slabs and up to a few tens of mm for thin strips.
  • the cast half-products are then heated to a temperature of between 1000 ° C. and 1280 ° C. in order to have at all points a temperature favorable to the large rolling deformations.
  • a temperature of between 1000 ° C. and 1280 ° C. Above 1280 ° C., it is possible to form particularly coarse ferritic grains, the numerous tests of the inventors have indicated a correlation between the initial ferritic grain size and the capacity of these latter to recrystallize during hot rolling. The larger the initial ferritic grain size, the easier it recrystallizes, and reheating temperatures above 1280 ° C. are avoided because they are industrially expensive and not very favorable for the recrystallization of ferrite. This can, on the other hand, amplify the phenomenon of ragging (also called "roping").
  • the crimping is due to a set of small grains, weakly disoriented, within grains of larger size. This phenomenon is visible by a preferential localization of the deformations within strips in the rolling direction. It is due to the presence of restored non-recrystallized grains. It is measured by a small elongation distributed in the transverse direction.
  • the reheating temperature is between 1150 and 1280 ° C.
  • the steel sheet according to the invention has a noticeable drop in laminability as shown in Figure 3 which has the narrowing of test pieces subjected to hot traction at different temperatures.
  • An end-of-rolling temperature of between 900 and 980 ° C is preferred in order to have a structure that is suitable for recrystallization and laminatable.
  • the sheet obtained is then cooled at a cooling rate up to the winding temperature Tb 0.
  • a cooling rate V re fi of less than or equal to 55 ° C./s is preferred for better control. the precipitation of kappa.
  • the sheet is reeled at a temperature of between 450 and 550 ° C.
  • Cold rolling is carried out with a thickness reduction of between 35 and 90%.
  • the cold-rolled sheet is then heated to a heating rate V c that is greater than 3 ° C. up to a holding temperature T m of between 800 and 950 ° C. for a time of less than 600 seconds. to ensure a recrystallization rate greater than 90% of the initial structure hardened.
  • the sheet is then cooled at a speed V re f 2 up to a temperature of less than or equal to 500 ° C., a cooling rate of greater than 30 ° C./s is preferred to better control the formation of the Kappa precipitates and not to exceed the 5% in surface content.
  • a cooling rate of greater than 30 ° C./s is preferred to better control the formation of the Kappa precipitates and not to exceed the 5% in surface content.
  • additional heat treatment to facilitate a dip coating deposit with for example zinc will not change the mechanical properties of the sheet of the invention.
  • the inventors have been able to show that by stopping the cooling at the speed V re f2 between 500 and 460 ° C, to carry out a maintenance before quenching in a zinc bath, the properties targeted by the sheet of the invention remain unchanged.
  • the following tests will show the advantageous characteristics that can emanate from the implementation of steel sheets according to the invention.
  • Example 1 Hot-rolled sheets
  • composition of the steels shown in Table 1 consists of iron and unavoidable impurities resulting from processing.
  • Table 1 Composition of steels (% weight).
  • T r ech is the reheating temperature
  • Vre i is the cooling temperature after the last rolling pass.
  • the sheets 11 and 12 are sheets whose chemical composition and the method of implementation are according to the invention.
  • the two chemical compositions are different and have different Mn / Al ratios.
  • the sheets referenced R1, R2 and R3 have chemical compositions which do not satisfy the conditions according to the invention respectively for the content of Mn, for the contents of C and Mn or for the Mn / Al ratio.
  • R2a and R2b are two tests from the same grade R2 in Table 1.
  • the hot rolling was carried out with at least one rolling pass in the presence of ferrite.
  • Air cooling has a cooling rate of less than 55 ° C / sec.
  • Table 3 has the following characteristics:
  • Ferrite refers to the presence or not of recrystallized ferrite with a recrystallization rate greater than 90% in the microstructure of the sheet after winding.
  • Austenite refers to the presence or absence of austenite in the microstructure of the sheet after winding.
  • K denotes the presence of Kappa precipitates in the microstructure with a surface fraction less than 5%. This measurement is made using a scanning electron microscope.
  • Rm (MPa) the mechanical strength in a longitudinal tensile test with respect to the rolling direction.
  • Atot (%) denotes the elongation at break in a longitudinal tensile test with respect to the rolling direction.
  • Table 3 Properties of hot-rolled sheets.
  • the two steel sheets 11 and 12 correspond to the sheets according to the invention.
  • the microstructure of the sheet 11 is illustrated in FIG. 1. None of these sheets has a crack after rolling.
  • the mechanical strengths are greater than 600 MPa, their elongation at break is well above 20% and they are weldable and can be coated.
  • the presence of ferrite and austenite was confirmed by a scanning electron microscope and the presence of Kappa precipitates was confirmed by the indexing of the diffraction pattern. obtained from observation with a transmission electron microscope (see Figure 6).
  • the sheet R1 has an Mn content of less than 6%, an Mn / Al ratio of less than 1 and a reheat temperature of greater than 1280 ° C.
  • the letter "X" means that there has been no traction test.
  • the sheets R2a and R2b come from the sheet R2 and have an Mn / Al ratio of less than 1 and a manganese content of less than 6%.
  • R2a was wound at a temperature above 600 ° C which led to a decomposition of the austenite Kappa and ferrite as shown in Figure 4. The elongation does not reach the required 20%.
  • the sheet R2b has undergone rolling conditions according to the invention but the chemical composition does not satisfy the conditions referred to, that is to say that the Mn / Al ratio is below 1, the elongation of 20% n is not reached.
  • Sheet R3 has an Mn / Al ratio of less than 1.0; despite rolling conditions according to the invention and alloying elements in the ranges covered by the invention, cracks appeared during hot rolling.
  • Example 2 Cold-rolled and annealed sheets
  • the remainder of the composition of the steels in Table 4 consists of iron and unavoidable impurities resulting from processing. Density measured by
  • Table 4 Steel Composition (% Wt.) The invention The density of 16 was estimated at 7.1 by the curve of Figure 8.
  • the products were first hot-rolled under the following conditions:
  • Trech is the reheating temperature
  • Vrefi is the cooling temperature after the last rolling pass.
  • Rate is the reduction rate during cold rolling
  • V c is the heating rate up to the holding temperature T m .
  • T m is the recrystallization maintenance temperature.
  • t m is the time during which the sheet is kept at the temperature
  • the sheets I3a, I3b, 14, 15 and 16 are sheets whose chemical composition and the method of implementation are according to the invention.
  • Table 7 shows the following characteristics:
  • Ferrite refers to the presence or not of recrystallized ferrite with a recrystallization rate greater than 90% in the microstructure of the annealed sheet.
  • Austenite refers to the presence or absence of austenite in the microstructure of the sheet after winding.
  • K denotes the presence of Kappa precipitates in the microstructure with a surface fraction less than 5%. This measurement is made using a scanning electron microscope. When it is written "NO", the kappa precipitates are absent.
  • Rm (MPa) the mechanical strength in a longitudinal tensile test with respect to the rolling direction.
  • Atot (%) denotes the elongation at break in a tensile test in longitudinal direction relative to the rolling direction.
  • Measured Density refers to the density measured by pycnometry and shown in Figure 7.
  • Fissure Refers to a crack clearly visible to the eye after rolling on the sheet.
  • the cold-rolled steel sheets of Table 7 correspond to sheets according to the invention.
  • the microstructure of the sheet I3a is illustrated in FIG. 5. None of these sheets has a crack after rolling.
  • the mechanical strengths are greater than 600 MPa, their elongation at break is greater than 20% and they are weldable and the I3a sheet has been coated with Zn by a quenching process in a Zn bath at 460 ° C, called the galvanizing process by soaking.
  • the sheet, both bare and coated, has good weldability.
  • the steels according to the invention thus have good continuous galvanizing properties, in particular.
  • the steels according to the invention have a good combination of properties of interest for structural or skin parts in the automobile (low density, good deformability, good mechanical properties, good weldability and good resistance to corrosion with coating).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

L'invention concerne une tôle d'acier laminée dont la résistance mécanique est supérieure ou égale à 600 MPa et l'allongement à rupture est supérieur ou égale à 20% ainsi que son procédé de fabrication. La composition chimique de la tôle de l'invention comprend : 0,10 ≤ C ≤ 0,30 %, 6,0 ≤ Mn ≤ 15,0 %, 6,0 ≤ Al ≤ 15,0 %, et à titre optionnel, un ou plusieurs éléments choisis parmi: Si ≤ 2,0%, Ti ≤ 0,2%, V ≤ 0,6% et Nb ≤ 0,3% le reste de la composition étant composé de fer et d'impuretés inévitables résultant de l'élaboration. Le rapport du poids du manganèse sur celui d'aluminium est tel que : Mn / Al > 1,0. La microstructure de la tôle selon l'invention est constituée de ferrite, d'austénite et jusqu'à 5% de précipités Kappa en fraction surfacique.

Description

ACIER LAMINÉ A CHAUD OU A FROID A FAIBLE DENSITE, SON PROCEDE DE MISE EN OEUVRE ET SON UTILISATION
La présente invention concerne une tôle d'acier laminée possédant une résistance mécanique supérieure ou égale à 600 MPa et un allongement à rupture supérieur ou égal à 20% ainsi que son procédé de fabrication.
Les contraintes environnementales poussent, de manière continue, les constructeurs automobiles à abaisser les émissions de CO2 de leurs véhicules. Pour y parvenir, ces derniers ont plusieurs options parmi les quelles les principales consistent soit à diminuer le poids des véhicules soit à améliorer le rendement de leur motorisation. Les avancées se font souvent de manière combinée. La présente invention concerne la première option, à savoir la réduction du poids des véhicules motorisés. Dans ce domaine bien précis, il existe une alternative à deux voies:
• La première consiste à diminuer les épaisseurs des aciers tout en augmentant leurs niveaux de résistance mécanique. Hélas, cette solution trouve ses limites à cause d'une diminution de rigidité rédhibitoire à certaines pièces automobiles, et de l'apparition de problèmes acoustiques nuisibles au confort sonore du passager, sans compter l'incontournable perte de ductilité associée à la hausse de résistance mécanique.
• La seconde voie consiste à diminuer la densité des aciers en les alliant à d'autres métaux plus légers. Parmi ces alliages, ceux à basse densité dits Fer-Aluminium présentent des propriétés mécaniques et physiques intéressantes tout en permettant d'abaisser considérablement le poids. On entendra par faible ou basse densité, une densité inférieure ou égale à 7,3.
Ainsi, l'addition d'aluminium au fer, du fait de sa faible densité par rapport à ce dernier, a permis d'espérer de substantielles réductions de poids pour les pièces de structure automobile. C'est dans cette optique que la demande de brevet EP2128293 décrit une tôle laminée à chaud ou à froid de composition 0,2-0,8%C, 2-10%Mn, 3-15%AI, et une structure contenant moins de 99% de ferrite et plus d'1 % d'austénite résiduelle. La tôle présente une résistance mécanique comprise dans l'intervalle 600-1 OOOMPa et une densité inférieure à 7,2 et est revêtable. Le procédé de fabrication de la tôle à chaud consiste à réchauffer entre 1000 et 1200°C, laminer avec une température de fin de laminage comprise entre 700 et 850°C et à bobiner à une température inférieure à 600°C. Pour la tôle à froid, on lamine à froid la tôle à chaud avec une réduction comprise entre 40 et 90%, on réchauffe à une vitesse comprise entre 1 et 20°C/s à une température comprise entre la température de recristallisation et 900°C pendant 10 à 180 secondes. Cette demande de brevet vise à éviter le chiffonnage et l'apparition de criques au laminage en limitant le rapport Mn/AI à une valeur comprise entre 0,4 et 1 ,0. Il y apparaît qu'au-delà d'un rapport de 1 ,0, la laminabilité à froid mène à l'apparition de fissures.
La demande de brevet JP2006118000 vise un acier léger et présentant une haute résistance ainsi qu'une bonne ductilité. Pour ce faire, la composition de l'acier proposé contient en pourcentage de poids : 0,1 à 1 ,0% C, moins de 3,0% Si, 10,0 à 50,0% Mn, moins de 0,01 % P, moins de 0,01 % S, 5,0 à 15,0% Al et 0,001 à 0,05% N, le reste étant du fer et d'inévitables impuretés, l'équation (1) ci-dessous devant être satisfaite, l'acier présentera une densité inférieure ou égale à 7,0.
C<-0,020XMn+AI/ 5+0,53 (1 ). Il aura une microstructure contenant de la ferrite et de l'austénite. Le produit de la résistance mécanique par l'allongement total satisfaisant l'inéquation suivante: TSxEl >20000 (MPa x %). La laminabilité des aciers avec de si forts taux d'alliage en Mn et Al est connue pour être sujette à des forts risques d'apparition de criques.
La demande de brevet WO2007/024092 vise à fournir des tôles laminées à chaud facilement emboutissables. Cette demande concerne une tôle contenant 0,2-1 %C, 8- 5%Mn, avec un produit de résistance mécanique par allongement de 24000MPa%. Il apparaît que cette demande vise une structure totalement austénitique, or ce type de microstructure est particulièrement difficile à laminer.
L'invention vise à résoudre ces difficultés en proposant des tôles d'acier laminé à chaud ou à froid présentant simultanément :
• Une densité inférieure ou égale à 7,3
• Une résistance mécanique supérieure ou égale à 600 MPa
• Un allongement à rupture supérieur ou égal à 20%
• Une bonne aptitude au formage, particulièrement au laminage
• Une bonne soudabilité et une bonne revêtabilité
Un des buts de l'invention est également de fournir un procédé de fabrication de ces tôles qui soit compatible avec les applications industrielles usuelles tout en étant peu sensible aux conditions de fabrication.
L'invention a pour premier objet une tôle d'acier laminée dont la densité est inférieure ou égale à 7,3 et dont la composition comprend, les teneurs étant exprimées en poids :
0,10 < C < 0,30 % 6,0 < Mn < 15,0 %
6,0 < Al < 15,0 %
et à titre optionnel, un ou plusieurs éléments choisis parmi :
Si < 2,0%
Ti < 0,2 %
V < 0,6 %
Nb < 0,3 %
le reste de la composition étant composé de fer et d'impuretés inévitables résultant de l'élaboration, le rapport du poids du manganèse sur celui
Mn
d'aluminium étant tel que— > 1,0 , la microstructure de la tôle étant
Al
constituée de ferrite, d'austénite et jusqu'à 5% de précipités Kappa en fraction surfacique.
Dans un mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids:
0,18 < C < 0,21 %
Dans un autre mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids:
7,0 < Mn < 10,0%
Dans un autre mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids:
6,0 < Al < 12,0%
Dans un autre mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids:
6,0 < Al < 9,0% Dans un autre mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids:
Si < 1%
De manière préférentielle, le rapport du poids du manganèse sur celui
Mn
d'aluminium est tel que:— > 1,1 , de manière encore préférée, le rapport est
Al
Mn
tel que— > 1,5 , voire de manière encore plus préférée, le rapport est tel que
Al
^ > 2,0.
Al
De manière encore préférentielle, la tôle selon l'invention est telle que la résistance mécanique en traction est supérieure ou égale à 600 MPa et l'allongement à rupture est supérieur ou égal à 20%.
L'invention a pour second objet un procédé de fabrication d'une tôle d'acier laminée ayant une densité inférieure ou égale à 7,3 qui comprend les étapes consistant à :
-Approvisionner un acier dont la composition est conforme à l'invention,
-Couler ledit acier pour former un demi produit,
-Réchauffer ledit demi-produit à une température Trech comprise entre
1000°C et 1280°C,
-laminer à chaud ledit demi-produit réchauffé avec au moins une passe en présence de ferrite pour obtenir une tôle,
-La dernière passe de laminage se fera à une température de fin de laminage TFL supérieure ou égale à 850°C.
-Refroidir ladite tôle à une vitesse de refroidissement Vrefl jusqu'à la température de bobinage Tbob inférieure ou égale à 600°C, -Puis, bobiner ladite tôle refroidie jusque Tbob,
L'invention a également pour objet un procédé de fabrication d'une tôle laminée tel que ledit demi-produit est coulé directement sous forme de brames minces ou de bandes minces.
De manière préférentielle, la température de fin de laminage TFL est comprise entre 900 et 980°C.
De manière préférentielle, la vitesse de refroidissement Vren est inférieure ou égale à 55°C/s.
De manière préférée, la température de bobinage est comprise entre 450 et 550°C.
L'invention a également pour objet un procédé de fabrication d'une tôle d'acier laminée à froid et recuite avec une densité inférieure ou égale à 7,3 qui comprend les étapes consistant à :
-Approvisionner une tôle d'acier laminée, puis
-Laminer à froid ladite tôle laminée avec un taux de réduction compris entre 35 et 90% de façon à obtenir une tôle à froid, puis
-Chauffer ladite tôle avec une vitesse Vc jusqu'à une température de maintien Tm comprise entre 800 et 950°C pendant un temps tm inférieur à 600 secondes, puis -Refroidir ladite tôle à vitesse Vref2 jusqu'à une température inférieure ou égale à 500°C.
De manière préférée, la température Tm est comprise entre 800 et 900°C.
De manière préférée, la vitesse de refroidissement Vref2 est supérieure ou égale à 30°C/s.
De manière préférée, la vitesse de refroidissement \Zre12 est maintenue jusqu'à une température comprise entre 500°C et 460°C.
De manière préférée, la tôle refroidie est revêtue de zinc, d'un alliage de zinc ou d'un alliage à base zinc.
Les tôles d'acier selon l'invention pourront être utilisées pour la fabrication de pièces de structures ou de pièces de peau pour véhicules terrestres à moteur.
D'autres caractéristiques et avantages de l'invention apparaîtront au travers de la présente description. Les figures annexées ci-jointes sont données à titre d'exemple et de manière non limitative, elles sont telles que:
- La figure 1 illustre la microstructure d'une tôle d'acier laminée à chaud selon l'invention.
- La figure 2 illustre la microstructure d'une tôle d'acier laminée à chaud ne satisfaisant pas aux conditions selon l'invention.
- La figure 3 présente le comportement mécanique en traction à chaud représentant la laminabilité à chaud en fonction de la température de traction en °C.
-La figure 4 illustre la microstructure d'une tôle d'acier laminée à chaud ne satisfaisant pas aux conditions selon l'invention.
-La figure 5 illustre la microstructure d'une tôle d'acier laminée à froid selon l'invention.
-La figure 6 présente un cliché de diffraction en axe de zone [110] ayant permis d'identifier le précipité Kappa sur une tôle d'acier laminée à chaud selon l'invention.
-La figure 7 illustre une microstructure de tôle à froid ne satisfaisant pas aux conditions de l'invention.
-La figure 8 illustre l'évolution de la densité en fonction de la teneur en aluminium.
La présente invention est relative à des tôles d'acier laminées à chaud ou à froid présentant une densité réduite par rapport aux aciers conventionnels et inférieure ou égale à 7,3, et ce en conservant des caractéristiques mécaniques de mise en forme, de résistance mécanique, de soudabilité et de revêtabilité satisfaisante. L'invention est aussi relative à un procédé de fabrication permettant de laminer à chaud ou à froid l'acier de l'invention pour obtenir une tôle à chaud ou à froid ayant une microstructure comprenant de la ferrite, de l'austénite et jusqu'à 5% de précipités Kappa en fraction surfacique.
Pour ce faire, la composition chimique de l'acier est très importante aussi bien pour le comportement mécanique de la tôle que pour son élaboration. Les teneurs en éléments de composition chimique qui vont suivre sont donnés en pourcentage du poids.
-Selon l'invention, la teneur en carbone est comprise entre 0,10 et 0,30%. Le carbone est un élément gammagène. Il favorise, avec le Mn, l'apparition de l'austénite et, avec l'aluminium, la formation des précipités Kappa basés sur la stcechiométrie (Fe,Mn)3AICx, où x est strictement inférieur à 1. En dessous de 0,10%, la résistance mécanique de 600 MPa n'est pas atteinte. Si la teneur en carbone est supérieure à 0,30%, la formation de précipités Kappa sera excessive car au dessus de 5% et le laminage de la tôle d'acier va mener à des fissures. De manière préférentielle, on limitera la teneur en carbone à 0,21 % inclus afin de minimiser les risques d'apparition de criques au laminage. Préférentiellement, la teneur minimale en carbone sera aussi supérieure ou égale à 0,18% pour atteindre plus aisément la résistance mécanique de 600 MPa.
-Le manganèse doit voir sa teneur comprise entre 6,0% et 15,0%. Cet élément est, lui aussi, gammagène. L'ajout du manganèse servira donc essentiellement à l'obtention d'une structure contenant de l'austénite en plus de la ferrite. Il a aussi un effet durcissant en solution solide et stabilisant sur l'austénite. Le ratio de la teneur en manganèse sur celle de l'aluminium aura une forte influence sur les structures obtenues en fin de laminage. Pour une teneur en Mn inférieure à 6,0%, l'allongement à rupture de 20% n'est pas atteint, en outre l'austénite sera insuffisamment stabilisée avec le risque de se transformer prématurément en martensite lors d'un refroidissement rapide, aussi bien en sortie de laminage à chaud que sur une ligne de recuit. Au dessus de 15,0%, du fait de son effet gammagène, le Mn augmente de manière excessive la fraction volumique d'austénite, réduisant de fait la concentration en carbone de la phase austénitique, ce qui empêcherait d'atteindre les 600 MPa de résistance. De manière préférée, on limitera l'addition de Mn à 10,0%. Pour la limite inférieure, de manière préférée, la teneur en Mn sera de 7,0% afin d'atteindre l'allongement de 20% plus facilement.
-En ce qui concerne l'aluminium, sa teneur doit aussi être comprise entre 6,0% et 15,0%. L'aluminium est un élément aiphagène, il diminue donc le domaine austénitique et cet élément tend à promouvoir la formation de précipités Kappa en se combinant avec le carbone. L'aluminium présente une densité de 2,7 et influe fortement sur les propriétés mécaniques. Quand la teneur en aluminium augmente, la résistance mécanique et la limite élastique augmentent, alors que l'allongement à rupture diminue, ce qui s'explique par une diminution de la mobilité des dislocations. En dessous de 6,0%, l'effet de réduction de densité dû à la présence d'aluminium perd de son intérêt. Au dessus de 15,0%, une précipitation incontrôlée de Kappa avec une densité surfacique supérieure à 5% apparaît et nuit à la ductilité du matériau. On souhaite limiter, de manière préférentielle, la teneur en aluminium à strictement moins de 9,0% afin d'éviter une précipitation d'intermétalliques fragiles. La figure 7 illustre une microstructure dans laquelle les précipités Kappa se sont formés de manière incontrôlée.
-Le rapport de la teneur pondérale du manganèse sur celle de l'aluminium est primordial car il gouverne la stabilité de l'austénite et la nature des structures formées lors du cycle de fabrication. En dessous d'un rapport égal à 1 ,0 inclus, la nature des phases formées dépend trop fortement de la vitesse de refroidissement, aussi bien après le laminage à chaud qu'après le recuit de recristallisation pour la tôle à froid. On risque ainsi de former de la martensite à partir de l'austénite voire de voir disparaître cette dernière au profit de la ferrite et de précipités Kappa tel qu'illustré dans la figure 7. La microstructure de la tôle de l'invention écarte la présence de la martensite et assure la présence d'austénite stable. Ainsi, on ne souhaite pas avoir un Mn
rapport— < 1 ,0 pour s'assurer d'avoir une bonne laminabilité et une tôle
4.1
peu sensible aux conditions de fabrication.
Au dessus d'un rapport de la teneur pondérale en manganèse sur celle de l'aluminium égal à 1 ,0, la tôle produite est peu sensible aux conditions de fabrication tout en étant aisément laminable aussi bien à chaud qu'à froid. Cette baisse de sensibilité est améliorée en augmentant le rapport, ainsi il est préféré un rapport supérieur ou égal respectivement à 1 ,1 , de manière préférentielle, un rapport supérieur ou égal à 1 ,5 voire de manière encore plus préférée, un rapport supérieur ou égal à 2,0.
-Au même titre que l'aluminium, le silicium est un élément permettant de réduire la densité de l'acier et réduit l'énergie de défaut d'empilement. Cette réduction permet d'obtenir un effet TRIP connu de l'homme de métier. Néanmoins sa teneur est limitée à 2,0%, car au-delà, cet élément a tendance à former des oxydes fortement adhérents générant des défauts de surface. En effet, la présence d'oxydes de surface mène à des défauts de mouillabilité lors d'une éventuelle opération de dépôt de zinc au trempé par exemple. Préférentiellement, on limitera le Si à 1 %.
-des éléments de micro alliages tels que le titane, le vanadium et le niobium peuvent être ajoutés en quantité respectivement inférieures à 0,2%, 0,6% et 0,3%o afin d'obtenir un durcissement supplémentaire par précipitation. En particulier le titane et le niobium permettent de contrôler la taille de grain au cours de la solidification. Une limitation est cependant nécessaire car au- delà, on obtient un effet de saturation.
D'autres éléments tels que le cérium, le bore, le magnésium, ou le zirconium peuvent être ajoutés seuls ou en combinaison dans les proportions suivantes: Ce < 0,1 %, B < 0.01 , Mg < 0,010, et Zr < 0,010. Jusqu'aux teneurs maximum indiquées, ces éléments permettent d'affiner le grain ferritique lors de la solidification.
Le reste de la composition est constitué de fer et d'impuretés inévitables résultant de l'élaboration. -La microstructure de la tôle selon l'invention est constituée de ferrite, d'austénite et jusqu'à 5% de précipités Kappa en fraction surfacique. La ferrite présente une solubilité du carbone croissante avec la température. Or, le carbone en solution solide est très fragilisant pour les aciers à basse densité, car il réduit davantage la mobilité des dislocations déjà basse du fait de la présence de l'aluminium. Une saturation de carbone dans la ferrite peut donc conduire à l'activation d'un mécanisme de maclage au sein de cette dernière. Ainsi, sans être lié par cette théorie, les inventeurs avancent que l'austénite et les précipités servent de pièges à carbone efficaces et facilitent le laminage dans le domaine intercritique. Cette approche est surprenante car on pourrait croire qu'il faudrait éviter de former ces phases dures pour faciliter le laminage mais la solubilité du carbone dans l'austénite et dans les précipités est plus élevée que dans la ferrite. Cette combinaison de structure contenant de la ferrite, de l'austénite jusqu'à 5% de précipités Kappa en fraction surfacique confère donc à la tôle la ductilité nécessaire autant à sa laminabilitè lors du laminage que lors de fabrication de pièces de structure. Il est précisé que le taux de recristallisatioh de la ferrite après le recuit ou après le bobinage sera supérieur à 90% et idéalement égal à 100%. Si la fraction recristallisée de ferrite est inférieure à 90%, la tôle obtenue ne présentera pas les 20% d'allongement requis par l'invention.
De nombreuses expériences et études métallographiques ont permis aux inventeurs de mettre en évidence que la présence localisée de précipités de type Kappa en forme de liseré autour des joints de grain ferritique réduit, quant à elle, la laminabilitè de la tôle.
La densité surfacique des précipités Kappa peut aller jusque 5% car au dessus de 5%, la ductilité chute et on n'atteint pas les 20% d'allongement à rupture de l'invention. En outre, on risque aussi d'avoir une précipitation incontrôlée de Kappa autour des joints de grain ferritique, ce qui augmenterait les efforts de laminage de la tôle de l'invention avec les outils usuels de laminage d'acier à l'échelle industrielle. Ainsi de manière préférentielle, on envisage moins de 2% de précipités Kappa. Il est précisé que la microstructure étant uniforme, la fraction surfacique est égale à la fraction volumique.
La mise en oeuvre du procédé de fabrication d'une tôle laminée à chaud selon l'invention est la suivante :
-On approvisionne un acier de composition selon l'invention
-On procède à la coulée d'un demi-produit à partir de cet acier. La coulée peut s'effectuer soit en lingot, soit en continu soit sous forme de brames minces ou bandes minces. C'est-à-dire avec une épaisseur allant d'environ 220 mm pour les brames et pouvant aller jusque quelques dizaines de mm pour les bandes minces.
-Les demi-produits coulés sont ensuite réchauffés à une température comprise entre 1000°C et 1280°C afin d'avoir en tout point une température favorable aux fortes déformations de laminage. Au-delà de 1280°C, on risque de former des grains ferritiques particulièrement grossiers, les nombreux essais des inventeurs ont indiqué une corrélation entre la taille de grain ferritique initiale et la capacité de ces derniers à recristalliser lors du laminage à chaud. Plus la taille de grain ferritique initiale est grande, moins il recristallise facilement, ainsi on évite des températures de réchauffage au- delà de 1280°C car celles-ci sont industriellement coûteuses et peu favorables à la recristallisation de la ferrite. Cela peut, d'autre part, amplifier le phénomène de chiffonnage (encore appelé « roping »). Il est précisé que le chiffonnage est dû à un ensemble de grains de petite taille, faiblement désorientés, au sein de grains de plus grande taille. Ce phénomène est visible par une localisation préférentielle des déformations au sein de bandes dans la direction de laminage. Il est dû à la présence de grains non recristallisés restaurés. On le mesure par un faible allongement réparti dans la direction transverse.
En dessous de 1000°C, il devient de plus en plus difficile d'avoir une température de fin de laminage au dessus de 850°C. De manière préférée, la température de réchauffage est comprise entre 1 150 et 1280°C.
Les étapes suivantes permettent d'éviter le phénomène de chiffonnage et d'avoir une bonne ductilité et une bonne emboutissabilité :
-Il est nécessaire d'effectuer le laminage avec une moins une passe de laminage en présence de ferrite, c'est-à-dire dans le domaine partiellement ou totalement ferritique. Ceci afin d'éviter une saturation de carbone dans la ferrite pouvant mener au maclage. L'austénite sert ainsi de pièges à carbone efficace car la solubilité du carbone dans l'austénite est plus élevée que dans la ferrite.
-La dernière passe de laminage est effectuée à une température supérieure à 850°C car en dessous de cette température, la tôle d'acier selon l'invention présente une chute notable de laminabilité comme le montre la figure 3 qui présente la striction d'éprouvettes soumises à une traction à chaud à différentes températures. Une température de fin de laminage comprise entre 900 et 980°C est préférée afin d'avoir une structure propice à la recristallisation et laminable.
-On refroidit ensuite la tôle obtenue à une vitesse de refroidissement jusqu'à la température de bobinage Tb0t>- De manière préférentielle, on préférera une vitesse de refroidissement Vrefi inférieure ou égale à 55°C/s afin de mieux contrôler la précipitation des kappa.
-On bobine ensuite la tôle à une température de bobinage inférieure à 600°C car au dessus, on risque de ne pas pouvoir contrôler la précipitation de kappa, et d'avoir plus de 5% de ce dernier suite à une décomposition importante l'austénite tel qu'illustré dans les figures 2 et 4. De manière préférentielle, on bobine la tôle à une température comprise entre 450 et 550°C.
A ce stade, on obtient une tôle laminée à chaud et si on souhaite obtenir une tôle laminée à froid avec une épaisseur inférieure par exemple à 5 mm, on procède aux étapes suivantes :
-On effectue un laminage à froid avec une réduction d'épaisseur comprise entre 35 et 90%.
-On chauffe ensuite la tôle laminée à froid à une vitesse de chauffe Vc que l'on préfère supérieure à 3°C jusqu'à une température de maintien Tm comprise entre 800 et 950°c pendant un temps inférieur à 600 secondes afin de s'assurer d'un taux de recristallisation supérieur à 90% de la structure initiale fortement écrouie.
-On refroidit ensuite la tôle à une vitesse Vref2 jusqu'à une température inférieure ou égale à 500°C, on préfère une vitesse de refroidissement supérieure à 30°C/s pour mieux contrôler la formation des précipités Kappa et ne pas dépasser les 5% en teneur surfacique. En dessous de 500°C, un traitement thermique supplémentaire afin de faciliter un dépôt de revêtement au trempé avec par exemple du zinc ne changera pas les propriétés mécaniques de la tôle de l'invention. Les inventeurs ont pu montrer qu'en arrêtant le refroidissement à la vitesse Vref2 entre 500 et 460°C, pour effectuer un maintien avant trempe dans un bain de zinc, les propriétés visées par la tôle de l'invention restent inchangées. A titre illustratif et non limitatif, les essais suivants vont montrer les caractéristiques avantageuses pouvant émaner de la mise en œuvre de tôles d'acier selon l'invention. Exemple 1 : Tôles laminées à chaud
Des demi-produits ont été élaborés à partir de coulées d'acier. Les compositions des demi-produits, exprimées en pourcentage pondéral, figurent dans le tableau 1 ci-dessous :
Le reste de la composition des aciers figurant dans le tableau 1 est constitué de fer et d'impuretés inévitables résultant de l'élaboration.
Figure imgf000018_0001
Tableau 1 : Composition d'aciers (%poids).
l=invention / R=Référence / les valeurs soulignées sont non-conformes à l'invention.
Les produits ont été laminés à chaud afin d'obtenir des tôles laminées à chaud et les conditions de fabrication figurent dans le tableau 2 ci-dessous avec les abréviations suivantes :
• Trech : est la température de réchauffage
• TFL : est la température de fin de laminage
• Vre i : est la température de refroidissement après la dernière passe de laminage.
• Tbob : est la température de bobinage
Figure imgf000019_0001
Tableau 2 : Conditions de fabrication des tôles laminées à chaud à partir des demi-produits. l=invention / R=Référence / les valeurs soulignées sont non-conformes à l'invention.
Les tôles 11 et 12 sont des tôles dont la composition chimique et le procédé de mise en œuvre sont selon l'invention. Les deux compositions chimiques sont différentes et présentent des rapports Mn/AI différents. Les tôles référencées R1 , R2 et R3 présentent des compositions chimiques ne satisfaisant pas aux conditions selon l'invention respectivement soit pour la teneur en Mn, soit pour les teneurs en C et en Mn soit pour le rapport Mn/AI. R2a et R2b sont deux essais issus de la même nuance R2 dans le tableau 1. Le laminage à chaud a été effectué avec au moins une passe de laminage en présence de ferrite. Le refroidissement à l'air présente une vitesse de refroidissement inférieure à 55°C/seconde.
Le tableau 3 présente les caractéristiques suivantes :
• Ferrite : désigne la présence ou non de ferrite recristallisée avec un taux de recristallisation supérieur à 90% dans la microstructure de la tôle après le bobinage.
• Austénite : désigne la présence ou non de d'austénite dans la microstructure de la tôle après le bobinage. K : désigne la présence de précipités Kappa dans la microstructure avec une fraction surfacique inférieure à 5 %. Cette mesure est effectuée grâce à un microscope électronique à balayage.
Rm (MPa) : la résistance mécanique dans un essai de traction en sens longitudinal par rapport à la direction de laminage.
Atot(%) : désigne l'allongement à rupture dans un essai de traction en sens longitudinal par rapport à la direction de laminage.
Densité estimée : sur la base de la figure 8 selon la teneur en Al.
Fissure : Désigne si une fissure clairement visible à l'œil nu est apparue après le laminage à chaud sur la tôle.
X : Indique que la mesure n'a pas été faite.
Figure imgf000020_0001
Tableau 3 : Propriétés des tôles laminées à chaud.
l=invention / R=Référence / les valeurs soulignées sont non-conformes à l'invention
Les deux tôles d'acier 11 et 12 correspondent aux tôles selon l'invention. La microstructure de la tôle 11 est illustrée par la figure 1. Aucune de ces tôles ne présente de fissure après le laminage. Les résistances mécaniques sont supérieures à 600 MPa, leur allongement à rupture est largement supérieur à 20% et elles sont soudables et revêtables. La présence de ferrite et d'austénite a été confirmée au microscope électronique à balayage et la présence de précipités Kappa l'a été par l'indexation du cliché de diffraction de obtenu suite à des observations au microscope électronique à transmission (cf. figure 6).
La tôle R1 présente une teneur en Mn inférieure à 6%, un rapport Mn/AI inférieur à 1 et une température de réchauffage supérieure à 1280°C. La tôle, après le laminage à chaud a présenté des fissures. La laminabilité de cet acier est insuffisante. La lettre « X » signifie qu'il n'y a pas eu de test de traction.
Les tôles R2a et R2b sont issues de la tôle R2 et présentent un rapport Mn/AI inférieur à 1 et une teneur en manganèse inférieure à 6%. R2a a subi un bobinage à une température supérieure à 600°C ce qui a mené à une décomposition de l'austénite en Kappa et en ferrite comme illustré par la figure 4. L'allongement n'atteint pas les 20% nécessaires.
La tôle R2b a subi des conditions de laminage selon l'invention mais la composition chimique ne satisfaisant pas aux conditions visées, c'est-à-dire que le rapport Mn/AI est en dessous de 1 , l'allongement de 20% n'est pas atteint.
La tôle R3 présente un rapport Mn/AI inférieur à 1 ,0 ; malgré des conditions de laminage selon l'invention et des éléments d'alliage dans les fourchettes visées par l'invention, des fissures sont apparues lors du laminage à chaud.
Exemple 2 : Tôles laminées à froid et recuites
Des demi-produits ont été élaborés à partir d'une coulée d'acier. La composition chimique des demi-produits, exprimée en pourcentage pondéral, figure dans le tableau 4 ci-dessous :
Le reste de la composition des aciers figurant dans le tableau 4 est constitué de fer et d'impuretés inévitables résultant de l'élaboration. Densité mesurée par
C Mn Al Si Ti V Nb Mn/AI pycnométrie
13 0,21 8,2 7,4 0,26 <0,030 <0,030 <0,030 1 ,11 7,04
14 0,21 8,6 6,1 0 <0,030 <0,030 <0,030 1 ,41 7,17
15 0,2 8,6 6,1 0,89 <0,030 <0,030 0,1 1 ,41 7,12
16 0,19 8,7 7,2 0 <0,030 <0,030 <0,030 1 ,21 non mesurée
Tableau 4 : Composition d'acier (%poids).l=invention La densité d'l6 a été estimée à 7, 1 grâce à la courbe de la figure 8.
Les produits ont tout d'abord été laminés à chaud dans les conditions suivantes :
Figure imgf000022_0001
Tableau 5 : Conditions de laminage à chaud
Les tôles ont ensuite été laminées à froid et recuites. Les conditions de fabrication figurent dans les tableaux 5 et 6 avec les abréviations suivantes :
• Trech : est la température de réchauffage
• TFL■' est la température de fin de laminage
• Vrefi : est la température de refroidissement après la dernière passe de laminage.
• Tbob : est la température de bobinage
• Taux : est le taux de réduction lors du laminage à froid
• Vc : est la vitesse de chauffe jusqu'à la température de maintien Tm.
• Tm : est la température de maintien de recristallisation. • tm : est le temps pendant lequel la tôle est maintenue à la température
ref2 : est la vitesse de refroidissement jusqu'à une température inférieure à 500°C.
Figure imgf000023_0001
Tableau 6 : Conditions de fabrication des tôles laminées à froid et recuites. l=invention
Les tôles I3a, I3b, 14, 15 et 16 sont des tôles dont la composition chimique et le procédé de mise en oeuvre sont selon l'invention.
Le tableau 7 présente les caractéristiques suivantes :
Ferrite : désigne la présence ou non de ferrite recristallisée avec un taux de recristallisation supérieur à 90% dans la microstructure de la tôle recuite.
Austénite : désigne la présence ou non de d'austénite dans la microstructure de la tôle après le bobinage.
K : désigne la présence de précipités Kappa dans la microstructure avec une fraction surfacique inférieure à 5 %. Cette mesure est effectuée grâce à un microscope électronique à balayage. Quand il est écrit « NON », les précipités kappa sont absents.
Rm (MPa) : la résistance mécanique dans un essai de traction en sens longitudinal par rapport à la direction de laminage.
Atot(%) : désigne l'allongement à rupture dans un essai de traction en sens longitudinal par rapport à la direction de laminage.
• Densité mesurée: désigne la densité mesurée par pycnométrie et illustrée sur la figure 7.
Fissure : Désigne si une fissure clairement visible à l'œil apparue après laminage sur la tôle.
Figure imgf000024_0001
Tableau 7 : Propriétés des tôles laminées à froid et recuites. l=invention
* la densité d'l6 a été estimée.
Les tôles d'acier laminées à froid du tableau 7 correspondent à des tôles selon l'invention. La microstructure de la tôle I3a est illustrée par la figure 5. Aucune de ces tôles ne présente de fissure après laminage. Les résistances mécaniques sont supérieures à 600 MPa, leur allongement à rupture est supérieur à 20% et elles sont soudables et la tôle I3a a été revêtue de Zn par un procédé de trempe dans un bain de Zn à 460°C, appelé procédé de galvanisation au trempé. La tôle, aussi bien nue que revêtue, présente une bonne soudabilité.Les aciers selon l'invention présentent ainsi une bonne aptitude à la galvanisation en continu, en particulier.
Les aciers selon l'invention présentent une bonne combinaison de propriétés intéressantes pour les pièces de structures ou de peau dans l'automobile (faible densité, bonne . aptitude à la déformation, bonne propriétés mécaniques, bonne soudabilité et bonne résistance à la corrosion avec un revêtement).

Claims

REVENDICATIONS
1- Tôle d'acier laminée dont la densité est inférieure ou égale à 7,3 et dont la composition comprend, les teneurs étant exprimées en poids :
0,10 < C < 0,30 %
6,0 < Mn < 15,0 %
6,0 < Al < 15,0 %
et à titre optionnel, un ou plusieurs éléments choisis parmi :
Si < 2,0%
Ti < 0,2 %
V < 0,6 %
Nb < 0,3 %
le reste de la composition étant composé de fer et d'impuretés
Mn
inévitables résultant de l'élaboration, étant entendu que— > 1,0 , la
Al
microstructure de la tôle étant constituée de ferrite, d'austénite et jusqu'à 5% de précipités Kappa en fraction surfacique .
2- Tôle en acier selon la revendication 1 , dont la composition comprend, les teneurs étant exprimées en poids:
0,18 < C < 0,21 %
3- Tôle en acier selon les revendications 1 ou 2 dont la composition
comprend, les teneurs étant exprimées en poids:
7,0 < Mn < 10,0%
4- Tôle en acier selon l'une quelconque des revendications 1 à 3 dont la composition comprend, les teneurs étant exprimées en poids:
6,0 < Al < 12,0% 5- Tôle en acier selon l'une quelconque des revendications 1 à 4 dont la composition comprend, les teneurs étant exprimées en poids:
6,0 < Al < 9,0%
6- Tôle en acier selon l'une quelconque des revendications 1 à 5 dont la composition comprend, les teneurs étant exprimées en poids:
Si < 1 %
7- Tôle en acier selon l'une quelconque des revendications 1 à 6 dont la fraction surfacique des précipités kappa est inférieure ou égale à 2%.
8- Tôle en acier selon l'une quelconque des revendications 1 à 7 dont la résistance mécanique en traction est supérieure ou égale à 600 MPa et l'allongement à rupture est supérieur ou égal à 20%.
9- Tôle en acier selon l'une quelconque des revendications 1 à 8 dont le rapport de la teneur en Mn sur celle en Al est tel que :— > 1,1 .
Al
10- Tôle en acier selon l'une quelconque des revendications 1 à 9 dont le rapport de la teneur en Mn sur celle en Al est tel que :— > 1,5 .
Al
1 1 - Tôle en acier selon l'une quelconque des revendications 1 à 10 dont le rapport de la teneur en Mn sur celle en Al est tel que : — > 2,0.
Al
12- Procédé de fabrication d'une tôle d'acier laminée ayant une densité inférieure ou égale à 7,3 selon lequel :
-On approvisionne un acier de composition selon l'une quelconque des revendications 1 à 1 1 ,
-On coule ledit acier pour former un demi produit,
-On réchauffe éventuellement ledit demi-produit à une température TreCh comprise entre 1000°C et 1280°C,
-On lamine à chaud ledit demi-produit réchauffé avec au moins une passe de laminage en présence de ferrite pour obtenir une tôle,
-La température de fin de laminage TFL supérieure ou égale à 850°C, -On refroidit ladite tôle à une vitesse de refroidissement Vrefi jusqu'à une température de bobinage Tb0b inférieure ou égale à 600°C,
-Puis, on bobine ladite tôle refroidie.
13- Procédé de fabrication d'une tôle laminée selon la revendication 12 dont ledit demi-produit est coulé directement sous forme de brames minces ou de bandes minces.
14- Procédé de fabrication selon l'une quelconque des revendications 1 ou
13 dont la température de fin de laminage TFi_ est comprise entre 900 et 980°C.
15- Procédé de fabrication selon l'une quelconque des revendications 1 1 à
14 dont la vitesse de refroidissement Vrefi est inférieure ou égale à 55°C/s.
16- Procédé de fabrication selon l'une quelconque des revendications 1 1 à
15 dont la température de bobinage est comprise entre 450 et 550°C.
17- Procédé de fabrication d'une tôle d'acier laminée à froid et recuite ayant une densité inférieure ou égale à 7,3 selon lequel :
-On approvisionne une tôle d'acier laminée selon l'une quelconque des revendications 1 1 à 16, puis
-On lamine à froid ladite tôle laminée avec un taux de réduction compris entre 35 et 90% de façon à obtenir une tôle à froid, puis
-Puis, on chauffe ladite tôle avec une vitesse Vc jusqu'à une température de maintien Tm comprise entre 800 et 950°C pendant un temps tm inférieur à 600 secondes, puis
-On refroidit ladite tôle à vitesse Vref2 jusqu'à une température inférieure ou égale à 500°C.
18- Procédé de fabrication selon la revendication 17 dont la température Tm est comprise entre 800 et 900°C.
19- Procédé de fabrication selon l'une quelconque des revendications 16 ou
18 dont la vitesse de refroidissement Vref2 est supérieure ou égale à 30°C/s.
20- Procédé de fabrication selon l'une quelconque des revendications 16 à 9 dont le refroidissement Vref2 est maintenu jusqu'à une température comprise entre 500°C et 460°C.
21 - Procédé de fabrication selon l'une quelconque des revendications 1 1 à
20 dont la tôle est ensuite revêtue de zinc, d'un alliage de zinc ou d'un alliage à base zinc.
22- Utilisation de tôles d'acier selon l'une quelconque des revendications 1 à 1 1 , ou pouvant être obtenue selon l'une quelconque des revendications 12 à 21 , pour la fabrication de pièces de structures ou de pièces de peau pour véhicules terrestres à moteur.
PCT/IB2013/001057 2012-05-31 2013-05-27 Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation WO2013179115A1 (fr)

Priority Applications (16)

Application Number Priority Date Filing Date Title
KR1020177010838A KR20170053727A (ko) 2012-05-31 2013-05-27 저밀도 열간 또는 냉간 압연 강, 상기 강을 구현하기 위한 방법 및 상기 강의 용도
JP2015514609A JP6074031B2 (ja) 2012-05-31 2013-05-27 熱間または冷間低密度圧延鋼、この実施方法および使用
BR112014029177-2A BR112014029177B1 (pt) 2012-05-31 2013-05-27 Chapa de aço laminada, processo de fabricação e uso de chapas de aço
CN201380027985.0A CN104350169B (zh) 2012-05-31 2013-05-27 低密度热轧钢或冷轧钢及其制造方法和用途
IN9576DEN2014 IN2014DN09576A (fr) 2012-05-31 2013-05-27
MA37508A MA37508B1 (fr) 2012-05-31 2013-05-27 Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
KR1020167030369A KR20160129916A (ko) 2012-05-31 2013-05-27 표면 처리 동박 및 그것을 사용한 적층판, 동박, 프린트 배선판, 전자 기기, 그리고 프린트 배선판의 제조 방법
US14/404,750 US10900105B2 (en) 2012-05-31 2013-05-27 Low-density hot-or cold-rolled steel, method for implementing same and use thereof
UAA201414024A UA111285C2 (uk) 2012-05-31 2013-05-27 Гаряче- або холоднокатана сталь з низькою щільністю, спосіб її виготовлення та застосування
ES13732225.1T ES2594328T3 (es) 2012-05-31 2013-05-27 Acero laminado en caliente o en frío de baja densidad, su procedimiento de desarrollo y su utilización
CA2873578A CA2873578C (fr) 2012-05-31 2013-05-27 Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
RU2014153550A RU2614491C2 (ru) 2012-05-31 2013-05-27 Горячекатаная или холоднокатаная сталь низкой плотности, способ её получения и применение
EP13732225.1A EP2855725B1 (fr) 2012-05-31 2013-05-27 Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
MX2014014613A MX359361B (es) 2012-05-31 2013-05-27 Acero de baja densidad laminado en caliente o frio, metodo de implementacion y su uso.
KR1020147034966A KR20150003918A (ko) 2012-05-31 2013-05-27 저밀도 열간 또는 냉간 압연 강, 상기 강을 구현하기 위한 방법 및 상기 강의 용도
ZA2014/08109A ZA201408109B (en) 2012-05-31 2014-11-06 Low-density hot- or cold-rolled steel, method for implementing same and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRPCT/FR2012/000220 2012-05-31
PCT/FR2012/000220 WO2013178887A1 (fr) 2012-05-31 2012-05-31 Acier laminé a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation

Publications (2)

Publication Number Publication Date
WO2013179115A1 true WO2013179115A1 (fr) 2013-12-05
WO2013179115A8 WO2013179115A8 (fr) 2014-11-06

Family

ID=48700630

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2012/000220 WO2013178887A1 (fr) 2012-05-31 2012-05-31 Acier laminé a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
PCT/IB2013/001057 WO2013179115A1 (fr) 2012-05-31 2013-05-27 Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000220 WO2013178887A1 (fr) 2012-05-31 2012-05-31 Acier laminé a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation

Country Status (17)

Country Link
US (1) US10900105B2 (fr)
EP (1) EP2855725B1 (fr)
JP (2) JP6074031B2 (fr)
KR (3) KR20160129916A (fr)
CN (1) CN104350169B (fr)
BR (1) BR112014029177B1 (fr)
CA (1) CA2873578C (fr)
ES (1) ES2594328T3 (fr)
HU (1) HUE028856T2 (fr)
IN (1) IN2014DN09576A (fr)
MA (1) MA37508B1 (fr)
MX (1) MX359361B (fr)
PL (1) PL2855725T3 (fr)
RU (1) RU2614491C2 (fr)
UA (1) UA111285C2 (fr)
WO (2) WO2013178887A1 (fr)
ZA (1) ZA201408109B (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928568B (zh) * 2015-06-30 2017-07-28 宝山钢铁股份有限公司 一种铁素体低密度高强钢及其制造方法
CN104928456B (zh) * 2015-06-30 2017-08-25 宝山钢铁股份有限公司 一种提高普冷铁素体轻质钢延展性的制造方法
WO2017203315A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Tôle mince en acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
CN106011653B (zh) * 2016-07-05 2018-02-06 东北大学 高强度高韧性低密度钢及其制造方法
CN106756571A (zh) * 2016-11-18 2017-05-31 扶绥县科学技术情报研究所 超细晶粒的高强度钢铁材料生产方法
CN106756570A (zh) * 2016-11-18 2017-05-31 扶绥县科学技术情报研究所 超细晶粒的高韧性钢铁材料生产方法
CN106636915A (zh) * 2016-11-18 2017-05-10 扶绥县科学技术情报研究所 改善钢铁材料力学性质的生产方法
CN106756569A (zh) * 2016-11-18 2017-05-31 扶绥县科学技术情报研究所 提高钢铁材料强度的生产方法
CN106399841B (zh) * 2016-11-18 2018-07-03 扶绥县科学技术情报研究所 超细晶粒的强耐蚀钢铁材料生产方法
CN106756478B (zh) * 2016-12-07 2018-03-27 钢铁研究总院 一种经济型耐海水腐蚀用低密度低合金钢及其制备方法
EP3559297A1 (fr) * 2016-12-22 2019-10-30 ArcelorMittal Tôle d'acier laminée à froid et traitée thermiquement, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
WO2019122960A1 (fr) 2017-12-19 2019-06-27 Arcelormittal Tôle d'acier laminée à froid et traitée thermiquement, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
CN109694997B (zh) * 2019-02-25 2021-08-06 上海大学 利用γ→α同素异构转变提升Fe-Mn-Al-C双相钢力学性能的热处理工艺
CN110592487B (zh) * 2019-10-22 2021-12-10 成都先进金属材料产业技术研究院股份有限公司 700MPa级奥氏体铁素体双相低密度铸钢及其制备方法
KR102415068B1 (ko) * 2020-09-07 2022-06-29 주식회사 포스코 고강도 저비중 강판 및 그 제조 방법
MX2024007034A (es) * 2021-12-10 2024-06-19 Arcelormittal Acero laminado en caliente de baja densidad, metodo de produccion del mismo y uso de tal acero para producir piezas de vehiculos.
CN115537660B (zh) * 2022-09-30 2023-07-14 武汉钢铁有限公司 一种低密度高强度热轧弹簧扁钢及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120399A (ja) * 2003-10-14 2005-05-12 Nippon Steel Corp 延性に優れた高強度低比重鋼板およびその製造方法
JP2005325388A (ja) * 2004-05-13 2005-11-24 Kiyohito Ishida 低比重鉄合金
JP2006118000A (ja) 2004-10-21 2006-05-11 Nippon Steel Corp 延性に優れた軽量高強度鋼とその製造方法
WO2007024092A1 (fr) 2005-08-23 2007-03-01 Posco Tole en acier laminee a chaud de grande resistance ayant une teneur elevee en mn et presentant une excellente maniabilite, et son procede de fabrication
EP2128293A1 (fr) 2008-05-27 2009-12-02 Posco Feuilles d'acier de faible densité et grande résistance doté d'une excellente résistance à la formation de rides et leur procédé de fabrication

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU768846A1 (ru) * 1978-12-13 1980-10-07 Институт Проблем Литья Ан Украинской Сср Сплав на основе железа
JPH03500305A (ja) * 1988-07-08 1991-01-24 ファムシー スティール コーポレイション 2相高減衰能を有するFe‐Mn‐Al‐C基合金
JPH03140439A (ja) 1989-10-27 1991-06-14 Res Inst Electric Magnetic Alloys 低い比重、高い硬度および高い減衰能を有する吸振合金
JP2849059B2 (ja) 1995-09-28 1999-01-20 日鉱グールド・フォイル株式会社 印刷回路用銅箔の処理方法
FR2836930B1 (fr) * 2002-03-11 2005-02-25 Usinor Acier lamine a chaud a tres haute resistance et de faible densite
US6984456B2 (en) 2002-05-13 2006-01-10 Mitsui Mining & Smelting Co., Ltd. Flexible printed wiring board for chip-on flexibles
JP2004098659A (ja) 2002-07-19 2004-04-02 Ube Ind Ltd 銅張積層板及びその製造方法
DE10259230B4 (de) 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines Stahlprodukts
JP4235077B2 (ja) 2003-06-05 2009-03-04 新日本製鐵株式会社 自動車用高強度低比重鋼板とその製造方法
JP2005120390A (ja) * 2003-10-14 2005-05-12 Jfe Steel Kk 鋼帯製造ラインにおける鋼帯の乾燥方法
JP4654440B2 (ja) * 2005-09-22 2011-03-23 国立大学法人東北大学 低加工硬化型鉄合金
EP1995336A1 (fr) 2007-05-16 2008-11-26 ArcelorMittal France Acier à faible densité présentant une bonne aptitude à l'emboutissage
EP2090668A1 (fr) * 2008-01-30 2009-08-19 Corus Staal BV Procédé pour la production d'un acier haute résistance et acier haute résistance fabriqué selon ce procédé
JP5403660B2 (ja) * 2009-03-09 2014-01-29 本田技研工業株式会社 高強度鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120399A (ja) * 2003-10-14 2005-05-12 Nippon Steel Corp 延性に優れた高強度低比重鋼板およびその製造方法
JP2005325388A (ja) * 2004-05-13 2005-11-24 Kiyohito Ishida 低比重鉄合金
JP2006118000A (ja) 2004-10-21 2006-05-11 Nippon Steel Corp 延性に優れた軽量高強度鋼とその製造方法
WO2007024092A1 (fr) 2005-08-23 2007-03-01 Posco Tole en acier laminee a chaud de grande resistance ayant une teneur elevee en mn et presentant une excellente maniabilite, et son procede de fabrication
EP2128293A1 (fr) 2008-05-27 2009-12-02 Posco Feuilles d'acier de faible densité et grande résistance doté d'une excellente résistance à la formation de rides et leur procédé de fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BR]X U ET AL: "HIGH STRENGTH LIGHT WEIGHT STEELS BASED ON FE-MN-AL-C MICROSTRUCTURES*MECHANICAL PROPERTIES", PROCEEDINGS OF PLASTICITY, XX, XX, 31 January 2003 (2003-01-31), pages 169 - 171, XP001248072 *
SEUNG YOUB HAN ET AL: "Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates", METALLURGICAL AND MATERIALS TRANSACTIONS A, SPRINGER-VERLAG, NEW YORK, vol. 42, no. 1, 19 October 2010 (2010-10-19), pages 138 - 146, XP019854785, ISSN: 1543-1940, DOI: 10.1007/S11661-010-0456-3 *

Also Published As

Publication number Publication date
EP2855725B1 (fr) 2016-07-06
ZA201408109B (en) 2015-11-25
KR20170053727A (ko) 2017-05-16
MX2014014613A (es) 2015-08-10
CN104350169B (zh) 2017-02-22
KR20160129916A (ko) 2016-11-09
JP6074031B2 (ja) 2017-02-01
US10900105B2 (en) 2021-01-26
RU2614491C2 (ru) 2017-03-28
MA37508B1 (fr) 2016-03-31
JP2017106108A (ja) 2017-06-15
CN104350169A (zh) 2015-02-11
JP2015520298A (ja) 2015-07-16
WO2013179115A8 (fr) 2014-11-06
ES2594328T3 (es) 2016-12-19
BR112014029177B1 (pt) 2019-03-26
MX359361B (es) 2018-09-26
RU2014153550A (ru) 2016-07-20
IN2014DN09576A (fr) 2015-07-17
BR112014029177A2 (pt) 2017-06-27
JP6242990B2 (ja) 2017-12-06
KR20150003918A (ko) 2015-01-09
US20150147221A1 (en) 2015-05-28
UA111285C2 (uk) 2016-04-11
MA20150361A1 (fr) 2015-10-30
WO2013178887A1 (fr) 2013-12-05
PL2855725T3 (pl) 2016-12-30
HUE028856T2 (en) 2017-01-30
EP2855725A1 (fr) 2015-04-08
CA2873578C (fr) 2017-10-10
CA2873578A1 (fr) 2013-12-05

Similar Documents

Publication Publication Date Title
EP2855725B1 (fr) Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
EP2718469B1 (fr) Tôle d&#39;acier laminée à froid et revêtue de zinc ou d&#39;alliage de zinc, procede de fabrication et utilisation d&#39;une telle tôle
EP1913169B1 (fr) Procede de fabrication de tôles d&#39;acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
EP2630269B1 (fr) Tole d&#39;acier laminee a chaud ou a froid, son procede de fabrication et son utilisation dans l&#39;industrie automobile
EP2689045B1 (fr) Tôle d&#39;acier laminée à chaud et procédé de fabrication associé
EP2245203B1 (fr) Tôle en acier inoxydable austenitique et procede d&#39;obtention de cette tôle
CA2847809C (fr) Acier lamine durcissant par precipitation apres formage a chaud et/ou trempe sous outil a tres haute resistance et ductilite et son procede de fabrication
WO2016198940A2 (fr) Acier à haute résistance et procédé de fabrication
EP1819461A2 (fr) Procede de fabrication de toles d&#39; acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité.
EP1649069A1 (fr) Procede de fabrication de toles d&#39;acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
EP2155916A1 (fr) Acier a faible densite presentant une bonne aptitude a l&#39;emboutissage
WO2015177615A1 (fr) Tôle d&#39;acier doublement recuite a hautes caracteristiques mecaniques de resistance et de ductilite, procede de fabrication et utilisation de telles tôles
WO2016005780A1 (fr) Tôle d&#39;acier laminée à chaud et procédé de fabrication associé
FR2833617A1 (fr) Procede de fabrication de toles laminees a froid a tres haute resistance d&#39;aciers dual phase micro-allies
EP1099769A1 (fr) Procédé de réalisation d&#39;une bande de tôle laminée à chaud à très haute résistance, utilisable pour la mise en forme et notamment pour l&#39;emboutissage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13732225

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013732225

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013732225

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2873578

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015514609

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/014613

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14404750

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147034966

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201414024

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2014153550

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014029177

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014029177

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141124