WO2014180368A1 - 终端散热系统及方法 - Google Patents

终端散热系统及方法 Download PDF

Info

Publication number
WO2014180368A1
WO2014180368A1 PCT/CN2014/077717 CN2014077717W WO2014180368A1 WO 2014180368 A1 WO2014180368 A1 WO 2014180368A1 CN 2014077717 W CN2014077717 W CN 2014077717W WO 2014180368 A1 WO2014180368 A1 WO 2014180368A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric material
terminal
capacitor
circuit
thermoelectric
Prior art date
Application number
PCT/CN2014/077717
Other languages
English (en)
French (fr)
Inventor
胥虎军
霰毅
胡波
周超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014180368A1 publication Critical patent/WO2014180368A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a terminal heat dissipation system and method.
  • BACKGROUND With the increasing configuration of smart phones, the heat dissipation of mobile phones has increasingly attracted the attention of major mobile phone manufacturers, and the serious fever of mobile phones has also caused users to complain about the high-profile smart phones.
  • the development of ultra-thin smartphones has made the space of mobile phones very limited, and it is difficult to have enough space for heat dissipation.
  • the development of smart phones towards large screens and high configurations has made the power consumption and heat generation of mobile phones more and more large. The large screen and high configuration will inevitably consume more power.
  • thermoelectric effect has three types: Seebeck Effect, Peltier Effect, and Thomson Effect, depending on the specific principle of action and its manifestation. At present, the first two effects are mainly applied.
  • the Seebeck effect is applied to the semiconductor thermoelectric power generation technology, and the Peltier effect is applied to the semiconductor refrigeration.
  • the Seebeck effect is a phenomenon in which a potential generated in a loop causes thermal energy to be converted into electrical energy when the temperature of the two junctions is different in a closed loop composed of two different conductive materials.
  • a thermal current In a loop composed of two metals A and B, if the temperatures of the two contact points are different, a current will appear in the loop, called a thermal current.
  • the essence of the Seebeck effect is that the contact potential difference is generated when the two metals are in contact, and the potential difference depends on two basic factors of the electron overflow work of the metal and the effective electron density.
  • the temperature difference of the semiconductor is large and can be used as a thermoelectric generator.
  • the Peltier effect is the thermoelectric cooling and heating phenomenon discovered by the French scientist Peltier in 1834.
  • thermocouples consisting of N and P type materials.
  • the direction of direct current input will produce heat absorption and heat release at the junction of the galvanic couple. Ertie effect. If the current flows from the conductor 1 to the conductor 2, the amount of heat absorbed/discharged at the joint is proportional to the current density at the joint.
  • the mobile phone cooling system helps the phone to dissipate heat quickly.
  • a terminal heat dissipation system including: a thermoelectric conversion circuit including a first circuit composed of a power generating thermoelectric material and a capacitor, wherein different parts of the power generation thermoelectric material are respectively fixed to a heat source and a cold in the terminal Source, thermoelectric material is used to generate current in the first loop when there is a temperature difference in different parts thereof, the capacitor is used to store the current generated by the thermoelectric material; the refrigeration circuit includes a second loop composed of the refrigerating thermoelectric material and the capacitor, and the refrigerating thermoelectric material A heat source fixed in the terminal, the capacitor is used to discharge the cooled thermoelectric material through the second loop, and the cooled thermoelectric material absorbs heat released by the heat source when the current passes.
  • the terminal heat dissipation system further comprises: a bidirectional switch connected to the thermoelectric conversion circuit and the refrigeration circuit for disconnecting the thermoelectric conversion circuit after the predetermined temperature is reached, closing the refrigeration circuit, and closing the thermoelectricity after being lower than the predetermined temperature a switching circuit, disconnecting the refrigeration circuit, or, after the charging of the capacitor is completed, disconnecting the thermoelectric conversion circuit, closing the refrigeration circuit, closing the thermoelectric conversion circuit after the capacitor is discharged, disconnecting The refrigeration circuit.
  • the thermoelectric conversion circuit further comprises: a current limiting resistor, in parallel with the capacitor, for controlling the magnitude of the current flowing through the capacitor.
  • the power generating thermoelectric material comprises: an N-type semiconductor thermoelectric material; the refrigerating thermoelectric material comprises: a PN junction thermoelectric material composed of a P-type semiconductor thermoelectric material and an N-type semiconductor thermoelectric material, wherein the PN junction thermoelectric material passes the current, the current is The N-type semiconductor thermoelectric material flows to the P-type semiconductor thermoelectric material.
  • the heat source in the terminal comprises: a central processing unit of the terminal, a radio frequency, a battery, and/or a screen; the cold source in the terminal comprises: a structural member capable of contacting the external environment of the terminal. According to another aspect of the present invention, a terminal heat dissipation method is further provided.
  • the terminal heat dissipation system includes: generating electricity according to a temperature difference between different parts of the thermoelectric conversion circuit, wherein the power generation thermoelectric material is different.
  • the parts are respectively fixed to the heat source and the cold source in the terminal;
  • the capacitor in the thermoelectric conversion circuit stores the current and discharges the cooled thermoelectric material in the refrigeration circuit;
  • the cooled thermoelectric material in the refrigeration circuit absorbs heat when the current passes
  • the refrigerating thermoelectric material is fixed to a heat source in the terminal.
  • the method further includes: after the bidirectional switch connected to the thermoelectric conversion circuit and the refrigerating circuit reaches a predetermined temperature, disconnecting the thermoelectric conversion circuit, closing the refrigerating circuit, and closing the thermoelectric conversion circuit after the bidirectional switch is lower than a predetermined temperature, Turning on the refrigeration circuit, or, after the charging of the capacitor is completed, disconnecting the thermoelectric conversion The circuit closes the refrigeration circuit, and after the capacitor is discharged, the thermoelectric conversion circuit is closed, and the refrigeration circuit is turned off.
  • the above method further comprises: controlling a current flowing through the capacitor through a current limiting resistor in parallel with the capacitor.
  • the above-mentioned power generation thermoelectric material comprises: an N-type semiconductor thermoelectric material; the refrigerating thermoelectric material comprises:
  • the heat source in the terminal comprises: a central processing unit of the terminal, a radio frequency, a battery, and/or a screen; the cold source in the terminal comprises: a structural component capable of contacting the external environment of the terminal.
  • FIG. 1 is a schematic structural view of a terminal heat dissipation system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a model of a terminal heat dissipation system based on a thermoelectric effect semiconductor according to an embodiment of the present invention
  • FIG. 3 is a thermal energy of an embodiment of the present invention
  • FIG. 4 is a schematic circuit diagram of a semiconductor active cooling circuit module according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an implementation of a terminal heat dissipation system according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for dissipating a terminal according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a terminal heat dissipation system according to an embodiment of the present invention.
  • a terminal heat dissipation system according to an embodiment of the present invention includes: The thermoelectric conversion circuit 10 and the refrigeration circuit 12. The respective modules of the embodiments of the present invention are described in detail below.
  • the thermoelectric conversion circuit 10 includes a first circuit composed of a power generating thermoelectric material and a capacitor.
  • thermoelectric conversion circuit 10 further includes: a current limiting resistor connected in parallel with the capacitor for controlling a current flowing through the capacitor.
  • the refrigeration circuit 12 includes a second circuit composed of a refrigerating thermoelectric material and a capacitor. The refrigerating thermoelectric material is fixed to a heat source in the terminal, and the capacitor is used to discharge the refrigerating thermoelectric material through the second loop, and the refrigerating thermoelectric material absorbs heat when the current passes.
  • the terminal heat dissipation system further comprises: a bidirectional switch connected to the thermoelectric conversion circuit 10 and the refrigeration circuit 12 for disconnecting the thermoelectric conversion circuit 10 after the predetermined temperature is reached, and closing the refrigeration circuit 12 below the predetermined temperature Thereafter, the thermoelectric conversion circuit 10 is closed, the refrigeration circuit 12 is turned off, or after the charging of the capacitor is completed, the thermoelectric conversion circuit 10 is turned off, the refrigeration circuit 12 is closed, and after the capacitor is discharged, the battery is closed.
  • the thermoelectric conversion circuit 10 turns off the refrigeration circuit 12.
  • the power generation thermoelectric material comprises: an N-type semiconductor thermoelectric material; the refrigerating thermoelectric material comprises: a PN junction thermoelectric material composed of a P-type semiconductor thermoelectric material and an N-type semiconductor thermoelectric material, and the current of the PN junction thermoelectric material is N when passing current
  • the type of semiconductor thermoelectric material flows to the P-type semiconductor thermoelectric material.
  • the sources of heat in the terminal include: The central processing unit, radio frequency, battery, and/or screen of the terminal; the cold source in the terminal includes: a structural member capable of contacting the external environment of the terminal.
  • the method includes: 1. A thermal energy conversion power module that converts heat generated by a heat source of a mobile phone CPU, a radio frequency, a battery, a screen, and the like into electric energy (the above-described thermoelectric conversion circuit 10) ).
  • the thermoelectric material has such a property that if the temperature of different parts thereof is different, the electrons will travel from one end to the other along the temperature difference, and the current generated thereby can be used as a power source.
  • the direction of the thermoelectromotive force of the P-type semiconductor is from the low temperature end to the high temperature end (the Seebeck coefficient is negative).
  • thermoelectric material is fixed to the heat source of the CPU, the RF module, the battery, the back of the screen, and the other end is fixed at the edge of the structural member that can contact the external environment of the mobile phone.
  • a loop is formed to connect. Reconnect the capacitor in the loop and store the heat converted into electrical energy.
  • thermoelectric material absorbs heat.
  • the circuit diagram of the semiconductor active cooling circuit module is shown in Fig. 4. After the capacitor is fully charged, the discharge is performed, and the cooled thermoelectric material is supplied with direct current from the N terminal to the P terminal, and the thermoelectric material absorbs heat. Thermoelectric materials are laid out in heat sources such as CPUs, RF modules, batteries, and screens.
  • the working process of the heat dissipation system based on the thermoelectric effect semiconductor mobile phone according to the embodiment of the present invention is as shown in FIG. 5, and includes the following steps: Step 1: Using a thermoelectric material to form a loop, one end of the thermoelectric material is fixed on the CPU, the radio frequency module, A heat source such as a battery or a screen is attached to the edge of the mobile phone structural member near the external environment. Step 2: Connect the capacitor circuit in the loop. Step 3: When the heat source emits heat, a current is generated in the circuit, and the current flows into the capacitor and is stored. Step 4: Determine whether the capacity of the capacitor is full. If the judgment is yes, perform the fifth step.
  • Step 5 When the capacitor is fully charged, the temperature jump switch is used to disconnect the capacitor from the thermal energy conversion circuit, and the capacitor is connected to the semiconductor refrigeration circuit for discharging.
  • Step 6 Connect the PN junctions of P-type and N-type semiconductor materials in series and form a loop.
  • Step 7 The semiconductor circuit in which the PN junctions are connected in series is arranged in a heat source such as a CPU, a radio frequency module, a battery, and a back of the screen.
  • Step 8 Connect the positive terminal of the capacitor to the N terminal of the semiconductor circuit and the negative terminal of the capacitor to the P terminal of the semiconductor circuit.
  • Step 9 When the capacitor is fully charged, discharge begins.
  • Step 10 Determine whether the capacity of the capacitor is discharged. If the judgment is yes, execute the eleventh step. Otherwise, perform the ninth step.
  • the eleventh step The jump temperature switch connects the capacitor circuit to the thermal energy conversion circuit.
  • FIG. 6 is a flowchart of a terminal heat dissipation method according to an embodiment of the present invention. As shown in FIG. 6, the method according to the present invention is implemented according to the present invention.
  • the terminal heat dissipation method includes the following steps: Step 601: The power generation thermoelectric material in the thermoelectric conversion circuit generates a current when the temperature difference is different in different parts thereof, wherein different parts of the power generation thermoelectric material are respectively fixed to the heat source and the cold source in the terminal; Step 602: The capacitor in the thermoelectric conversion circuit stores the current and discharges the refrigerating thermoelectric material in the refrigerating circuit. Step 603: The refrigerating thermoelectric material in the refrigerating circuit absorbs heat when the current passes, wherein the refrigerating thermoelectric material is fixed A source of heat in the terminal.
  • the method further includes: after the bidirectional switch connected to the thermoelectric conversion circuit and the refrigerating circuit reaches a predetermined temperature, disconnecting the thermoelectric conversion circuit, closing the refrigerating circuit, and closing the thermoelectric conversion circuit after the bidirectional switch is lower than a predetermined temperature, Open the refrigeration circuit, or, after the capacitor is charged, disconnect the thermoelectric conversion circuit, close the refrigeration circuit, and after the capacitor is discharged, close the thermoelectric conversion circuit and disconnect the refrigeration circuit.
  • the current flowing through the capacitor can also be controlled by a current limiting resistor in parallel with the capacitor.
  • the above-mentioned power generation thermoelectric material comprises: an N-type semiconductor thermoelectric material; the refrigerating thermoelectric material comprises: a PN junction thermoelectric material composed of a P-type semiconductor thermoelectric material and an N-type semiconductor thermoelectric material, and the PN junction thermoelectric material passes the current, the current is
  • the N-type semiconductor thermoelectric material flows to the P-type semiconductor thermoelectric material.
  • the heat source in the terminal includes: a central processing unit of the terminal, a radio frequency, a battery, and/or a screen; the cold source in the terminal includes: a structural member capable of contacting the external environment of the terminal.
  • the embodiment of the invention first selects a thermoelectric material that is converted into electrical energy by thermal energy.
  • the thermoelectric material must have the characteristics of high thermoelectric conversion efficiency, sensitive conversion, and small volume.
  • a semiconductor is taken as an example, and an N-type semiconductor thermoelectric material is selected, so that the thermoelectric material forms a loop, and the current of the N-type semiconductor flows from the heat source to the cold source. Fix one end of the loop to the heat source such as the CPU, RF module, battery, and back of the screen. The other end of the loop is fixed to the cold source end of the structural member near the edge of the external environment.
  • Step 2 Connect the resistor and capacitor circuits in the N-type semiconductor loop.
  • the resistors and capacitors are connected in parallel to store the heat-converted energy in the capacitor.
  • the capacitor selected in the embodiment of the present invention is a super capacitor.
  • the third step When the heat source emits heat, due to the Seebeck effect, a current will be generated in the loop. In the N-type semiconductor thermoelectric material, the current will flow from the heat source to the cold source. When the current flows through the capacitor circuit, the charge will Store it in the capacitor.
  • Step 4 When the capacitor is fully charged, the capacitor is disconnected from the thermal energy conversion circuit by a jump switch, and the capacitor is connected to the semiconductor refrigeration circuit for discharging.
  • Step 5 Begin to build a semiconductor refrigeration circuit. First, select P-type and N-type semiconductors that are sensitive to Peltier effect.
  • a PN junction composed of a P-type and an N-type semiconductor material is connected in series and constitutes a loop.
  • Step 6 The semiconductor circuit in which the PN junctions are connected in series is arranged in a heat source such as a CPU, a radio frequency module, a battery, and a back of the screen. When the refrigeration circuit is cooling, the heat from the heat source is taken up.
  • Step 7 Connect the positive switch of the supercapacitor to the N terminal of the semiconductor circuit and the negative switch of the capacitor to the P terminal of the semiconductor circuit.
  • Step 8 When the capacitor is fully charged, the jump switch disconnects the capacitor from the thermal energy conversion circuit and accesses the semiconductor refrigeration circuit. After the capacitor is connected to the semiconductor refrigeration circuit, the discharge begins.
  • the direct current flows from the N terminal to the P terminal. Due to the Peltier effect, the PN section absorbs heat and realizes active cooling. In the process of heating, the terminal repeats the first step to the eighth step to convert the thermal energy into electrical energy, and then realize active cooling through the electrical energy.
  • the heat generated by the mobile phone is first converted into electric energy by the thermoelectric effect, and is discharged when the capacitor is fully charged, and the direct current is absorbed by the cooling circuit to achieve heat absorption.
  • the purpose of active cooling solves the problems caused by the large heat dissipation of the mobile phone in the prior art, and can realize the active cooling of the terminal heat dissipation system by means of energy recycling. It is apparent that those skilled in the art can make various modifications and variations to the invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and the modifications of the invention.

Abstract

本发明公开了一种终端散热系统及方法。该系统包括:热电转换电路,包括由发电热电材料和电容组成的第一回路,发电热电材料的不同部位分别固定于终端中的发热源和冷源,热电材料用于在其不同部位具有温差时在第一回路中产生电流,电容用于存储热电材料产生的电流;制冷电路,包括由制冷热电材料和电容组成的第二回路,制冷热电材料固定于终端中的发热源,电容用于通过第二回路向制冷热电材料放电,制冷热电材料在电流通过时吸收发热源释放的热量。借助于本发明的技术方案,能够实现终端散热系统的主动制冷。

Description

终端散热系统及方法 技术领域 本发明涉及移动通讯领域, 特别是涉及一种终端散热系统及方法。 背景技术 随着智能手机配置不断增高, 手机的散热越来越引起各大手机厂商的关注, 手机 发热严重也让用户对高配智能手机的抱怨与日倶增。 智能手机向超薄化发展, 使得手 机结构空间受到很大的限制, 很难有足够的散热空间。 智能手机向着大屏化、 高配置 的发展, 使得手机本身的功耗、 发热量越来越大。 大屏幕、 高配置必然会消耗更多的 电能, 在电池技术还没有突破性发展的情况下, 消耗电池的电能主动制冷也很难应用 到手机的散热系统中。 由两种不同材料制成的结点由于受到某种因素作用而出现了温差, 就有可能在两 结点间产生电动势, 回路中产生电流, 这就是温差电效应。 温差电效应根据具体作用原理及表现形式, 有赛贝克效应(Seebeck Effect)、 帕尔 贴效应 (Peltier Effect )、 汤姆逊效应 (Thomson Effect) 三种。 目前主要应用前两个效 应, 赛贝克效应应用在半导体温差发电技术上面, 而帕尔贴效应应用在半导体致冷。 塞贝克效应是在两种不同导电材料构成的闭合回路中, 当两个接点温度不同时, 回路中产生的电势使热能转变为电能的一种现象。 在两种金属 A和 B组成的回路中, 如果使两个接触点的温度不同, 则在回路中将出现电流, 称为热电流。 塞贝克效应的 实质在于两种金属接触时会产生接触电势差, 该电势差取决于金属的电子溢出功和有 效电子密度这两个基本因素。 半导体的温差电动势较大, 可用作温差发电器。 珀尔贴效应是 1834年法国科学家珀尔贴发现的热电致冷和致热现象。 由 N、 P型 材料组成一对热电偶, 当热电偶通入直流电流后, 因直流电通入的方向不同, 将在电 偶结点处产生吸热和放热现象, 称这种现象为珀尔帖效应。 如果电流由导体 1流向导 体 2, 则在单位时间内, 接头处吸收 /放出的热量与通过接头处的电流密度成正比。 随着当前手机软件和硬件配置不断的升级、 Wifi的普及、 电池容量的扩充、 高清 大屏的使用, 使得 CPU、 射频、 电池、 屏幕等散热大户的发热量急剧上升, 当前并没 有特别有效的手机散热系统, 帮助手机快速散热。 发明内容 鉴于上述对手机散热不能有效解决的问题, 本发明实施例提供了一种终端散热系 统及方法。 根据本发明的一个方面, 提供了一种终端散热系统, 包括: 热电转换电路, 包括 由发电热电材料和电容组成的第一回路, 发电热电材料的不同部位分别固定于终端中 的发热源和冷源, 热电材料用于在其不同部位具有温差时在第一回路中产生电流, 电 容用于存储热电材料产生的电流; 制冷电路, 包括由制冷热电材料和电容组成的第二 回路, 制冷热电材料固定于终端中的发热源, 电容用于通过第二回路向制冷热电材料 放电, 制冷热电材料在电流通过时吸收发热源释放的热量。 优选地, 终端散热系统还包括: 双向开关, 连接于热电转换电路和制冷电路, 用 于在其达到预定温度后, 断开热电转换电路, 闭合制冷电路, 在其低于预定温度后, 闭合热电转换电路, 断开制冷电路, 或者, 在所述电容充电完成后, 断开所述热电转 换电路, 闭合所述制冷电路, 在所述电容放完电量后, 闭合所述热电转换电路, 断开 所述制冷电路。 优选地, 热电转换电路进一步包括: 限流电阻, 与电容并联, 用于控制流经电容 的电流大小。 优选地, 发电热电材料包括: N型半导体热电材料; 制冷热电材料包括: 由 P型 半导体热电材料和 N型半导体热电材料组成的 PN结热电材料, PN结热电材料在通过 电流时, 该电流由 N型半导体热电材料流向 P型半导体热电材料。 优选地, 终端中的发热源包括: 终端的中央处理器、 射频、 电池、 和 /或屏幕; 终 端中的冷源包括: 能够接触到终端外部环境的结构件。 根据本发明的另一个方面,还提供了一种终端散热方法,基于上述终端散热系统, 包括: 热电转换电路中的发电热电材料在其不同部位具有温差时产生电流, 其中, 发 电热电材料的不同部位分别固定于终端中的发热源和冷源; 热电转换电路中的电容将 电流进行存储, 并向制冷电路中的制冷热电材料进行放电; 制冷电路中的制冷热电材 料在电流通过时进行吸热, 其中, 制冷热电材料固定于终端中的发热源。 优选地, 上述方法进一步包括: 在连接于热电转换电路和制冷电路的双向开关达 到预定温度后, 断开热电转换电路, 闭合制冷电路, 在双向开关低于预定温度后, 闭 合热电转换电路, 断开制冷电路, 或者, 在所述电容充电完成后, 断开所述热电转换 电路, 闭合所述制冷电路, 在所述电容放完电量后, 闭合所述热电转换电路, 断开所 述制冷电路。 优选地, 上述方法进一步包括: 通过与电容并联的限流电阻控制流经电容的电流 大小。 优选地, 上述发电热电材料包括: N型半导体热电材料; 制冷热电材料包括: 由
P型半导体热电材料和 N型半导体热电材料组成的 PN结热电材料, PN结热电材料在 通过电流时, 该电流由 N型半导体热电材料流向 P型半导体热电材料。 优选地, 上述终端中的发热源包括: 终端的中央处理器、射频、 电池、和 /或屏幕; 终端中的冷源包括: 能够接触到终端外部环境的结构件。 本发明上述实施例的有益效果如下: 通过温差电效应, 首先将手机产生的热量转换为电能储存起来, 当电容充满电后 会放电, 直流电通过制冷电路后会吸热, 实现主动制冷的目的, 解决了现有技术中手 机散热量大引起的问题, 能够通过能源回收利用的方式, 实现了手机散热系统的主动 制冷。 上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和其它目的、 特征和优点 能够更明显易懂, 以下特举本发明的具体实施方式。 附图说明 通过阅读下文优选实施方式的详细描述, 各种其他的优点和益处对于本领域普通 技术人员将变得清楚明了。 附图仅用于示出优选实施方式的目的, 而并不认为是对本 发明的限制。 而且在整个附图中, 用相同的参考符号表示相同的部件。 在附图中: 图 1是本发明实施例的终端散热系统的结构示意图; 图 2是本发明实施例的基于温差电效应半导体的终端散热系统的模型示意图; 图 3是本发明实施例的热能转电能模块的电路示意图; 图 4是本发明实施例的半导体主动制冷电路模块的电路示意图; 图 5是本发明实施例的终端散热系统的实施示意图; 图 6是本发明实施例的终端散热方法的流程图。 具体实施方式 下面将参照附图更详细地描述本公开的示例性实施例。 虽然附图中显示了本公开 的示例性实施例, 然而应当理解, 可以以各种形式实现本公开而不应被这里阐述的实 施例所限制。 相反, 提供这些实施例是为了能够更透彻地理解本公开, 并且能够将本 公开的范围完整的传达给本领域的技术人员。 为了解决现有技术对手机散热不能有效解决的问题, 本发明实施例提供了一种终 端散热系统及方法, 以下结合附图以及实施例, 对本发明进行进一步详细说明。 应当 理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不限定本发明。 系统实施例 根据本发明的实施例, 提供了一种终端散热系统, 图 1是本发明实施例的终端散 热系统的结构示意图, 如图 1所示, 根据本发明实施例的终端散热系统包括: 热电转 换电路 10、 以及制冷电路 12。 以下对本发明实施例的各个模块进行详细的说明。 热电转换电路 10, 包括由发电热电材料和电容组成的第一回路, 发电热电材料的 不同部位分别固定于终端中的发热源和冷源, 热电材料用于在其不同部位具有温差时 在第一回路中产生电流, 电容用于存储热电材料产生的电流; 其中, 热电转换电路 10 进一步包括: 限流电阻, 与电容并联, 用于控制流经电容的电流大小。 制冷电路 12, 包括由制冷热电材料和电容组成的第二回路, 制冷热电材料固定于 终端中的发热源, 电容用于通过第二回路向制冷热电材料放电, 制冷热电材料在电流 通过时吸收发热源释放的热量。 优选地, 终端散热系统还包括: 双向开关, 连接于热电转换电路 10 和制冷电路 12, 用于在其达到预定温度后, 断开热电转换电路 10, 闭合制冷电路 12, 在其低于预 定温度后, 闭合热电转换电路 10, 断开制冷电路 12, 或者, 在所述电容充电完成后, 断开所述热电转换电路 10, 闭合所述制冷电路 12, 在所述电容放完电量后, 闭合所述 热电转换电路 10, 断开所述制冷电路 12。 其中, 发电热电材料包括: N型半导体热电材料; 制冷热电材料包括: 由 P型半 导体热电材料和 N型半导体热电材料组成的 PN结热电材料, PN结热电材料在通过电 流时,该电流由 N型半导体热电材料流向 P型半导体热电材料。终端中的发热源包括: 终端的中央处理器、 射频、 电池、 和 /或屏幕; 终端中的冷源包括: 能够接触到终端外 部环境的结构件。 以下结合附图, 对本发明实施例的上述技术方案进行详细说明。 在如图 2所示的基于温差电效应半导体手机散热系统中, 包括: 1、 将手机 CPU、 射频、 电池、 屏幕等发热源发出的热量转换为电能的热能转电 能模块 (上述热电转换电路 10)。 具体地, 热电材料具有这样的性质, 如果它不同部位的温度不一样, 电子就会顺 着温差从一端跑到另一端, 由此产生的电流可以作为电源。 P 型半导体的温差电动势 的方向是从低温端指向高温端 (Seebeck系数为负), 相反, N型半导体的温差电动势 的方向是高温端指向低温端 (Seebeck系数为正)。 热能转电能模块的实施电路图如图 3所示, 将热电材料的一端固定在 CPU、 射频模块、 电池、 屏幕背面等发热源, 另外 一端固定在可以接触手机外部环境的结构件边缘。 并且形成回路进行连接。 在回路中 再接入电容, 将热量转换成的电能储存起来。
2、使用热量转换为电能所存储起来的电能进行主动制冷的半导体主动制冷电路模 块 (上述制冷电路 12)。 当有电流通过热电材料组成的回路时, 回产生吸热、 放热现象。 当电流由 N型半 导体流向 P型半导体时, 热电材料吸热。 半导体主动制冷电路模块的实施电路图如图 4所示, 在电容充足电后进行放电, 给制冷的热电材料从 N端向 P端通以直流电, 热 电材料会吸收热量。 热电材料布局在 CPU、 射频模块、 电池、 屏幕等发热源。 本发明实施例的所述一种基于温差电效应半导体手机散热系统工作流程如图 5所 示, 包括以下步骤: 第一步: 使用热电材料组成回路, 热电材料的一端固定在 CPU、射频模块、 电池、 屏幕等发热源, 另外一头固定在手机结构件靠近外部环境的边缘。 第二步: 在回路中接入电容电路。 第三步: 当发热源发出热量后, 会在回路中产生电流, 电流流入电容后储存起来。 第四步: 判断电容的电量是否充满, 如果判断为是, 执行第五步, 否则, 执行第 二少; 第五步: 当电容的电量充满后, 通过温度跳变开关, 断开电容与热能转电能电路 的连接, 电容接入半导体制冷电路进行放电。 第六步: 将 P型和 N型半导体材料组成的 PN结串联起来, 并且构成回路。 第七步: 将 PN结串联起来的半导体回路布局在 CPU、 射频模块、 电池、 屏幕背 面等发热源。 第八步: 将电容的正极连接到半导体回路的 N端, 将电容的负极连接到半导体回 路的 P端。 第九步: 当电容充满电后, 开始放电, 放电的过程中, 由于直流电从 N端流向 P 端, 会吸热, 实现主动制冷。 第十步: 判断电容的电量是否放完, 如果判断为是, 则执行第十一步, 否则, 执 行第九步。 第十一步: 跳变温度开关将电容电路接入热能转电能电路。 综上所述, 借助于本发明实施例的技术方案, 通过温差电效应, 首先将手机产生 的热量转换为电能储存起来, 当电容充满电后会放电,直流电通过制冷电路后会吸热, 实现主动制冷的目的, 解决了现有技术中手机散热量大引起的问题, 能够通过能源回 收利用的方式, 实现了终端散热系统的主动制冷。 方法实施例 根据本发明的实施例, 提供了一种终端散热方法, 用于上述终端散热系统, 图 6 是本发明实施例的终端散热方法的流程图, 如图 6所示, 根据本发明实施例的终端散 热方法包括如下处理: 步骤 601, 热电转换电路中的发电热电材料在其不同部位具有温差时产生电流, 其中, 发电热电材料的不同部位分别固定于终端中的发热源和冷源; 步骤 602, 热电转换电路中的电容将电流进行存储, 并向制冷电路中的制冷热电 材料进行放电; 步骤 603, 制冷电路中的制冷热电材料在电流通过时进行吸热, 其中, 制冷热电 材料固定于终端中的发热源。 优选地, 上述方法进一步包括: 在连接于热电转换电路和制冷电路的双向开关达 到预定温度后, 断开热电转换电路, 闭合制冷电路, 在双向开关低于预定温度后, 闭 合热电转换电路, 断开制冷电路, 或者, 在电容充电完成后, 断开热电转换电路, 闭 合制冷电路, 在电容放完电量后, 闭合热电转换电路, 断开制冷电路。 才外, 还可以通过与电容并联的限流电阻控制流经电容的电流大小。 其中, 上述发电热电材料包括: N型半导体热电材料; 制冷热电材料包括: 由 P 型半导体热电材料和 N型半导体热电材料组成的 PN结热电材料, PN结热电材料在通 过电流时, 该电流由 N型半导体热电材料流向 P型半导体热电材料。 终端中的发热源 包括: 终端的中央处理器、 射频、 电池、 和 /或屏幕; 终端中的冷源包括: 能够接触到 终端外部环境的结构件。 以下对本发明实施例的上述技术方案进行详细说明。 第一步, 本发明实施例首先选用热能转换为电能的热电材料, 热电材料必须具备 热电转换效率高、 转换灵敏、 体积小等特征。 本实施例以半导体为例, 选用 N型半导 体热电材料, 让热电材料构成回路, N型半导体的电流会从热源流向冷源。 将回路的 一端固定在 CPU、 射频模块、 电池、 屏幕背面等发热源, 回路的另外一端固定在结构 件靠近外部环境边缘的冷源端。 第二步: 在 N型半导体回路中接入电阻和电容电路, 电阻和电容并联, 用来将热 量转换的电能储存在电容里。 本发明实施例中选用的电容是超级电容。 第三步: 当发热源发出热量后, 由于塞贝克效应, 会在回路中产生电流, 在 N型 半导体热电材料中, 电流会从发热源流向冷源, 当电流流经电容电路后, 电荷会在电 容中储存起来。 第四步: 当电容的电量充满后, 通过跳变开关, 断开电容与热能转电能电路的连 接, 电容接入半导体制冷电路进行放电。 第五步: 开始构建半导体制冷电路, 首先选择帕尔贴效应敏感的 P型和 N型半导 体。 将 P型和 N型半导体材料组成的 PN结串联起来, 并且构成回路。 第六步: 将 PN结串联起来的半导体回路布局在 CPU、 射频模块、 电池、 屏幕背 面等发热源。 当制冷电路进行制冷的时候, 会将发热源的热量吸取。 第七步: 将超级电容的正极开关连接到半导体回路的 N端, 将电容的负极开关连 接到半导体回路的 P端。 第八步: 当电容充满电后, 跳变开关将电容从热能转电能电路中断开, 接入半导 体制冷电路。 电容接入半导体制冷电路后开始放电, 放电的过程中, 直流电从 N端流 向 P端, 由于帕尔贴效应效应, PN节会吸热, 实现主动制冷。 终端在发热的过程中, 会重复第一步到第八步, 实现热能转换为电能, 再通过电 能实现主动制冷。 综上所述, 借助于本发明实施例的技术方案, 通过温差电效应, 首先将手机产生 的热量转换为电能储存起来, 当电容充满电后会放电,直流电通过制冷电路后会吸热, 实现主动制冷的目的, 解决了现有技术中手机散热量大引起的问题, 能够通过能源回 收利用的方式, 实现了终端散热系统的主动制冷。 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精 神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的 范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书 、 一种终端散热系统, 包括:
热电转换电路, 包括由发电热电材料和电容组成的第一回路, 所述发电热 电材料的不同部位分别固定于终端中的发热源和冷源, 所述热电材料用于在其 不同部位具有温差时在所述第一回路中产生电流, 所述电容用于存储所述热电 材料产生的电流;
制冷电路, 包括由制冷热电材料和所述电容组成的第二回路, 所述制冷热 电材料固定于所述终端中的发热源, 所述电容用于通过所述第二回路向所述制 冷热电材料放电,所述制冷热电材料在电流通过时吸收所述发热源释放的热量。 、 如权利要求 1所述的终端散热系统, 其中, 所述终端散热系统还包括: 双向开 关, 连接于所述热电转换电路和所述制冷电路, 用于在其达到预定温度后, 断 开所述热电转换电路, 闭合所述制冷电路, 在其低于所述预定温度后, 闭合所 述热电转换电路, 断开所述制冷电路, 或者, 在所述电容充电完成后, 断开所 述热电转换电路, 闭合所述制冷电路, 在所述电容放完电量后, 闭合所述热电 转换电路, 断开所述制冷电路。 、 如权利要求 1所述的终端散热系统, 其中, 所述热电转换电路进一步包括: 限 流电阻, 与所述电容并联, 用于控制流经所述电容的电流大小。 、 如权利要求 1所述的终端散热系统, 其中, 所述发电热电材料包括: N型半导 体热电材料; 所述制冷热电材料包括: 由 P型半导体热电材料和 N型半导体热 电材料组成的 PN结热电材料,所述 PN结热电材料在通过电流时,该电流由 N 型半导体热电材料流向 P型半导体热电材料。 、 如权利要求 1所述的终端散热系统, 其中, 所述终端中的发热源包括: 终端的 中央处理器、 射频、 电池、 和 /或屏幕; 所述终端中的冷源包括: 能够接触到终 端外部环境的结构件。 、 一种终端散热方法, 基于权利要求 1至 5中任一项所述的终端散热系统, 所述 方法包括:
热电转换电路中的发电热电材料在其不同部位具有温差时产生电流,其中, 所述发电热电材料的不同部位分别固定于终端中的发热源和冷源; 所述热电转换电路中的电容将所述电流进行存储, 并向制冷电路中的制冷 热电材料进行放电;
所述制冷电路中的所述制冷热电材料在电流通过时进行吸热, 其中, 所述 制冷热电材料固定于所述终端中的发热源。 、 如权利要求 6所述的方法, 其中, 所述方法进一步包括: 在连接于所述热电转换电路和所述制冷电路的双向开关达到预定温度后, 断开所述热电转换电路, 闭合所述制冷电路, 在所述双向开关低于所述预定温 度后, 闭合所述热电转换电路, 断开所述制冷电路, 或者, 在所述电容充电完 成后, 断开所述热电转换电路, 闭合所述制冷电路, 在所述电容放完电量后, 闭合所述热电转换电路, 断开所述制冷电路。 、 如权利要求 6所述的方法, 其中, 所述方法进一步包括:
通过与所述电容并联的限流电阻控制流经所述电容的电流大小。 、 如权利要求 6所述的方法, 其中, 所述发电热电材料包括: N型半导体热电材 料; 所述制冷热电材料包括: 由 P型半导体热电材料和 N型半导体热电材料组 成的 PN结热电材料, 所述 PN结热电材料在通过电流时, 该电流由 N型半导 体热电材料流向 P型半导体热电材料。 0、 如权利要求 6所述的方法, 其中, 所述终端中的发热源包括: 终端的中央处理 器、 射频、 电池、 和 /或屏幕; 所述终端中的冷源包括: 能够接触到终端外部环 境的结构件。
PCT/CN2014/077717 2013-12-13 2014-05-16 终端散热系统及方法 WO2014180368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310684252.6A CN104717871A (zh) 2013-12-13 2013-12-13 终端散热系统及方法
CN201310684252.6 2013-12-13

Publications (1)

Publication Number Publication Date
WO2014180368A1 true WO2014180368A1 (zh) 2014-11-13

Family

ID=51866750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077717 WO2014180368A1 (zh) 2013-12-13 2014-05-16 终端散热系统及方法

Country Status (2)

Country Link
CN (1) CN104717871A (zh)
WO (1) WO2014180368A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135110B2 (en) * 2015-12-14 2018-11-20 Ford Global Technologies, Llc Vehicle antenna assembly with cooling
CN107807513A (zh) * 2017-11-20 2018-03-16 依波精品(深圳)有限公司 可自发充电的智能手表
CN110736266A (zh) * 2019-09-23 2020-01-31 三一重机有限公司 空调系统及挖掘机
CN112333978B (zh) * 2020-10-19 2023-06-06 Oppo广东移动通信有限公司 散热组件及电子设备、散热控制方法
CN112255905A (zh) * 2020-10-22 2021-01-22 维沃移动通信有限公司 穿戴设备、控制方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159310A (ja) * 2005-12-07 2007-06-21 Univ Kanagawa 電力供給装置
CN102130076A (zh) * 2010-12-25 2011-07-20 紫光股份有限公司 一种热电式计算机芯片散热器
CN103078559A (zh) * 2013-01-09 2013-05-01 北京小米科技有限责任公司 一种热电转换方法及终端
CN103311196A (zh) * 2013-06-04 2013-09-18 江苏大学 基于热电制冷器的高密度集成微纳光电子芯片散热装置
CN103430442A (zh) * 2011-03-17 2013-12-04 富士胶片株式会社 热电发电装置和便携式电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452466C (zh) * 2003-09-12 2009-01-14 密歇根州州立大学托管委员会 热电材料及其制备方法、热电元件以及从热能生成电流的方法
CN201260290Y (zh) * 2008-09-27 2009-06-17 希姆通信息技术(上海)有限公司 用于手持移动设备的散热装置
CN201654576U (zh) * 2009-10-24 2010-11-24 佛山市顺德区汉达精密电子科技有限公司 电子装置的控温系统
CN203225684U (zh) * 2013-04-24 2013-10-02 深圳市金立通信设备有限公司 一种移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159310A (ja) * 2005-12-07 2007-06-21 Univ Kanagawa 電力供給装置
CN102130076A (zh) * 2010-12-25 2011-07-20 紫光股份有限公司 一种热电式计算机芯片散热器
CN103430442A (zh) * 2011-03-17 2013-12-04 富士胶片株式会社 热电发电装置和便携式电子设备
CN103078559A (zh) * 2013-01-09 2013-05-01 北京小米科技有限责任公司 一种热电转换方法及终端
CN103311196A (zh) * 2013-06-04 2013-09-18 江苏大学 基于热电制冷器的高密度集成微纳光电子芯片散热装置

Also Published As

Publication number Publication date
CN104717871A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
Atouei et al. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials
WO2014180368A1 (zh) 终端散热系统及方法
CN201260290Y (zh) 用于手持移动设备的散热装置
CN203934244U (zh) 电子设备
Huang et al. A thermoelectric generator using loop heat pipe and design match for maximum-power generation
US20130174580A1 (en) Household System with Multiple Peltier Systems
Tuoi et al. Heat storage thermoelectric generator as an electrical power source for wireless Iot sensing systems
CN104423510A (zh) 一种可节省电池电量的笔记本电脑散热装置
WO2015176353A1 (zh) 一种制冷电路和终端及终端制冷方法
Abdal-Kadhim et al. Application of thermal energy harvesting in powering WSN node with event-priority-driven dissemination algorithm for IOT applications
Arjun et al. Design and implementation of peltier based solar powered portable refrigeration unit
CN109545950A (zh) 热电散热器件及其散热系统
Hameed et al. Thermoelectric cooler performance enhancement using thermoelectric generators and their use as a single model to improve the performance of thermal battery management systems for electric vehicles
CN108874082A (zh) 一种计算机机箱内部废热回收装置
CN104602484B (zh) 便携式设备及其散热装置
CN215419617U (zh) 一种将手机热能转化为电能的电路结构及手机
TW200937690A (en) Thermoelectric power generator and its quick energy-storage system
Rao et al. Thermal performance of battery thermal management system using composite matrix coupled with mini‐channel
CN105101757A (zh) 一种智能终端散热方法及系统
KR20110073117A (ko) 비접촉 자기 유도 충전 방식 전기자동차의 배터리팩 냉각과 예열 장치 및, 이를 이용한 배터리팩 냉각, 예열 그리고 폐열회수 발전방법
CN105356570A (zh) 一种移动终端自充电方法及移动终端
CN105306627A (zh) 利用手机自热充电的手机壳
CN217590349U (zh) 一种电子设备
CN206353812U (zh) 一种可调温手机壳
CN110581113A (zh) 中央处理器组件及其散热控制方法、电子设备、手机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794113

Country of ref document: EP

Kind code of ref document: A1