CN105101757A - 一种智能终端散热方法及系统 - Google Patents

一种智能终端散热方法及系统 Download PDF

Info

Publication number
CN105101757A
CN105101757A CN201510579170.4A CN201510579170A CN105101757A CN 105101757 A CN105101757 A CN 105101757A CN 201510579170 A CN201510579170 A CN 201510579170A CN 105101757 A CN105101757 A CN 105101757A
Authority
CN
China
Prior art keywords
intelligent terminal
semiconductor thermoelectric
temperature side
charging module
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510579170.4A
Other languages
English (en)
Inventor
方京城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Feixun Data Communication Technology Co Ltd
Original Assignee
Shanghai Feixun Data Communication Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Feixun Data Communication Technology Co Ltd filed Critical Shanghai Feixun Data Communication Technology Co Ltd
Priority to CN201510579170.4A priority Critical patent/CN105101757A/zh
Publication of CN105101757A publication Critical patent/CN105101757A/zh
Pending legal-status Critical Current

Links

Abstract

本发明提供一种智能终端散热方法及系统,所述智能终端散热方法包括:在智能终端的主板的发热器件上连接一个温差半导体,并通过所述温差半导体的高温侧与低温侧的温度差产生电能;将所述温差半导体产生的电能通过所述智能终端的充电模块为所述智能终端的电池充电。其中,在所述温差半导体和所述智能终端的充电模块之间设置一个用于使所述温差半导体输出的电压符合所述充电模块的充电电压的升压电路。本发明可以将所述智能终端发热产生的热量转化成电能为所述智能终端充电,使热量可以循环利用,既对智能终端产生的热量进行了散热,也减少了智能终端的功耗,而且本发明简单高效,具有较强的通用性和实用性。

Description

一种智能终端散热方法及系统
技术领域
本发明涉及智能终端技术领域,特别是涉及智能终端的散热技术领域,具体为一种智能终端散热方法及系统。
背景技术
随着行业的发展,手机将更智能,配置更高,运算速度更快,CPU主频将越来越高。对于多功能,多任务的智能手机,如果长时间运行大型软件或游戏,CPU,LCM等器件的温度会变高,性能会急剧降低,与所有的电子类器件一样,只有在合适的温度范围内,才能确保器件的工作正常和持久。所以,散热一方面是为了保证这些器件都不被烧坏,另一方面是保证他们都能工作的相当良好。同时,射频通信器件因为要发射和接收信号,同样也是会随着有效信号的发射和接收而产生大量的热量,当温度过高,手机就会启动自我保护机制,自动断电,这样也会影响手机的正常使用。目前的智慧手机内部集成度较高,整体的主板布局非常拥挤,中央处理器主频较高,荧幕较大,主板散热过大.发热大是所有手机需要解决的问题。新一代的4G通信LTE技术(LongTermEvolution-长期演进技术的缩写),将会大大增强射频的发射和接受数据的能力,LTE估计最高下载速率100Mbps与上传50Mbps以上,数据在手机内部越来越快速地处理的同时,也对即将出现的智能手机的发热问题提出了新的挑战。手机屏幕越来越大,屏幕耗电越来越大,第四代网络的使用,手机整体耗电越来越大,但由于电池技术的瓶颈,功耗成了手机公司需要解决的方法。
现有技术是通过石墨或者其他导电材料料将手机的热量导出到手机外面,导热效率慢,手机在频繁使用时用户会感受到非常烫且手机耗电也会比较大。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种智能终端散热方法及系统,用于解决现有技术中手机散热过程中导热效率慢的问题。
为实现上述目的及其他相关目的,本发明提供一种智能终端散热方法,所述智能终端散热方法包括:在智能终端的主板的发热器件上连接一个温差半导体,并通过所述温差半导体的高温侧与低温侧的温度差产生电能;将所述温差半导体产生的电能通过所述智能终端的充电模块为所述智能终端的电池充电。
优选地,所述智能终端散热方法还包括:在所述温差半导体和所述智能终端的充电模块之间设置一个用于使所述温差半导体输出的电压符合所述充电模块的充电电压的升压电路。
优选地,所述温差半导体的高温侧与所述发热器件贴合,所述温差半导体的低温侧贴近所述智能终端的外壳或置于所述智能终端外。
优选地,所述温差半导体由一个P型半导体和一个N型半导体串联构成。
优选地,所述温差半导体的表面形状和表面大小与所述发热器件的表面形状和表面大小相配。
为实现上述目的,本发明还提供一种智能终端散热系统,所述智能终端散热系统包括:温差半导体,一端与智能终端的主板的发热器件相连,另一端与所述智能终端的充电模块相连,通过高温侧与低温侧的温度差产生电能并将产生的电能通过所述智能终端的充电模块为所述智能终端的电池充电。
优选地,所述智能终端散热系统还包括:升压电路,连接于所述温差半导体和所述智能终端的充电模块之间,用于使所述温差半导体输出的电压符合所述充电模块的充电电压。
优选地,所述温差半导体的高温侧与所述发热器件贴合,所述温差半导体的低温侧贴近所述智能终端的外壳或置于所述智能终端外。
优选地,所述温差半导体由一个P型半导体和一个N型半导体串联构成。
优选地,所述温差半导体的表面形状和表面大小与所述发热器件的表面形状和表面大小相配。
如上所述,本发明的一种智能终端散热方法及系统,具有以下有益效果:
本发明通过在智能终端的主板的发热器件上连接一个温差半导体并通过所述温差半导体的高温侧与低温侧的温度差产生电能,然后将所述温差半导体产生的电能通过智能终端的充电模块为所述智能终端的电池充电,可以将所述智能终端发热产生的热量进行循环利用,既对智能终端产生的热量进行了散热,也减少了智能终端的功耗,而且本发明简单高效,具有较强的通用性和实用性。
附图说明
图1显示为本发明的智能终端散热方法的流程示意图。
图2显示为本发明的智能终端散热系统的结构示意图。
元件标号说明
1智能终端散热系统
11温差半导体
12升压电路
2充电模块
3电池
S11~S12步骤
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
本实施例的目的在于提供一种智能终端散热方法及系统,用于解决现有技术中手机散热过程中导热效率慢的问题。以下将详细阐述本实施例的一种智能终端散热方法及系统的原理及实施方式,使本领域技术人员不需要创造性劳动即可理解本实施例的一种智能终端散热方法及系统。
本实施例提供一种智能终端散热方法及系统,利用半导体材料的温差发电,可以收集智能终端的热能,做到电能回收,一方面减少智能终端发热,一方面减少智能终端能耗。在此,所述智能终端包括一种能够按照事先设定或存储的指令,自动进行数值计算和信息处理,而且具有多媒体影音功能的电子设备,其包括但不限于手机、电脑、触屏终端等。
具体地,如图1所示,本实施例提供一种智能终端散热方法,所述智能终端散热方法包括以下步骤。
步骤S11,在智能终端的主板的发热器件上连接一个温差半导体,并通过所述温差半导体的高温侧与低温侧的温度差产生电能。
本实施例中的散热方法利用塞贝克效应的原理进行温差发电。塞贝克(seebeck)效应通过温差半导体发电回收热能并发电。温差发电原理如下:Seebeck效应中温差半导体发电是一种新型的发电方式,即利用塞贝克(seebeck)效应将热能直接转化为电能,将P型和N型结合的半导体原件组成的器件(热电材料)的一侧维持在低温,另一侧维持在高温,这样器件高温侧就会向低温侧传导热能并产生热流,即热能从高温侧流入器件内,通过器件将热能从低温侧排出时,流入器件的一部份热能不放热并在器件内变成电能,输出直流电压和电流。通过连接多个这样的器件便可获得较大的电压。热电材料是一种通过固体中的载流子运动实现热能和电能之间直接转换的功能材料。热电材料器件的基本单元由一对P型和N型热电材料串联构成,当P-N对两端温度不同时,将在回路产生电流,从而实现温差发电。
由塞贝克(seebeck)效应可知,两种不同导体组成的回路,当两接头有温差时,回路中就会产生电流,I=U/R=α(Th-Tc)/R,通过上面的公式可以看出:通过加大温差(Th-Tc)的值可以增加回路的电流。
具体地,在本实施例中,所述温差半导体由一个P型半导体和一个N型半导体串联构成,所述温差半导体的高温侧(P型半导体)与所述发热器件贴合,所述温差半导体的低温侧(N型半导体)贴近所述智能终端的外壳或置于所述智能终端外。即:所述温差半导体的P型半导体与所述发热器件贴合,所述温差半导体的N型半导体贴近所述智能终端的外壳或置于所述智能终端外。
也就是说,将智能终端的主板和后盖之间的空间局部或者整体加入一个P-N的温差半导体,半导体的高温侧靠近主板上主要发热的元器件(中央处理器,电源模块,功率放大器等),低温侧为后盖或者直接接触空气。例如,智能终端内部主板能接近100度,外界一般室内常温,智能终端在绝大部分时间内部温度比外部温度都要高。
所述温差半导体的表面形状和表面大小与所述发热器件的表面形状和表面大小相配。应该保证,所述温差半导体覆盖的区域已初步覆盖到所述智能终端发热量较大的区域。另外可以根据发热区域不同确定所述温差半导体的大小和形状。
步骤S12,将所述温差半导体产生的电能通过所述智能终端的充电模块为所述智能终端的电池充电。这样就可以通过温差充电将所述智能终端内主板散发的热量部份回收为电能,为所述智能终端散热的同时,可以继续为所述智能终端充电。
此外,在本实施例中,所述智能终端散热方法还包括:在所述温差半导体和所述智能终端的充电模块之间设置一个用于使所述温差半导体输出的电压符合所述充电模块的充电电压的升压电路。所述升压电路的具体电路结构可采用现有技术中升压电路的电路结构,只要可以实现本实施例中升压电路的功能即可,在此不再详述。
因为温差半导体的输出电压大部份情况下小于电池电压,故将输出电压应该通过升压电路升到充电电压,一般为5V左右,具体可以根据充电模块标准更改升压电路的电压,以保证在温差半导体产生的电流能给所述智能终端的电池充电,将通过升压电路升压后的所述温差半导体的电压输出端通过所述智能终端内的充电模块给电池充电。
具体地,所述温差半导体的P型半导体(半导体P结)与升压电路相连,所述温差半导体的N型半导体(半导体N结)与所述智能终端的电池连接,所述升压电路和所述电池分别与所述智能终端的充电模块相连。这样,可以将所述智能终端发热产生的热量进行循环利用,既对智能终端产生的热量进行了散热,也减少了智能终端的功耗。
为实现本实施例中上述的智能终端散热方法,本实施例还提供一种智能终端散热系统,具体地,如图2所示,本实施例提供一种智能终端散热系统1,所述智能终端散热系统1包括:温差半导体11和升压电路12。
具体地,在本实施例中,所述温差半导体11一端与智能终端的主板的发热器件相连,另一端与所述智能终端的充电模块2相连,通过高温侧与低温侧的温度差产生电能并将产生的电能通过所述智能终端的充电模块2为所述智能终端的电池3充电。这样就可以通过温差充电将所述智能终端内主板散发的热量部份回收为电能,为所述智能终端散热的同时,可以继续为所述智能终端充电。
本实施例中的散热系统中利用塞贝克效应的原理进行温差发电。塞贝克(seebeck)效应通过温差半导体11发电回收热能并发电。温差发电原理如下:Seebeck效应中温差半导体11发电是一种新型的发电方式,即利用塞贝克(seebeck)效应将热能直接转化为电能,将P型和N型结合的半导体原件组成的器件(热电材料)的一侧维持在低温,另一侧维持在高温,这样器件高温侧就会向低温侧传导热能并产生热流,即热能从高温侧流入器件内,通过器件将热能从低温侧排出时,流入器件的一部份热能不放热并在器件内变成电能,输出直流电压和电流。通过连接多个这样的器件便可获得较大的电压。热电材料是一种通过固体中的载流子运动实现热能和电能之间直接转换的功能材料。热电材料器件的基本单元由一对P型和N型热电材料串联构成,当P-N对两端温度不同时,将在回路产生电流,从而实现温差发电。
由塞贝克(seebeck)效应可知,两种不同导体组成的回路,当两接头有温差时,回路中就会产生电流,I=U/R=α(Th-Tc)/R,通过上面的公式可以看出:通过加大温差(Th-Tc)的值可以增加回路的电流。
具体地,在本实施例中,如图2所示,所述温差半导体11由一个P型半导体和一个N型半导体串联构成,所述温差半导体11的高温侧(P型半导体)与所述发热器件贴合,所述温差半导体11的低温侧(N型半导体)贴近所述智能终端的外壳或置于所述智能终端外。即:所述温差半导体11的P型半导体与所述发热器件贴合,所述温差半导体11的N型半导体贴近所述智能终端的外壳或置于所述智能终端外。
也就是说,将智能终端的主板和后盖之间的空间局部或者整体加入一个P-N的温差半导体11,半导体的高温侧靠近主板上主要发热的元器件(中央处理器,电源模块,功率放大器等),低温侧为后盖或者直接接触空气。例如,智能终端内部主板能接近100度,外界一般室内常温,智能终端在绝大部分时间内部温度比外部温度都要高。
所述温差半导体11的表面形状和表面大小与所述发热器件的表面形状和表面大小相配。应该保证,所述温差半导体11覆盖的区域已初步覆盖到所述智能终端发热量较大的区域。另外可以根据发热区域不同确定所述温差半导体11的大小和形状。
所述升压电路12连接于所述温差半导体11和所述智能终端的充电模块2之间,用于使所述温差半导体11输出的电压符合所述充电模块2的充电电压。所述升压电路12的具体电路结构可采用现有技术中升压电路的电路结构,只要可以实现本实施例中升压电路12的功能即可,在此不再详述。
因为温差半导体11的输出电压大部份情况下小于电池3电压,故将输出电压应该通过升压电路12升到充电电压,一般为5V左右,具体可以根据充电模块2标准更改升压电路12的电压,以保证在温差半导体11产生的电流能给所述智能终端的电池3充电,将通过升压电路12升压后的所述温差半导体11的电压输出端通过所述智能终端内的充电模块2给电池3充电。
具体地,所述温差半导体11的P型半导体(半导体P结)与升压电路12相连,所述温差半导体11的N型半导体(半导体N结)与所述智能终端的电池3连接,所述升压电路12和所述电池3分别与所述智能终端的充电模块2相连。这样,可以将所述智能终端发热产生的热量进行循环利用,既对智能终端产生的热量进行了散热,也减少了智能终端的功耗。
本发明通过在智能终端的主板的发热器件上连接一个温差半导体并通过所述温差半导体的高温侧与低温侧的温度差产生电能,然后将所述温差半导体产生的电能通过智能终端的充电模块为所述智能终端的电池充电,可以将所述智能终端发热产生的热量进行循环利用,既对智能终端产生的热量进行了散热,也减少了智能终端的功耗,而且本发明简单高效,具有较强的通用性和实用性。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种智能终端散热方法,其特征在于:所述智能终端散热方法包括:
在智能终端的主板的发热器件上连接一个温差半导体,并通过所述温差半导体的高温侧与低温侧的温度差产生电能;
将所述温差半导体产生的电能通过所述智能终端的充电模块为所述智能终端的电池充电。
2.根据权利要求1所述的智能终端散热方法,其特征在于:所述智能终端散热方法还包括:在所述温差半导体和所述智能终端的充电模块之间设置一个用于使所述温差半导体输出的电压符合所述充电模块的充电电压的升压电路。
3.根据权利要求1所述的智能终端散热方法,其特征在于:所述温差半导体的高温侧与所述发热器件贴合,所述温差半导体的低温侧贴近所述智能终端的外壳或置于所述智能终端外。
4.根据权利要求1所述的智能终端散热方法,其特征在于:所述温差半导体由一个P型半导体和一个N型半导体串联构成。
5.根据权利要求1所述的智能终端散热方法,其特征在于:所述温差半导体的表面形状和表面大小与所述发热器件的表面形状和表面大小相配。
6.一种智能终端散热系统,其特征在于:所述智能终端散热系统包括:
温差半导体,一端与智能终端的主板的发热器件相连,另一端与所述智能终端的充电模块相连,通过高温侧与低温侧的温度差产生电能并将产生的电能通过所述智能终端的充电模块为所述智能终端的电池充电。
7.根据权利要求6所述的智能终端散热系统,其特征在于:所述智能终端散热系统还包括:
升压电路,连接于所述温差半导体和所述智能终端的充电模块之间,用于使所述温差半导体输出的电压符合所述充电模块的充电电压。
8.根据权利要求6所述的智能终端散热系统,其特征在于:所述温差半导体的高温侧与所述发热器件贴合,所述温差半导体的低温侧贴近所述智能终端的外壳或置于所述智能终端外。
9.根据权利要求6所述的智能终端散热系统,其特征在于:所述温差半导体由一个P型半导体和一个N型半导体串联构成。
10.根据权利要求6所述的智能终端散热系统,其特征在于:所述温差半导体的表面形状和表面大小与所述发热器件的表面形状和表面大小相配。
CN201510579170.4A 2015-09-11 2015-09-11 一种智能终端散热方法及系统 Pending CN105101757A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510579170.4A CN105101757A (zh) 2015-09-11 2015-09-11 一种智能终端散热方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510579170.4A CN105101757A (zh) 2015-09-11 2015-09-11 一种智能终端散热方法及系统

Publications (1)

Publication Number Publication Date
CN105101757A true CN105101757A (zh) 2015-11-25

Family

ID=54580942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510579170.4A Pending CN105101757A (zh) 2015-09-11 2015-09-11 一种智能终端散热方法及系统

Country Status (1)

Country Link
CN (1) CN105101757A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026328A (zh) * 2016-05-27 2016-10-12 广东欧珀移动通信有限公司 一种终端的充电方法、装置及终端
CN107318243A (zh) * 2016-04-26 2017-11-03 中兴通讯股份有限公司 移动终端散热控制方法、装置和移动终端

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201152652Y (zh) * 2008-01-11 2008-11-19 汤益波 太阳能汽车温度调节器
CN201260290Y (zh) * 2008-09-27 2009-06-17 希姆通信息技术(上海)有限公司 用于手持移动设备的散热装置
CN101783631A (zh) * 2010-04-02 2010-07-21 台州弘日光科太阳能科技有限公司 一种温差半导体发电装置
CN201680278U (zh) * 2010-05-14 2010-12-22 吴育林 利用废热发电的灯具
CN201740307U (zh) * 2010-05-07 2011-02-09 蔡顺富 用于车载冷藏箱的快速制冷装置
CN103256581A (zh) * 2013-05-03 2013-08-21 福建工程学院 一种机动车led前大灯散热系统
CN203216617U (zh) * 2012-11-02 2013-09-25 上海电机学院 能量自给型温度监测系统
CN204351215U (zh) * 2014-11-27 2015-05-27 西安品质信息科技有限公司 一种具有温差充电功能的智能手环
CN204364209U (zh) * 2014-12-22 2015-06-03 广西蓝星大华化工有限责任公司 一种头戴式电子降温装置
CN204578406U (zh) * 2015-04-29 2015-08-19 浙江海洋学院 半导体温差发电设备
CN204633642U (zh) * 2015-05-26 2015-09-09 任毅枫 一种半导体发电装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201152652Y (zh) * 2008-01-11 2008-11-19 汤益波 太阳能汽车温度调节器
CN201260290Y (zh) * 2008-09-27 2009-06-17 希姆通信息技术(上海)有限公司 用于手持移动设备的散热装置
CN101783631A (zh) * 2010-04-02 2010-07-21 台州弘日光科太阳能科技有限公司 一种温差半导体发电装置
CN201740307U (zh) * 2010-05-07 2011-02-09 蔡顺富 用于车载冷藏箱的快速制冷装置
CN201680278U (zh) * 2010-05-14 2010-12-22 吴育林 利用废热发电的灯具
CN203216617U (zh) * 2012-11-02 2013-09-25 上海电机学院 能量自给型温度监测系统
CN103256581A (zh) * 2013-05-03 2013-08-21 福建工程学院 一种机动车led前大灯散热系统
CN204351215U (zh) * 2014-11-27 2015-05-27 西安品质信息科技有限公司 一种具有温差充电功能的智能手环
CN204364209U (zh) * 2014-12-22 2015-06-03 广西蓝星大华化工有限责任公司 一种头戴式电子降温装置
CN204578406U (zh) * 2015-04-29 2015-08-19 浙江海洋学院 半导体温差发电设备
CN204633642U (zh) * 2015-05-26 2015-09-09 任毅枫 一种半导体发电装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107318243A (zh) * 2016-04-26 2017-11-03 中兴通讯股份有限公司 移动终端散热控制方法、装置和移动终端
CN107318243B (zh) * 2016-04-26 2020-07-31 南京中兴新软件有限责任公司 移动终端散热控制方法、装置和移动终端
CN106026328A (zh) * 2016-05-27 2016-10-12 广东欧珀移动通信有限公司 一种终端的充电方法、装置及终端

Similar Documents

Publication Publication Date Title
US9509174B2 (en) Device for improving endurance of terminal and terminal thereof
CN104638742B (zh) 可穿戴设备及其热能回收方法
CN203934244U (zh) 电子设备
CN205178617U (zh) 体表温差充电装置和可穿戴设备
CN103853214B (zh) 一种控制温度的电子设备及方法
CN203596971U (zh) 一种具有散热功能的电路板
CN104917273A (zh) 一种可体温充电的智能腕戴装置
CN204633448U (zh) 充电电池
CN104917272A (zh) 佩戴式电子设备
CN107171426A (zh) 一种智能终端的发电装置及具有该发电装置的智能终端
CN105101757A (zh) 一种智能终端散热方法及系统
CN1707935B (zh) 便携式电子设备的电能自给方法及系统
CN104836318A (zh) 基于温差发电的电子设备及其充电方法
CN107464795B (zh) 热电转换装置及电子设备
WO2014180368A1 (zh) 终端散热系统及方法
WO2024001375A1 (zh) 一种能量回收装置及电子设备
CN204013285U (zh) 一种计算机热电转换装置
CN103078559A (zh) 一种热电转换方法及终端
CN206865206U (zh) 一种智能终端的发电装置及具有该发电装置的智能终端
CN204481554U (zh) 手机热能充电装置
CN104883095A (zh) 穿戴设备的热能收集装置
Mouapi et al. Performance evaluation of wireless sensor node powered by RF energy harvesting
CN102437614A (zh) 节能型便携式电子设备及基于该设备实现能量再利用的方法
CN104124900A (zh) 一种计算机热电转换装置
CN206195656U (zh) 手机体温充电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151125