WO2013175712A1 - X線診断装置及びx線診断支援方法 - Google Patents

X線診断装置及びx線診断支援方法 Download PDF

Info

Publication number
WO2013175712A1
WO2013175712A1 PCT/JP2013/002814 JP2013002814W WO2013175712A1 WO 2013175712 A1 WO2013175712 A1 WO 2013175712A1 JP 2013002814 W JP2013002814 W JP 2013002814W WO 2013175712 A1 WO2013175712 A1 WO 2013175712A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
unit
diaphragm
roi
Prior art date
Application number
PCT/JP2013/002814
Other languages
English (en)
French (fr)
Inventor
勇一郎 渡部
輝臣 郡司
田中 学
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201380000559.8A priority Critical patent/CN103561658B/zh
Priority to US13/954,303 priority patent/US9161728B2/en
Publication of WO2013175712A1 publication Critical patent/WO2013175712A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling

Definitions

  • Embodiments of the present invention relate to an X-ray diagnostic apparatus having an X-ray generation unit and an X-ray detector, and reduce the exposure dose by narrowing the irradiation field by rotating and moving the diaphragm blades of the X-ray diaphragm.
  • the present invention relates to an X-ray diagnosis apparatus and an X-ray diagnosis support method.
  • a catheter in endovascular treatment, angiography, etc., a catheter is inserted into a blood vessel, for example, from the base of a foot, and the catheter is advanced into the blood vessel and brought to a target site.
  • the catheter or the guide wire for guiding the catheter
  • an X-ray fluoroscopic image is displayed, and the catheter or the guide wire is guided to the affected part while viewing the display image.
  • an X-ray tube and an X-ray detector (a flat detector generally called an FPD) are arranged to face each other, and an X-ray diaphragm is provided on the front surface of the X-ray tube.
  • the X-ray diaphragm has a slidable diaphragm blade, and selectively moves the diaphragm blade to irradiate X-rays to the diagnosis area of the subject, thereby protecting the subject from unnecessary X-ray exposure.
  • the X-ray diaphragm can move only in the left-right direction (X direction) and the up-down direction (Y direction) with respect to the FPD. For this reason, when the blood vessel region to be seen extends obliquely with respect to the FPD (for example, the blood vessel at the base of the foot), there is a problem that the irradiation field becomes large and unnecessary exposure occurs.
  • the problem to be solved by the present invention is to provide an X-ray diagnosis apparatus and an X-ray diagnosis support method for displaying a fluoroscopic image, supporting the progress of devices such as a catheter and a guide wire, and reducing the exposure of a subject. It is in.
  • An X-ray diagnostic apparatus includes an imaging unit including an X-ray tube that irradiates a subject with X-rays and an X-ray detector that detects X-rays transmitted through the subject, the X-ray tube, A rotatable X-ray diaphragm having a plurality of diaphragm blades disposed between the X-ray detector, an image processing section for generating a fluoroscopic image of a sensitive area set by the X-ray diaphragm, and the plurality of the plurality of diaphragm blades.
  • a controller that individually controls the plurality of diaphragm blades such that a long side of the opening formed by the diaphragm blades is directed in a longitudinal direction of the target in the fluoroscopic image.
  • the block diagram which shows the structure of the X-ray diagnostic apparatus which concerns on one Embodiment. 1 is a perspective view showing an overall configuration of an X-ray diagnostic apparatus according to an embodiment. 1 is a schematic configuration diagram of an X-ray diaphragm in one embodiment.
  • Explanatory drawing which shows an example of the X-ray fluoroscopic image in one Embodiment.
  • Explanatory drawing which shows the change process of ROI in one Embodiment.
  • Explanatory drawing which shows the change process of ROI in 2nd Embodiment.
  • the workflow figure which looked at the change process of ROI in 2nd Embodiment from the user viewpoint.
  • Explanatory drawing which shows the change process of ROI by the modification of 2nd Embodiment.
  • Explanatory drawing which shows the change process of ROI in 3rd Embodiment.
  • the workflow figure which looked at the change process of ROI in 3rd Embodiment from the user viewpoint The workflow figure which looked at the change process of ROI in 3rd Embodiment from the system viewpoint.
  • FIG. 1 is a block diagram illustrating a configuration of an X-ray diagnostic apparatus according to an embodiment.
  • FIG. 1 shows an X-ray diagnostic apparatus 100 called an angio apparatus.
  • the X-ray diagnostic apparatus 100 two-dimensionally detects an X-ray generation unit 10 that generates X-rays on the subject P and X-rays that have passed through the subject P, and X-ray projection data based on the detection result.
  • the X-ray detection part 20 which produces
  • the X-ray generation unit 10 includes an X-ray irradiation unit having an X-ray tube 11 and an X-ray diaphragm 12 (X-ray diaphragm unit), a high voltage control unit 13 and a high voltage generator 14.
  • the X-ray tube 11 is a vacuum tube that generates X-rays, and accelerates electrons emitted from a cathode (filament) by a high voltage to collide with a tungsten anode to generate X-rays.
  • the high voltage control unit 13 controls the high voltage generator 14 in accordance with an instruction signal from the system control unit 33 (described later), the tube current of the X-ray tube 11, the tube voltage, the X-ray pulse width, the irradiation period, the imaging period, Control of X-ray irradiation conditions including irradiation time and the like is performed.
  • the X-ray detection unit 20 digitally outputs the flat detector 21 (FPD: Flat Panel Detector), the charge / voltage converter 22 that converts charges read from the FPD 21 into voltage, and the output of the charge / voltage converter 22.
  • An A / D converter 23 that converts the signal into signals is provided, and X-ray projection data is output from the A / D converter 23.
  • the X-ray generation unit 10 and the X-ray detection unit 20 are supported by an arm (C arm) 24.
  • the C-arm 24 can move in the body axis direction of the subject P placed on the couch top 25 and can rotate around the body axis of the subject P.
  • the X-ray generation unit 10 and the X-ray detection unit 20 constitute an imaging unit 26. By rotating the C arm 24, the imaging unit 26 rotates around the subject P, and the subject P is observed from different angles. Can be taken.
  • the X-ray diagnostic apparatus 100 includes an image data storage unit 31, an image processing unit 32, a system control unit 33, an operation unit 34, and a display unit 35.
  • the image data storage unit 31 sequentially stores the X-ray projection data from the A / D converter 23 to generate image data.
  • the image processing unit 32 performs image processing and calculation for the purpose of edge enhancement and S / N improvement on the generated image data as necessary, and stores the image data in the image data storage unit 31.
  • the image data stored in the image data storage unit 31 is read out as necessary, supplied to the display unit 35, and displayed.
  • the system control unit 33 includes a CPU and a storage circuit (not shown), operates based on input information, setting information, and selection information from the operation unit 34, and each of the X-ray diagnostic apparatuses 100 via the bus line 39.
  • a control unit that controls the unit in an integrated manner is configured.
  • the operation unit 34 is used by a user such as a doctor or an examiner to input various commands.
  • the operation unit 34 sets the moving direction and moving speed of the top board 25, sets the rotation / movement direction and rotation / moving speed of the imaging system, sets the X-ray irradiation conditions including tube voltage and tube current, and the like. Do.
  • the display unit 35 includes a display data generation unit 36, a conversion unit 37, and a monitor 38 in order to display image data.
  • the display data generating unit 36 generates display data by synthesizing incidental information with image data or converting the image data into a predetermined display format.
  • the conversion unit 37 performs D / A (digital / analog) conversion and television format conversion on the display data to generate a video signal, and displays the video signal on a monitor 38 such as a liquid crystal display.
  • the X-ray diagnostic apparatus 100 includes a moving mechanism unit 40.
  • the moving mechanism unit 40 includes an aperture mechanism control unit 41 and a mechanism control unit 42.
  • the diaphragm mechanism control unit 41 performs movement control of the diaphragm blades and the like in the X-ray diaphragm 12 and rotation control of the X-ray diaphragm 12.
  • the mechanism control unit 42 controls the moving mechanism 43 of the top plate 25 on which the subject P is placed, and controls the imaging system moving mechanism 44 such as the imaging unit 26 and the C arm 24.
  • the movement mechanism unit 40 operates in response to the operation of the operation unit 34, and performs movement control of each unit under the control of the system control unit 33.
  • FIG. 2 is a perspective view showing the overall configuration of the X-ray diagnostic apparatus 100 (angio apparatus).
  • the X-ray generation unit 10 and the X-ray detection unit 20 are supported by a C arm 24 so as to face each other.
  • a couch is arranged with respect to the C arm 24, and a subject (not shown) is placed on the couch top 25.
  • the position and height of the couch 25 are controlled by the mechanism control unit 42.
  • the X-ray generation unit 10 faces the X-ray detection unit 20, but the X-ray diaphragm 12 is rotatable as indicated by an arrow W, and rotates individually without being linked to the FPD 21. can do.
  • the C arm 24 is supported by, for example, a rail provided on the ceiling, and is movable in the body axis direction from the head of the subject toward the leg.
  • the imaging unit 26 (the X-ray generation unit 10 and the X-ray detection unit 20) can rotate around the body axis around the body axis by the rotation of the C-arm 24. Further, the photographing unit 26 can be slid and rotated along the C arm 24.
  • the X-ray projection data is processed by the image processing unit 32 and the image data is displayed on the monitor 38.
  • the monitor 38 is attached to the ceiling, for example.
  • An operation unit 34 is attached to the bed.
  • the system control unit 33 performs control of the height of the top plate 25, control of movement / rotation of the C arm 24, adjustment of the X-ray irradiation range, control of irradiation timing, and the like.
  • FIG. 3A is a schematic configuration diagram (perspective view) of the X-ray diaphragm 12.
  • the X-ray diaphragm 12 regulates the X-ray irradiation area for the subject P, and the cone beam emitted from the X-ray tube 11 is placed in the imageable area of the FPD 21.
  • the diaphragm blades 121A and 121B are provided.
  • the aperture blades 121A and 121B can move in the directions of arrows X and Y in FIG. 3A, and the aperture mechanism control unit 41 moves the aperture blades 121A and 121B to arbitrarily change the size and position of the opening. To set the area of interest.
  • an imaging region RXi by X-rays that passes through the opening formed by the diaphragm blades 121A and 121B and passes through the region of interest Ri of the subject P is formed in a substantially central portion of the FPD 21.
  • the FPD 21 converts X-rays transmitted through the region of interest Ri of the subject P into charges and accumulates them, and reads the accumulated charges to generate X-ray projection data.
  • the diaphragm blades 121A and 121B are supported by the rotating unit 122, and the diaphragm mechanism control unit 41 rotates the rotating unit 122 around the optical axis of the X-ray to rotate the aperture formed by the diaphragm blades 121A and 121B. can do. Therefore, the angle of the imaging region RXi of the FPD 21 can be changed.
  • FIG. 3B is a schematic configuration diagram (plan view) of the multi-leaf type X-ray diaphragm 12 ′, which has a plurality of strip-shaped leaves 121C and 121D that can be moved back and forth along the X-axis. ing.
  • the plurality of leaves 121C and 121D constitute a diaphragm blade, and the left and right leaves 121C and 121D are paired with the central axis X0 interposed therebetween.
  • the opening By moving the pair of leaves 121C and 121D along the X axis, the opening (irradiation field) can be set to an arbitrary shape other than a rectangle.
  • the multi-leaf X-ray diaphragm 12 ′ is supported by the rotating unit 122 so that it can be rotated in the W direction.
  • the X-ray diaphragm 12 shown in FIG. 3A and the multi-leaf X-ray diaphragm 12 'shown in FIG. 3B may be used in combination.
  • a device such as a catheter and a guide wire for guiding the catheter is inserted into the blood vessel, and the device is advanced into the blood vessel and brought to the target site.
  • an X-ray fluoroscopic image is displayed, and the device is guided to the affected area while viewing the display image.
  • the subject P is placed on the top plate 25, the C arm 24 and the top plate 25 are moved to designated positions, and the subject P is irradiated with X-rays to display a fluoroscopic image.
  • Fluoroscopy provides a moving image in real time by irradiating X-rays with a small dose, and is used for patient positioning and support for endovascular treatment. Then, while looking at the fluoroscopic image, the region of interest (ROI: Region of Interest) is determined and fluoroscopically seen.
  • a fluoroscopic image (ROI fluoroscopic image) in which the irradiation field is narrowed down by the diaphragm blades 121A and 121B of the X-ray aperture 12 is displayed superimposed on the LIH image.
  • FIG. 4 shows an example of an X-ray fluoroscopic image displayed on the monitor 38.
  • a ROI perspective image 51 is displayed on the display screen 50 of the monitor 38.
  • the LIH image 52 is displayed as a background image.
  • a device image 53 is displayed by fluoroscopy.
  • the ROI is designated by a user (doctor, examiner) operating the operation unit 34, and information on the designated ROI is notified to the aperture mechanism control unit 41 via the system control unit 33.
  • the diaphragm mechanism control unit 41 controls the positions of the diaphragm blades 121A and 121B of the X-ray diaphragm 12 to narrow the irradiation field. Up to this point, the setting is a general ROI.
  • FIG. 5 is a diagram illustrating ROI change processing.
  • a fluoroscopic image (ROI fluoroscopic image) 51 obtained by narrowing the irradiation field with the diaphragm blades 121A and 121B displays an image 53 of a device that is a target, and the position of the device is indicated.
  • the ROI is set at the center.
  • a straight line 63 connecting the start point 61 and the end point 62 of the device image 53 in the ROI perspective image 51 is calculated.
  • the straight line 63 is calculated by the image processing unit 32. That is, the image processing unit 32 detects the device image 53 based on the image data of the ROI perspective image 51, obtains the coordinates of the start point 61 and the end point 62 of the device image 53 in the ROI perspective image 51, and FIG. As shown in b), a linear component (straight line 63) connecting the start point 61 and the end point 62 is calculated.
  • the straight line 63 is a line extending in parallel with the longitudinal direction of the target (device image 53).
  • the image processing unit 32 rotates the ROI (corresponding to the frame of the ROI image 51) so that one side of the ROI is parallel to the calculated straight line 63, that is, the longitudinal direction of the device image. Then, the aperture mechanism control unit 41 is notified of information about the rotated ROI. In addition, when one side of ROI and the calculated straight line 63 are parallel from the beginning, it is not necessary to rotate the ROI.
  • the diaphragm mechanism control unit 41 rotates the rotating unit 122 (FIG. 3) of the X-ray diaphragm 12 in the W direction around the optical axis and positions the diaphragm blades 121A and 121B. Movement control is performed in a direction orthogonal to the straight line 63 (device image 53) and in a direction approaching the straight line 63. For example, the position of the aperture blade 121A is moved in the X1 and X2 directions to change the ROI.
  • the ROI is reduced, the size of the ROI fluoroscopic image 51 is also reduced, and the exposure dose to the subject P can be reduced. Since the device image 53 is displayed without hindrance even when the ROI is reduced, the progress of the device can be supported.
  • the ROI can be automatically changed. Therefore, even when the device image 53 is oblique, the ROI can be changed by rotating the X-ray diaphragm 12 in accordance with the inclination angle of the device image 53 and controlling the positions of the diaphragm blades 121A and 121B.
  • the modified ROI in FIG. 5C illustrates a rectangular shape, but when the multi-leaf X-ray diaphragm 12 ′ in FIG. 3B is used, the ROI is not limited to a rectangular shape. It is also possible to change to a long and thin elliptical ROI.
  • FIG. 6 is a view showing a ROI perspective image 51 when the ROI is deviated from the center of the flat detector 21.
  • a straight line 63 connecting the start point 61 and the end point 62 of the device image 53 in the ROI fluoroscopic image 51 is It occurs at the corner.
  • the ROI is rotated, as shown in FIG. 6B, the outside of the FPD 21 is irradiated with X-rays. Therefore, when the region irradiated with X-rays is generated outside the FPD 21 due to the rotation of the ROI, the rotation is stopped.
  • FIG. 7 is a workflow diagram of ROI change processing as seen from the user's viewpoint.
  • step S ⁇ b> 1 is a start step, and in step S ⁇ b> 2, the subject P is placed on the couch top 25 and the C arm 24 and the couch 25 are moved.
  • step S3 the subject P is irradiated with X-rays for fluoroscopy.
  • the ROI is determined while viewing the fluoroscopic image.
  • ROI fluoroscopy is performed in step S5.
  • the device image 53 is automatically extracted by the procedure described in FIG. 5 to change the ROI.
  • ROI fluoroscopy is performed using the changed ROI, and the device is advanced while confirming the position of the device.
  • Step S8 is an end step.
  • FIG. 8 is a workflow diagram showing the ROI change process from the system viewpoint.
  • step S11 is a start step, and in step S12, the C arm 24 and the top plate 25 are moved to designated positions.
  • step S ⁇ b> 13 the subject P is irradiated with X-rays to perform fluoroscopy, and a fluoroscopic image is displayed on the monitor 38.
  • step S14 the ROI is displayed at the designated position on the display screen 50 of the monitor 38.
  • step S15 the position of the designated ROI is notified to the aperture mechanism control unit 41.
  • step S16 the diaphragm mechanism control unit 41 moves the diaphragm blades 121A and 121B to the notified positions, and in step S17, the LIH image 52 and the ROI fluoroscopic 51 image are superimposed and displayed on the display screen 50 (FIG. 5). (See (a)).
  • step S18 the device image 53 in the ROI fluoroscopic image 51 is detected and extracted.
  • step S19 a straight line 63 connecting the start point 61 and the end point 62 of the device image is calculated, and in step S20, the ROI is rotated so that the straight line 63 and one side of the ROI are parallel (see FIG. 5B).
  • the rotation angle is such that the outside of the FPD 21 is irradiated with X-rays, the rotation is prohibited and a warning “cannot rotate” may be notified.
  • step 21 new ROI information is notified to the aperture mechanism control unit 41 as the ROI rotates, and the aperture mechanism control unit 41 moves the aperture blades 121A and 121B to the notified positions.
  • step S22 the ROI fluoroscopic image 51 seen through with the changed ROI is displayed superimposed on the LIH image 52 (see FIG. 5C).
  • Step S23 is an end step.
  • the device image in the ROI is automatically detected, the ROI is rotated so as to be substantially parallel to the device image, and the ROI is set within a preset range around the device. By changing, the exposure dose to the subject P can be reduced.
  • FIG. 9 is a diagram illustrating ROI change processing according to the second embodiment.
  • a device image 53 as a target is displayed on the ROI fluoroscopic image 51 in which the irradiation field is narrowed down by the diaphragm blades 121A and 121B.
  • the user operates the operation unit 34 to rotate the ROI (corresponding to the frame of the ROI image 51).
  • the image processing unit 32 notifies the aperture mechanism control unit 41 of the rotated ROI information via the system control unit 33.
  • an operation button 341 for instructing rotation of the ROI is provided on the operation unit 34, and the ROI is rotated by a predetermined offset each time the user presses the operation button 341.
  • the user rotates to an angle at which one side of the ROI is substantially parallel to the device image 53, and the rotation is stopped by pressing an enter key (not shown).
  • the operation button 341 for instructing rotation may be a dial type button, or the ROI may be rotated according to the rotation direction and rotation angle of the dial type button.
  • the diaphragm mechanism control unit 41 receives information on the rotated ROI and rotates the rotating unit 122 of the X-ray diaphragm 12 in the W direction.
  • the diaphragm mechanism control unit 41 controls the positions of the diaphragm blades 121A and 121B in response to a user operation, and moves the diaphragm blades 121A and 121B so as to approach the device image 53 to change the ROI.
  • the diaphragm blade 121A is moved in the X1 and X2 directions. Thereby, the size of the ROI fluoroscopic image 51 is changed, and the exposure dose to the subject P can be reduced.
  • the ROI is changed by rotating the X-ray diaphragm 12 according to the inclination angle of the device image 53 and controlling the positions of the diaphragm blades 121A and 121B by the user operation. be able to.
  • FIG. 10 is a workflow diagram of ROI change processing in the second embodiment as viewed from the user's viewpoint.
  • steps S1 to S5 are the same as those in the first embodiment, but step S6 is different.
  • step S6 the ROI is changed using the operation button 341 of the operation unit 34.
  • step S7 ROI fluoroscopy is performed using the changed ROI, the device is advanced while confirming the position of the device, and the process ends in step S8.
  • FIG. 11 is a workflow diagram of ROI change processing according to the second embodiment as viewed from the system viewpoint.
  • steps S11 to S17 are the same as those in the first embodiment, but step S18 is different.
  • step S18 the ROI is rotated by the designated offset by the operation of the user's operation button 341 (see FIG. 9B).
  • the rotation angle is such that the outside of the FPD 21 is irradiated with X-rays, a message prohibiting the rotation is issued.
  • step S19 new ROI information is notified to the aperture mechanism control unit 41 as the ROI rotates, and the aperture mechanism control unit 41 moves the aperture blades 121A and 121B to the notified positions (FIG. 9). (See (c)).
  • step S20 the ROI fluoroscopic image 51 seen through with the changed ROI is displayed superimposed on the LIH image 42, and the process ends in step SS21.
  • FIG. 12 is a diagram for explaining ROI change processing of the X-ray diagnostic apparatus according to a modification of the second embodiment.
  • the user operates the mouse 342 provided on the operation unit 34 to instruct the rotation of the X-ray diaphragm 12.
  • a device image 53 is displayed in the ROI fluoroscopic image 51 in which the irradiation field is narrowed down by the diaphragm blades 121A and 121B.
  • the user operates the mouse 342 to rotate the ROI, and the image processing unit 32 uses the system control unit 33 to obtain information about the rotated ROI through the aperture control unit 41. To be notified.
  • the aperture mechanism control part 41 receives the information of the rotated ROI, and rotates the rotation part 122 of the X-ray aperture 12 in the W direction. Further, in response to the user operation, the diaphragm mechanism control unit 41 controls the positions of the diaphragm blades 121A and 121B, and moves the diaphragm blades 121A and 121B in the direction approaching the device image 53 to change the ROI. Thereby, the size of the ROI fluoroscopic image 52 can be reduced, and the exposure dose to the subject P can be reduced.
  • step S6 of FIG. 10 is replaced with “change ROI using a mouse”.
  • step S18 in FIG. 11 is replaced with “Rotate ROI by the amount designated by the mouse”.
  • the ROI can be rotated by the user, and the exposure dose to the subject P can be reduced by changing the ROI to a range centered on the device image. .
  • FIG. 13 is a diagram illustrating ROI change processing according to the third embodiment.
  • a device image 53 is displayed in the ROI fluoroscopic image 51 in which the irradiation field is narrowed down by the diaphragm blades 121A and 121B.
  • the user operates the mouse 342 to draw a straight line 65 in the vicinity of the device image 53 so as to be substantially parallel to the longitudinal direction of the mouse image 63.
  • the image processing unit 32 determines to which part of the ROI fluoroscopic image 51 the straight line 65 is drawn, and rotates the ROI so that one side of the ROI is parallel to the drawn straight line 65. Then, the image processing unit 32 notifies the information on the rotated ROI to the aperture mechanism control unit 41 via the system control unit 33.
  • the diaphragm mechanism control unit 41 rotates the rotating unit 122 of the X-ray diaphragm 12 in the W direction, and the diaphragm blades 121A and 121B are displayed on the device image 53 in response to a user operation.
  • the ROI is changed by controlling movement so as to approach.
  • the diaphragm blade 121A is moved in the X1 and X2 directions. Thereby, the size of the ROI fluoroscopic image 51 is reduced, and the exposure dose to the subject P can be reduced.
  • the ROI can be automatically changed based on the drawn straight line 65 by setting the positions of the aperture blades 121A and 121B in advance so as to approach the preset distance from the straight line 65. . Therefore, even when the device image 53 is oblique, the ROI can be changed by rotating the X-ray diaphragm 12 in accordance with the inclination angle of the device image 53 and controlling the positions of the diaphragm blades 121A and 121B.
  • FIG. 14 is a workflow diagram of ROI change processing in the third embodiment as viewed from the user's viewpoint.
  • steps S1 to S5 are the same as those in the second embodiment, but step S6 is different. That is, in step S6, a straight line 65 is drawn near the device image 53 by the operation of the mouse 342 of the operation unit 34, and the ROI is designated.
  • step S7 ROI fluoroscopy is performed using the changed ROI, the device is advanced while confirming the position of the device, and the process ends in step S8.
  • FIG. 15 is a workflow diagram of ROI change processing in the third embodiment as viewed from the system viewpoint.
  • steps S11 to S17 are the same as those in the second embodiment, but step S18 is different.
  • step S18 the ROI is rotated so that the straight line 65 drawn by the user is parallel to one side of the ROI (see FIG. 13B).
  • a message prohibiting rotation is issued for a rotation angle at which X-rays are irradiated to the outside of the FPD 21.
  • step S19 new ROI information is notified to the aperture mechanism control unit 41 as the ROI rotates, and the aperture mechanism control unit 41 moves the aperture blades 121A and 121B to the notified positions (FIG. 13). (See (c)).
  • step S20 the ROI fluoroscopic image 51 seen through with the changed ROI is displayed superimposed on the LIH image 52, and the process ends in step S21.
  • the rotation angle of the ROI is instructed by drawing the line 65 so as to be substantially parallel to the device image in the ROI, and preset with the drawn line 65 as the center.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 実施形態のX線診断装置は、被検体にX線を照射するX線管と被検体を透過したX線を検出するX線検出器とを含む撮影部と、X線管とX線検出器との間に配置した、複数の絞り羽根を有する回転可能なX線絞り部と、X線絞り部によって設定した感心領域の透視画像を生成する画像処理部と、複数の絞り羽根によって形成される開口の長辺が、透視画像内の目標物の長手方向に向くように、複数の絞り羽根を個々に制御する制御部と、を具備する。

Description

X線診断装置及びX線診断支援方法
 本発明の実施形態は、X線発生部とX線検出器を有するX線診断装置に係り、X線絞り器の絞り羽根を回転・移動することにより照射野を絞り込んで被曝量を低減するX線診断装置及びX線診断支援方法に関する。
 従来、血管内治療や血管造影検査等においては、カテーテルを例えば足の付け根から血管に挿入し、カテーテルを血管内に進めて目的の部位まで持っていくようにしている。カテーテル(又はカテーテルをガイドするガイドワイヤ)を目的の位置まで進める際には、X線透視画像を表示し、表示画像を見ながらカテーテル又はガイドワイヤを患部まで導くようにしている。
 またX線診断装置では、X線管とX線検出器(一般的にFPDと呼ばれる平面検出器)を対向して配置し、X線管の前面にはX線絞り器を設けている。X線絞り器は、スライド可能な絞り羽根を有し、絞り羽根を移動することにより、X線を被検体の診断領域に対して選択的に照射し、被検体を不要なX線被曝から守るようにしている(例えば特許文献1参照方)。
 ところで、X線絞り器は、FPDに対して、左右方向(X方向)及び上下方向(Y方向)にしか移動することができない。このため、見たい血管領域がFPDに対して、斜め方向に延びている場合(例えば、足の付け根の血管など)は、照射野が大きくなり、不要被曝となるという問題がある。
特開2006-288554号公報
 発明が解決しようとする課題は、透視画像を表示してカテーテル、ガイドワイヤ等のデバイスの進行を支援し、かつ被検体の被曝を低減するX線診断装置及びX線診断支援方法を提供することにある。
 実施形態に係るX線診断装置は、被検体にX線を照射するX線管と前記被検体を透過したX線を検出するX線検出器とを含む撮影部と、前記X線管と前記X線検出器との間に配置した、複数の絞り羽根を有する回転可能なX線絞り部と、前記X線絞り部によって設定した感心領域の透視画像を生成する画像処理部と、前記複数の絞り羽根によって形成される開口の長辺が、前記透視画像内の目標物の長手方向に向くように、前記複数の絞り羽根を個々に制御する制御部と、を具備する。
一実施形態に係るX線診断装置の構成を示すブロック図。 一実施形態に係るX線診断装置の全体的な構成を示す斜視図。 一実施形態におけるX線絞り器の概略的な構成図。 一実施形態におけるX線透視画像の一例を示す説明図。 一実施形態におけるROIの変更処理を示す説明図。 一実施形態におけるX線透視画像の他の表示例を示す説明図。 一実施形態におけるROIの変更処理をユーザ視点から見たワークフロー図。 一実施形態におけるROIの変更処理をシステム視点から見たワークフロー図。 第2の実施形態におけるROIの変更処理を示す説明図。 第2の実施形態におけるROIの変更処理を、ユーザ視点から見たワークフロー図。 第2の実施形態におけるROIの変更処理を、システム視点から見たワークフロー図。 第2の実施形態の変形例によるROIの変更処理を示す説明図。 第3の実施形態におけるROIの変更処理を示す説明図。 第3の実施形態におけるROIの変更処理を、ユーザ視点から見たワークフロー図。 第3の実施形態におけるROIの変更処理を、システム視点から見たワークフロー図。
 以下、実施形態に係るX線診断装置について図面を参照して詳細に説明する。尚、各図において同一箇所については同一の符号を付す。
 (第1の実施形態)
 図1は、一実施形態に係るX線診断装置の構成を示すブロック図である。図1は、アンギオ装置と呼ばれるX線診断装置100を示す。X線診断装置100は、被検体Pに対してX線を発生するX線発生部10と、被検体Pを透過したX線を2次元的に検出し、検出結果に基づいてX線投影データを生成するX線検出部20を備えている。
 X線発生部10は、X線管11とX線絞り器12(X線絞り部)を有するX線照射部と、高電圧制御部13と高電圧発生器14を備えている。X線管11は、X線を発生する真空管であり、陰極(フィラメント)より放出された電子を高電圧により加速してタングステン陽極に衝突させX線を発生する。高電圧制御部13は、システム制御部33(後述)からの指示信号に従って高電圧発生器14を制御し、X線管11の管電流、管電圧、X線パルス幅、照射周期、撮影区間、照射時間等からなるX線照射条件の制御を行なう。
 X線検出部20は、平面検出器21(FPD:Flat Panel Detector)と、FPD21から読み出された電荷を電圧に変換する電荷・電圧変換器22と、電荷・電圧変換器22の出力をデジタル信号に変換するA/D変換器23を備え、A/D変換器23からX線投影データを出力する。
 X線発生部10と、X線検出部20はアーム(Cアーム)24に支持されている。Cアーム24は、寝台の天板25に載置した被検体Pの体軸方向に移動可能であり、また被検体Pの体軸周りに回転可能である。尚、X線発生部10とX線検出部20は撮影部26を構成し、Cアーム24を回転することで、撮影部26は被検体Pの周囲を回転し、異なる角度方向から被検体Pを撮影することができる。
 またX線診断装置100は、画像データ記憶部31、画像処理部32、システム制御部33、操作部34、及び表示部35を備えている。画像データ記憶部31には、A/D変換器23からのX線投影データが順次保存されて画像データが生成される。また画像処理部32は、生成された画像データに対し、必要に応じて輪郭強調やS/N改善等を目的とした画像処理や演算を行ない、画像データ記憶部31に保存する。画像データ記憶部31に保存された画像データは必要に応じて読み出され、表示部35に供給されて表示される。
 システム制御部33は、CPUと記憶回路(図示せず)を備え、操作部34からの入力情報、設定情報及び選択情報に基づいて動作し、バスライン39を介してX線診断装置100の各ユニットを統括的に制御する制御部を構成する。
 操作部34は、医師、検査者等のユーザが各種コマンドの入力等を行なうもので、操作ボタン341やマウス342、及びスイッチ、キーボード、トラックボール、ジョイスティック等の入力装置や、表示パネルあるいは各種スイッチ等を備えたインタラクティブなインターフェースを有する。また操作部34は、天板25の移動方向や移動速度の設定、撮像系の回動/移動方向及び回動/移動速度の設定、管電圧や管電流を含むX線照射条件の設定等を行なう。
 表示部35は、画像データの表示を行うため、表示データ生成部36、変換部37、モニタ38を備えている。表示データ生成部36は、画像データに対して付帯情報を合成したり、所定の表示フォーマットへの変換を行って表示データを生成する。変換部37は、表示データに対してD/A(デジタル/アナログ)変換とテレビフォーマット変換を行なって映像信号を生成し、この映像信号を液晶等のモニタ38に表示する。
 またX線診断装置100は、移動機構部40を備えている。移動機構部40は、絞り機構制御部41と機構制御部42を有する。絞り機構制御部41は、X線絞り器12における絞り羽根等の移動制御やX線絞り器12の回転制御を行なう。機構制御部42は、被検体Pを載置する天板25の移動機構43を制御するとともに、撮影部26やCアーム24等の撮影系移動機構44の制御を行う。移動機構部40は、操作部34の操作に応答して動作し、システム制御部33の制御のもとに各部の移動制御を行う。
 図2は、X線診断装置100(アンギオ装置)の全体的な構成を示す斜視図である。図2において、X線発生部10とX線検出部20は、Cアーム24によって対向して支持されている。またCアーム24に対して寝台が配置されており、寝台の天板25には、被検体(図示せず)が載置され、天板25の位置及び高さは機構制御部42によって制御される。またX線発生部10は、X線検出部20に対向しているが、X線絞り器12は、矢印Wで示すように回転可能となっており、FPD21とは連動せずに個別に回転することができる。
 Cアーム24は、例えば天井部に設けられたレールに支持され、被検体の頭部から脚部に向かう体軸方向に移動可能である。またCアーム24の回転により撮影部26(X線発生部10とX線検出部20)は、被検体の周囲を体軸回りに回転することができる。また撮影部26をCアーム24に沿ってスライド回転することができる。
 X線投影データは、画像処理部32によって処理され、画像データをモニタ38に表示する。モニタ38は、例えば天井部に取り付けられている。また、寝台には、操作部34を取り付けている。システム制御部33は、操作部34の操作に応答して天板25の高さの制御、Cアーム24の移動/回転の制御、X線の照射範囲の調整、照射タイミングの制御等を行う。
 図3(a)は、X線絞り器12の概略的な構成図(斜視図)である。図3(a)に示すように、X線絞り器12は、被検体Pに対するX線の照射領域を規制するもので、X線管11から放射されたコーンビームをFPD21の撮像可能領域内に設定された部分撮像領域に照射させるため、絞り羽根121A,121Bを有している。絞り羽根121A及び121Bは、図3(a)の矢印X,Y方向に移動可能であり、絞り機構制御部41によって絞り羽根121A及び121Bを移動することにより、開口の大きさと位置を任意に変えて関心領域を設定する。
 これにより、FPD21の略中央部には、絞り羽根121Aと121Bによって形成された開口を通過し、被検体Pの関心領域Riを透過したX線による撮像領域RXiが形成される。FPD21は、被検体Pの関心領域Riを透過したX線を電荷に変換して蓄積し、蓄積された電荷を読み出すことでX線投影データを生成する。
 また絞り羽根121A、121Bは、回転部122に支持されており、絞り機構制御部41によって回転部122をX線の光軸周りに回転することにより、絞り羽根121A及び121Bによって形成する開口を回転することができる。したがって、FPD21の撮像領域RXiの角度を変えることができる。
 またX線絞り器12(X線絞り部)は、図3(a)に示した例に限らず、例えば、図3(b)に示すようなマルチリーフ型のX線絞り器12’を用いることもできる。図3(b)は、マルチリーフ型のX線絞り器12’の概略的な構成図(平面図)であり、X軸に沿って進退自在な短冊形状の複数のリーフ121C,121Dを有している。複数のリーフ121C,121Dは絞り羽根を構成するものであり、中心軸X0を挟んで左右の2枚のリーフ121C,121Dがペアとなっている。ペアとなる2枚のリーフ121C,121DをX軸に沿って移動することにより、開口(照視野)を矩形以外の任意の形状に設定することができる。またマルチリーフ型のX線絞り器12’を回転部122に支持することで、W方向に回転することができる。また図3(a)のX線絞り器12と図3(b)のマルチリーフ型のX線絞り器12’を組み合せて使用してもよい。
 以下、実施形態におけるX線絞り器の制御を、透視画像の表示例とともに説明する。尚、以下の説明では、図3(a)のX線絞り器12を用いた場合で説明する。
 例えば、血管内治療や血管造影検査等においては、カテーテル及びカテーテルをガイドするガイドワイヤ等のデバイスを血管に挿入し、デバイスを血管内に進めて目的の部位まで持っていく。またデバイスを目的の位置まで進める際には、X線透視画像を表示し、表示画像を見ながらデバイスを患部まで導くようにする。
 実施形態では、先ず、被検体Pを天板25に載せてCアーム24と天板25を指定された位置に移動し、被検体PにX線を照射して透視像を表示する。「透視」は、線量の少ないX線を照射することにより、リアルタイムに動画を提供し、患者の位置決めや血管内治療の支援に利用される。そして透視像を見ながら感心領域(ROI:Region of Interest)を決めて透視する。即ち、透視したLIH(Last Image Hold)像を背景画像として利用し、X線絞り器12の絞り羽根121A,121Bで照射野を絞り込んだ透視像(ROI透視像)をLIH像に重ねて表示する。
 図4は、モニタ38に表示されたX線透視画像の一例を示す。図4において、モニタ38の表示画面50には、ROI透視像51が表示されている。ROI透視像51にはLIH像52が背景画像として表示される。また透視によりデバイス画像53が表示される。
 ROIの指定は、ユーザ(医師、検査者)が操作部34を操作して行い、指定されたROIの情報を、システム制御部33を介して絞り機構制御部41に通知する。絞り機構制御部41は、X線絞り器12の絞り羽根121A,121Bの位置を制御して照射野を絞り込む。ここまでは、一般的なROIの設定である。
 図5は、ROIの変更処理について説明する図である。図5(a)で示すように、絞り羽根121A,121Bで照射野を絞り込んだ透視像(ROI透視像)51には、目標物であるデバイスの画像53が表示されており、デバイスの位置を中心にROIが設定される。
 ところで、カテーテルなどのデバイスが斜め方向に延びている場合(例えば、足の付け根の血管など)は、絞り羽根121A,121Bで照射野を絞り込んでも、絞り羽根121A,121Bは、X方向及びY方向にしか移動することができないため、斜めに延びたデバイス全体を透視するにはROIの領域を広く取らざるを得ない。このため被検体Pに対して不要な曝射を招いていた。
 そこで、第1の実施形態では、図5(a)に示すように、ROI透視像51内のデバイス画像53の始点61と終点62を結ぶ直線63を算出する。直線63の算出は、画像処理部32によって行う。つまり、画像処理部32は、ROI透視像51の画像データをもとに、デバイス画像53を検出し、ROI透視像51内のデバイス画像53の始点61と終点62の座標を求め、図5(b)に示すように、始点61と終点62を結ぶ線上成分(直線63)を算出する。直線63は、目標物(デバイス画像53)の長手方向と平行に延びる線である。
 次に、画像処理部32は、ROI(ROI画像51の枠に相当)を回転し、ROIの一辺が、算出した直線63、即ちデバイス画像の長手方向と平行になるようにする。そして回転したROIの情報を、絞り機構制御部41を通知する。尚、ROIの一辺と算出した直線63が最初から平行である場合は、ROIを回転する必要はない。
 図5(c)に示すように、絞り機構制御部41は、X線絞り器12の回転部122(図3)を光軸周りにW方向に回転し、かつ絞り羽根121A,121Bの位置を直線63(デバイス画像53)と直交する方向で、かつ直線63に近づく方向に移動制御する。例えば絞り羽根121Aの位置をX1、X2方向に移動してROIを変更する。
 これにより、ROIが小さくなり、ROI透視像51の大きさも小さくなり、被検体Pに対する被曝量を少なくすることができる。ROIが小さくなってもデバイス画像53は支障なく表示されるため、デバイスの進行を支援することができる。
 絞り羽根121A,121Bが、直線63から予め設定した距離まで近づくように事前に設定しておくことにより、ROIを自動的に変更することができる。したがって、デバイス画像53が斜めにある場合でも、デバイス画像53の傾斜角に合わせてX線絞り器12を回転し、かつ絞り羽根121A,121Bの位置を制御してROIを変更することができる。
 尚、図5(c)の変更したROIは、長方形状を例示しているが、図3(b)のマルチリーフ型のX線絞り器12’を用いた場合は、長方形状に限らず、長細い楕円形状のROIになるように変更することもできる。
 図6は、ROIが平面検出器21の中心からずれている場合のROI透視像51を示す図である。図6(a)に示すように、ROIが平面検出器21の中心からずれている場合、ROI透視像51内のデバイス画像53の始点61と終点62を結ぶ直線63は、平面検出器21の角の部分に生じる。このため、ROIを回転すると、図6(b)に示すように、FPD21の外側にX線が照射されることになる。したがって、ROIの回転により、FPD21の外側にX線が照射される領域が発生する場合は、回転を中止する。
 図7は、ROIの変更処理をユーザ視点から見たワークフロー図である。図7において、ステップS1はスタートステップであり、ステップS2では、寝台の天板25に被検体Pを載せ、Cアーム24と天板25を移動する。ステップS3では、X線を被検体Pに照射して透視する。次のステップS4では、透視画像を見ながらROIを決定する。
 ROIが決定したあとステップS5では、ROI透視を行う。ステップS6では、図5で述べた手順でデバイス画像53を自動抽出してROIを変更する。ステップS7では、変更されたROIを使用してROI透視を行い、デバイスの位置を確認しながらデバイスを進める。ステップS8は終了ステップである。
 図8は、ROIの変更処理をシステム視点から見たワークフロー図である。図8において、ステップS11はスタートステップであり、ステップS12では、指定された位置にCアーム24と天板25を移動する。ステップS13では、被検体PにX線を照射して透視を行い、モニタ38に透視像を表示する。ステップS14では、モニタ38の表示画面50の指定された位置にROIを表示し、ステップS15では、指定されたROIの位置を絞り機構制御部41に通知する。
 ステップS16では、絞り機構制御部41により、通知された位置に絞り羽根121A,121Bを移動し、ステップS17では、LIH像52とROI透視51像を重ね合わせて表示画面50に表示する(図5(a)参照)。次のステップS18では、ROI透視像51内のデバイス画像53を検出して抽出する。ステップS19では、デバイス画像の始点61と終点62を結ぶ直線63を算出し、ステップS20では、直線63とROIの一辺が平行になるように、ROIを回転する(図5(b)参照)。ただし、図6で述べたようにFPD21の外側にX線が照射されるような回転角度となる場合は回転を禁止し、「回転できません」といった警告を報知するとよい。
 ステップ21では、ROIの回転に伴って、絞り機構制御部41に新たなROI情報を通知し、絞り機構制御部41は、通知された位置に絞り羽根121A,121Bを移動する。ステップS22では、変更したROIによって透視したROI透視像51をLIH像52に重ね合わせて表示する(図5(c)参照)。ステップS23は、終了ステップである。
 以上述べた第1の実施形態では、ROI内のデバイス画像を自動的に検出して、デバイス画像とほぼ平行になるようにROIを回転し、かつデバイスを中心とする予め設定した範囲にROIを変更することにより、被検体Pに対する被曝量を低減することができる。
 (第2の実施形態)
 次に第2の実施形態に係るX線診断装置について説明する。第2の実施形態は、ユーザの操作により、X線絞り器12の回転をボタンで指示するものである。図9は、第2の実施形態におけるROIの変更処理を説明する図である。
 図9(a)で示すように、絞り羽根121A,121Bで照射野を絞り込んだROI透視像51には、目標物であるデバイス画像53が表示されている。次に図9(b)で示すように、ユーザは操作部34を操作してROI(ROI画像51の枠に相当)を回転する。画像処理部32は、回転したROIの情報を、システム制御部33を介して絞り機構制御部41に通知する。
 例えば、操作部34にROIの回転を指示する操作ボタン341を設けておき、ユーザが操作ボタン341を押す毎にROIが所定のオフセット分ずつ回転するようにする。ユーザは、ROIの一辺がデバイス画像53とほぼ平行になる角度まで回転し、決定キー(図示せず)を押すことで回転は停止する。尚、回転を指示する操作ボタン341としては、ダイヤル式のボタンでもよく、ダイヤル式のボタンの回転方向と回転角度に応じてROIを回転するようにしてもよい。
 図9(c)に示すように、絞り機構制御部41は、回転したROIの情報を受けとり、X線絞り器12の回転部122をW方向に回転する。また絞り機構制御部41は、ユーザの操作に応答して絞り羽根121A,121Bの位置を制御して、デバイス画像53に近づくように絞り羽根121A,121Bを移動してROIを変更する。例えば絞り羽根121AをX1、X2方向に移動する。これにより、ROI透視像51の大きさが変わり、被検体Pに対する被曝量を少なくすることができる。
 したがって、デバイス画像53が斜めにある場合でも、ユーザ操作により、デバイス画像53の傾斜角に合わせてX線絞り器12を回転し、かつ絞り羽根121A,121Bの位置を制御してROIを変更することができる。
 尚、図6(a)に示すように、ROIが平面検出器21の中心からずれており、ROIを回転すると、FPD21の外側にX線が照射されることになる場合は、X線絞り器12の回転を中止するように警告メッセージを発するようにしてもよい。
 図10は、第2の実施形態におけるROIの変更処理を、ユーザ視点から見たワークフロー図である。図10において、ステップS1~ステップS5までは、第1の実施形態と同じであるが、ステップS6が異なる。
 即ち、ステップS6では、操作部34の操作ボタン341を用いて、ROIを変更する。そしてステップS7では、変更されたROIを使用してROI透視を行い、デバイスの位置を確認しながらデバイスを進め、ステップS8で終了する。
 図11は、第2の実施形態におけるROIの変更処理を、システム視点から見たワークフロー図である。図11において、ステップS11~ステップS17までは第1の実施形態と同じであるが、ステップS18が異なる。
 即ち、ステップS18では、ユーザの操作ボタン341の操作によって、指定されたオフセット分だけROIを回転する(図9(b)参照)。ただし、図6で述べたようにFPD21の外側にX線が照射されるような回転角度の場合は、回転を禁止するメッセージを発する。
 次のステップS19では、ROIの回転に伴って、絞り機構制御部41に新たなROI情報を通知し、絞り機構制御部41は、通知された位置に絞り羽根121A,121Bを移動する(図9(c)参照)。ステップS20では、変更したROIによって透視したROI透視像51をLIH像42に重ね合わせて表示し、ステップSS21で終了する。
 図12は、第2の実施形態の変形例によるX線診断装置のROIの変更処理を説明する図である。図12では、ユーザが操作部34に設けたマウス342を操作することにより、X線絞り器12の回転を指示するものである。
 図12(a)で示すように、絞り羽根121A,121Bで照射野を絞り込んだROI透視像51には、デバイス画像53が表示されている。次に図12(b)で示すように、ユーザはマウス342を操作してROIを回転し、画像処理部32は、回転したROIの情報を、システム制御部33を介して絞り機構制御部41を通知する。
 マウス342を操作して、カーソル64をROI透視像51の角部に位置させて回転方向に移動することで、ROIをどの方向にどの角度だけ回転するかを指示することができ、ユーザはROIの一辺がデバイス画像53とほぼ平行になる位置まで回転する。
 そして、図12(c)に示すように、絞り機構制御部41は、回転したROIの情報を受けて、X線絞り器12の回転部122をW方向に回転する。またユーザ操作に応答して、絞り機構制御部41は絞り羽根121A,121Bの位置を制御して、絞り羽根121A,121Bがデバイス画像53に近づく方向に移動してROIを変更する。これにより、ROI透視像52の大きさを小さくすることができ、被検体Pに対する被曝量を少なくすることができる。
 尚、図6(a)に示すように、ROIが平面検出器21の中心からずれており、ROIを回転すると、FPD21の外側にX線が照射されることになる場合は、X線絞り器12の回転を中止するように警告メッセージを発するようにしてもよい。
 図12の例では、図10及び図11のワークフロー図と同様の処理が行われるが、図10のステップS6の内容が、「マウスを用いてROIを変更」に代わる。また図11のステップS18の内容が、「マウスで指定された分、ROIを回転」に代わる。
 上述したように、第2の実施形態では、ユーザによってROIを回転することができ、ROIを、デバイス画像を中心とする範囲に変更することにより、被検体Pに対する被曝量を低減することができる。
 (第3の実施形態)
 次に第3の実施形態に係るX線診断装置について説明する。第3の実施形態は、ユーザの操作に応答して、デバイス画像53の近辺に平行な線を描画し、描画した線を利用してX線絞り器12を回転するものである。図13は、第3の実施形態におけるROIの変更処理を説明する図である。
 図13(a)で示すように、絞り羽根121A,121Bで照射野を絞り込んだROI透視像51には、デバイス画像53が表示されている。次に図13(b)で示すように、ユーザは、マウス342を操作してデバイス画像53の近辺にマウス画像63の長手方向とほぼ平行になるような直線65を描画する。画像処理部32は、ROI透視像51のどの部分に直線65が引かれたかを判断し、ROIの一辺が、引いた直線65と平行になるようにROIを回転する。そして、画像処理部32は、回転したROIの情報を、システム制御部33を介して絞り機構制御部41に通知する。
 図13(c)に示すように、絞り機構制御部41は、X線絞り器12の回転部122をW方向に回転し、かつユーザ操作に応答して絞り羽根121A,121Bがデバイス画像53に近づくように移動制御してROIを変更する。例えば、絞り羽根121AをX1、X2方向に移動する。これにより、ROI透視像51の大きさが小さくなり、被検体Pに対する被曝量を少なくすることができる。
 尚、絞り羽根121A,121Bの位置を、直線65から予め設定した距離まで近づくように事前に設定しておくことにより、ROIを、描画した直線65を基準にして自動的に変更することもできる。したがって、デバイス画像53が斜めにある場合でも、デバイス画像53の傾斜角に合わせてX線絞り器12を回転し、かつ絞り羽根121A,121Bの位置を制御してROIを変更することができる。
 尚、図6(a)に示すように、ROIが平面検出器21の中心からずれており、ROIを回転すると、FPD21の外側にX線が照射されることになる場合は、X線絞り器12の回転を中止するように警告メッセージを発するようにしてもよい。
 図14は、第3の実施形態におけるROIの変更処理を、ユーザ視点から見たワークフロー図である。図14において、ステップS1~ステップS5までは、第2の実施形態と同じであるが、ステップS6が異なる。即ち、ステップS6では、操作部34のマウス342の操作により、デバイス画像53の近くに直線65を引き、ROIを指定する。そしてステップS7では、変更されたROIを使用してROI透視を行い、デバイスの位置を確認しながらデバイスを進め、ステップS8で終了する。
 図15は、第3の実施形態におけるROIの変更処理を、システム視点から見たワークフロー図である。図15において、ステップS11~ステップS17までは、第2の実施形態と同じであるが、ステップS18が異なる。
 即ち、ステップS18では、ユーザによって引いた直線65とROIの一辺が平行になるようにROIを回転する(図13(b)参照)。ただし、図6で述べたようにFPD21の外側にX線が照射されるような回転角度については回転を禁止するメッセージを発する。
 次のステップS19では、ROIの回転に伴って、絞り機構制御部41に新たなROI情報を通知し、絞り機構制御部41は、通知された位置に絞り羽根121A,121Bを移動する(図13(c)参照)。ステップS20では、変更したROIによって透視したROI透視像51をLIH像52に重ね合わせて表示し、ステップS21で終了する。
 以上述べた第3の実施形態によれば、ROI内のデバイス画像とほぼ平行になるように線65を引くことでROIの回転角度を指示し、かつ引いた線65を中心とする予め設定した範囲にROIを変更することにより、被検体Pに対する被曝量を低減することができる。
 こうして、デバイスの進入を支援するとともに、被検体に対する被曝量を低減することができる。
 以上、本発明のいくつかの実施形態を述べたが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
100…X線診断装置
10…X線発生部
11…X線管
12(12’)…X線絞り器
121A,121B(121C,121D)…絞り羽根
122…回転部
20…X線検出部
21…平面検出器(FPD)
24…Cアーム
25…天板
26…撮影部
31…画像データ記憶部
32…画像処理部
33…システム制御部
34…操作部
341…操作ボタン
342…マウス
35…表示部
40…移動機構部
41…絞り機構制御部

Claims (12)

  1.  被検体にX線を照射するX線管と前記被検体を透過したX線を検出するX線検出器とを含む撮影部と、
     前記X線管と前記X線検出器との間に配置した、複数の絞り羽根を有する回転可能なX線絞り部と、
     前記X線絞り部によって設定した感心領域の透視画像を生成する画像処理部と、
     前記複数の絞り羽根によって形成される開口の長辺が、前記透視画像内の目標物の長手方向に向くように、前記複数の絞り羽根を個々に制御する制御部と、
     を具備するX線診断装置。
  2.  前記画像処理部は、前記被検体にデバイスを挿入した状態の透視画像を生成し、
     前記制御部は、前記透視画像に含まれる前記デバイスの画像を前記目標物として、前記複数の絞り羽根の回転と移動を制御する請求項1記載のX線診断装置。
  3.  前記画像処理部は、前記感心領域の透視画像に含まれる前記デバイスを検出し、
     前記制御部は、前記複数の絞り羽根によって形成される開口の長辺が、前記デバイスの延びる方向に向くように前記X線絞り部を回転する制御を行う請求項2記載のX線診断装置。
  4.  前記制御部は、前記X線絞り部を回転させ、かつ前記絞り羽根の少なくとも1つを前記目標物に予め設定した距離まで近づくように移動する制御を行う請求項2記載のX線診断装置。
  5.  前記複数の絞り羽根によって形成される開口の一辺が、前記デバイスの画像と平行になるように前記関心領域を回転して変更する操作部を備え、
     前記制御部は、前記操作部の操作に応答して、変更された関心領域をもとに前記絞り羽根の回転と移動を制御する請求項2記載のX線診断装置。
  6.  前記透視画像に含まれる前記デバイスの画像と平行な直線を描画する操作部を備え、
     前記制御部は、前記操作部の操作に応答して、前記複数の絞り羽根によって形成される開口の一辺が、前記描画された直線と平行になるように前記X線絞り部を回転する請求項2記載のX線診断装置。
  7.  前記画像処理部は、透視によるLIH(Last Image Hold)像を背景画像として、前記X線絞り部により照射野を絞り込んだ透視像を前記LIH像に重ね合わせる請求項1記載のX線診断装置。
  8.  被検体にX線を照射するX線管と前記被検体を透過したX線を検出するX線検出器とを含む撮影部を備え、
     複数の絞り羽根を有する回転可能なX線絞り部を、前記X線管と前記X線検出器との間に配置し、
     前記X線絞り部によって設定した感心領域の透視画像を生成し
     前記複数の絞り羽根によって形成される開口の長辺が、前記透視画像内の目標物の長手方向に向くように前記複数の絞り羽根を個々に制御するX線診断支援方法。
  9.  前記被検体にデバイスを挿入した状態の透視画像を生成し、
     前記透視画像に含まれる前記デバイスの画像を前記目標物として、前記複数の絞り羽根の回転と移動を制御する請求項8記載のX線診断支援方法。
  10.  前記感心領域の透視画像に含まれる前記デバイスを検出し、
     前記複数の絞り羽根によって形成される開口の長辺が、前記デバイスの延びる方向に向くように前記X線絞り部を回転させる請求項9記載のX線診断支援方法。
  11.  前記複数の絞り羽根によって形成される開口の一辺が前記デバイスの画像と平行になるように、操作部によって前記関心領域を回転して変更し、
     前記操作部の操作に応答して、変更された関心領域をもとに前記絞り羽根の回転と移動を制御する請求項9記載のX線診断支援方法。
  12.  前記透視画像に含まれる前記デバイスの画像と平行な直線を操作部によって描画し、
     前記操作部の操作に応答して、前記複数の絞り羽根によって形成される開口の一辺が、前記描画された直線と平行になるように前記X線絞り部を回転する請求項9記載のX線診断支援方法。
PCT/JP2013/002814 2012-05-25 2013-04-25 X線診断装置及びx線診断支援方法 WO2013175712A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380000559.8A CN103561658B (zh) 2012-05-25 2013-04-25 X射线诊断装置以及x射线诊断支援方法
US13/954,303 US9161728B2 (en) 2012-05-25 2013-07-30 X-ray diagnosis apparatus and X-ray diagnosis assisting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-119830 2012-05-25
JP2012119830A JP6091769B2 (ja) 2012-05-25 2012-05-25 X線診断装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/954,303 Continuation US9161728B2 (en) 2012-05-25 2013-07-30 X-ray diagnosis apparatus and X-ray diagnosis assisting method

Publications (1)

Publication Number Publication Date
WO2013175712A1 true WO2013175712A1 (ja) 2013-11-28

Family

ID=49623427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002814 WO2013175712A1 (ja) 2012-05-25 2013-04-25 X線診断装置及びx線診断支援方法

Country Status (3)

Country Link
JP (1) JP6091769B2 (ja)
CN (1) CN103561658B (ja)
WO (1) WO2013175712A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2760028B1 (en) * 2013-01-23 2018-12-12 Samsung Electronics Co., Ltd Radiation generator
EP3080570B1 (en) * 2013-12-11 2020-07-15 ControlRAD Systems Inc. X-ray reduction system
CN104887259B (zh) * 2014-03-07 2019-12-10 Ge医疗系统环球技术有限公司 用于ct机准直器的x射线遮挡件及其使用方法和ct机
JP6115498B2 (ja) * 2014-03-10 2017-04-19 株式会社島津製作所 X線撮影装置
JPWO2016052289A1 (ja) * 2014-10-03 2017-07-13 株式会社日立製作所 X線透視装置及びx線照射条件設定方法
DE102014222935B4 (de) 2014-11-11 2023-03-30 Siemens Healthcare Gmbh Vorrichtung und Verfahren für ein Diagnosegerät
JP2020185145A (ja) * 2019-05-14 2020-11-19 株式会社島津製作所 X線撮影装置
JP2021186208A (ja) * 2020-05-28 2021-12-13 キヤノンメディカルシステムズ株式会社 超音波診断装置及び画像処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286170A (ja) * 1987-05-19 1988-11-22 Nec Corp X線位置決め装置
JP2011019633A (ja) * 2009-07-14 2011-02-03 Toshiba Corp X線診断装置及び被曝線量低減用制御プログラム
JP2012075782A (ja) * 2010-10-05 2012-04-19 Toshiba Corp X線撮像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2633059C3 (de) * 1976-07-22 1979-10-18 Siemens Ag, 1000 Berlin Und 8000 Muenchen Röntgen-Primärstrahlenblende
JPH04179100A (ja) * 1990-11-13 1992-06-25 Toshiba Corp X線絞り装置
US7539284B2 (en) * 2005-02-11 2009-05-26 Besson Guy M Method and system for dynamic low dose X-ray imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286170A (ja) * 1987-05-19 1988-11-22 Nec Corp X線位置決め装置
JP2011019633A (ja) * 2009-07-14 2011-02-03 Toshiba Corp X線診断装置及び被曝線量低減用制御プログラム
JP2012075782A (ja) * 2010-10-05 2012-04-19 Toshiba Corp X線撮像装置

Also Published As

Publication number Publication date
JP6091769B2 (ja) 2017-03-08
CN103561658B (zh) 2016-01-20
JP2013244190A (ja) 2013-12-09
CN103561658A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
WO2013175712A1 (ja) X線診断装置及びx線診断支援方法
JP5646269B2 (ja) X線撮像装置
WO2010101208A1 (ja) X線ct装置及び断層像撮影方法
US9888899B2 (en) X-ray diagnostic apparatus
US20150078524A1 (en) X-ray diagnostic apparatus
JP4699167B2 (ja) X線画像診断装置
US9161728B2 (en) X-ray diagnosis apparatus and X-ray diagnosis assisting method
JP4878828B2 (ja) X線透視撮影装置
JP2008212550A (ja) X線診断装置及び画像データ生成方法
JP5308862B2 (ja) 医用寝台装置及び医用画像撮影装置
JP5955896B2 (ja) X線撮像装置
CN108403131B (zh) X射线诊断装置
US11324461B2 (en) X-ray imaging apparatus
JP2006314704A (ja) X線画像診断装置
JP2006116038A (ja) X線診断装置及びx線撮影方法
JP2018020113A (ja) X線診断装置及び画像処理プログラム
JP2017196427A (ja) X線診断装置
JP7199958B2 (ja) アンギオct装置
WO2013175977A1 (ja) X線診断装置
JP6367420B2 (ja) X線診断装置
JP5203757B2 (ja) X線撮影装置
JP6129593B2 (ja) Ivr−ct装置
JP2005253572A (ja) 画像処理装置、x線診断装置、医用画像情報システム、及びキャリブレーションテーブル付帯方法
JP2016146955A (ja) X線診断装置および画像処理装置
JP2018164744A (ja) X線診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794767

Country of ref document: EP

Kind code of ref document: A1