WO2013176140A1 - 高濃度タンパク質溶液の製造方法及び製造装置 - Google Patents

高濃度タンパク質溶液の製造方法及び製造装置 Download PDF

Info

Publication number
WO2013176140A1
WO2013176140A1 PCT/JP2013/064107 JP2013064107W WO2013176140A1 WO 2013176140 A1 WO2013176140 A1 WO 2013176140A1 JP 2013064107 W JP2013064107 W JP 2013064107W WO 2013176140 A1 WO2013176140 A1 WO 2013176140A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
filter
protein solution
ascites
flow rate
Prior art date
Application number
PCT/JP2013/064107
Other languages
English (en)
French (fr)
Inventor
美和子 烏田
博一 阿部
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to JP2014516812A priority Critical patent/JP5873170B2/ja
Priority to CN201380027202.9A priority patent/CN104334201B/zh
Publication of WO2013176140A1 publication Critical patent/WO2013176140A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules

Definitions

  • the present invention relates to a method and an apparatus for producing a high concentration protein solution.
  • the protein in the ascites is used to increase the patient's blood protein concentration.
  • Ascites drained into the ascites is filtered and concentrated with two types of filters using hollow fiber membranes, etc. to obtain a concentrated protein solution, and this is instilled into the patient ascites filtered concentrated re-injection method (for example, (See Patent Documents 1 and 2).
  • the first of the two types of filters is a filter for removing cell components such as cancer cells and blood cell components contained in ascites, and does not allow cell components to pass through, but allows solute components such as moisture and protein to pass through.
  • a membrane having such a pore size is used.
  • the other filter is a concentration filter for dehydrating ascites, which is a dilute protein concentration, and concentrating the protein.
  • a membrane that hardly passes protein components and allows moisture, electrolytes, etc. to pass through is used.
  • a method of concentrating ascites obtained by filtering cell components with a filter with a concentrator is used, and a device that performs these continuously is used.
  • a method of controlling the membrane TMP by using a device to control the flow rate of the membrane and realizing optimal diafiltration.
  • the protein solution to be administered to a patient also has the purpose of increasing the blood protein concentration of the patient after administration, it needs to have a high concentration to some extent. For this reason, it needs to be concentrated to a high concentration ratio.
  • the concentration filter may be clogged with protein and the concentration efficiency may be reduced, so that concentration to the target concentration ratio may not be achieved.
  • it is necessary to go through a very complicated process such as collecting the protein solution in an insufficiently concentrated state and then concentrating it additionally.
  • additional processing time is required, so that the binding time until the protein solution is administered becomes longer, or when the protein is recovered during additional concentration, the protein is lost and the dosage is reduced. There is a disadvantage of doing.
  • patients with ascites can be broadly divided into patients with hepatic ascites that accumulate due to diseases such as cirrhosis and those with cancer ascites that retains cancer such as stomach cancer, ovarian cancer, and colon cancer.
  • this treatment was mostly performed mainly for patients with hepatic ascites, but in recent years, the therapeutic effect of implementing this treatment for patients with cancerous ascites has been recognized.
  • Opportunities for patients with ascites are increasing.
  • cancerous ascites generally tends to have a higher protein concentration than hepatic ascites, the additional concentration step as described above is frequently required.
  • Patent Document 1 discloses a method in which a negative pressure generator is installed downstream of a concentration filter to suppress accumulation of deposits in a method of concentration using a suction device provided on the waste liquid side of the concentration filter.
  • a negative pressure generator is installed downstream of a concentration filter to suppress accumulation of deposits in a method of concentration using a suction device provided on the waste liquid side of the concentration filter.
  • the present invention is a method for concentrating a dilute protein solution such as ascites to obtain a concentrated protein solution in response to the problems of the conventional method described above, without causing a reduction in processing speed and without burden on the operator such as an additional concentration step. It is an object of the present invention to provide a method and an apparatus for producing a high concentration protein solution capable of obtaining a concentrated protein solution having a high protein concentration.
  • the present inventors have found that the clogging is related to the ultrafiltration performance of the concentration filter, and by using a concentration filter having a specific ultrafiltration performance, the decrease in the concentration rate is suppressed.
  • the flow rate through the concentration filter in at least two steps, it was found that the protein can be concentrated to a high magnification in a short time without losing the protein, and the present invention has been completed.
  • the present invention relates to the following [1] to [16].
  • a method for producing a high concentration protein solution comprising:
  • the membrane area of the filter is A
  • the weight of the low-concentration protein solution treated in the first step is V1
  • the protein concentration of the low-concentration protein solution is C
  • the flow rate of the first step is Qb1
  • the first step The method according to [1], wherein when the filtration flow rate in step 1 is Qf1 and the ultrafiltration performance of the filter is F, the process is switched to the second step at a timing satisfying the following (1). 103.7 ⁇ ⁇ 37log (A / V1) + log (Qb1 / V1) + 57log (F) ⁇ log (1 / C) ⁇ log (Qb1 / Qf1) ⁇ 112.6 (1)
  • the sum of the first flow rate and the second flow rate is 100 mL / min or more, and the difference in flow rate between the first flow rate and the second flow rate is at least 20 mL / min or more [1] to [ 5].
  • the second step is started [1]
  • the second step is started. Any one of [1] to [9].
  • the first step the first step of feeding the ascites concentration filter to the ascites concentration filter at a first flow rate, the protein concentration in the solution at the inlet and the outlet of the ascites concentration filter, and monitoring the protein
  • the control is performed so that the second step is performed when the coefficient decreases to at least 0.03 or less.
  • the first step of sending the liquid to the ascites concentration filter at a first flow rate, and monitoring the weight of the low concentration protein solution, a predetermined amount or more from the total amount of the low concentration protein solution is The method according to any one of [1] to [13], wherein control is performed so that the second step is performed when the liquid is fed.
  • the membrane area of the filter is A
  • the weight of the low-concentration protein solution treated in the first step is V1
  • the protein concentration of the low-concentration protein solution is C
  • the flow rate of the first step is Qb1
  • the first step An apparatus for producing a high-concentration protein solution that switches to the second step at a timing that satisfies the following (1), where Qf1 is the filtration flow rate of step 1 and F is the ultrafiltration performance of the filter. 103.7 ⁇ ⁇ 37log (A / V1) + log (Qb1 / V1) + 57log (F) ⁇ log (1 / C) ⁇ log (Qb1 / Qf1) ⁇ 112.6 (1)
  • the processing speed is not reduced due to clogging, and a high protein concentration is obtained without burden on the operator such as an additional concentration step. It becomes possible to provide a manufacturing method and a manufacturing apparatus of a high concentration protein solution that can obtain a concentrated protein solution.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • a low-concentration protein solution that is ascites collected in advance from a patient is stored in the storage container 1.
  • ascites is a low concentration protein solution with a protein concentration of 5 g / dL or less.
  • the protein concentration exceeds 5 g / dL, the time required to form a dense blood layer in the hollow fiber due to the fouling phenomenon is short, so even if the flow rate is relatively high from the beginning, the protein leaks to the filtrate side. Does not occur much, and as a result, the method of the present invention does not need to be applied.
  • the low concentration protein solution in the present embodiment preferably has a protein concentration of 5 g / dL or less, more preferably 3 g / dL or less.
  • the outlet 1 b of the storage container 1 is connected to the first flow path 31 and is connected to the inlet 3 a of the filter 3 for filtration via the first flow path 31.
  • Ascites fluid in the storage container 1 is supplied to the filter 3 for filtration via the first flow path 31.
  • the filter 3 for filtration since the cell component cannot pass through the filtration membrane, the ascites after filtration including the protein from which the cell component has been removed is discharged from the filtrate outlet 3c of the filter 3 for filtration.
  • a third flow path 33 is connected to the outlet 3 b of the filter 3 for filtration, and a part of ascites containing cell components is discharged out of the device 100 through the third flow path 33.
  • the filtrate outlet 3 c is connected to the ascites inlet 4 a of the concentration filter 4 via the second flow path 32, and the post-filtered ascites discharged from the filtrate outlet 3 c is concentrated via the second flow path 32. Introduced into the filter 4.
  • the ascites water after filtration is separated and discharged from the apparatus 100 through the fifth flow path 35 connected to the filtrate outlet 4 c.
  • the liquid discharged from the filtrate outlet 4c is preferably a low concentration protein solution having a protein concentration of 100 mg / dL or less.
  • the pore diameter of the concentration filter 4 is smaller than the pore diameter of the filtration filter 3. Since the protein contained in the ascites after filtration does not pass through the filtration membrane and is retained in the concentration filter 4, the protein concentration in the ascites after filtration is increased by the drainage of the water, and the concentration filter 4 is concentrated as a concentrated protein solution. From the concentrated liquid outlet 4b.
  • the concentrate outlet 4b of the concentration filter 4 is connected to the inlet 2a of the collection container 2 via the fourth channel 34, and the concentrated protein solution discharged from the concentrate outlet 4b passes through the fourth channel 34.
  • the concentrated protein solution recovered here is a high-concentration protein solution having a protein concentration higher than at least ascites in the storage container 1, and preferably has a protein concentration of 7 g / dL or more.
  • the storage container 1 and the recovery container 2 may be anything as long as they can store a liquid, but usually a polyvinyl chloride bag is used from the viewpoint of handling.
  • the size of the container is determined by the amount of ascites stored.
  • the filtration filter 3 is not particularly limited as long as it can separate cell components and moisture, and solute components such as electrolytes and proteins.
  • the structure, shape, and dimensions of the filter are not limited as long as it includes an ascites inflow port that can be connected to the flow path connected to the storage container 1 or the concentration filter 4 and a filtered ascites outlet.
  • the hollow fiber used in the filter 3 for filtration is not particularly limited, and for reasons of easy pore size control during film formation and excellent chemical stability, polyolefins such as polyethylene, polysulfones, regenerated celluloses, Polyvinyl alcohol is preferred. These exemplified hollow fiber materials may contain other materials or may be chemically modified. Usually, a hollow fiber membrane filter having a pore size of 0.2 ⁇ m or less and a protein permeability of 80% or more is used.
  • the filter 3 for filtration is used by the internal pressure filtration method, and ascites filtration is performed.
  • the external pressure filtration method can be used. It can be sealed and filtered by a dead end method, or the third flow path 33 can be opened to be a cross flow method.
  • each of the flow paths 31 to 35 constituting the apparatus of the first embodiment can also be connected to the storage container 1, the recovery container 2, the filter 3 for filtration, and the filter 4 for concentration, there are no limitations on the material and dimensions.
  • a soft tube manufactured from polyvinyl chloride or the like is used as a tube for forming the flow paths 31 to 35.
  • a pump 5 may be installed in the first flow path 31 to send liquid.
  • a roller pump or an infusion pump is generally used.
  • a liquid feed pump may be added also on the second flow path 32 and the third flow path 33.
  • the control unit 14 is installed in the middle of the fourth flow path 34, and the control unit 15 is installed in the middle of the fifth flow path 35.
  • the control unit 14 adjusts the flow rate of the fourth flow path 34, and the control unit 15 adjusts the flow rate of the fifth flow path 35.
  • the control units 14 and 15 can adjust the balance between the amount of the filtrate discharged from the concentration filter 4 and the amount of the concentrated protein solution, and adjust the concentration ratio.
  • the control units 14 and 15 balance the amount of filtrate that is filtered from the concentration filter 4 and discharged from the concentrated solution outlet 4b in the ascites supplied to the concentration filter 4 and the amount of liquid that is directed to the collection container 2. Anything can be used as long as it can be controlled.
  • the control units 14 and 15 may control the flow path resistance by adjusting a flow path resistance such as a roller clamp, and apply a certain negative pressure or positive pressure to each of the flow paths 34 and 35. It may be a device that controls the flow rate, or may be a device that controls the flow rate, such as a roller pump or an infusion pump. As long as the balance between the amount of liquid filtered and discharged from the concentration filter 4 and the amount of liquid directed to the collection container can be controlled, only one of the controllers 14 and 15 may be used.
  • the control device 41 controls the flow rate of ascites in the first flow path 31 (the amount of liquid delivered per unit time) by controlling the driving of the pump 5.
  • the control device 41 is, for example, a computer, and may also serve as an input terminal that allows an enforcer to input information related to desired control.
  • the flow rate of the flow paths 34 and 35 may be controlled by the control device 41, assuming that the control units 14 and 15 are driven by a control signal from the control device 41.
  • the control device 41 controls the flow rate when the numerical value exceeds a certain value, for example, by monitoring the weight of the low concentration protein solution and the protein concentration.
  • the first flow path 31 is connected to the lower side of the filtration filter 3 and the third flow path 33 is connected to the upper side of the filtration filter 3.
  • the effect is obtained.
  • the second flow path 32 may be connected to any position as long as it communicates with the hollow fiber outer chamber portion of the filter 3 for filtration.
  • the ultrafiltration performance of the concentration filter 4 used in this embodiment is 85 mL to 150 mL / min / 200 mmHg. If the ultrafiltration performance is less than this range, the amount of filtrate discharged during concentration is reduced, and a sufficiently concentrated protein solution cannot be obtained. Moreover, if it is 95 mL / min / 200 mmHg or more, there is little possibility of clogging and it is preferable. If it is greater than 150 mL / min / 200 mmHg, the protein leaks into the filtrate, and a sufficient protein concentration cannot be obtained, which is not suitable.
  • the ultrafiltration performance in the present embodiment is defined by the following test.
  • the filtrate outlet of the concentrator is open.
  • the circuit connected to the recovery liquid outlet of the concentrating filter is pressed and adjusted so that the pressure difference (hereinafter also referred to as TMP) applied to the inside and outside of the filter becomes 200 mmHg.
  • TMP the pressure difference
  • a filter using a hollow fiber membrane is used from the viewpoint of concentration efficiency.
  • the hollow fiber membrane here is not particularly limited in its shape and dimensions, and any hollow fiber membrane may be used as long as it has the above ultrafiltration performance.
  • polysulfone is preferable because it is easy to control the pore diameter during film formation and is excellent in chemical stability. Since the polysulfone polymer is an aromatic compound, it is particularly excellent in radiation resistance, is extremely resistant to heat and chemical treatment, and is excellent in safety. Accordingly, various membrane forming conditions can be adopted and radiation sterilization can be performed, which is particularly preferable as a membrane material used in the ascites concentrator.
  • “to system” means not only a homopolymer but also a copolymer with another monomer and a chemically modified analog.
  • the polysulfone-based polymer (hereinafter sometimes referred to as PSf) as used herein is a general term for polymer compounds having a sulfone bond, and is not particularly defined.
  • the repeating unit is represented by the following formula (1 ), Formula (2), formula (3), formula (4), and polysulfone-based polymer represented by formula (5). It may be a modified polymer in which a substituent is introduced into a part of these aromatic rings.
  • Aromatic polysulfone-based polymers represented by the formula (1), formula (2) and formula (3) are preferred from the viewpoint of industrial availability, and among them, polysulfone having a chemical structure represented by formula (1) is preferred. Particularly preferred.
  • This bisphenol-type polysulfone resin is commercially available, for example, from Solvay Advanced Polymers under the trade name “Udel (registered trademark)”, and there are several types depending on the degree of polymerization, but there is no particular limitation.
  • the polysulfone-based hollow fiber membrane in the present embodiment is made hydrophilic by a hydrophilic polymer. This is because the surface of the hollow fiber membrane becomes hydrophobic only with the polysulfone-based polymer, and the protein is easily adsorbed on such a surface, which causes a decrease in the protein recovery performance.
  • the hydrophilic polymer include polyvinyl pyrrolidone (hereinafter sometimes referred to as PVP), polyethylene glycol, polyvinyl alcohol, polypropylene glycol, and the like. Among them, PVP is preferable from the viewpoint of hydrophilization effect and safety. There are several types of PVP depending on the molecular weight and the like.
  • Examples of commercially available products include PVP K-15, 30, 90 (all manufactured by ISP Corporation).
  • the molecular weight (viscosity average molecular weight) of PVP used in this embodiment is 10,000 to 2,000,000, preferably 50,000 to 1,500,000.
  • the content of the hydrophilic polymer in the film is 3 to 20%, preferably 3 to 10% of the total amount of the polymer. When the content is 3% or less, the effect as a hydrophilizing agent is diminished, and when the content exceeds 20%, the viscosity of the film-forming stock solution is excessively increased, which is not preferable for production.
  • the manufacturing method of the hydrophilized polysulfone hollow fiber membrane can utilize a known dry and wet membrane forming technique.
  • a polysulphone polymer and a hydrophilic polymer such as polovinylpyrrolidone are dissolved in a common solvent to prepare a uniform spinning solution.
  • a common solvent when the hydrophilic polymer is polyvinylpyrrolidone, for example, dimethylacetamide (hereinafter referred to as DMAC), dimethylsulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, sulfolane, dioxane, etc. Or a solvent composed of a mixture of two or more of the above solvents.
  • additives such as water may be added to the spinning dope.
  • the hollow inner liquid is for coagulating the spinning dope, and water or a coagulating liquid mainly composed of water can be used.
  • the composition of the hollow inner liquid should be determined according to the performance of the intended hollow fiber membrane, such as the ultrafiltration performance, and cannot be determined in general, but generally the solvent used for the spinning dope
  • a mixed solution of water and water is preferably used. For example, a 0 to 65% by weight DMAC aqueous solution or the like is used as the hollow inner liquid.
  • the spinning stock solution discharged from the spinneret together with the hollow inner liquid travels through the idle running portion, and is introduced and immersed in a coagulation bath mainly composed of water installed at the lower part of the spinneret to complete the coagulation. Thereafter, the solidified hollow fiber is subjected to a washing step and the like, and then wound with a wet hollow fiber membrane winder to obtain a bundle of hollow fiber membranes, and then dried. Alternatively, a hollow fiber bundle may be obtained through a washing process and then drying in a dryer, and the production method is not specified.
  • a well-known method may be used also for the manufacturing method of the filter using a hollow fiber.
  • a hollow fiber membrane bundle is inserted into a cylindrical container having a fluid inlet / outlet port, a potting agent such as polyurethane is injected into both ends of the bundle to form a potting layer, and both ends are sealed. It can be produced by cutting and removing the potting agent, opening the end face of the hollow fiber, and attaching a header having a fluid inlet / outlet.
  • the hollow fiber membrane bundle is filled in the container, a hollow fiber membrane inner chamber and a hollow fiber membrane outer chamber are formed, and has a fluid inlet / outlet leading to the hollow fiber membrane inner chamber and a fluid inlet / outlet leading to the hollow fiber membrane outer chamber.
  • a hollow fiber membrane type concentration filter can be manufactured.
  • the two-stage control of the present embodiment includes the first step of passing the low concentration protein solution through the ascites concentration filter at the first flow rate, and when a predetermined amount or more is sent from the total amount of the low concentration protein solution.
  • the switching from the first flow rate to the second flow rate is preferably performed when at least 1/4 or more of the total amount of the low-concentration protein solution is fed. Furthermore, the sieving coefficient of the protein that has passed through the ascites concentration filter is measured over time, and when an amount of 1/4 or more is fed and the sieving coefficient becomes 0.03 or less, the ascites inflow rate is set to the first rate. It is more preferable to switch from the flow rate to the second flow rate.
  • the protein sieving coefficient can be calculated using, for example, a clinical refractometer (SUR-JE, Cat. No. 2733) manufactured by ATAGO. After dropping one or two drops on the prism surface of the refractometer, closing the daylighting plate, looking through the eyepiece, the position where the blue border line crosses the scale is the protein concentration. The sieve coefficient is calculated by dividing the measured protein concentration of the filtrate by the protein concentration of the raw ascites.
  • the first flow rate is preferably 70 mL / min or less, more preferably 50 mL / min or less. In order to prevent protein leakage, low speed operation is preferable, but from the viewpoint of processing in a short time, 10 mL / min or less is not realistic, and 30 mL / min or more is realistic.
  • the second flow rate is preferably 70 mL / min or less, more preferably 120 mL / min or less. The second flow rate is faster than the first flow rate, preferably 20 mL / min or more, more preferably 30 mL / min or more, and most preferably 40 mL / min or more faster than the first flow rate.
  • both the first and second flow rates are operated at low speed, there is an advantage that protein leakage can be prevented to the utmost limit, but it takes a long time to prepare a concentrated protein solution, and particularly a large amount When ascites is concentrated, it does not match the actual situation in the medical field.
  • a processing speed of about 3 L / h is required, and in order to realize this level of processing speed, the total value of the first flow velocity value and the second flow velocity value is 100 mL / min or more. It is preferable to become.
  • the sum of the first flow velocity value and the second flow velocity value is 100 mL / min or more, and the flow velocity difference between the first flow velocity and the second flow velocity is at least 20 mL / min or more. More preferred.
  • the treatment can be completed in a short time while reducing protein loss due to filtration and concentration treatment.
  • the protein concentration delivered from the filtration side outlet of the ascites concentration filter in an equivalent processing time as compared with the conventional method Can be reduced to about half.
  • the initial processing speed is low, it is possible to suppress the production of fever-causing substances, and the risk of fever after intravenous injection of ascites after concentration to the patient can be reduced.
  • the protein concentration of the concentrated protein solution obtained by the method of this embodiment is 7 g / dL or more. If it is less than this concentration, even if it is administered to a patient, the effect of increasing the blood protein concentration of the patient is low, and the patient tends to accumulate ascites again. Moreover, it is preferable from the said effect that protein concentration shall be 10 g / dL or more.
  • the method of this embodiment makes it possible to concentrate the protein concentration up to about 5 times in a short time without an additional concentration step.
  • the value obtained by dividing the concentrated protein concentration by the initial protein concentration is defined as the protein concentration ratio.
  • the protein concentration ratio after the concentration reaches one fifth or less of the initial protein solution volume.
  • the protein concentration rate per hour is preferably 0.10 times / minute or more, preferably 0.15 times / minute. More preferably.
  • the switching to the second step is preferably performed at the following timing. That is, the filter membrane area is A, the weight of the low-concentration protein solution processed in the first step is V1, the protein concentration of the low-concentration protein solution is C, the flow rate of the first step is Qb1, and the first step
  • the filtration flow rate is Qf1 and the ultrafiltration performance of the filter is F
  • this parameter it is possible to easily control the flow rate.
  • the ascites filtration and concentration apparatus 200 shown in FIG. 2 is configured to send ascites by the drop pressure of the liquid at each component.
  • the drop pressure of the liquid at the inlet 3 a of the filter 3 for filtration is lower than the drop pressure of the liquid at the outlet 1 b of the storage container 1.
  • the liquid drop pressure at the inlet 2 a of the recovery container 2 is lower than the liquid drop pressure at the concentrate outlet 4 b of the concentration filter 4.
  • the liquid drop pressure at the ascites inlet 4 a of the concentration filter 4 is arranged to be lower than the liquid drop pressure at the filtrate outlet 3 c of the filter 3 for filtration.
  • the filter 3 for filtration and the storage container 1 are arranged in a positional relationship such that the vertical position of the inlet 3a is lower than the vertical position of the outlet 1b.
  • the collection container 2 and the concentration filter 4 are arranged in a positional relationship such that the vertical position of the inlet 2a is lower than the vertical position of the concentrate outlet 4b.
  • the concentration filter 4 and the filtration filter 3 are arranged in such a positional relationship that the vertical position of the ascites inlet 4a is lower than the vertical position of the filtrate outlet 3c.
  • the liquid drop pressure at the ascites inlet 4 a of the concentration filter 4 is arranged to be equal to the liquid drop pressure at the filtrate outlet 3 c of the filter 3.
  • the concentration filter 4 and the filtration filter 3 are arranged in a positional relationship such that the vertical position of the ascites inlet 4a is the same height as the vertical position of the filtrate outlet 3c.
  • 3 corresponds to the vertical position relation of each part of the actual ascites filtration concentrator 300 as it is.
  • the same or equivalent components as those of the ascites filtration and concentration apparatus 200 described above are denoted by the same reference numerals, and redundant description is omitted.
  • the concentration filter 4 has a specific range of ultrafiltration performance. Further, by controlling the flow rate through the concentration filter in at least two steps, the protein can be concentrated to a high magnification without loss. Further, since the treatment is completed in a short time, when the high-concentration protein solution obtained by the production method of the present embodiment is administered to the patient, the restraint time is shortened, which is preferable for the patient.
  • the first step in the first step, the first step of sending the solution to the ascites concentration filter at the first flow rate, and the protein concentration in the solution at the inlet and the outlet of the ascites concentration filter are monitored. It is also preferable to perform control so that the second step is performed when the protein sieving coefficient drops to at least 0.03 or less.
  • FIG. 4 is a diagram showing an ascites filtration and concentration device equipped with a refractometer as a device for monitoring the protein concentration in the solution.
  • a refractometer 50a is disposed in front of the inlet 4a of the concentration filter 4
  • a refractometer 50b is disposed on the outlet side of the concentration filter 4, so that the solution in the solution at the inlet 4a and the outlet 4c of the concentration filter 4
  • the protein concentration may be monitored and automatically controlled so that the second step is performed when the protein sieving coefficient drops to at least 0.03 or less.
  • the first step in the first step, the first step of feeding the ascites concentration filter at the first flow rate, the weight of the low concentration protein solution is monitored, and the low concentration protein solution is monitored. It is also preferable to automatically control so that the second step is performed when a predetermined amount or more of the total amount is fed.
  • the predetermined amount is preferably at least 1/4 or more of the total amount of the low-concentration protein solution.
  • FIG. 5 is a view showing an ascites filtration and concentration device equipped with a control device (for weight monitoring).
  • a control device 60 for weight monitoring is installed in the storage container 1 to monitor the weight of the collected low-concentration protein solution that is the collected ascites in the storage container 1. What is necessary is just to control automatically so that a 2nd step may be performed when a predetermined amount or more is liquid-fed from the whole quantity.
  • the control device 60 may be a device that increases the height position of the storage container 1 and thereby increases the flow rate of the pump when the weight of the low concentration protein solution in the storage container 1 decreases by a certain amount. It is also possible to use a scale that is linked to a computer and that controls to increase the flow rate of the pump when the weight of the low concentration protein solution in the storage container 1 is reduced by a certain amount.
  • the test method of ascites concentration performance is shown below.
  • Bovine plasma adjusted to a total protein concentration of 3 g / dL (7 g / dL in Comparative Example 9) was used as simulated ascites (raw ascites), and 3 L was prepared. Since bovine plasma with no cellular components is used as simulated ascites, this simulated ascites can be regarded as having passed through a filter. And the filter 3 for filtration was implemented by the method which abbreviate
  • the test apparatus 400 has a structure in which the first flow path 31 and the second flow path 32 are directly connected to the concentration filter 54 without using the filter 3 for filtration in the apparatus 100 shown in FIG.
  • Polyvinyl chloride bags were used for the storage container 1 and the collection container 2
  • polyvinyl chloride tubes were used for the respective flow paths
  • roller pumps were used for the pump 5
  • roller clamps were used as the control unit 15.
  • the control of the inflow rate to the simulated ascites concentration filter 54 was performed by adjusting the pump 5.
  • ascites inflow rate was controlled to 30 to 70 mL / min until at least 1/4 of the low concentration protein solution stored in the storage container 1 was processed.
  • the ascites inflow rate was adjusted to a flow rate of 70 to 120 mL / min, and simulated ascites was introduced into the concentration filter 54.
  • the pump 5 is turned on 30-minutes per minute.
  • simulated ascites was introduced into the concentration filter 54.
  • the amount of liquid stored in the storage container 1 was measured by the gravimetric method, and if the liquid volume was 2.25 L or less, the pump 5 was adjusted to 50 to 120 mL / min per minute.
  • the concentration target for example, when the simulated ascites protein concentration is 3 g / dL, in order to obtain a protein concentration of about 15 g / dL as a concentrated protein solution, the protein concentration of the concentrated protein solution is 5 times the protein concentration of the liquid to be treated.
  • the goal was to concentrate to a degree.
  • the amount of the concentrated protein solution was adjusted to be 1/5 or less of the amount of the liquid to be treated.
  • the flow rate of the waste liquid discharged from the filtrate outlet 4 c of the concentration filter 54 and the amount of inflow into the collection container 2 installed above the concentration filter 54 are compressed by the flow path 35 of the roller clamp 15. While adjusting according to the degree, the simulated ascites was concentrated.
  • the roller pump is stopped and the amount of liquid collected in the collection container 2 is measured by a gravimetric method, and the amount of liquid is 1/5 or less of the liquid to be treated. If it has reached, the process is terminated here. On the other hand, if the amount of liquid did not reach 1/5 or less of the liquid to be treated, the circuit and the roller pump were rearranged, and the collection liquid in the collection container 2 was additionally concentrated. The additional concentrated amount was calculated based on the amount of remaining waste liquid required for the amount of the concentrated protein solution to reach 1/5 or less of the liquid to be treated.
  • Each filter was evaluated based on whether additional concentration was necessary, the time required for the concentration process to reach the target (within 60 minutes), the protein concentration of the collected concentrated protein solution (15.0 g / dL or more) and the discharge.
  • the protein concentration of the filtrate (waste liquid) (0.1 g / dL or less) was used as an index.
  • Example 1 18 parts by weight of a polysulfone resin (Solvay, P-1700), 5 parts by weight of polyvinylpyrrolidone (hereinafter also referred to as PVP) (manufactured by Nippon Shokubai, K-85N), N, N-dimethylacetamide (hereinafter also referred to as DMAC) A uniform film-forming stock solution consisting of 77 parts by weight was prepared. A 40% by weight aqueous solution of N, N-dimethylacetamide was extruded from the double nozzle simultaneously with the hollow inner solution, passed through a hood attached to block it from the outside, and coagulated with 50 ° C. water provided 30 cm below.
  • PVP polyvinylpyrrolidone
  • DMAC N, N-dimethylacetamide
  • the resulting hollow fiber membrane was treated with a 20% by weight aqueous glycerin solution and then dried at 75 ° C.
  • a hollow fiber membrane bundle was adjusted so as to have a membrane area of 1.5 m 2 , loaded into a cylindrical container, and both ends were potted with a polyurethane resin to prepare a polysulfone hollow fiber membrane filter.
  • the ultrafiltration performance of this filter was 107 mL / min / 200 mmHg.
  • This filter was used as the above-described concentration filter 54, and ascites concentration operation was performed at an inflow rate of 30 mL / min until the time of 1 ⁇ 4 volume processing of pseudo ascites, and thereafter, 70 mL / min.
  • Example 2 A polysulfone concentration filter was produced in the same manner as in Example 1 except that the membrane area was 1.1 m 2 .
  • the ultrafiltration performance of this filter was 88 mL / min / 200 mmHg.
  • ascites concentration was performed at an inflow rate of 30 mL / min during the period up to 1 ⁇ 4 volume processing of simulated ascites, and thereafter, 70 mL / min.
  • the concentration rate could be doubled or more, the concentration time was 57 minutes, and the protein concentration in the filtrate was 0.035 g / dL.
  • Example 3 A polysulfone concentration filter was produced in the same manner as in Example 1 except that the membrane area was 2.1 m 2 .
  • the ultrafiltration performance of this filter was 134 mL / min / 200 mmHg.
  • ascites concentration was performed at an inflow rate of 30 mL / min during the period up to 1 ⁇ 4 volume processing of simulated ascites, and thereafter, 70 mL / min.
  • the concentration rate could be doubled or more, the concentration time was 57 minutes, and the protein concentration in the filtrate was 0.037 g / dL.
  • Example 4 A polysulfone concentration filter was produced in the same manner as in Example 1. The ultrafiltration performance of this filter was 107 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 50 mL / min during the period up to 1 ⁇ 4 volume processing of the simulated ascites, and thereafter, 100 mL / min. The concentration rate could be doubled or more, the concentration time was 37.5 minutes, and the protein concentration in the filtrate was 0.061 g / dL.
  • Example 5 In the same manner as in Example 2, a polysulfone concentration filter was produced. The ultrafiltration performance of this filter was 88 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 50 mL / min during the period up to 1 ⁇ 4 volume processing of the simulated ascites, and thereafter, 100 mL / min. The concentration rate could be doubled or more, the concentration time was 37.5 minutes, and the protein concentration in the filtrate was 0.060 g / dL.
  • Example 6 A filter for polysulfone concentration was produced in the same manner as in Example 3. The ultrafiltration performance of this filter was 134 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 50 mL / min during the period up to 1 ⁇ 4 volume processing of the simulated ascites, and thereafter, 100 mL / min. The concentration rate could be doubled or more, the concentration time was 37.5 minutes, and the protein concentration in the filtrate was 0.065 g / dL.
  • Example 7 A polysulfone concentration filter was produced in the same manner as in Example 1. The ultrafiltration performance of this filter was 107 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 70 mL / min until the time of 1/4 volume treatment of simulated ascites, and thereafter, 120 mL / min. The concentration rate could be doubled or more, the concentration time was 29.5 minutes, and the protein concentration in the filtrate was 0.085 g / dL.
  • Example 8 In the same manner as in Example 2, a polysulfone concentration filter was produced. The ultrafiltration performance of this filter was 88 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 70 mL / min until the time of 1/4 volume treatment of simulated ascites, and thereafter, 120 mL / min. The concentration rate could be doubled or more, the concentration time was 29.5 minutes, and the protein concentration in the filtrate was 0.082 g / dL.
  • Example 9 A filter for polysulfone concentration was produced in the same manner as in Example 3. The ultrafiltration performance of this filter was 134 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 70 mL / min until the time of 1/4 volume treatment of simulated ascites, and thereafter, 120 mL / min. The concentration rate could be doubled or more, the concentration time was 29.5 minutes, and the protein concentration in the filtrate was 0.088 g / dL.
  • Example 10 A polysulfone concentration filter was produced in the same manner as in Example 1. The ultrafiltration performance of this filter was 150 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 70 mL / min until the time of 1/4 volume treatment of simulated ascites, and thereafter, 120 mL / min. The concentration rate could be doubled or more, the concentration time was 29.5 minutes, and the protein concentration in the filtrate was 0.083 g / dL.
  • Example 11 A polysulfone concentration filter was produced in the same manner as in Example 1. The ultrafiltration performance of this filter was 85 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 50 mL / min during the period up to 1 ⁇ 4 volume processing of the simulated ascites, and thereafter, 100 mL / min. The concentration rate could be doubled or more, the concentration time was 37.5 minutes, and the protein concentration in the filtrate was 0.065 g / dL.
  • Example 12 A polysulfone concentration filter was produced in the same manner as in Example 1. The ultrafiltration performance of this filter was 110 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 70 mL / min until the time of 1/4 volume treatment of simulated ascites, and thereafter, 120 mL / min. The concentration rate could be doubled or more, the concentration time was 29.5 minutes, and the protein concentration in the filtrate was 0.083 g / dL.
  • Example 1 A concentration filter was produced in the same manner as in Example 1. When this filter was used as the above-mentioned concentration filter and the ascites concentration operation was always performed at a constant inflow rate (100 mL / min), it was possible to reach a concentration ratio of 5 times or more without additional concentration, and the concentration time was 30 minutes. However, the protein concentration in the filtrate was 0.207 g / dL.
  • Example 2 A concentration filter was produced in the same manner as in Example 1. When this filter was used as the above-mentioned concentration filter and ascites was concentrated at a constant inflow rate (200 mL / min), it was possible to reach a concentration ratio of 5 times or more without additional concentration, and the concentration time was 15 minutes. However, the protein concentration in the filtrate was 0.498 g / dL.
  • Example 3 A concentration filter was produced in the same manner as in Example 1. When this filter was used as the above-described concentration filter, ascites concentration was performed at an inflow rate of 30 mL / min until the time of quasi-ascitic fluid 1/4 volume treatment, and thereafter, 50 mL / min. Although the concentration rate could be doubled or more, the concentration time was 70 minutes exceeding the limit time of 60 minutes, and the protein concentration in the filtrate was 0.030 g / dL.
  • the obtained hollow fiber membrane was treated with a 40% by weight glycerin aqueous solution and then dried at 80 ° C.
  • the hollow fiber membrane bundle was adjusted so that the membrane area was 2.0 m 2 , loaded into a cylindrical container, and both ends were potted with a polyurethane resin to prepare a polysulfone hollow fiber membrane filter.
  • the ultrafiltration performance of this filter was 170 mL / min / 200 mmHg.
  • ascites concentration operation was performed at an inflow rate of 50 mL / min until the time of quasi-ascitic fluid 1/4 treatment, and thereafter 100 mL / min.
  • the concentration time was 37.5 minutes.
  • the protein concentration of the recovered solution was 3.0 g / dL, and the protein concentration of the target magnification was 15.0 g / d. dL was not reached.
  • the protein concentration of the filtrate was also 2.951 g / dL.
  • a concentration filter was produced in the same manner as in Example 1.
  • the ultrafiltration performance of this filter was 107 mL / min / 200 mmHg.
  • ascites concentration was performed at an inflow rate of 30 mL / min until the sifting coefficient of simulated ascites reached 0.07, and thereafter, no additional concentration.
  • the concentration rate of 5 times or more could be reached and the concentration time was 54 minutes, but the filtrate protein concentration was 0.210 g / dL.
  • Example 7 A polysulfone concentration filter was produced in the same manner as in Example 1. The ultrafiltration performance of this filter was 160 mL / min / 200 mmHg. Using this filter as the above-mentioned concentration filter, the ascites concentration operation was performed at an inflow rate of 70 mL / min until the time of 1/4 volume treatment of simulated ascites, and thereafter, 120 mL / min. The concentration rate could be doubled or more, and the concentration time was 29.5 minutes, but the protein concentration in the filtrate was 1.753 g / dL.
  • Example 8 A polysulfone concentration filter was produced in the same manner as in Example 1. The ultrafiltration performance of this filter was 80 mL / min / 200 mmHg. Using this filter as a filter for concentration as described above, the ascites concentration operation was performed at an inflow rate of 70 mL / min until the processing of 1/4 volume of simulated ascites, and thereafter 120 mL / min. After processing and measuring the amount of the recovered liquid, the target magnification was not reached, and the circuit and the roller pump were rearranged, and additional concentration of the recovered liquid in the recovery container was necessary.
  • Example 9 In the same manner as in Example 2, a polysulfone concentration filter was produced. The ultrafiltration performance of this filter was 110 mL / min / 200 mmHg. Using this filter as the aforementioned concentration filter, bovine plasma adjusted to a total protein concentration of 7 g / dL was used as simulated ascites, and 3 L was prepared. Since the sieving coefficient reached 0.03 when 1/10 volume of simulated ascites was processed, ascites concentration was performed at an inflow rate of 70 mL / min until then, and 120 mL / min. When the amount of the recovered liquid was measured, the target magnification was not reached, and the circuit and the roller pump were rearranged, and additional concentration of the recovered liquid in the recovery container was necessary.
  • Example 10 In the same manner as in Example 2, a polysulfone concentration filter was produced. The ultrafiltration performance of this filter was 110 mL / min / 200 mmHg. When this filter was used as the above-mentioned concentration filter, ascites concentration was performed at an inflow rate of 90 mL / min until the time of 1/4 volume treatment of simulated ascites, and thereafter, 120 mL / min. The concentration rate could be doubled or more, and the concentration time was 27.1 minutes, but the protein concentration in the filtrate was 0.108 g / dL.
  • a concentration filter was produced in the same manner as in Example 2.
  • the ultrafiltration performance of this filter was 110 mL / min / 200 mmHg.
  • ascites concentration was performed at an inflow rate of 70 mL / min until the sifting coefficient of simulated ascites reached 0.04, and thereafter, 120 mL / min.
  • the concentration rate could be 5 times or more and the concentration time was 30.4 minutes, but the filtrate protein concentration was 0.113 g / dL.
  • Tables 1 and 2 show the measurement conditions and measurement results of Examples 1 to 12 and Comparative Examples 1 to 11.
  • the treatment time could be suppressed to 57 minutes while controlling the protein concentration delivered from the filtration side outlet of the ascites concentration filter to 100 mg / dL or less.
  • the filtrate side of the concentration filter The concentration of became 100 mg / dL or more.
  • the processing speed is not reduced due to clogging, and a high protein concentration is obtained without burden on the operator such as an additional concentration step. It becomes possible to provide a manufacturing method and a manufacturing apparatus of a high concentration protein solution that can obtain a concentrated protein solution.
  • SYMBOLS 1 Storage container, 1b ... Outlet (connection part of a storage container and a 1st flow path), 2 ... Recovery container, 2a ... Inlet (connection part of a recovery container and a 4th flow path) 3) Filtration filter, 3a ... Filtration filter inlet, 3b ... Filtration filter outlet, 3c ... Filtrate outlet (filter side outlet of ascites filter), 4,54 ... Concentration filter, 4a ... Ascites inlet (inlet of ascites concentration filter), 4b ... Concentrate outlet (exit of ascites concentrate filter), 4c ... Filtrate outlet (ascites concentration) Filter side outlet), 5 ... Pump (control means), 14, 15 ...
  • Control section control means
  • Control device control means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 腹水などの希薄なタンパク質溶液を濃縮し、濃厚なタンパク質溶液を得る方法において、目詰まりによる濃縮効率低下をきたさず、追加濃縮工程などの処理時間の追加なしで高いタンパク質濃度の濃厚タンパク質溶液を得ることができる、高濃度タンパク質溶液の製造方法を提供することを目的とする。 本発明は、低濃度タンパク質溶液を貯留した貯留容器から回路を通じて低濃度タンパク質溶液を、限外濾過性能が85mL~150mL/分/200mmHgであり親水性高分子が付与されたポリスルホン系中空糸膜型の腹水濃縮用フィルタに通液させ、フィルタの濾過側出口から濾液を送出させるとともに、フィルタの出口から高濃度タンパク質溶液を送出させる第1の工程と、フィルタの出口から送出された高濃度タンパク質溶液を回収容器に回収する第2の工程と、を含み、第1の工程が、低濃度タンパク質溶液を第1の流速で腹水濃縮用フィルタに通液させる第1のステップと、低濃度タンパク質溶液の全量から所定量以上が送液された時点で第1の流速より速い第2の流速で低濃度タンパク質溶液を腹水濃縮用フィルタに通液させる第2のステップと、を含む、高濃度タンパク質溶液の製造方法である。

Description

高濃度タンパク質溶液の製造方法及び製造装置
 本発明は、高濃度タンパク質溶液の製造方法及び製造装置に関する。
 従来、肝硬変などの腹水や胸水(以下、腹水と総称する)の溜まり易い患者に対して、腹水中のタンパク質を利用して患者の血中タンパク質濃度を上昇させるため、貯留部に針を刺し体外に排出した腹水を、中空糸膜などを用いた2種のフィルタにより濾過濃縮処理し、濃厚タンパク質溶液を得、これを患者に点滴する腹水濾過濃縮再静注法が行われている(例えば、特許文献1、2参照)。2種のフィルタの1つ目は腹水中に含まれるがん細胞、血球成分などの細胞成分を除くための濾過フィルタであり、細胞成分を通過させず、水分、タンパク質などの溶質成分は通過させるような孔径を有する膜が用いられる。一方もうひとつのフィルタは希薄なタンパク質濃度である腹水から除水し、タンパク質を濃縮するための濃縮フィルタであり、タンパク質成分はほとんど通過せず、水分、電解質などは通過させる膜が用いられる。通常、利便性の観点から、濾過器で細胞成分を濾別した腹水を濃縮器で濃縮する方法が取られ、これらを連続して行う装置が用いられる。
 一方で、タンパク質の漏出を抑制する手段として、血液透析濾過の分野において、装置を使用して、濾過流量をコントロールすることにより、膜のTMPを制御し、最適な透析濾過を実現する方法がある。(例えば、特許文献3)。
特開2009-297242号公報 実用新案登録第2543466号 特開2001-112863号公報
 患者に投与するタンパク質溶液は、投与後患者の血中タンパク質濃度を増加させる目的もあるため、ある程度高い濃度であることが必要となるが、そのために高い濃縮倍率になるよう濃縮する必要がある。処理する腹水のタンパク質濃度が濃くなると、濃縮用フィルタはタンパク質により目詰まりし、濃縮効率が低下することにより、目標とする濃縮倍率に濃縮できない場合がある。このような場合、一旦濃縮不十分の状態でタンパク質溶液を回収し、追加で濃縮するといった非常に煩雑な工程を経る必要がある。その方法として、場合によっては濃縮用フィルタを新しいものと交換する必要があるため、施行者にとり、作業面で負担のかかるものである上、経済面の不利益もある。また、患者にとっては、追加で処理時間がかかるため、タンパク質溶液が投与されるまでの拘束時間が長くなったり、追加濃縮時にタンパク質を回収する際に、タンパク質をロスしてしまい、投与量が低下するという不利益がある。
 一方、腹水が貯留する患者は、大別すると肝硬変などの疾患が元で貯留する肝性腹水患者と、胃癌、卵巣癌、大腸癌などの癌が元で貯留する癌性腹水患者に分けられる。従来、本治療は主に肝性腹水患者に対して施行されることがほとんどであったが、近年、癌性腹水患者に対して本治療を実施することの治療効果が認められつつあり、癌性腹水患者に対する施行機会が増加している。しかし癌性腹水は一般的に肝性腹水よりタンパク質濃度が濃い傾向があるため、前記のような追加濃縮工程が必要な場合が頻発していた。
 また、特許文献1には、濃縮フィルタの廃液側に設けられた吸引装置により濃縮する方法において、濃縮フィルタの下流に陰圧発生装置を設置し、堆積物の堆積を抑制する方法が開示されているが、この方法においても吸引装置の途中に設けられた圧開放ラインを開放し、濃縮器にかかる吸引圧を開放させるために、施行者による対応が必要であった。
 さらに、腹水濾過濃縮の処理をする際に、腹水流入速度が低いと処理時間が長くなり、患者の拘束時間が伸びて負担が大きくなる。一方、腹水の流入速度を上げると、腹水濃縮用フィルタの濾液側に有用なタンパク質が漏れ出てしまう可能性がある。
 本発明は、上記従来法の問題点に対し、腹水などの希薄なタンパク質溶液を濃縮し、濃厚なタンパク質溶液を得る方法において、処理速度低下をきたさず、追加濃縮工程など施行者の負担なしで高いタンパク質濃度の濃厚タンパク質溶液を得ることができる、高濃度タンパク質溶液の製造方法及び製造装置を提供することを目的とする。
 本発明者らは、上記課題について鋭意検討した結果、上記目詰まりは濃縮フィルタの限外濾過性能が関係し、特定の限外濾過性能を有する濃縮用フィルタを用いることによって濃縮速度の低下が抑えられること、また濃縮用フィルタへの通液速度を少なくとも2段階で制御することによって、タンパク質を損失することなく短時間で高倍率にまで濃縮できることを見出し、本発明を完成するに至った。
 また、通液速度は、タンパク質のふるい係数や元腹水重量が一定以下になった場合に制御するのが望ましいが、施行中に頻繁にふるい係数を算出するためにタンパク濃度を測定したり、重量を測定するのは困難であった。これに対し、ふるい係数の数値を変化させる因子として、フィルタそのものの透過性能だけでなく、膜面積や処理した元腹水量などが影響することも実験的に見出し、通液速度の制御を簡便にするためのパラメータを有する、本発明を完成させた。
 すなわち、本発明は以下の[1]~[16]に関する。
[1]
 低濃度タンパク質溶液を貯留した貯留容器から回路を通じて前記低濃度タンパク質溶液を、限外濾過性能が85mL~150mL/分/200mmHgであり親水性高分子が付与されたポリスルホン系中空糸膜型の腹水濃縮用フィルタに通液させ、前記フィルタの濾過側出口から濾液を送出させるとともに、前記フィルタの出口から高濃度タンパク質溶液を送出させる第1の工程と、
 前記フィルタの出口から送出された前記高濃度タンパク質溶液を回収容器に回収する第2の工程と、
を含み、
 前記第1の工程が、
 前記低濃度タンパク質溶液を第1の流速で前記腹水濃縮用フィルタに通液させる第1のステップと、
 前記低濃度タンパク質溶液の全量から所定量以上が送液された時点で第1の流速より速い第2の流速で前記低濃度タンパク質溶液を前記腹水濃縮用フィルタに通液させる第2のステップと、
を含む、高濃度タンパク質溶液の製造方法。
[2]
 前記フィルタの膜面積をA、前記第1のステップで処理される前記低濃度タンパク溶液の重量をV1、前記低濃度タンパク溶液のタンパク濃度をC、前記第1のステップの流速をQb1、前記第1のステップの濾過流速をQf1、前記フィルタの限外濾過性能をFとした場合に、下記(1)を満たすタイミングで前記第2のステップへと切り替える、[1]の方法。
  103.7≦-37log(A/V1)+log(Qb1/V1)+57log(F)-log(1/C)-log(Qb1/Qf1)≦112.6 (1)
[3]
 前記第1の流速から第2の流速への切り替えが、前記低濃度タンパク質溶液の全量の少なくとも1/4以上が送液された時点で行われる、[1]又は[2]の方法。
[4]
 前記第1の流速は70mL/min以下であり、かつ第2の流速は120mL/min以下である、[1]~[3]のいずれかの方法。
[5]
 前記第1の流速は50mL/min以下であり、かつ第2の流速は70mL/min以下である、[1]~[4]のいずれかの方法。
[6]
 前記第1の流速と第2の流速の合算値は100mL/min以上であり、かつ前記第1の流速と第2の流速との流速差は少なくとも20mL/min以上である、[1]~[5]のいずれかの方法。
[7]
 前記第1の工程において、前記低濃度タンパク質溶液のタンパク質濃度は5g/dL以下である、[1]~[6]のいずれかの方法。
[8]
 前記第1の工程において、前記低濃度タンパク質溶液のタンパク質濃度は3g/dL以下である、[1]~[6]のいずれかの方法。
[9]
 前記第1の工程において、前記腹水濃縮用フィルタの濾過側出口から送出した高濃度タンパク質溶液中のタンパク質のふるい係数が所定値以下であるときに、前記第2のステップを開始する、[1]~[8]のいずれかの方法。
[10]
 前記第1の工程において、前記腹水濃縮用フィルタの濾過側出口から送出した高濃度タンパク質溶液中のタンパク質のふるい係数が少なくとも0.03以下であるときに、前記第2のステップを開始する、[1]~[9]のいずれかの方法。
[11]
 前記第1の工程において、前記腹水濃縮用フィルタの濾過側出口から送出された濾液中のタンパク質濃度が100mg/dL以下である、[1]~[10]のいずれかの方法。
[12]
 前記第1の工程において、前記腹水濃縮用フィルタの出口から送出される高濃度タンパク質溶液のタンパク質濃度が7g/dL以上である、[1]~[11]のいずれかの方法。
[13]
 前記回路は、腹水濾過用フィルタを含む、[1]~[12]のいずれかの方法。
[14]
 前記第1の工程において、第1の流速で前記腹水濃縮用フィルタに送液させる第1のステップと、前記腹水濃縮用フィルタの入口と出口の溶液中のタンパク質濃度をモニタリングし、前記タンパク質のふるい係数が少なくとも0.03以下に低下した時点で第2のステップを行うように制御する、[1]~[13]のいずれかの方法。
[15]
 前記第1の工程において、第1の流速で前記腹水濃縮用フィルタに送液させる第1のステップと、前記低濃度タンパク質溶液の重量をモニタリングし、前記低濃度タンパク質溶液の全量から所定量以上が送液された時点で第2のステップを行うように制御する、[1]~[13]のいずれかの方法。
[16]
 低濃度タンパク質溶液を貯留した貯留容器から回路を通じて前記低濃度タンパク質溶液を、限外濾過性能が85mL~150mL/分/200mmHgであり親水性高分子が付与されたポリスルホン系中空糸膜型の腹水濃縮用フィルタに通液させ、前記フィルタの濾過側出口から濾液を送出させるとともに、前記フィルタの出口から高濃度タンパク質溶液を送出させる第1の工程を有する部と、
 前記フィルタの出口から送出された前記高濃度タンパク質溶液を回収容器に回収する第2の工程を有する部と、
を含み、
 前記第1の工程を有する部が、
 前記低濃度タンパク質溶液を第1の流速で前記腹水濃縮用フィルタに通液させる第1のステップを有する部と、
 前記低濃度タンパク質溶液の全量から所定量以上が送液された時点で第1の流速より速い第2の流速で前記低濃度タンパク質溶液を前記腹水濃縮用フィルタに通液させる第2のステップを有する部と、
を含み、
 前記フィルタの膜面積をA、前記第1のステップで処理される前記低濃度タンパク溶液の重量をV1、前記低濃度タンパク溶液のタンパク濃度をC、前記第1のステップの流速をQb1、前記第1のステップの濾過流速をQf1、前記フィルタの限外濾過性能をFとした場合に、下記(1)を満たすタイミングで前記第2ステップへと切り替える、高濃度タンパク質溶液の製造装置。
  103.7≦-37log(A/V1)+log(Qb1/V1)+57log(F)-log(1/C)-log(Qb1/Qf1)≦112.6 (1)
 本発明によれば、腹水などの希薄なタンパク質溶液を濃縮し、濃厚なタンパク質溶液を得る方法において、目詰まりによる処理速度低下をきたさず、追加濃縮工程など施行者の負担なしで高いタンパク質濃度の濃厚タンパク質溶液を得ることができる、高濃度タンパク質溶液の製造方法及び製造装置を提供することが可能となる。
腹水濾過濃縮装置の第1実施形態を示す図である。 腹水濾過濃縮装置の第2実施形態を示す図である。 腹水濾過濃縮装置の第3実施形態を示す図である。 屈折計を備えた腹水濾過濃縮装置を示す図である。 制御装置(重量モニタリング用)を備えた腹水濾過濃縮装置を示す図である。 濃縮用フィルタに係る腹水濃縮性能の試験装置を示す図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
(第1実施形態)
 本発明の第1実施形態として、図1に示す腹水濾過濃縮装置100の構成及び当該装置100を用いて腹水(タンパク質溶液)を濾過濃縮し濃厚タンパク質溶液(高濃度タンパク質溶液)を得る方法の一例を示す。
 まず、本実施形態においては、あらかじめ患者から採取された腹水である低濃度タンパク質溶液が、貯留容器1に貯留されている。一般に、腹水は、タンパク質濃度が5g/dL以下の低濃度タンパク質溶液である。タンパク質濃度が5g/dLを超える場合、ファウリング現象により中空糸内に血液の緻密層が形成するまでに要する時間が短いため、初めから比較的多い流量で流してもタンパク質の濾液側への漏出はあまり起こらず、結果として本発明の方法を適用する必要がない。同様に、タンパク質濃度が3g/dLを超える場合、5g/dLを超える場合ほどではないが、同じような現象が比較的短時間で起こるため、必ずしも本発明の方法を適用する必要はない場合もある。よって、本実施形態における低濃度タンパク質溶液は、タンパク質濃度が5g/dL以下であることが好ましく、より好ましくは3g/dL以下である。
 貯留容器1の出口1bは、第1流路31と接続され、当該第1流路31を介して濾過用フィルタ3の入口3aと接続される。貯留容器1の腹水は第1流路31を介し、濾過用フィルタ3に供給される。濾過用フィルタ3の中で、細胞成分は濾過膜を通過できないため、濾過用フィルタ3の濾液出口3cからは細胞成分が除かれた、タンパク質を含む濾過後腹水が排出される。濾過用フィルタ3の出口3bには第3流路33が接続されており、細胞成分を含む腹水の一部は、第3流路33を通じて装置100外に排出される。濾液出口3cは、第2流路32を介して濃縮用フィルタ4の腹水流入口4aに接続されており、濾液出口3cから排出される濾過後腹水は、第2流路32を介して濃縮用フィルタ4に導入される。
 濃縮用フィルタ4の中では濾過後腹水の水分などが濾別され、濾液排出口4cに接続された第5流路35より装置100外に排出される。ここで濾液排出口4cから排出される液体は、好ましくはタンパク質濃度が100mg/dL以下である低濃度タンパク質溶液である。濃縮用フィルタ4の孔径は、濾過用フィルタ3の孔径よりも小さい。濾過後腹水に含まれていたタンパク質は濾過膜を通過せず濃縮用フィルタ4内に保持されるので、上記の水分の排出によって濾過後腹水のタンパク質濃度が高まり、濃厚タンパク質溶液として濃縮用フィルタ4の濃縮液出口4bより排出される。濃縮用フィルタ4の濃縮液出口4bは、第4流路34を介して回収容器2の入口2aに接続されており、濃縮液出口4bより排出された濃厚タンパク質溶液は、第4流路34を介して回収容器2に回収される。ここで回収される濃厚タンパク質溶液は、少なくとも貯留容器1の腹水よりもタンパク質濃度が高い高濃度タンパク質溶液であり、好ましくはタンパク質濃度が7g/dL以上である。
 貯留容器1及び回収容器2は、液体を貯留することができればどのようなものでもよいが、通常、取り扱い性の観点から、ポリ塩化ビニル製のバッグが用いられる。容器の大きさは貯留される腹水の量などにより決定される。
 濾過用フィルタ3は、細胞成分と水分、及び電解質やタンパク質などの溶質成分を分離できれば特に限定されるものではない。フィルタの構造、形状、寸法としては、貯留容器1または濃縮用フィルタ4と接続する流路と接続ができる腹水流入口、及び濾過腹水出口を備えていれば制限はない。また濾過用フィルタ3に用いられる中空糸について、素材は特に限定はなく、製膜時に孔径制御がしやすく且つ化学的安定性に優れる理由から、ポリエチレンなどのポリオレフィン系、ポリスルホン系、再生セルロース系、ポリビニルアルコール系などが好ましい。これら例示した中空糸素材には他の材料が含有されていても良く、また化学的に修飾されていても良い。通常、孔径が0.2μm以下で、かつタンパク質の透過率が80%以上である中空糸膜フィルタが用いられる。
 図1では、濾過用フィルタ3を内圧濾過方式で使用し、腹水濾過を行っているが、細胞成分を濾別することができれば、外圧濾過方式とすることもできる、また第3流路33を封止し、デッドエンド方式で濾過することもできるし、第3流路33を開放しクロスフロー方式とすることもできる。
 第1実施形態の装置を構成するそれぞれの流路31~35も貯留容器1、回収容器2、濾過用フィルタ3および濃縮用フィルタ4と接続できるものであれば材質、寸法などに限定はない。通常、流路31~35を形成するチューブとして、ポリ塩化ビニルなどから製造される軟質チューブが用いられる。
 貯留容器1から濾過用フィルタ3への腹水の送液はどのような手段でもよい。例示するならば、図1に示すように第1流路31にポンプ5を設置し送液してもよい。ポンプ5としてはローラーポンプや輸液ポンプなどが一般的に用いられる。また、第2流路32および第3流路33上にも送液ポンプを追加してもよい。
 図1においては、第4流路34の途中に制御部14が設置され、第5の流路35の途中に制御部15が設置されている。制御部14は第4流路34の流量を調整し、制御部15は第5流路35の流量を調整する。制御部14、15によって、濃縮用フィルタ4の濾液の排出量と濃厚タンパク質溶液の量とのバランスを調整し、濃縮倍率を調整することができる。
 制御部14及び15は、濃縮用フィルタ4に供給された腹水のうち、濃縮用フィルタ4から濾過されて濃縮液出口4bから排出される濾液量と、回収容器2に向かう液量と、のバランスを制御できればどのようなものでもよい。制御部14、15は、例示すれば、ローラークランプなどの流路を圧迫し流路抵抗を調整し制御するものでもよく、一定の陰圧又は陽圧をかけることで各流路34、35の流量を制御するものでもよく、またローラーポンプや輸液ポンプ等といったような流量を制御する装置であってもよい。濃縮用フィルタ4から濾過されて排出される液量と回収容器に向かう液量のバランスを制御できれば制御部14、15はいずれかのみであってもよい。
 制御装置41は、ポンプ5の駆動を制御することにより、第1流路31における腹水の流量(単位時間当たりの送液量)を制御する。制御装置41は、例えばコンピュータであり、所望の制御に係る情報を施行者に入力させる入力端末を兼ねてもよい。また、制御部14、15を制御装置41からの制御信号で駆動するものとして、流路34、35の流量を制御装置41で制御してもよい。
 制御装置41は、例えば、低濃度タンパク質溶液の重量やタンパク濃度をモニタリングすることによって、ある一定以上の数値となった時に、流量を制御するものである。
 図1に示す装置100では、第1流路31が濾過用フィルタ3の下方に接続され、第3流路33が濾過用フィルタ3の上方に接続されているが、これを逆にしても同様の効果が得られる。また、第2流路32は、濾過用フィルタ3の中空糸外側室部分に通じていれば、いずれの位置に接続されていてもよい。
 本実施形態で用いられる濃縮用フィルタ4の限外濾過性能は85mL~150mL/分/200mmHgである。限外濾過性能がこの範囲以下であると、濃縮中に濾液の排出量が低下し、十分に濃縮されたタンパク質溶液が得られない。また95mL/分/200mmHg以上であればより目詰まりのおそれが低く、好ましい。150mL/分/200mmHg以上より大きいとタンパク質が濾液中に漏れ出てしまい、十分な濃度のタンパク質濃度が得られないので適さない。
 本実施形態における限外濾過性能とは、以下に示すような試験により規定される。タンパク質濃度を6g/dLに調整した牛血漿を用意し、ローラーポンプにより毎分200mLの定速で濃縮用フィルタに送液する。このとき、濃縮器の濾液排出口は開放状態である。濃縮用フィルタの回収液出口に接続した回路を圧迫し、フィルタ内外にかかる圧力差(以下、TMPとも言う)が200mmHgとなるよう調整する。このとき、濾液排出口から排出される濾液の時間当たり容積を測定する。TMPは以下のように算出する。
  TMP=(フィルタ入口側の圧力+フィルタ出口側の圧力)/2-濾液側圧力
 また本実施形態では、濃縮効率の観点から中空糸膜を用いたフィルタを用いる。ここで言う中空糸膜は、その形状、寸法は特に限定されるものでは無く、上記限外濾過性能を有するものであれば良い。材質については、製膜時に孔径制御がしやすく且つ化学的安定性に優れる理由から、ポリスルホン系がよい。ポリスルホン系高分子は、芳香族化合物であることから放射線耐性に特に優れており、また、熱や化学的処理にも非常に強く、安全性にも優れている。従って、様々な製膜条件を採択できるとともに放射線滅菌が可能となり、腹水濃縮器に用いる膜材質として特に好ましい。なお、「~系」とは、ホモポリマーのみではなく、他のモノマーとの共重合体や化学修飾された類縁体も含むという意味である。
 ここで言うポリスルホン系高分子(以下、PSfと称することがある)とは、スルホン結合を有する高分子化合物の総称であり、特に規定するものではないが、例えば、繰返し単位が下記の式(1)、式(2)、式(3)、式(4)および式(5)で示されるポリスルホン系ポリマーが挙げられる。これらの芳香環の一部に置換基が導入された修飾ポリマーであっても構わない。工業的に入手し易い点から、繰返し単位が式(1)、式(2)および式(3)で示される芳香族ポリスルホン系ポリマーが好ましく、中でも(1)式で示す化学構造を持つポリスルホンが特に好ましい。このビスフェノール型ポリスルホン樹脂は、例えばソルベイ・アドバンスド・ポリマーズより「ユーデル(登録商標)」の商品名で市販されており、重合度等によっていくつかの種類が存在するが特に限定するものではない。
Figure JPOXMLDOC01-appb-C000001
 本実施形態におけるポリスルホン系中空糸膜は、親水性高分子により、親水性を持たせたものである。ポリスルホン系高分子だけでは中空糸膜表面が疎水性となり、このような表面にはタンパク質が吸着しやすく、タンパク質の回収性能を低下させる原因になるためである。親水性高分子としては、ポリビニルピロリドン(以下、PVPと称することがある)や、ポリエチレングリコール、ポリビニルアルコール、ポリプロピレングリコール等が挙げられるが、中でもPVPが親水化の効果や安全性の面より好ましい。PVPについても分子量等によっていくつかの種類が存在し、例えば、市販品としてPVPのK-15、30、90(いずれもアイ・エス・ピー(ISP)社製)等を挙げることができる。本実施形態で使用するPVPの分子量(粘度平均分子量)は1万~200万、好ましくは5万~150万である。親水性高分子の膜中の含有率はポリマー全量の3~20%、好ましくは3~10%である。含有率が3%以下の場合には親水化剤としての効果が薄れ、また含有率が20%を越えた場合には製膜原液の粘度が上がりすぎるため生産上好ましくない。
 親水化されたポリスルホン中空糸膜の製造方法は、公知の乾湿式製膜技術を利用できる。まず、ポリスルホン系高分子とポロビニルピロリドンなどの親水性高分子を両方に共通の溶媒に溶解し、均一な紡糸原液を調製する。このような共通溶媒としては、親水性高分子がポリビニルピロリドンの場合には、例えば、ジメチルアセトアミド(以下、DMACと称する)、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジメチルホルムアミド、スルホラン、ジオキサン等の溶媒、あるいは上記溶媒2種以上の混合液からなる溶媒が挙げられる。なお、孔径制御のため、紡糸原液には水などの添加物を加えても良い。
 中空糸膜を製膜するに際しては、チューブインオリフィス型の紡糸口金を用い、該紡糸口金のオリフィスからの紡糸原液と、チューブからの中空内液と、を同時に空中に吐出させる。中空内液は紡糸原液を凝固させる為のものであり、水、または水を主体とした凝固液が使用できる。中空内液は、目的とする中空糸膜の限外濾過性能などの性能に応じてその組成等は決めていけば良く、一概には決められないが、一般的には紡糸原液に使った溶剤と水との混合溶液が好適に使用される。例えば、中空内液として、0~65重量%のDMAC水溶液などが用いられる。紡糸口金から中空内液とともに吐出された紡糸原液は、空走部を走行し、紡糸口金下部に設置した水を主体とする凝固浴中へ導入、浸漬されて凝固が完了する。その後、凝固した中空糸の洗浄工程等を経て、湿潤状態の中空糸膜巻き取り機で巻き取り、中空糸膜の束を得、その後乾燥する。あるいは、洗浄工程を経て、続いて乾燥機内にて乾燥を行い、中空糸束を得ても良く、製造方法を特定するものではない。
 中空糸を用いたフィルタの製造方法に関しても公知の方法を利用すればよい。例えば、中空糸膜束を流体の出入口を持つ筒状の容器へ挿入し、両束端にポリウレタン等のポッティング剤を注入してポッティング層を形成して両端をシールした後、硬化後の余分なポッティング剤を切断除去し中空糸端面を開口させ、流体の出入口を持つヘッダーを取り付けることにより製造できる。この方法により中空糸膜束が容器に充填され、中空糸膜内側室と中空糸膜外側室とが形成され、中空糸膜内側室に通じる流体出入口および中空糸膜外側室に通じる流体出入口を持つ中空糸膜型濃縮フィルタが製造できる。
 続いて、本実施形態の2段階制御について説明する。
 本実施形態の2段階制御は、低濃度タンパク質溶液を第1の流速で腹水濃縮用フィルタに通液させる第1のステップと、低濃度タンパク質溶液の全量から所定量以上が送液された時点で第1の流速より速い第2の流速で低濃度タンパク質溶液を腹水濃縮用フィルタに通液させる第2のステップとを含む。
 第1の流速から第2の流速への切り替えは、低濃度タンパク質溶液の全量の少なくとも1/4以上が送液された時点で行われることが好ましい。さらに、腹水濃縮用フィルタを通過したタンパク質のふるい係数を経時的に測定し、1/4量以上が送液され、かつふるい係数が0.03以下になった時点で腹水流入速度を第1の流速から第2の流速に切り替えることがより好ましい。
 タンパク質のふるい係数は、例えばATAGO社製の臨床用屈折計(SUR-JE, Cat.No.2733)を用いて算出することができる。屈折計のプリズム面にサンプルを1、2滴落とし、採光板を閉じた後、接眼鏡をのぞき、ブルーの境界線が目盛りを横切る位置がタンパク濃度となる。測定した濾液のタンパク濃度を原腹水のタンパク濃度で割ることで、ふるい係数の算出を行う。
 第1の流速は、70mL/min以下が好ましく、より好ましくは50mL/min以下である。タンパク質の漏出を防止するためには低速運転が好ましいが、短時間で処理を行う観点から、10mL/min以下は現実的ではなく、30mL/min以上が現実的である。一方、第2の流速は、70mL/min以下が好ましく、より好ましくは120mL/min以下である。第2の流速は、第1の流速よりも速く、好ましくは第1の流速よりも20mL/min以上、より好ましくは30mL/min以上、最も好ましくは40mL/min以上速い。また、第1及び第2の流速のいずれも低速運転とする場合、タンパク質の漏出を極限まで防ぐことができるという利点がある反面、濃縮タンパク質溶液を作成するために長時間を要し、特に大量の腹水を濃縮する場合は医療現場の実態に合致しない。具体的には3L/h程度の処理速度が要求されており、このレベルの処理速度を実現するためには、第1の流速値と第2の流速値との合算値が100mL/min以上となることが好ましい。ここで、第1の流速値と第2の流速値との合算値が100mL/min以上であり、かつ第1の流速と第2の流速との流速差が少なくとも20mL/min以上であることがより好ましい。
 上記のように、腹水流入速度を制御することによって、濾過濃縮処理によるタンパク質の損失を少なくしつつ、短時間で処理を完了することができる。具体的には、同一条件の牛血漿を用いて上記の2段階制御方法を施行した際、従来の施行法と比較すると、同等の処理時間で、腹水濃縮フィルタの濾過側出口から送出するタンパク質濃度を半分程度に抑えることが可能となる。また、初期の処理速度が低速なため、発熱起因物質の産生を抑制することが可能となり、濾過濃縮後の腹水を患者に静注後の発熱リスクを低減することができる。
 本実施形態の方法により得られる濃厚タンパク質溶液のタンパク質濃度は7g/dL以上である。この濃度未満であると、患者に投与しても、患者の血中タンパク質濃度上昇効果が低く、患者が再度腹水を貯留してしまいやすいなどの弊害がある。またタンパク質濃度は10g/dL以上とすることが上記効果から好ましい。
 本実施形態の方法は、追加濃縮工程なしに、短時間で、タンパク質濃度を5倍程度まで濃縮することを可能としたものである。濃縮後のタンパク質濃度を、初期のタンパク質濃度で割った値をタンパク質濃縮倍率とし、タンパク質濃縮倍率を、濃縮後のタンパク質溶液の液量が初期のタンパク質溶液の液量の5分の1以下に達するのに必要な時間(分)で割った値を、時間当たりのタンパク質濃縮倍率とすると、時間当たりのタンパク質濃縮倍率は、0.10倍/分以上であることが好ましく、0.15倍/分以上であることがより好ましい。
 本実施形態の方法において、第2のステップへと切り替えは、以下のタイミングで行うことが好ましい。すなわち、フィルタの膜面積をA、第1のステップで処理される低濃度タンパク溶液の重量をV1、低濃度タンパク溶液のタンパク濃度をC、第1のステップの流速をQb1、第1のステップの濾過流速をQf1、フィルタの限外濾過性能をFとした場合に、下記(1)のパラメータを満たすタイミングで行うことが好ましい。
  103.7≦-37log(A/V1)+log(Qb1/V1)+57log(F)-log(1/C)-log(Qb1/Qf1)≦112.6 (1)
 本パラメータを用いることにより、通液速度の制御を簡便にすることが可能となる。
(第2実施形態)
 図2に示す腹水濾過濃縮装置200は、各構成部位における液体の落差圧により腹水を送液するようにしたものである。落差圧を利用した送液を行うために、腹水濾過濃縮装置200では、濾過用フィルタ3の入口3aにおける液体の落差圧が、貯留容器1の出口1bにおける液体の落差圧よりも低くなるように配置され、かつ、回収容器2の入口2aにおける液体の落差圧が、濃縮用フィルタ4の濃縮液出口4bにおける液体の落差圧よりも低くなるように配置されている。また、濃縮用フィルタ4の腹水流入口4aにおける液体の落差圧が、濾過用フィルタ3の濾液出口3cにおける液体の落差圧よりも低くなるように配置されている。
 上記のような配置の具体例として、図2に示すように、濾過用フィルタ3と貯留容器1とは、入口3aの上下位置が出口1bの上下位置よりも低くなるような位置関係で配置される。回収容器2と濃縮用フィルタ4とは、入口2aの上下位置が濃縮液出口4bの上下位置よりも低くなるような位置関係で配置される。また、濃縮用フィルタ4と濾過用フィルタ3とは、腹水流入口4aの上下位置が濾液出口3cの上下位置よりも低くなるような位置関係で配置される。以上のような配置により、各流路31~35で落差圧を利用した送液が行われるので、ポンプ5や制御装置41(図1参照)を省略することもできる。なお、図2に表わされる各部位の上下位置関係は、実際の腹水濾過濃縮装置200の各部位の上下位置関係にそのまま対応するものとする。また、腹水濾過濃縮装置200において、前述の腹水濾過濃縮装置100と同一又は同等な構成部分には同一符号を付し重複する説明を省略する。
(第3実施形態)
 図3に示す腹水濾過濃縮装置300では、濃縮用フィルタ4の腹水流入口4aにおける液体の落差圧が、濾過用フィルタ3の濾液出口3cにおける液体の落差圧と等しくなるように配置されている。具体的には、濃縮用フィルタ4と濾過用フィルタ3とは、腹水流入口4aの上下位置が濾液出口3cの上下位置と同じ高さになるような位置関係で配置される。以上のような配置により、回収容器2の上下位置の調整のみで、簡便に流速を制御できるという効果が得られる。これ以外の部位の位置関係は前述の腹水濾過濃縮装置200と同様である。なお、図3に表わされる各部位の上下位置関係は、実際の腹水濾過濃縮装置300の各部位の上下位置関係にそのまま対応するものとする。また、腹水濾過濃縮装置300において、前述の腹水濾過濃縮装置200と同一又は同等な構成部分には同一符号を付し重複する説明を省略する。
 以上説明した腹水濾過濃縮装置100,200,300及び高濃度タンパク質溶液の製造方法によれば、濃縮用フィルタ4が、特定の範囲の限外濾過性能を有するので、濃縮速度の低下が抑えられ、また濃縮用フィルタへの通液速度を少なくとも2段階で制御することによって、タンパク質を損失することなく高倍率にまで濃縮することができる。また短時間で処理が完了するので、本実施形態の製造方法で得られる高濃度タンパク質溶液が患者に投与される場合には、拘束時間が短くなり、患者にとっても好ましいことになる。
 本実施形態の方法においては、上記第1の工程において、第1の流速で腹水濃縮用フィルタに送液させる第1のステップと、腹水濃縮用フィルタの入口と出口の溶液中のタンパク質濃度をモニタリングし、タンパク質のふるい係数が少なくとも0.03以下に低下した時点で第2のステップを行うように制御することも好ましい。
 図4は、溶液中のタンパク質濃度をモニタリングする装置として屈折計を備えた腹水濾過濃縮装置を示す図である。図4に示すように、濃縮用フィルタ4の入口4aの手前に屈折計50a、濃縮用フィルタ4の出口側に屈折計50bを配置し、濃縮用フィルタ4の入口4aと出口4cの溶液中のタンパク質濃度をモニタリングして、タンパク質のふるい係数が少なくとも0.03以下に低下した時点で第2のステップを行うように自動的に制御すればよい。
 また、本実施形態の方法においては、上記第1の工程において、第1の流速で腹水濃縮用フィルタに送液させる第1のステップと、低濃度タンパク質溶液の重量をモニタリングし、低濃度タンパク質溶液の全量から所定量以上が送液された時点で第2のステップを行うように自動的に制御することも好ましい。ここで、所定量とは、低濃度タンパク質溶液の全量の少なくとも1/4以上であることが好ましい。
 図5は、制御装置(重量モニタリング用)を備えた腹水濾過濃縮装置を示す図である。図5に示すように、例えば貯留容器1に重量モニタリング用の制御装置60を設置し、貯留容器1中の、採取された腹水である低濃度タンパク質溶液の重量をモニタリングし、低濃度タンパク質溶液の全量から所定量以上が送液された時点で第2のステップを行うように自動的に制御すればよい。制御装置60は、例えば貯蔵容器1中の低濃度タンパク質溶液の重量が一定量減ると、貯蔵容器1の高さ位置を高くし、これによりポンプの流速を上げるように制御する装置であってもよく、コンピュータと連動した秤であって貯蔵容器1中の低濃度タンパク質溶液の重量が一定量減った場合に、ポンプの流速を上げるように制御する装置であってもよい。
 以下、実施例に従って本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 以下、腹水濃縮性能の試験の方法を示す。3g/dL(比較例9は7g/dL)の総タンパク質濃度に調整した牛血漿を擬似腹水(原腹水)とし、3L用意した。擬似腹水として細胞成分のない牛血漿を用いていることから、本擬似腹水は濾過器を通過したものとみなすことができるため、本試験では濾過器を省略しても結果に影響はないと判断し、濾過用フィルタ3は省略した方法で実施した。すなわち、図6に示す試験装置400によって、実施例・比較例に係る各濃縮用フィルタ54の性能試験を行った。試験装置400は、図1に示す装置100において、第1流路31と第2流路32とを、濾過用フィルタ3を介さずに直接濃縮用フィルタ54に接続する構造としたものである。貯留容器1及び回収容器2にはポリ塩化ビニル製のバッグを用い、おのおのの流路にはポリ塩化ビニル製のチューブ、ポンプ5にはローラーポンプ、制御部15としてローラークランプを用いた。
 擬似腹水の濃縮用フィルタ54への流入速度の制御は、ポンプ5を調整して行った。実施例1~12においては、貯留容器1に貯留された低濃度タンパク質溶液の少なくとも1/4量が処理されるまでの間、腹水流入速度を30~70mL/minに制御し、前記処理量を処理した後、腹水流入速度を70~120mL/minの流量となるよう調整し、擬似腹水を濃縮用フィルタ54へ導入した。具体的には、図6に示す試験装置400において、3Lの擬似腹水の1/4量である0.75Lが処理されるまでの間、すなわち約10~30分間はポンプ5を毎分30-70mL/minとなるように調整し、擬似腹水を濃縮用フィルタ54へ導入した。貯留容器1に貯留された液量を重量法によって測定し、液量が2.25L以下になっていれば、ポンプ5を毎分50-120mL/minとなるように調整した。
 濃縮目標については、例えば擬似腹水タンパク質濃度が3g/dLの場合、濃厚タンパク質溶液として15g/dL程度のタンパク質濃度を得るために、濃厚タンパク質溶液のタンパク質濃度が、被処理液のタンパク質濃度の5倍程度になるまで濃縮することを目標とした。タンパク質濃度を5倍程度に濃縮するため、濃厚タンパク質溶液の液量が、被処理液の液量の5分の1以下になるよう調節を行った。具体的には、濃縮用フィルタ54の濾液排出口4cより排出される廃液の流量と、濃縮用フィルタ54の上方に設置した回収容器2への流入量と、をローラークランプ15の流路35圧迫度によって調整しながら、擬似腹水の濃縮を行った。3Lの擬似腹水全てを濃縮用フィルタ54へ導入した段階で、ローラーポンプを停止し、回収容器2に回収された液量を重量法で測定し、液量が被処理液の5分の1以下に達していればここで処理を終了した。一方、液量が被処理液の5分の1以下に達していなければ、回路、ローラーポンプを組み替え、回収容器2内の回収液の追加濃縮を行った。追加濃縮量は、濃厚タンパク質溶液の液量が被処理液の5分の1以下に達するのに必要な、残り廃液量を計算し、これに基づき実施した。各フィルタの評価は、追加濃縮が必要であったか否かと、目標までの濃縮処理にかかった時間(60分以内)、回収された濃厚タンパク質溶液のタンパク質濃度(15.0g/dL以上)及び排出される濾液(廃液)のタンパク質濃度(0.1g/dL以下)を指標とした。
 以下、実施例1~12及び比較例1~11について、より詳細に説明する。
[実施例1]
 ポリスルホン樹脂(ソルベイ社製、P-1700)18重量部、ポリビニルピロリドン(以下PVPとも言う)(日本触媒社製、K-85N)5重量部、N,N-ジメチルアセトアミド(以下、DMACとも言う)77重量部からなる均一な製膜原液を作成した。40重量%のN,N-ジメチルアセトアミド水溶液を中空内液と同時に二重紡口から押し出し、外界から遮断するためにとりつけたフードの中を通って30cm下方に設けた50℃の水からなる凝固浴中に浸漬し50m/minの速度で巻取った。得られた中空糸膜は20重量%のグリセリン水溶液で処理した後、75℃で乾燥した。膜面積1.5mになるように中空糸膜束を調整し、筒状容器に装填し、両端をポリウレタン樹脂でポッティング加工してポリスルホン中空糸膜フィルタを作製した。本フィルタの限外濾過性能は107mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタ54として、擬似腹水の1/4量処理時までの間は毎分30mL、それ以降は毎分70mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は57分、濾液中のタンパク濃度は0.036g/dLとなった。
[実施例2]
 膜面積を1.1mになるようにした以外は実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は88mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分30mL、それ以降は毎分70mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は57分、濾液中のタンパク濃度は0.035g/dLとなった。
[実施例3]
 膜面積を2.1mになるようにした以外は実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は134mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分30mL、それ以降は毎分70mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は57分、濾液中のタンパク濃度は0.037g/dLとなった。
[実施例4]
 実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は107mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分50mL、それ以降は毎分100mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は37.5分、濾液中のタンパク濃度は0.061g/dLとなった。
[実施例5]
 実施例2と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は88mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分50mL、それ以降は毎分100mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は37.5分、濾液中のタンパク濃度は0.060g/dLとなった。
[実施例6]
 実施例3と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は134mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分50mL、それ以降は毎分100mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は37.5分、濾液中のタンパク濃度は0.065g/dLとなった。
[実施例7]
 実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は107mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は29.5分、濾液中のタンパク濃度は0.085g/dLとなった。
[実施例8]
 実施例2と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は88mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は29.5分、濾液中のタンパク濃度は0.082g/dLとなった。
[実施例9]
 実施例3と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は134mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は29.5分、濾液中のタンパク濃度は0.088g/dLとなった。
[実施例10]
 実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は150mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は29.5分、濾液中のタンパク濃度は0.083g/dLとなった。
[実施例11]
 実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は85mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分50mL、それ以降は毎分100mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は37.5分、濾液中のタンパク濃度は0.065g/dLとなった。
[実施例12]
 実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は110mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は29.5分、濾液中のタンパク濃度は0.083g/dLとなった。
[比較例1]
 実施例1と同様の方法で濃縮用フィルタを作製した。本フィルタを前述の濃縮用フィルタとして、常に一定の流入速度(毎分100mL)で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は30分だったが、濾液中のタンパク濃度は0.207g/dLとなった。
[比較例2]
 実施例1と同様の方法で濃縮用フィルタを作製した。本フィルタを前述の濃縮用フィルタとして、常に一定の流入速度(毎分200mL)で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は15分だったが、濾液中のタンパク濃度は0.498g/dLとなった。
[比較例3]
 実施例1と同様の方法で濃縮用フィルタを作製した。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分30mL、それ以降は毎分50mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができたが、濃縮時間は制限時間60分を超えた70分を有し、濾液中のタンパク濃度は0.030g/dLとなった。
[比較例4]
 限外濾過性能が77mL/分/200mmHgである旭化成クラレメディカル社製の腹水濃縮器、AHF-UNH(ポリアクリロニトリル中空糸、1.1m)を用いた。当該腹水濃縮器を前述の濃縮用フィルタに転用して腹水濃縮性能試験を実施した。擬似腹水の1/4量処理時までの間は毎分50mL、それ以降は毎分100mLの流入速度で腹水濃縮操作を施行した。全ての擬似腹水を処理し、回収液量を測定したところ、目標倍率に到達しておらず、回路、ローラーポンプを組み替え、回収容器内の回収液の追加濃縮が必要であった。
[比較例5]
 PSf(ソルベイ社製、P-1700)18重量部、PVP(日本触媒社製、K-85N)4.5重量部、ジメチルアセトアミド77.5重量部からなる均一な紡糸原液を作成した。DMAC57%水溶液の中空内液と同時に二重紡口から押し出し外界から遮断するために取り付けたフードの中を通って90cm下方に設けた水よりなる75℃の凝固浴に浸漬し、40m/分の速度で巻き取った。得られた中空糸膜は40重量%のグリセリン水溶液で処理した後、80℃で乾燥した。
 膜面積が2.0mになるように中空糸膜束を調整し、筒状容器に装填し両端をポリウレタン樹脂でポッティング加工してポリスルホン中空糸膜フィルタを作製した。本フィルタの限外濾過性能は170mL/分/200mmHgであった。
 本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分50mL、それ以降は毎分100mLの流入速度で腹水濃縮操作を施行した。全ての擬似腹水を処理し、回収液量を測定したところ、濃縮時間は37.5分であったが、回収液のタンパク質濃度は3.0g/dLとなり、目標倍率のタンパク質濃度15.0g/dLに達しなかった。また、濾液のタンパク質濃度も2.951g/dLとなった。
[比較例6]
 実施例1と同様の方法で濃縮用フィルタを作製した。本フィルタの限外濾過性能は107mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水のふるい係数が0.07に達するまでの間は毎分30mL、それ以降は毎分70mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は54分であったが、濾液タンパク濃度が0.210g/dLとなった。
[比較例7]
 実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は160mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は29.5分であったが、濾液中のタンパク濃度は1.753g/dLとなった。
[比較例8]
 実施例1と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は80mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、全ての擬似腹水を処理し、回収液量を測定したところ、目標倍率に到達しておらず、回路、ローラーポンプを組み替え、回収容器内の回収液の追加濃縮が必要であった。
[比較例9]
 実施例2と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は110mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、7g/dLの総タンパク質濃度に調整した牛血漿を擬似腹水とし、3L用意した。擬似腹水を1/10量処理した時点でふるい係数が0.03に達したため、それまでは毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、全ての擬似腹水を処理し、回収液量を測定したところ、目標倍率に到達しておらず、回路、ローラーポンプを組み替え、回収容器内の回収液の追加濃縮が必要であった。
[比較例10]
 実施例2と同様の方法で、ポリスルホン濃縮用フィルタを作製した。本フィルタの限外濾過性能は110mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水の1/4量処理時までの間は毎分90mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は27.1分であったが、濾液中のタンパク濃度は0.108g/dLとなった。
[比較例11]
 実施例2と同様の方法で濃縮用フィルタを作製した。本フィルタの限外濾過性能は110mL/分/200mmHgであった。本フィルタを前述の濃縮用フィルタとして、擬似腹水のふるい係数が0.04に達するまでの間は毎分70mL、それ以降は毎分120mLの流入速度で腹水濃縮操作を施行したところ、追加濃縮なしで5倍以上の濃縮倍率に達することができ、濃縮時間は30.4分であったが、濾液タンパク濃度が0.113g/dLとなった。
 実施例1~12及び比較例1~11の測定条件及び測定結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~12では、腹水濃縮フィルタの濾過側出口から送出するタンパク質濃度を100mg/dL以下に制御しつつ、処理時間を57分以内に抑えることができた。一方、腹水流入速度100mL/min、200mL/minと全処理時間にわたって一定値に制御した比較例1及び2、第1ステップの流入速度を早めに設定した比較例10では、濃縮用フィルタの濾液側の濃度が100mg/dL以上となった。
 第1のステップの流量を毎分30mL、第2のステップの流量を毎分50mLに制御した比較例3では、濾液タンパク質濃度は実施例1~3と同等程度であるが、処理時間が70分となり制限時間の60分を超過した。また、限外濾過性能が低いフィルタを使用した比較例4、8では、1回の濃縮では5倍以上の濃縮を達成できず、追加濃縮が必要となった。さらに、限外濾過性能が非常に高いフィルタを用いた比較例5、7では、タンパク質が十分に濃縮されておらず、低いタンパク質濃度のタンパク質溶液しか得られなかった。
 また、第2のステップに移行するタイミングをふるい係数が0.07の時点に設定した比較例6、ふるい係数が0.04の時点に設定した比較例11では、濾液側のタンパク濃度が100mg/dL以上となった。腹水のタンパク濃度を高めに設定した比較例9では、1回の濃縮では5倍以上の濃縮を達成できず、追加濃縮が必要となった。
 本発明によれば、腹水などの希薄なタンパク質溶液を濃縮し、濃厚なタンパク質溶液を得る方法において、目詰まりによる処理速度低下をきたさず、追加濃縮工程など施行者の負担なしで高いタンパク質濃度の濃厚タンパク質溶液を得ることができる、高濃度タンパク質溶液の製造方法及び製造装置を提供することが可能となる。
 1・・・貯留容器、1b・・・出口(貯留容器と第1流路との接続部)、2・・・回収容器、2a・・・入口(回収容器と第4流路との接続部)、3・・・濾過用フィルタ、3a・・・濾過用フィルタの入口、3b・・・濾過用フィルタの出口、3c・・・濾液出口(腹水濾過用フィルタの濾過側出口)、4,54・・・濃縮用フィルタ、4a・・・腹水流入口(腹水濃縮用フィルタの入口)、4b・・・濃縮液出口(腹水濃縮用フィルタの出口)、4c・・・濾液排出口(腹水濃縮用フィルタの濾過側出口)、5・・・ポンプ(制御手段)、14,15・・・制御部(制御手段)、31・・・第1流路、32・・・第2流路、33・・・第3流路、34・・・第4流路、35・・・第5流路、41・・・制御装置(制御手段)、50a、50b・・・屈折計、60・・・制御装置(重量モニタリング用)、100,200,300・・・腹水濾過濃縮装置、400・・・腹水濃縮性能試験装置。
 
 

Claims (16)

  1.  低濃度タンパク質溶液を貯留した貯留容器から回路を通じて前記低濃度タンパク質溶液を、限外濾過性能が85mL~150mL/分/200mmHgであり親水性高分子が付与されたポリスルホン系中空糸膜型の腹水濃縮用フィルタに通液させ、前記フィルタの濾過側出口から濾液を送出させるとともに、前記フィルタの出口から高濃度タンパク質溶液を送出させる第1の工程と、
     前記フィルタの出口から送出された前記高濃度タンパク質溶液を回収容器に回収する第2の工程と、
    を含み、
     前記第1の工程が、
     前記低濃度タンパク質溶液を第1の流速で前記腹水濃縮用フィルタに通液させる第1のステップと、
     前記低濃度タンパク質溶液の全量から所定量以上が送液された時点で第1の流速より速い第2の流速で前記低濃度タンパク質溶液を前記腹水濃縮用フィルタに通液させる第2のステップと、
    を含む、高濃度タンパク質溶液の製造方法。
  2.  前記フィルタの膜面積をA、前記第1のステップで処理される前記低濃度タンパク溶液の重量をV1、前記低濃度タンパク溶液のタンパク濃度をC、前記第1のステップの流速をQb1、前記第1のステップの濾過流速をQf1、前記フィルタの限外濾過性能をFとした場合に、下記(1)を満たすタイミングで前記第2のステップへと切り替える、請求項1記載の方法。
      103.7≦-37log(A/V1)+log(Qb1/V1)+57log(F)-log(1/C)-log(Qb1/Qf1)≦112.6 (1)
  3.  前記第1の流速から第2の流速への切り替えが、前記低濃度タンパク質溶液の全量の少なくとも1/4以上が送液された時点で行われる、請求項1又は2に記載の方法。
  4.  前記第1の流速は70mL/min以下であり、かつ第2の流速は120mL/min以下である、請求項1~3のいずれか1項に記載の方法。
  5.  前記第1の流速は50mL/min以下であり、かつ第2の流速は70mL/min以下である、請求項1~4のいずれか1項に記載の方法。
  6.  前記第1の流速と第2の流速の合算値は100mL/min以上であり、かつ前記第1の流速と第2の流速との流速差は少なくとも20mL/min以上である、請求項1~5のいずれか1項に記載の方法。
  7.  前記第1の工程において、前記低濃度タンパク質溶液のタンパク質濃度は5g/dL以下である、請求項1~6のいずれか1項に記載の方法。
  8.  前記第1の工程において、前記低濃度タンパク質溶液のタンパク質濃度は3g/dL以下である、請求項1~6のいずれか1項に記載の方法。
  9.  前記第1の工程において、前記腹水濃縮用フィルタの濾過側出口から送出した高濃度タンパク質溶液中のタンパク質のふるい係数が所定値以下であるときに、前記第2のステップを開始する、請求項1~8のいずれか1項に記載の方法。
  10.  前記第1の工程において、前記腹水濃縮用フィルタの濾過側出口から送出した高濃度タンパク質溶液中のタンパク質のふるい係数が少なくとも0.03以下であるときに、前記第2のステップを開始する、請求項1~9のいずれか1項に記載の方法。
  11.  前記第1の工程において、前記腹水濃縮用フィルタの濾過側出口から送出された濾液中のタンパク質濃度が100mg/dL以下である、請求項1~10のいずれか1項に記載の方法。
  12.  前記第1の工程において、前記腹水濃縮用フィルタの出口から送出される高濃度タンパク質溶液のタンパク質濃度が7g/dL以上である、請求項1~11のいずれか1項に記載の方法。
  13.  前記回路は、腹水濾過用フィルタを含む、請求項1~12のいずれか1項に記載の方法。
  14.  前記第1の工程において、第1の流速で前記腹水濃縮用フィルタに送液させる第1のステップと、前記腹水濃縮用フィルタの入口と出口の溶液中のタンパク質濃度をモニタリングし、前記タンパク質のふるい係数が少なくとも0.03以下に低下した時点で第2のステップを行うように制御する、請求項1~13のいずれか1項に記載の方法。
  15.  前記第1の工程において、第1の流速で前記腹水濃縮用フィルタに送液させる第1のステップと、前記低濃度タンパク質溶液の重量をモニタリングし、前記低濃度タンパク質溶液の全量から所定量以上が送液された時点で第2のステップを行うように制御する、請求項1~13のいずれか1項に記載の方法。
  16.  低濃度タンパク質溶液を貯留した貯留容器から回路を通じて前記低濃度タンパク質溶液を、限外濾過性能が85mL~150mL/分/200mmHgであり親水性高分子が付与されたポリスルホン系中空糸膜型の腹水濃縮用フィルタに通液させ、前記フィルタの濾過側出口から濾液を送出させるとともに、前記フィルタの出口から高濃度タンパク質溶液を送出させる第1の工程を有する部と、
     前記フィルタの出口から送出された前記高濃度タンパク質溶液を回収容器に回収する第2の工程を有する部と、
    を含み、
     前記第1の工程を有する部が、
     前記低濃度タンパク質溶液を第1の流速で前記腹水濃縮用フィルタに通液させる第1のステップを有する部と、
     前記低濃度タンパク質溶液の全量から所定量以上が送液された時点で第1の流速より速い第2の流速で前記低濃度タンパク質溶液を前記腹水濃縮用フィルタに通液させる第2のステップを有する部と、
    を含み、
     前記フィルタの膜面積をA、前記第1のステップで処理される前記低濃度タンパク溶液の重量をV1、前記低濃度タンパク溶液のタンパク濃度をC、前記第1のステップの流速をQb1、前記第1のステップの濾過流速をQf1、前記フィルタの限外濾過性能をFとした場合に、下記(1)を満たすタイミングで前記第2ステップへと切り替える、高濃度タンパク質溶液の製造装置。
      103.7≦-37log(A/V1)+log(Qb1/V1)+57log(F)-log(1/C)-log(Qb1/Qf1)≦112.6 (1)
PCT/JP2013/064107 2012-05-25 2013-05-21 高濃度タンパク質溶液の製造方法及び製造装置 WO2013176140A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014516812A JP5873170B2 (ja) 2012-05-25 2013-05-21 高濃度タンパク質溶液の製造方法及び製造装置
CN201380027202.9A CN104334201B (zh) 2012-05-25 2013-05-21 高浓度蛋白质溶液的制造方法及制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-119747 2012-05-25
JP2012119747 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013176140A1 true WO2013176140A1 (ja) 2013-11-28

Family

ID=49623828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064107 WO2013176140A1 (ja) 2012-05-25 2013-05-21 高濃度タンパク質溶液の製造方法及び製造装置

Country Status (4)

Country Link
JP (1) JP5873170B2 (ja)
CN (1) CN104334201B (ja)
TW (1) TWI568461B (ja)
WO (1) WO2013176140A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060209A1 (ja) * 2014-10-16 2016-04-21 旭化成メディカル株式会社 中空糸膜型体液濾過装置、及びタンパク質溶液の濾過方法
JP2016154809A (ja) * 2015-02-26 2016-09-01 旭化成メディカル株式会社 濃縮器
JP2019180568A (ja) * 2018-04-04 2019-10-24 東洋紡株式会社 腹水濾過用の中空糸膜
JP2019532807A (ja) * 2016-10-24 2019-11-14 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング 中空糸膜束の透過特性を決定する方法
JP2021106670A (ja) * 2019-12-27 2021-07-29 旭化成メディカル株式会社 濾過器の試験装置及び試験方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895828B2 (ja) * 2017-07-07 2021-06-30 旭化成メディカル株式会社 体腔液処理装置
JP6501421B2 (ja) * 2017-07-07 2019-04-17 旭化成メディカル株式会社 体腔液処理装置
CN109865431A (zh) * 2017-12-01 2019-06-11 广州中国科学院先进技术研究所 一种用于蛋白类物质分离浓缩的膜集成装置及蛋白类物质分离方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516674A (en) * 1978-07-24 1980-02-05 Kuraray Co Abdominal dropsy treatment device
JPH05168699A (ja) * 1991-11-11 1993-07-02 Kuraray Co Ltd 腹水の処理装置
JP2011172797A (ja) * 2010-02-25 2011-09-08 Keisuke Matsuzaki 腹水処理システムおよびその洗浄方法
JP2012125557A (ja) * 2010-11-26 2012-07-05 Asahi Kasei Medical Co Ltd 腹水濾過濃縮装置及び高濃度タンパク質溶液の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083786A (en) * 1975-03-20 1978-04-11 Asahi Kasei Kogyo Kabushiki Kaisha Apparatus for treating ascites
SE402713B (sv) * 1976-10-14 1978-07-17 Gambro Ab Anordning for metning av ultrafiltration vid ett dialyssystem
JPH08108048A (ja) * 1994-10-12 1996-04-30 Toray Ind Inc 逆浸透分離装置及び逆浸透分離方法
JP4233717B2 (ja) * 1999-10-15 2009-03-04 有限会社 北九州生命情報科学院 オンライン血液透析濾過装置
JP4892824B2 (ja) * 2004-11-04 2012-03-07 東レ株式会社 中空糸膜型分離膜の製造方法ならびにその製造方法で製造された中空糸膜型分離膜の使用方法
CN100446845C (zh) * 2006-09-07 2008-12-31 东华大学 一种聚砜和聚乙烯基类聚合物的共混膜及制备方法和用途
JP5062631B2 (ja) * 2008-06-12 2012-10-31 圭祐 松崎 腹水処理システムおよびその作動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516674A (en) * 1978-07-24 1980-02-05 Kuraray Co Abdominal dropsy treatment device
JPH05168699A (ja) * 1991-11-11 1993-07-02 Kuraray Co Ltd 腹水の処理装置
JP2011172797A (ja) * 2010-02-25 2011-09-08 Keisuke Matsuzaki 腹水処理システムおよびその洗浄方法
JP2012125557A (ja) * 2010-11-26 2012-07-05 Asahi Kasei Medical Co Ltd 腹水濾過濃縮装置及び高濃度タンパク質溶液の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060209A1 (ja) * 2014-10-16 2016-04-21 旭化成メディカル株式会社 中空糸膜型体液濾過装置、及びタンパク質溶液の濾過方法
TWI584830B (zh) * 2014-10-16 2017-06-01 Asahi Kasei Medical Co Ltd Hollow fiber membrane type body fluid filtration device, and protein solution filtration method
JPWO2016060209A1 (ja) * 2014-10-16 2017-06-29 旭化成メディカル株式会社 中空糸膜型体液濾過装置、及びタンパク質溶液の濾過方法
JP2016154809A (ja) * 2015-02-26 2016-09-01 旭化成メディカル株式会社 濃縮器
JP2019532807A (ja) * 2016-10-24 2019-11-14 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング 中空糸膜束の透過特性を決定する方法
US11541355B2 (en) 2016-10-24 2023-01-03 Fresenius Medical Care Deutschland Gmbh Method for determining a permeation property of hollow fibre membrane bundles
JP7232179B2 (ja) 2016-10-24 2023-03-02 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング 中空糸膜束の透過特性を決定する方法
JP2019180568A (ja) * 2018-04-04 2019-10-24 東洋紡株式会社 腹水濾過用の中空糸膜
JP7131038B2 (ja) 2018-04-04 2022-09-06 東洋紡株式会社 腹水濾過用の中空糸膜
JP2021106670A (ja) * 2019-12-27 2021-07-29 旭化成メディカル株式会社 濾過器の試験装置及び試験方法
JP7335161B2 (ja) 2019-12-27 2023-08-29 旭化成メディカル株式会社 濾過器の試験装置及び試験方法

Also Published As

Publication number Publication date
TWI568461B (zh) 2017-02-01
JPWO2013176140A1 (ja) 2016-01-14
CN104334201A (zh) 2015-02-04
TW201402159A (zh) 2014-01-16
JP5873170B2 (ja) 2016-03-01
CN104334201B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5873170B2 (ja) 高濃度タンパク質溶液の製造方法及び製造装置
JP5856821B2 (ja) 腹水濾過濃縮装置
US7563376B2 (en) Plasma purification membrane and plasma purification system
JP6522001B2 (ja) 中空糸濾過膜
US10188991B2 (en) Permselective asymmetric membranes
WO2015125852A1 (ja) 血小板浮遊液洗浄用の中空糸膜モジュール
WO2009125598A1 (ja) ポリエーテルスルホン製の親水性ろ過膜、その製造方法及び製膜原液
JP3934340B2 (ja) 血液浄化器
CN111050888B (zh) 微孔膜及其制造方法
JP4103037B2 (ja) 透析液清浄化用中空糸膜およびその製造方法
WO1996035504A1 (fr) Membrane fibre creuse a base de polymere de polysulfone et son procede de production
WO2016182015A1 (ja) 多孔質中空糸膜及びその製造方法
JP4190361B2 (ja) 中空糸型の体液処理器、これに用いる中空糸束およびそれらの製造方法
CN113049278A (zh) 体腔液浓缩器的评价测试方法
JPH0211263B2 (ja)
JP7402680B2 (ja) 体腔液濃縮器の蛋白質回収性能を評価するための試験液及びその製造方法
JP7395348B2 (ja) 体腔液濃縮器の評価試験方法
TWI808366B (zh) 體腔液濃縮器之評價試驗方法
JP7131038B2 (ja) 腹水濾過用の中空糸膜
TWI794706B (zh) 用於評價體腔液濃縮器之蛋白質回收性能之試驗液及其製造方法
JP2011020071A (ja) ポリスルホン系中空糸膜の製造方法
JP6030295B2 (ja) 血液浄化器の製造方法
CN113049460A (zh) 评价体腔液浓缩器蛋白质回收性能的测试液及其制造方法
JPH10109023A (ja) 中空糸型選択分離膜
JP2001038172A (ja) 中空糸型選択分離膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794170

Country of ref document: EP

Kind code of ref document: A1