WO2013178123A1 - 一种用于提高终端续航能力的装置及其终端 - Google Patents

一种用于提高终端续航能力的装置及其终端 Download PDF

Info

Publication number
WO2013178123A1
WO2013178123A1 PCT/CN2013/078339 CN2013078339W WO2013178123A1 WO 2013178123 A1 WO2013178123 A1 WO 2013178123A1 CN 2013078339 W CN2013078339 W CN 2013078339W WO 2013178123 A1 WO2013178123 A1 WO 2013178123A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
module
heat
output
comparator
Prior art date
Application number
PCT/CN2013/078339
Other languages
English (en)
French (fr)
Inventor
李新宇
李毅博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/398,489 priority Critical patent/US9509174B2/en
Priority to EP13796260.1A priority patent/EP2835904B1/en
Publication of WO2013178123A1 publication Critical patent/WO2013178123A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the utility model relates to the technical field of energy conversion, in particular to a device for improving the endurance capability of a terminal and a terminal thereof, which converts thermal energy generated by heating of internal electrical components of the terminal into electric energy, and effectively stores and provides the same.
  • a device for improving the endurance capability of a terminal and a terminal thereof which converts thermal energy generated by heating of internal electrical components of the terminal into electric energy, and effectively stores and provides the same.
  • For the terminal it can improve the working performance of the internal electronic components of the terminal to a certain extent, and at the same time improve the endurance of the terminal.
  • the inventors of the present invention have noticed that, in general, when the portable terminal is increased in the peripheral device or when the original device is improved, for example, the display screen of its LCD (Liquid Crystal Display) changes from 4 inches to 10 inches.
  • LCD Liquid Crystal Display
  • These peripherals will release more heat during operation, which will lead to a sudden increase in the internal heat of the terminal, so that the temperature rises, which will affect the performance of other electronic components inside the terminal, which will affect the performance of the whole machine, so the designer Often in the design process, it is necessary to set a good heat sink inside or outside the terminal to maintain the optimal working environment of these electronic components, but these scattered heat will be wasted and not fully utilized.
  • the utility model fully utilizes the heat generated by the electronic components in the portable terminal during the working process, and proposes a device for improving the endurance capability of the terminal and the terminal thereof, and the heat generated by the electronic components inside the portable terminal is performed.
  • Collecting, converting to electrical energy via a thermoelectric conversion module and The storage capacitor is stored, and when the charge of the storage capacitor is accumulated to a certain stage, the power management module is automatically triggered to charge the terminal battery, thereby improving the working environment of each electronic component in the writing terminal to a certain extent. It can also improve the endurance of the portable terminal.
  • a device for improving terminal endurance capability comprising:
  • the heat collection module is configured to collect heat generated by the internal heating electronic components of the terminal; the thermoelectric conversion module is configured to convert the collected heat into electrical energy and deliver the same to the storage capacitor module; the storage capacitor module is set to reserve And outputting a stable output voltage value; the comparator module is configured to generate a charge enable signal and send the power enable signal to the power management module when the output voltage value exceeds a predetermined reference voltage value;
  • the power management module is configured to charge the terminal battery according to the charging enable signal.
  • the heat collecting module is linked to the internal heating element of the terminal by a highly thermally conductive material.
  • thermoelectric conversion module is a thermoelectric power generation device, the high temperature end of which is linked to the heat collecting module, and the low temperature end is linked to the cold metal material.
  • the cold metal material is one or more of copper, aluminum, steel, ruthenium and silver.
  • the storage capacitor module includes a first unidirectional diode, a current limiting resistor, a storage capacitor, and a voltage regulator connected in series, wherein an anode of the first unidirectional diode is connected to a heat collecting module;
  • the comparator module includes a first enable switch, a second enable switch, a comparator, a second unidirectional diode, a booster, and a multi-way voltage selection switch, wherein the first input end of the first enable switch is connected To the output of the regulator, the second input is connected to the output of the power management module, and the output is connected to the negative input of the comparator and the first input of the second enable switch, the comparator is positive The input end is connected to the first output end of the multi-channel voltage selection switch, the output end of the comparator is connected to the second input end of the second enable switch and the input end of the multi-channel voltage selection switch, and the output end of the second enable switch Connected to the anode of the second unidirectional diode, the catho
  • a terminal includes means for improving endurance of a terminal, the device comprising:
  • the heat collection module is configured to collect heat generated by the internal heating electronic components of the terminal;
  • the thermoelectric conversion module is configured to convert the collected heat into electrical energy and deliver the same to the storage capacitor module;
  • a storage capacitor module configured to reserve the electrical energy and output a stable output voltage value;
  • the comparator module is configured to generate a charging enable signal when the output voltage value exceeds a predetermined reference voltage value and It is sent to the power management module;
  • the power management module is configured to charge the terminal battery according to the charging enable signal.
  • the heat collecting module is linked to the internal heating element of the terminal by a highly thermally conductive material.
  • thermoelectric conversion module is a thermoelectric power generation device, the high temperature end of which is linked to the heat collecting module, and the low temperature end is linked to the cold metal material.
  • the cold metal material is one or more of copper, aluminum, steel, ruthenium and silver.
  • the storage capacitor module includes a first unidirectional diode, a current limiting resistor, a storage capacitor, and a voltage regulator connected in series, wherein an anode of the first unidirectional diode is connected to a heat collecting module;
  • the comparator module includes a first enable switch, a second enable switch, a comparator, a second unidirectional diode, a booster, and a multi-way voltage selection switch, wherein the first input end of the first enable switch is connected To the output of the regulator, the second input is connected to the output of the power management module, and the output is connected to the negative input of the comparator and the first input of the second enable switch, the comparator is positive The input end is connected to the first output end of the multi-channel voltage selection switch, the output end of the comparator is connected to the second input end of the second enable switch and the input end of the multi-channel voltage selection switch, and the output end of the second enable switch Connected to the anode of the second unidirectional diode, the catho
  • the device for improving terminal endurance capability and the terminal thereof provided by the embodiment of the present invention convert the thermal energy generated by the heating of the internal electrical components of the terminal into electrical energy, and are effectively stored and provided to the terminal for use, to a certain extent. It can improve the working performance of the internal electronic components of the terminal, and at the same time improve the endurance of the terminal.
  • FIG. 1 is a schematic structural diagram of an apparatus for improving endurance of a terminal provided by an embodiment of the present invention
  • thermoelectric conversion provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a circuit structure of a device for improving terminal endurance capability provided by an embodiment of the present invention
  • thermoelectric conversion process provided by an embodiment of the present invention.
  • Preferred embodiment of the invention
  • the basic idea of the embodiment of the present invention is to transfer the heat on the internal heat generating device (electronic component) of the terminal to the heat collecting module through the heat conductive material, and the thermoelectric conversion module converts the collected heat energy into electric energy and stores it by using the thermoelectric power generating device.
  • the energy storage capacitor module when the energy storage of the energy storage capacitor module is stored to a certain extent and is greater than a preset reference threshold, the power management module is triggered to charge the terminal battery, thereby improving the terminal endurance capability.
  • the thermal energy dissipated by the terminal during use is effectively utilized, and the automatic charging of the terminal battery can be realized during the operation of the terminal without being perceived by the user, thereby improving the endurance capability of the terminal and greatly facilitating the end user.
  • an apparatus for improving terminal endurance capability provided by an embodiment of the present invention includes:
  • the heat collecting module 10 is configured to collect heat generated by the internal heating electronic components of the terminal;
  • the thermoelectric conversion module 20 is configured to convert the collected heat into electrical energy and deliver the same to the storage capacitor module;
  • the storage capacitor module 30 is configured to reserve the electrical energy and output a stable output voltage value; the comparator module 60 is configured to generate a charging enable signal when the output voltage value exceeds a predetermined reference voltage value And send it to the power management module; The power management module 50 is configured to charge the terminal battery 40 according to the charging enable signal.
  • the heat-generating electronic component includes all devices inside the terminal that can generate heat, including a heat generating chip and other devices capable of generating heat.
  • the main heating modules on the device can be tested according to the characteristics of the internal devices of the terminal.
  • the modules with large heat generation are mainly selected as the main source of heat, such as CPU, RF chip, power management chip, LCD, etc.
  • thermal conductive materials can be added to the rear cover of the terminal or other areas that do not affect the working performance, so as to facilitate the use of an external heat source.
  • the heat collecting module 10 is linked to the internal heat generating electronic component by a high thermal conductive material.
  • the thermoelectric conversion module 20 is a thermoelectric power generating device, and the high temperature end thereof is linked to the heat collecting module 10,
  • the low temperature end is linked to a cold metal material, for example, preferably, the cold metal material is one or more of copper, aluminum, steel, ruthenium, and silver.
  • the heat collection module 10 uses a thermally conductive material to transfer the heat generated by the heat source to the front end of the heat conversion module for heat collection.
  • the high heat conductive material rapidly transfers the heat on the heat generating device to the heat collecting region to reduce the heat of the mobile phone and reduce the operating temperature of the heat generating device.
  • High thermal conductivity materials can be selected from high thermal conductivity silicone sheets or high thermal conductivity insulation materials.
  • the heat collected by the crucible can be stored in the heat collection area.
  • the heat collection area consists of highly endothermic metals. One or more of copper, aluminum, steel, enamel, silver, and the like may be selected.
  • the thermoelectric conversion module 20 uses a thermoelectric power generation device to convert thermal energy collected on the heat collection region into electrical energy.
  • the high temperature end of the thermoelectric power generation device is linked to the heat collecting region, and the low temperature end is connected to the cold metal low temperature material.
  • the cool book low temperature material may be selected from materials such as aluminum and copper.
  • the thermoelectric power generation device detects a temperature difference between high and low temperatures, internally generates electrons to move, and forms a current.
  • the energy storage capacitor module 30 (for example, a large capacitor) stores the characteristics of the charge, and stores the electric energy converted from the thermoelectric power generation device into the capacitor to complete the electric energy accumulation.
  • the heat energy collecting region 201 is used for collecting heat energy, and the heat generating device and the heat energy collecting region are linked by using a high heat conductive material, and the heat of the heat generating device is quickly transferred to the heat energy collecting region.
  • High thermal conductivity materials use materials with good insulation, such as high thermal conductivity silicone sheets.
  • the heat energy collection area is made of a metal material with good heat absorption, and usually one of copper, aluminum, steel, bismuth, silver and the like can be selected.
  • the thermoelectric power generation device is 202, the high temperature end link thermal energy collection area 201, and the low temperature end link cold metal material 203.
  • the cold metal material 203 is selected from materials having good heat dissipation properties, for example, one selected from the group consisting of aluminum and copper.
  • the thermoelectric power generation device 202 generates electric energy according to the temperature difference between the two sides and outputs it to the capacitor for storage.
  • the inner side of the rear cover can be fully utilized, and the cold metal material 203 is disposed on the inner side of the back cover against the side of the back cover, and the heat energy collecting area 201 is disposed on the innermost layer of the inner side of the back cover, and the high heat conductive material is tight at one end.
  • the heat generating device is attached, and the other end is attached to the heat collecting region 201 after being covered on the back cover.
  • thermoelectric power generation device is disposed in the middle of the cold metal material 203 and the heat energy collection region 201, and the three are bonded to the inner side of the rear cover of the terminal, and the power output end of the thermoelectric power generation device is directly connected to the corresponding circuit.
  • the power management module 50 starts the charging algorithm according to the input condition of the large capacitor, and charges the terminal battery 40. Since the power management module 50 itself has the charging parameters and the charging algorithm of the terminal battery 40, the charging efficiency can be improved to some extent, and the abnormality of the over-voltage and the like can be prevented from being damaged to the terminal battery 40. This is a prior art, and this is not the case. Do more than enough.
  • the terminal battery 40 includes, but is not limited to, a power supply device such as nickel-hydrogen, nickel-cadmium, or lithium ion.
  • the storage capacitor module 30 includes a first unidirectional diode 301, a current limiting resistor 302, a storage capacitor 303, and a voltage regulator 304, which are sequentially connected in series, wherein the first unidirectional diode 301
  • the anode is connected to the heat collection module 10;
  • the comparator module 60 includes a first enable switch 601, a second enable switch 604, a comparator 602, a second unidirectional diode, a booster, and multiple voltage selections. a switch, wherein the first input of the first enable switch 601 is connected to the output of the voltage regulator 304, the second input is connected to the output of the power management module 50, and the output is connected to the negative of the comparator 602.
  • the forward input of the comparator 602 is coupled to the first output of the multi-way voltage select switch, and the output of the comparator 602 is coupled to the second enable switch 604
  • the second input terminal and the input end of the multiple voltage selection switch, the output end of the second enable switch 604 is connected to the anode of the second unidirectional diode, and the cathode of the second unidirectional diode is connected to the input end of the power management module 50
  • Voltage selection switch multiplexer output is connected to the second end of the booster, the booster and the other end is connected to the anode 40 of the battery terminal, the voltage selection switch multiplexer third output terminal connected to the anode terminal of the battery 40.
  • 3 is a schematic structural diagram of a device for improving terminal endurance capability according to an embodiment of the present invention. The entire process of implementing the solution and the control process of storing electrical energy to the terminal battery 40 are specifically described. The implementation principle and steps are as follows:
  • Step 1 The heat collection module collects the heat generated inside the terminal.
  • Step 2 The thermoelectric conversion module 20 converts thermal energy into a voltage and outputs it.
  • Step 3 The output voltage is stored on the storage capacitor 303 through the first unidirectional diode 301 and the current limiting resistor 302, and the power is accumulated.
  • the first unidirectional diode 301 has unidirectional conductivity, and the thermoelectric conversion module 20 can be prevented.
  • the voltage on the ground is less than the voltage caused by the voltage on the storage capacitor 303.
  • Step 4 The voltage on the storage capacitor 303 is compared with the voltage on the comparator 602 via the first enable switch 601.
  • the first enable switch 601 is turned on by default.
  • the comparator 602 The voltage at the upper "+” terminal is the voltage after the terminal battery 40 passes through the booster. According to the characteristic parameters of the commonly used terminal battery 40, this voltage is set to 5 V and recorded as VB.
  • the "-" terminal of the comparator 602 inputs the voltage VC accumulated by the storage capacitor 303, and the "+” terminal of the comparator 602 inputs the reference voltage V5.
  • VC ⁇ V5 the charge continues to accumulate on the storage capacitor 303, and repeats 1. 2, 3, 4 steps.
  • Step 7 The power management module 50 continuously charges the terminal battery 40, and the voltage VB of the terminal battery 40 is gradually increased.
  • step 6 is performed to continue to maintain the state in which the power management module 50 charges the terminal battery 40.
  • Battery 40 - is in a state of charge.
  • Step 8 When the comparator 602 detects VC ⁇ VB, the voltage on the storage capacitor 303 at this time The terminal battery 40 is not enough to be charged, and the comparator 602 automatically cuts off the multi-channel voltage selection switch after the voltage comparison, and simultaneously cuts off the second enable switch 604 to prevent the VC from entering the power management module 50 to stop charging the terminal battery 40. The charge is continuously accumulated on the storage capacitor 303, and in step 4, the comparison voltage of the comparator 602 is also switched to the voltage V5 after the booster process.
  • Step 9 After the terminal battery 40 is full, the power management module 50 sends a signal of up to 10S to the first enable switch 601, causing the first enable switch 601 to open 10S, at which time the "-" terminal on the comparator 602 is generated.
  • the ground signal automatically cuts off the first enable switch 601 and the multi-channel voltage selection switch after voltage comparison. The electrical energy continues to accumulate on the storage capacitor 303, repeating the entire process.
  • the charging process of the terminal battery 40 is completed as described above.
  • the smart mobile terminal operates, a large amount of heat is generated.
  • the voltage generated by the accumulated charge on the capacitor exceeds the reference voltage V5
  • the charging process as described above occurs, and the power of the terminal battery 40 is unknown.
  • the speed of the work is increased or the speed of the previous power drop is significantly reduced, and the terminal's battery life is also increased.
  • an embodiment of the present invention further provides a terminal, including a device for improving endurance of a terminal, where the device includes:
  • the heat collecting module 10 is configured to collect heat generated by the internal heating electronic components of the terminal; the thermoelectric conversion module 20 is configured to convert the collected heat into electrical energy and deliver it to the storage capacitor module 30;
  • the storage capacitor module 30 is configured to reserve the electrical energy and output a stable output voltage value;
  • the comparator module 60 is configured to generate a charging enable signal when the output voltage value exceeds a predetermined reference voltage value And send it to the power management module 50;
  • the power management module 50 is configured to charge the terminal battery 40 according to the charging enable signal.
  • the heat-generating electronic component includes all devices capable of generating heat inside the terminal, including a heat generating chip and other devices capable of generating heat.
  • the main heating module on the device can be tested according to the characteristics of the internal device of the terminal, and the module with large heat generation is mainly selected as the main source of heat, such as CPU, RF chip, power management chip, LCD, and the like.
  • thermal conductive materials can be added to the rear cover of the terminal or other areas that do not affect the working performance, so as to facilitate the use of an external heat source.
  • the heat collecting module 10 is linked to the internal heat generating electronic component of the terminal with a high thermal conductive material.
  • thermoelectric conversion module 20 is a thermoelectric power generation device, the high temperature end of which is linked to the heat collection module 10, and the low temperature end is linked to the cold metal material.
  • the cold metal material is one or more of copper, aluminum, steel, ruthenium and silver.
  • the storage capacitor module 30 includes a first unidirectional diode 301, a current limiting resistor 302, a storage capacitor 303, and a voltage regulator 304, which are sequentially connected in series, wherein the first unidirectional diode 301
  • the anode is connected to the heat collection module 10;
  • the comparator module 60 includes a first enable switch 601, a second enable switch 604, a comparator 602, a second unidirectional diode 605, a booster 606, and a multi-channel The voltage selection switch 603, wherein the first input end of the first enable switch 601 is connected to the output end of the voltage regulator 304, the second input end is connected to the output end of the power management module 50, and the output end thereof is connected to the comparator a negative input of 602 and a first input of a second enable switch 604, a forward input of comparator 602 is coupled to a first output of multi-way voltage select switch 603, and an output of comparator 602 is coupled to a second The second input
  • thermoelectric conversion of the terminal provided by the embodiment of the present invention is described.
  • the following describes the implementation process of the terminal for performing thermoelectric conversion according to the embodiment of the present invention to improve the endurance of the terminal.
  • Step S401 The heat collecting module 10 collects heat.
  • Step S402 The heat collected by the heat collecting module 10 is converted into electric energy by the thermoelectric conversion module 20.
  • Step S403 The electrical signal is stored in a storage capacitor module 30 and outputs a constant voltage.
  • Step S404 determining whether the terminal battery 40 is in a full state. If the terminal battery 40 is full, the process goes to step S401. If the terminal battery 40 is not full, the process goes to step S405.
  • Step S405 Whether the output voltage output by the storage capacitor module 30 is greater than 5V. If it is less than 5V, the process goes to S401. If it is greater than 5V, the process goes to step S406.
  • Step S406 The output voltage outputted by the storage capacitor module 30 is greater than the voltage VB of the terminal battery 40. If the voltage is lower than the voltage VB of the terminal battery 40, the process goes to step S401. If the voltage is greater than the voltage of the terminal battery 40, the process goes to step S407.
  • Step S407 The power management module 50 charges the terminal battery 40.
  • the terminal provided by the embodiment of the present invention converts the heat energy generated by the heat generation of the internal electrical components of the terminal into electrical energy, and is effectively stored and provided to the terminal for use, which can improve the working performance of the internal electronic components of the terminal to a certain extent. At the same time, it can also improve the endurance of the terminal.
  • the device for improving terminal endurance capability and the terminal thereof provided by the embodiment of the present invention convert the thermal energy generated by the heating of the internal electrical components of the terminal into electrical energy, and are effectively stored and provided to the terminal for use, to a certain extent. It can improve the working performance of the internal electronic components of the terminal, and at the same time improve the endurance of the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于提高终端续航能力的装置及其终端,所述装置包括:热量采集模块(10),用于收集终端内部发热电子元器件所产生的热量;热电转换模块(20),用于将收集的热量转换为电能并输送至储能电容模块(30);储能电容模块,用于储备所述电能,并输出一稳定的输出电压值;比较器模块(60),用于当所述输出电压值超过一预设的基准电压值时,生成充电使能信号并将其发送至电源管理模块(50);电源管理模块,用于依据所述充电使能信号对终端电池(40)进行充电。通过将终端内部电器元器件发热所产生的热能转换为电能,并进行有效存储并提供给终端使用,其一定程度上可以改善终端内部电子元器件的工作性能,同时还可以提高终端的续航能力。

Description

一种用于提高终端续航能力的装置及其终端 技术领域
本实用新型涉及能量转换技术领域, 具体而言, 涉及一种用于提高终端 续航能力的装置及其终端, 其将终端内部电器元器件发热所产生的热能转换 为电能, 并进行有效存储并提供给终端使用, 其一定程度上可以改善终端内 部电子元器件的工作性能, 同时还可以提高终端的续航能力。 背景技术
随着科技的日益发展, 如今各类便携设备不断涌现, 同时, 此类便携设 备的屏幕设计的也越来越大、 外围设备越来越多、 功能业越来越复杂, 这些 设计要素一定程度上可以增加用户的娱乐性, 但同时也会导致终端的功耗增 大, 续航能力极大减弱, 电池的有效使用时间大大缩短, 为此, 用户在使用 此类便携设备过程中, 往往需要频繁地给移动终端的电池充电。
而给电池充电经常会受到外界环境的限制, 例如有时用户所处环境根本 没有外界电源, 如此一来便会给用户的使用带来极大的不便, 严重影响了用 户的日常工作和生活。 发明内容
本实用新型的发明人注意到, 通常情况下, 便携终端在外围设备增加时 或对原有器件进行改良时, 例如其 LCD ( Liquid Crystal Display, 液晶显示器) 的显示屏幕由 4寸变为 10寸, 这些外设在工作时将释放更多的热量, 从而将 导致编写终端内部热量剧增, 以致温度升高, 势必影响终端内部其它电子元 器件的工作性能, 进而影响整机性能, 所以设计人员往往在设计过程中, 需 要在终端内部或外部设置良好的散热装置以维持这些电子元器件最佳的工作 环境, 然而这些散去的热量会被白白浪费, 而未得到充分利用。
鉴于此, 本实用新型充分利用便携终端内部各电子元器件在工作过程中 产生的热量, 提出一种用于提高终端续航能力的装置及其终端, 将便携终端 内部各电子元器件产生的热量进行收集, 经由热电转换模块转换为电能并在 储能电容上进行存储, 且当储能电容的电荷积累到一定阶段后, 将自动触发 电源管理模块给终端电池进行充电, 从而一定程度上可以改善编写终端内部 各电子元器件的工作环境, 同时还可以提高便携终端的续航能力。
一种用于提高终端续航能力的装置, 包括:
热量釆集模块, 设置为收集终端内部发热电子元器件所产生的热量; 热电转换模块,设置为将收集的热量转换为电能并输送至储能电容模块; 储能电容模块, 设置为储备所述电能, 并输出一稳定的输出电压值; 比较器模块, 设置为当所述输出电压值超过一预设的基准电压值时, 生 成充电使能信号并将其发送至电源管理模块;
电源管理模块, 设置为依据所述充电使能信号对终端电池进行充电。 优选地, 所述热量釆集模块釆用高导热材料链接至终端内部发热电子元 器件。
优选地, 所述热电转换模块为温差发电器件, 其高温端链接至热量釆集 模块, 低温端链接至冷金属材料。
优选地, 所述冷金属材料为铜、 铝、 钢、 锑、 银中的一种或几种。
优选地, 所述储能电容模块包括依次串联的第一单向二极管、 限流电阻、 储能电容以及稳压器, 其中, 所述第一单向二极管的阳极连接至热量釆集模 块; 所述比较器模块包括第一使能开关、 第二使能开关、 比较器、 第二单向 二极管、 升压器, 以及多路电压选择开关, 其中, 第一使能开关的第一输入 端连接至稳压器的输出端, 其第二输入端连接至电源管理模块的输出端, 其 输出端连接至比较器的负向输入端以及第二使能开关的第一输入端, 比较器 的正向输入端连接至多路电压选择开关的第一输出端, 比较器的输出端连接 至第二使能开关的第二输入端以及多路电压选择开关的输入端, 第二使能开 关的输出端连接至第二单向二极管的阳极, 第二单向二极管的阴极连接至电 源管理模块输入端, 多路电压选择开关的第二输出端连接至升压器的一端, 升压器的另一端连接至终端电池的阳极, 多路电压选择开关的第三输出端连 接至终端电池的阳极。
一种终端, 其包括用于提高终端续航能力的装置, 所述装置包括: 热量釆集模块, 设置为收集终端内部发热电子元器件所产生的热量; 热电转换模块, 设置为于将收集的热量转换为电能并输送至储能电容模 块;
储能电容模块, 设置为储备所述电能, 并输出一稳定的输出电压值; 比较器模块, 设置为当所述输出电压值超过一预设的基准电压值时, 生 成充电使能信号并将其发送至电源管理模块;
电源管理模块, 设置为依据所述充电使能信号对终端电池进行充电。 优选地, 所述热量釆集模块釆用高导热材料链接至终端内部发热电子元 器件。
优选地, 所述热电转换模块为温差发电器件, 其高温端链接至热量釆集 模块, 低温端链接至冷金属材料。
优选地, 所述冷金属材料为铜、 铝、 钢、 锑、 银中的一种或几种。
优选地, 所述储能电容模块包括依次串联的第一单向二极管、 限流电阻、 储能电容以及稳压器, 其中, 所述第一单向二极管的阳极连接至热量釆集模 块; 所述比较器模块包括第一使能开关、 第二使能开关、 比较器、 第二单向 二极管、 升压器, 以及多路电压选择开关, 其中, 第一使能开关的第一输入 端连接至稳压器的输出端, 其第二输入端连接至电源管理模块的输出端, 其 输出端连接至比较器的负向输入端以及第二使能开关的第一输入端, 比较器 的正向输入端连接至多路电压选择开关的第一输出端, 比较器的输出端连接 至第二使能开关的第二输入端以及多路电压选择开关的输入端, 第二使能开 关的输出端连接至第二单向二极管的阳极, 第二单向二极管的阴极连接至电 源管理模块输入端, 多路电压选择开关的第二输出端连接至升压器的一端, 升压器的另一端连接至终端电池的阳极, 多路电压选择开关的第三输出端连 接至终端电池的阳极。
本实用新型实施例提供的一种用于提高终端续航能力的装置及其终端, 其将终端内部电器元器件发热所产生的热能转换为电能 , 并进行有效存储并 提供给终端使用, 其一定程度上可以改善终端内部电子元器件的工作性能, 同时还可以提高终端的续航能力。 附图概述
图 1是本实用新型实施例提供的用于提高终端续航能力的装置结构示意 图;
图 2是本实用新型实施例提供的热-电转换示意图;
图 3是本实用新型实施例提供的用于提高终端续航能力的装置电路结构 示意图;
图 4是本实用新型实施例提供的热电转换流程示意图。 本发明的较佳实施方式
下面结合附图对本实用新型实施例作的详细描述, 以使本领域的技术人 员可以更好的理解本实用新型并能予以实施, 但所举实施例不作为对本实用 新型的限定。
本实用新型实施例的基本思想是通过导热材料将终端内部发热器件 (电 子元器件)上的热量传递到热量釆集模块, 热电转换模块釆用温差发电器件 将收集的热能转换为电能并存储到储能电容模块中 , 当储能电容模块的电能 储备到一定程度并大于预先设置的基准阔值时, 触发电源管理模块实施对终 端电池充电, 从而达到提高终端续航能力的目的。 有效地利用了终端在使用 过程中所散发的热能, 在终端工作期间在不为用户感知的情况下, 可以实现 终端电池的自动充电, 提高了终端的续航能力, 极大地方便了终端用户。
依据本实用新型的一实施例, 如图 1所示, 本实用新型实施例提供的一 种用于提高终端续航能力的装置, 包括:
热量釆集模块 10, 设置为收集终端内部发热电子元器件所产生的热量; 热电转换模块 20, 设置为将收集的热量转换为电能并输送至储能电容模 块;
储能电容模块 30, 设置为储备所述电能, 并输出一稳定的输出电压值; 比较器模块 60, 设置为当所述输出电压值超过一预设的基准电压值时, 生成充电使能信号并将其发送至电源管理模块; 电源管理模块 50, 设置为依据所述充电使能信号对终端电池 40进行充 电。
具体实施时, 所述发热电子元器件包括终端内部一切可以产生热量的器 件, 包括发热芯片和其它可以产生热量的器件。 通常可以根据终端内部器件 的特性, 对器件上主要发热模块进行摸底测试, 重点选择发热量大的模块作 为主要的热量釆集源, 例如 CPU、 射频芯片、 电源管理芯片、 LCD等。 同时 可以在终端后盖或其他不影响工作性能的区域等加入导热材料, 以方便利用 外接热源。
优选地,所述热量釆集模块 10釆用高导热材料链接至终端内部发热电子 元器件, 具体实施时, 所述热电转换模块 20为温差发电器件, 其高温端链接 至热量釆集模块 10, 低温端链接至冷金属材料, 例如优选情形下, 所述冷金 属材料为铜、 铝、 钢、 锑、 银中的一种或几种。
热量釆集模块 10 釆用导热材料将热量釆集源产生的热量传递到热能转 换模块的前端进行热量收集。 当发热器件发热时, 高导热材料将发热器件上 的热量迅速传递到热量收集区域, 以达到降低手机热量并降低发热器件工作 温度的目的。高导热材料可选择高导热硅胶片或者导热系数较高的绝缘材料, 釆集到的热量可以储备到热量收集区域, 热量收集区域由吸热性强的金属组 成。 通常可选择铜、 铝、 钢、 锑、 银等材料的一种或多种。
本实施例中,热电转换模块 20釆用温差发电器件将热量收集区域上收集 的热能转换为电能。 温差发电器件的高温端链接到热量收集区域, 低温端链 接到冷金属低温材料, 例如所述冷静书低温材料可选择如铝、铜之类的材料。 温差发电器件检测到高低温之间的温差, 内部产生电子移动, 形成电流。 利 用储能电容模块 30 (例如大电容)存储电荷的特性, 将温差发电器件转换出 来的电能存储到电容中完成电能积累。
如图 2所示, 热能收集区域 201用于热能的收集, 使用高导热材料链接 发热器件和热能收集区域, 将发热器件的热量快速传递到热能收集区域。 高 导热材料使用绝缘性好的材料, 如高导热硅胶片等。 热能收集区域选用吸热 性较好的金属材料组成, 通常可选择铜、 铝、 钢、 锑、 银等材料的一种。 温 差发电器件为 202 , 高温端链接热能收集区域 201 , 低温端链接冷金属材料 203. 冷金属材料 203选择散热性好的材料, 例如可选择铝、 铜之类的材料的 一种。 温差发电器件 202根据两侧温度的温差产生电能并输出到电容中进行 存储。 实施过程中可充分利用终端后盖内侧, 将冷金属材料 203布置在后盖 内侧紧贴后盖的一侧, 将热能收集区域 201布置在后盖内侧最顶的一层, 高 导热材料一端紧贴发热器件, 另一端在后盖盖上后紧贴热能收集区域 201。 温差发电器件布置在冷金属材料 203和热能收集区域 201的中间, 三者结合 贴到终端后盖内侧, 温差发电器件的电能输出端直接接入相应的电路中。
电源管理模块 50根据大电容的输入情况, 启动充电算法, 对终端电池 40进行充电。 因电源管理模块 50自身具有终端电池 40的充电参数和充电算 法, 从而一定程度上可以提高充电效率, 并防止过压等异常情况对终端电池 40的损坏, 此为现有技术, 本文对此不做过多赘述。
当存储电能的储能电容模块 30 所积累的电量大于比较阀值或其输出的 输出电压值大于预设的基准电压值时(例如所述基准电压值为终端电池 40电 压) , 比较器模块 60会自动启动电源管理模块 50, 从而使得电源管理模块 50完成给终端电池 40充电的操作。 其中, 所述终端电池 40包括但不限于镍 氢、 镍镉、 锂离子等供电设备。
优选地, 参考图 3 , 所述储能电容模块 30包括依次串联的第一单向二极 管 301、 限流电阻 302、 储能电容 303以及稳压器 304, 其中, 所述第一单向 二极管 301的阳极连接至热量釆集模块 10; 所述比较器模块 60包括第一使 能开关 601、 第二使能开关 604、 比较器 602、 第二单向二极管、 升压器, 以 及多路电压选择开关, 其中, 第一使能开关 601的第一输入端连接至稳压器 304的输出端, 其第二输入端连接至电源管理模块 50的输出端, 其输出端连 接至比较器 602的负向输入端以及第二使能开关 604的第一输入端, 比较器 602的正向输入端连接至多路电压选择开关的第一输出端, 比较器 602的输 出端连接至第二使能开关 604 的第二输入端以及多路电压选择开关的输入 端, 第二使能开关 604的输出端连接至第二单向二极管的阳极, 第二单向二 极管的阴极连接至电源管理模块 50输入端,多路电压选择开关的第二输出端 连接至升压器的一端, 升压器的另一端连接至终端电池 40的阳极, 多路电压 选择开关的第三输出端连接至终端电池 40的阳极。 参考图 3 , 其为本实用新型实施例提供的用于提高终端续航能力的装置 电路结构示意图, 其详细地描述了具体实施该方案的整个过程以及电能存储 到终端电池 40的控制过程, 其具体的实现原理和步骤如下:
步骤 1 : 热量收集模块釆集终端内部产生的热能。
步骤 2: 热电转换模块 20将热能转换为电压并输出。
步骤 3: 输出的电压经过第一单向二极管 301和限流电阻 302将电能存 储到储能电容 303上并进行电量积累,第一单向二极管 301具有单向导电性, 可以防止热电转换模块 20上的电压小于储能电容 303上的电压而引起的回 流。
步骤 4: 储能电容 303上的电压经过第一使能开关 601在比较器 602上 进行电压比较, 第一使能开关 601默认是打开状态, 当多路电压选择开关未 激活时, 比较器 602上 "+" 端的电压是终端电池 40经过升压器后的电压, 根据常用终端电池 40的特征参数,设定这个电压为 5 V记为 VB。比较器 602 上 "-"端输入储能电容 303积累的电压 VC, 比较器 602上 "+" 端输入参考 电压 V5 , 当 VC<V5 , 电荷持续在储能电容 303上进行积累, 重复 1、 2、 3、 4步骤。
步骤 5: 当 VC >= V5时, 比较器 602会打开多路电压选择开关, 之后比 较器 602上的 "+"端参考电压切换为终端电池 40的实际电压 VB, 终端电池 40实际电压 VB与 V5相比有比较大的压差, 目的是为了让转换输出的电能 能长时间对终端电池 40进行充电。 防止了在 VC与终端电池 40电压 VB相 当时反复切换影响充电效率和损坏终端内部电子元器件。
步骤 6: 当 VC >= VB, 比较器 602打开第二使能开关 604, 此时 VC直 接输入到电源管理模块 50, 电源管理模块 50使用特定的充电方案对终端电 池 40进行充电管理。
步骤 7: 电源管理模块 50对终端电池 40持续进行充电, 终端电池 40电 压 VB逐渐升高, 当 VB <= VC时, 执行步骤 6, 继续保持电源管理模块 50 对终端电池 40充电的状态, 终端电池 40—直处于充电状态中。
步骤 8: 当比较器 602检测到 VC < VB时, 此时储能电容 303上的电压 不够给终端电池 40进行充电,比较器 602进行电压比较后会自动切断多路电 压选择开关, 同时切断第二使能开关 604, 阻止 VC进入电源管理模块 50停 止对终端电池 40充电。 储能电容 303上继续积累电荷, 执行步骤 4, 比较器 602的比较电压也切换为升压器处理后的电压 V5。
步骤 9: 当终端电池 40充满后, 电源管理模块 50发出长达 10S的信号 给第一使能开关 601 , 让第一使能开关 601断开 10S, 此时比较器 602上 "-" 端产生地信号, 经过电压比较后会自动切断第一使能开关 601和多路电压选 择开关。 电能会继续在储能电容 303上进行积累, 重复循环整个过程。
上面描述完成终端电池 40充电过程,智能移动终端运行时会产生大量的 热量, 当电容上积累的电荷产生的电压超过参考电压 V5 时, 会发生如上描 述的充电过程,终端电池 40的电量将不知不觉地在工作过程中得到增加或者 较之前的电量下降速度明显降低, 终端的续航能力也随之增加。
继续参照图 1 , 本实用新型实施例还提供了一种终端, 其包括用于提高 终端续航能力的装置, 所述装置包括:
热量釆集模块 10, 设置为收集终端内部发热电子元器件所产生的热量; 热电转换模块 20, 设置为将收集的热量转换为电能并输送至储能电容模 块 30;
储能电容模块 30, 设置为储备所述电能, 并输出一稳定的输出电压值; 比较器模块 60, 设置为当所述输出电压值超过一预设的基准电压值时, 生成充电使能信号并将其发送至电源管理模块 50;
电源管理模块 50, 设置为依据所述充电使能信号对终端电池 40进行充 电。
具体实施时, 所述发热电子元器件包括终端内部一切可以产生热量的器 件, 包括发热芯片和其它可以产生热量的器件。 通常可以根据终端内部器件 的特性, 对器件上主要发热模块进行摸底测试, 重点选择发热量大的模块作 为主要的热量釆集源, 例如 CPU、 射频芯片、 电源管理芯片、 LCD等。 同时 可以在终端后盖或其他不影响工作性能的区域等加入导热材料, 以方便利用 外接热源。 优选地,所述热量釆集模块 10釆用高导热材料链接至终端内部发热电子 元器件。
优选地, 所述热电转换模块 20为温差发电器件, 其高温端链接至热量釆 集模块 10, 低温端链接至冷金属材料。
优选地, 所述冷金属材料为铜、 铝、 钢、 锑、 银中的一种或几种。
优选地, 参考图 3 , 所述储能电容模块 30包括依次串联的第一单向二极 管 301、 限流电阻 302、 储能电容 303以及稳压器 304, 其中, 所述第一单向 二极管 301的阳极连接至热量釆集模块 10; 所述比较器模块 60包括第一使 能开关 601、 第二使能开关 604、 比较器 602、 第二单向二极管 605、 升压器 606, 以及多路电压选择开关 603 , 其中, 第一使能开关 601的第一输入端连 接至稳压器 304的输出端, 其第二输入端连接至电源管理模块 50的输出端, 其输出端连接至比较器 602的负向输入端以及第二使能开关 604的第一输入 端, 比较器 602的正向输入端连接至多路电压选择开关 603的第一输出端, 比较器 602的输出端连接至第二使能开关 604的第二输入端以及多路电压选 择开关 603的输入端,第二使能开关 604的输出端连接至第二单向二极管 605 的阳极, 第二单向二极管 605的阴极连接至电源管理模块 50输入端, 多路电 压选择开关 603的第二输出端连接至升压器 606的一端, 升压器 606的另一 端连接至终端电池 40的阳极,多路电压选择开关 603的第三输出端连接至终 端电池 40的阳极。
参考图 4 , 其描述了本实用新型实施例提供的终端进行热电转换的流程 示意图, 下面依照该图说明本实用新型实施例提供的终端进行热电转换, 进 而提高终端续航能力的实施流程。
步骤 S401 : 热量釆集模块 10釆集热量。
步骤 S402: 热量釆集模块 10釆集的热量经过热电转换模块 20将热能转 换为电能。
步骤 S403:将电信号存入一个储能电容模块 30并输出一个恒定的电压。 步骤 S404:判断终端电池 40是否在充满状态,若终端电池 40已经存满, 则转步骤 S401 , 若终端电池 40未存满, 则转步骤 S405。 步骤 S405: 储能电容模块 30输出的输出电压是否大于 5V, 如小于 5V, 则转 S401 , 如大于 5V, 则转步骤 S406。
步骤 S406: 储能电容模块 30输出的输出电压是否大于终端电池 40电压 VB,如小于终端电池 40电压 VB, 则转步骤 S401 ,如大于终端电池 40电压, 则转步骤 S407。
步骤 S407:电源管理模块 50对终端电池 40进行充电。
本实用新型实施例提供的终端, 其将终端内部电器元器件发热所产生的 热能转换为电能, 并进行有效存储并提供给终端使用, 其一定程度上可以改 善终端内部电子元器件的工作性能, 同时还可以提高终端的续航能力。
以上所述仅为本实用新型的优选实施例, 并非因此限制本实用新型的专 利范围, 凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程 变换, 或直接或间接运用在其他相关的技术领域, 均同理包括在本实用新型 的专利保护范围内。
工业实用性
本实用新型实施例提供的一种用于提高终端续航能力的装置及其终端, 其将终端内部电器元器件发热所产生的热能转换为电能 , 并进行有效存储并 提供给终端使用, 其一定程度上可以改善终端内部电子元器件的工作性能, 同时还可以提高终端的续航能力。

Claims

权 利 要 求 书
1、 一种用于提高终端续航能力的装置, 包括:
热量釆集模块, 其设置为: 收集终端内部发热电子元器件所产生的热量; 热电转换模块, 其设置为: 将收集的热量转换为电能并输送至储能电容 模块;
储能电容模块, 其设置为: 储备所述电能, 并输出一稳定的输出电压值; 比较器模块, 其设置为: 当所述输出电压值超过一预设的基准电压值时, 生成充电使能信号并将其发送至电源管理模块; 以及
电源管理模块, 其设置为: 依据所述充电使能信号对终端电池进行充电。
2、 如权利要求 1所述的用于提高终端续航能力的装置, 其中, 所述热量 釆集模块釆用高导热材料链接至终端内部发热电子元器件。
3、 如权利要求 2所述的用于提高终端续航能力的装置, 其中, 所述热电 转换模块为温差发电器件, 其高温端链接至所述热量釆集模块, 低温端链接 至冷金属材料。
4、 如权利要求 3所述的用于提高终端续航能力的装置, 其中, 所述冷金 属材料为铜、 铝、 钢、 锑、 银中的一种或几种。
5、 如权利要求 1所述的用于提高终端续航能力的装置, 其中, 所述储能 电容模块包括依次串联的第一单向二极管、 限流电阻、储能电容以及稳压器, 其中, 所述第一单向二极管的阳极连接至所述热量釆集模块; 所述比较器模 块包括第一使能开关、 第二使能开关、 比较器、 第二单向二极管、 升压器, 以及多路电压选择开关, 其中, 所述第一使能开关的第一输入端连接至所述 稳压器的输出端, 所述第一使能开关的第二输入端连接至所述电源管理模块 的输出端, 所述第一使能开关的输出端连接至所述比较器的负向输入端以所 述及第二使能开关的第一输入端, 所述比较器的正向输入端连接至所述多路 电压选择开关的第一输出端, 所述比较器的输出端连接至所述第二使能开关 的第二输入端以及所述多路电压选择开关的输入端, 所述第二使能开关的输 出端连接至所述第二单向二极管的阳极, 所述第二单向二极管的阴极连接至 所述电源管理模块输入端, 所述多路电压选择开关的第二输出端连接至所述 升压器的一端, 所述升压器的另一端连接至终端电池的阳极, 所述多路电压 选择开关的第三输出端连接至终端电池的阳极。
6、 一种终端, 其包括用于提高终端续航能力的装置, 所述装置包括: 热量釆集模块, 其设置为: 收集终端内部发热电子元器件所产生的热量; 热电转换模块, 其设置为: 将收集的热量转换为电能并输送至储能电容 模块;
储能电容模块, 其设置为: 储备所述电能, 并输出一稳定的输出电压值; 比较器模块, 其设置为: 当所述输出电压值超过一预设的基准电压值时, 生成充电使能信号并将其发送至电源管理模块; 以及
电源管理模块, 其设置为: 依据所述充电使能信号对终端电池进行充电。
7、 如权利要求 6所述的终端, 其中, 所述热量釆集模块釆用高导热材料 链接至终端内部发热电子元器件。
8、如权利要求 7所述的终端,其中,所述热电转换模块为温差发电器件, 其高温端链接至所述热量釆集模块, 低温端链接至冷金属材料。
9、 如权利要求 8所述的终端, 其中, 所述冷金属材料为铜、 铝、 钢、 锑、 银中的一种或几种。
10、 如权利要求 6所述的终端, 其中, 所述储能电容模块包括依次串联 的第一单向二极管、 限流电阻、 储能电容以及稳压器, 其中, 所述第一单向 二极管的阳极连接至所述热量釆集模块;所述比较器模块包括第一使能开关、 第二使能开关、 比较器、 第二单向二极管、 升压器, 以及多路电压选择开关, 其中, 所述第一使能开关的第一输入端连接至所述稳压器的输出端, 所述第 一使能开关的第二输入端连接至所述电源管理模块的输出端 , 所述第一使能 开关的输出端连接至所述比较器的负向输入端以所述及第二使能开关的第一 输入端, 所述比较器的正向输入端连接至所述多路电压选择开关的第一输出 端, 所述比较器的输出端连接至所述第二使能开关的第二输入端以及所述多 路电压选择开关的输入端, 所述第二使能开关的输出端连接至所述第二单向 二极管的阳极,所述第二单向二极管的阴极连接至所述电源管理模块输入端, 所述多路电压选择开关的第二输出端连接至所述升压器的一端, 所述升压器 的另一端连接至终端电池的阳极, 所述多路电压选择开关的第三输出端连接 至终端电池的阳极。
PCT/CN2013/078339 2012-08-17 2013-06-28 一种用于提高终端续航能力的装置及其终端 WO2013178123A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/398,489 US9509174B2 (en) 2012-08-17 2013-06-28 Device for improving endurance of terminal and terminal thereof
EP13796260.1A EP2835904B1 (en) 2012-08-17 2013-06-28 Device for improving endurance of terminal and terminal thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220412111XU CN202759400U (zh) 2012-08-17 2012-08-17 一种用于提高终端续航能力的装置及其终端
CN201220412111.X 2012-08-17

Publications (1)

Publication Number Publication Date
WO2013178123A1 true WO2013178123A1 (zh) 2013-12-05

Family

ID=47738559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078339 WO2013178123A1 (zh) 2012-08-17 2013-06-28 一种用于提高终端续航能力的装置及其终端

Country Status (4)

Country Link
US (1) US9509174B2 (zh)
EP (1) EP2835904B1 (zh)
CN (1) CN202759400U (zh)
WO (1) WO2013178123A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202759400U (zh) 2012-08-17 2013-02-27 中兴通讯股份有限公司 一种用于提高终端续航能力的装置及其终端
CN104427732B (zh) * 2013-08-28 2017-12-26 中兴通讯股份有限公司 一种终端及其收集静电、充电的方法
CN103701186B (zh) 2013-12-19 2015-08-12 北京京东方光电科技有限公司 移动通信终端
CN105472119A (zh) * 2014-09-10 2016-04-06 富泰华工业(深圳)有限公司 可自动充电的触屏手机
CN104410141A (zh) * 2014-12-03 2015-03-11 中山大学 一种对发热体降温并回收发热体能源的方法
CN104993552A (zh) * 2015-07-31 2015-10-21 小米科技有限责任公司 电池充电方法和智能终端
AT517714B1 (de) * 2015-12-17 2017-04-15 Avl List Gmbh Schaltungsanordnung zur Signaleinprägung eines elektrischen Signals in eine elektrochemische Energieliefervorrichtung
CN106026328A (zh) * 2016-05-27 2016-10-12 广东欧珀移动通信有限公司 一种终端的充电方法、装置及终端
CN106815111A (zh) * 2017-01-11 2017-06-09 上海传英信息技术有限公司 一种基于智能终端续航自动化测试的方法
CN107947637B (zh) * 2017-06-22 2024-07-02 重庆大学 基于半导体温差发电的能量收集装置
CN107171426A (zh) * 2017-06-28 2017-09-15 上海传英信息技术有限公司 一种智能终端的发电装置及具有该发电装置的智能终端
CN108490615A (zh) * 2018-03-30 2018-09-04 京东方科技集团股份有限公司 Vr一体机
CN109633955B (zh) * 2018-11-23 2023-09-29 深圳市博纳森光电有限公司 一种具有边缘自动恢复功能的液晶屏
CN110086239A (zh) * 2019-05-13 2019-08-02 北京洪泰智造信息技术有限公司 一种电子设备及其热能利用系统和方法
CN110215100A (zh) * 2019-06-20 2019-09-10 北京洪泰智造信息技术有限公司 一种智能水杯及其热能利用系统和方法
CN110236342A (zh) * 2019-06-20 2019-09-17 北京洪泰智造信息技术有限公司 一种智能水杯及其热能利用系统和方法
CN110289670A (zh) * 2019-06-21 2019-09-27 上海摩软通讯技术有限公司 移动终端及自充电方法
CN110503989A (zh) * 2019-08-29 2019-11-26 杭州勤语智能科技有限公司 一种固态硬盘设备
CN110507136A (zh) * 2019-09-02 2019-11-29 北京洪泰智造信息技术有限公司 一种智能水杯及其温度调节系统和方法
CN112841831B (zh) * 2021-03-02 2022-12-27 Oppo广东移动通信有限公司 智能指环
CN115117962A (zh) * 2022-06-29 2022-09-27 上海移为通信技术股份有限公司 电池充电设备、通信终端及车辆
WO2024055203A1 (zh) * 2022-09-14 2024-03-21 寰宝绿能股份有限公司 发电装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201138850Y (zh) * 2007-12-13 2008-10-22 浪潮乐金数字移动通信有限公司 移动通信终端的供电装置及其移动通信终端
CN201260290Y (zh) * 2008-09-27 2009-06-17 希姆通信息技术(上海)有限公司 用于手持移动设备的散热装置
CN101604939A (zh) * 2008-06-11 2009-12-16 浪潮乐金数字移动通信有限公司 热能转换为电能的终端及其实现热能转换为电能的方法
CN202759400U (zh) * 2012-08-17 2013-02-27 中兴通讯股份有限公司 一种用于提高终端续航能力的装置及其终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW530429B (en) * 2001-12-24 2003-05-01 Avid Electronics Corp Intelligent secondary battery management method and device
JP2007006678A (ja) * 2005-06-27 2007-01-11 Canon Inc ファン電源装置および画像投射装置
US7528502B2 (en) * 2005-10-31 2009-05-05 Ryuji Maeda System and method for efficient power utilization and extension of battery life
WO2011002342A1 (ru) * 2009-07-03 2011-01-06 Закрытое Акционерное Общество Научно-Производственное Предприятие "Инкар-М" Электротранспортное средство
US8704494B2 (en) * 2010-03-30 2014-04-22 Maxim Integrated Products, Inc. Circuit topology for pulsed power energy harvesting
CN101931347B (zh) * 2010-07-23 2014-07-30 惠州Tcl移动通信有限公司 提升能耗效率的方法及其移动终端和热电转换模块的用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201138850Y (zh) * 2007-12-13 2008-10-22 浪潮乐金数字移动通信有限公司 移动通信终端的供电装置及其移动通信终端
CN101604939A (zh) * 2008-06-11 2009-12-16 浪潮乐金数字移动通信有限公司 热能转换为电能的终端及其实现热能转换为电能的方法
CN201260290Y (zh) * 2008-09-27 2009-06-17 希姆通信息技术(上海)有限公司 用于手持移动设备的散热装置
CN202759400U (zh) * 2012-08-17 2013-02-27 中兴通讯股份有限公司 一种用于提高终端续航能力的装置及其终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2835904A4 *

Also Published As

Publication number Publication date
EP2835904A1 (en) 2015-02-11
US9509174B2 (en) 2016-11-29
CN202759400U (zh) 2013-02-27
EP2835904B1 (en) 2016-10-12
US20150155741A1 (en) 2015-06-04
EP2835904A4 (en) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2013178123A1 (zh) 一种用于提高终端续航能力的装置及其终端
EP1316140B1 (en) Portable electronic device with enhanced battery life and cooling
TWI357203B (en) Solar energy charging/discharging system
US9831706B2 (en) Techniques and systems for generating power using multi-spectrum energy
CN101873082B (zh) 热感供电装置和移动终端
CN110086239A (zh) 一种电子设备及其热能利用系统和方法
WO2014180368A1 (zh) 终端散热系统及方法
KR102401539B1 (ko) 셀 밸런싱 장치 및 방법
TW201125202A (en) A method for fuel cell system control and a fuel cell system using the same
CN103078559A (zh) 一种热电转换方法及终端
CN102437614A (zh) 节能型便携式电子设备及基于该设备实现能量再利用的方法
TWM381101U (en) Power saving device and all-in-one pc having the same
JP2004056866A (ja) 発電機能を備えた携帯通信機器
CN211790897U (zh) 电池装置、电池供电装置和电子设备
CN2758788Y (zh) 用于二次电池检测的充放电装置
CN203707820U (zh) 多功能小型热电转换装置
CN209001652U (zh) 一种双向温差充电装置
CN203289165U (zh) 多功能充电宝
TWM400015U (en) Power supply device with charging capability and power output system
CN105306627A (zh) 利用手机自热充电的手机壳
CN217590349U (zh) 一种电子设备
JP4323405B2 (ja) 電源装置の制御用半導体装置
CN101123309A (zh) 一种采用主动控制形式的发电装置
TWI420782B (zh) 一種可自供電之電子裝置
CN210157100U (zh) 一种应用于智能水表的温差发电模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14398489

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013796260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013796260

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE