WO2013175536A1 - 鋳片の連続鋳造方法 - Google Patents

鋳片の連続鋳造方法 Download PDF

Info

Publication number
WO2013175536A1
WO2013175536A1 PCT/JP2012/003388 JP2012003388W WO2013175536A1 WO 2013175536 A1 WO2013175536 A1 WO 2013175536A1 JP 2012003388 W JP2012003388 W JP 2012003388W WO 2013175536 A1 WO2013175536 A1 WO 2013175536A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
continuous casting
roll
reduction
mold
Prior art date
Application number
PCT/JP2012/003388
Other languages
English (en)
French (fr)
Inventor
山中 章裕
真二 永井
村上 敏彦
水上 英夫
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020147031133A priority Critical patent/KR20140147883A/ko
Priority to IN8553DEN2014 priority patent/IN2014DN08553A/en
Priority to PL12877100T priority patent/PL2857122T3/pl
Priority to EP12877100.3A priority patent/EP2857122B1/en
Priority to JP2014516513A priority patent/JPWO2013175536A1/ja
Priority to PCT/JP2012/003388 priority patent/WO2013175536A1/ja
Priority to CN201280073444.7A priority patent/CN104334297A/zh
Priority to ES12877100.3T priority patent/ES2651136T3/es
Publication of WO2013175536A1 publication Critical patent/WO2013175536A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1281Vertical removing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/207Controlling or regulating processes or operations for removing cast stock responsive to thickness of solidified shell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Definitions

  • the present invention relates to a method for continuously casting a slab that reduces the occurrence of internal defects such as zaku, porosity and shrinkage by reducing the slab using a pair of rolls, and in particular, continuous casting using a movable roll. Regarding the method.
  • the hot water referred to herein is to supply molten steel for solidification shrinkage in order to prevent the formation of shrinkage cavities and shrinkage cracks due to solidification shrinkage of the molten steel when casting an ingot.
  • Zaku refers to a cavity defect that occurs in the center of the slab when casting an alloy slab.
  • a large shrinkage cavities such as those found in the ordinary ingot method are formed due to solidification shrinkage from the meniscus of the slab to the downstream side in the casting direction. appear.
  • Patent Document 1 manufactures large steel ingots that are difficult to cast with conventional continuous casting machines, such as ultra-thick flat ingots. In semi-continuous casting for this purpose, it has been proposed to use a mold having an upper taper. Further, this document describes that the quality of the steel ingot can be further improved by heating the meniscus at the top (upper part) of the steel ingot by an electric method.
  • Patent Document 2 describes that, in continuous casting of a slab, it is possible to reduce the occurrence of internal defects such as zaku and porosity by making the shape of the slab into a tapered shape in which both side surfaces gradually expand upward. Has been.
  • Patent Document 3 describes a method of unsolidifying and reducing a slab.
  • the role of the conventional hot water supply can be compensated to some extent by using a tapered mold or by making the shape of the slab tapered.
  • these methods have a complicated casting method and a high equipment cost, but the effect of suppressing zaku and porosity is limited, and the effect becomes smaller as the cross section of the slab becomes larger.
  • the method of heating the meniscus at the top of the slab is not effective in improving the internal quality up to the center of the slab if the slab length is long, is expensive in terms of equipment, and is uneconomical in terms of energy. For this reason, it is not a very effective method.
  • the first problem is that, in the in-line reduction method, the porosity generated in the slab may not be crimped at any stage of casting, and there is an optimal reduction time. For example, if the slab is squeezed at the porosity generation stage, the central solid phase ratio is said to be good at the end of solidification period from about 0.5 to complete solidification, and after complete solidification, It is said that the temperature immediately after solidification is still sufficiently high in the center of the slab. Therefore, in normal continuous casting, it is common to install a reduction device such as a reduction roll at a specific position such as near the outlet of the continuous casting machine.
  • the slab when casting a slab with a large cross section, the slab is completely solidified in order to reduce the slab under the optimum conditions for pressure bonding of zaku and porosity by a reduction device installed near the outlet of the continuous casting machine. In order to secure the time until this, it is necessary to increase the length of the continuous casting machine.
  • the length from the meniscus in the mold to the final solidification position of the slab is considered to be proportional to the square of the thickness of the slab. For this reason, for example, if a slab having a thickness of 300 mm is used as a reference, a slab having a thickness of 900 mm requires a continuous casting machine that is nine times as long, and a great construction cost is required.
  • the casting speed at the final solidification position is inversely proportional to the square of the slab thickness. For this reason, for example, if the casting speed of a 300 mm thick slab is 1 m / min, the casting of 900 mm thick must be 0.11 m / min.
  • Such ultra-low speed casting results in insufficient heat supply at the meniscus in the mold, greatly increasing the surface quality of the slab, such as the solidification of the meniscus and the occurrence of rippled cast skin due to the shrinkage of the solidified shell at the meniscus. Cause a significant decline.
  • the combined use of plasma heating and meniscus heating by Joule heat is also conceivable, but the equipment cost is high as described above, which is uneconomical in terms of energy.
  • the second problem is that, when the cross section of the slab is large, the penetration into the slab under compression is insufficient, and there is a concern that zaku and porosity cannot be sufficiently crimped.
  • the present invention has been made in view of such problems in the prior art, and the problem is that, in continuous casting, the equipment cost is low and the surface quality is not reduced, regardless of the size of the cross section. It is an object of the present invention to provide a method for reducing crinkles and porosity at the center of a slab and shrinkage cavities and crusts at the top of the slab.
  • the present inventors studied a slab reduction method in continuous casting. As a result, by using a movable roll to reduce the slab, regardless of the cross-sectional size of the slab, it is possible to reduce the slab at the optimum position for crimping the zaku, porosity, and shrinkage cavity. I found out. In this case, it is not necessary to adjust the length and casting speed of the continuous casting machine as in the case of using a roll fixed at a specific position, and the equipment cost is very low.
  • the present invention has been made on the basis of the above knowledge, and the gist thereof is the continuous casting method of slabs shown in the following (1) to (4).
  • a method of continuously casting a slab using a pair of rolls that can be switched between guide support and reduction of the slab and that can be moved vertically along the slab below the mold, While the slab is being drawn, the slab is guided and supported while the movement is stopped, and after the slab has been pulled out, the stopped slab is moved down in the vertical direction while being reduced. Continuous casting method.
  • the continuous casting machine having a low equipment cost does not cause a reduction in surface quality, and a large zaku, porosity, and shrinkage cavity regardless of the size of the cross section of the slab.
  • the slab can be cast with a high yield.
  • FIG. 1 is a configuration diagram of a continuous casting machine to which the method of the present invention can be applied.
  • FIG. 1 (a) is a front view
  • FIG. 1 (b) is a side view.
  • 2A and 2B are diagrams for explaining a casting process according to the continuous casting method of the present invention.
  • FIG. 2A is a state at the start of casting
  • FIG. 2B is a state during drawing of a slab
  • FIG. ) Shows a state in which the movable roll is moved to the lower end of the movable range after the completion of drawing
  • FIG. 2D shows a state in which the movable roll is raised while squeezing the slab
  • FIG. 2E shows a state in which the reduction has been completed.
  • FIG. 3 is a diagram showing the relationship between the ratio of the rolling amount to the unsolidified diameter of the slab (rolling amount / unsolidified diameter) and the defect area ratio
  • FIG. FIG.3 (b) shows the results in the upper part of
  • FIG. 1 is a configuration diagram of a continuous casting machine to which the method of the present invention can be applied.
  • FIG. 1 (a) is a front view and FIG. 1 (b) is a side view.
  • the continuous casting machine shown in the figure is a vertical type, and the casting direction of the slab is vertically downward.
  • This continuous casting machine includes a ladle 1 for containing molten steel, a mold 2 to which molten steel is supplied from a ladle 1 via an immersion nozzle (not shown), and a movable roll for rolling down a slab 3 drawn downward from the mold 2.
  • the mold 2 is a combination of half molds.
  • the movable roll reduction device 4 includes a pair of rolls 5 and a frame 6 that supports the rolls 5.
  • the frame 6 is integrated with the rolls 5 and can be moved vertically up and down along the slab 2 below the mold 2. It is.
  • a support roll group 7 is disposed immediately below the mold 2 (not shown in FIG. 1), and forms a support area for the solidified shell 3a of the slab 3.
  • FIG. 2 described later a mode in which the length of the support area is equivalent to the length of the mold 2 is shown.
  • the roll 5 is configured to be able to switch both roles so as to serve both as a pinch roll for guiding and supporting the slab 3 and as a reduction roll for reducing the slab 3, and from the back so as to contact the slab 3. It is pressed toward the slab by hydraulic pressure.
  • the roll 5 is connected to the large speed reducer 9 via the universal joint 8 and operates as a drive roll.
  • the frame 6 is supported so as to be movable in the vertical direction by four jack shafts 10 formed of vertically arranged ball screws, and is given a driving force that can be moved in the vertical direction by the jack mechanism of the jack shaft 10.
  • the roll 5 Since the roll 5 is integral with the frame 6, it can move vertically along the slab 2, and can change the slab 3 position of the slab 3 and move while being squeezed.
  • the roll 5 can be moved by rotating the roll 5 itself with the slab 3 interposed therebetween, and the moving direction can be changed by changing the rotating direction of the roll 5. Further, when the roll 5 is not in contact with the slab 3, it can be moved by the jack mechanism of the jack shaft 10.
  • FIG. 2A and 2B are diagrams for explaining a casting process by the continuous casting method of the present invention.
  • FIG. 2A is a state at the start of casting
  • FIG. 2B is a state during drawing of a slab
  • FIG. ) Shows a state in which the movable roll is moved to the lower end of the movable range after completion of drawing
  • FIG. 6D shows a state in which the movable roll is raised while squeezing the slab
  • the continuous casting method of the present invention will be described with reference to FIG. First, casting of the slab 3 is started as shown in FIG. 11A, and the slab 3 is continuously pulled out as shown in FIG. At this time, the roll 5 is arranged directly under the mold 2, actually directly under the support roll group 7, and used as a pinch roll. When the slab 3 is drawn out to the limit of the continuous casting machine, the slab 3 is stopped and the drawing is completed. Thereafter, the roll 5 is moved to the lowest end of the movable range as shown in FIG. Then, it waits until the temperature of the center part of the slab 3 and the thickness of the solidification shell 3a become the optimal conditions for reduction.
  • the roll 5 is pressed against the slab 3 until the reduction amount of the slab 3 reaches a predetermined amount, and the roll 5 is rotated in the direction opposite to the drawing time. Then, as shown in FIG. 2 (d), the slab 3 is pressed down while raising the roll 5 along the axis of the slab 3.
  • the unsolidified molten steel 3b is placed on the upper meniscus by raising the roll 5 while reducing the slab 3 as shown in FIG. Discharged.
  • the amount of molten steel discharged depends on the size of the unsolidified part when the slab is pressed, but when the slab has a circular cross section, it is not so much as compared with other shapes. 2 can be accommodated. On the other hand, when the roll 5 is raised while being reduced after the slab 3 has completely solidified, there is no discharge of unsolidified molten steel.
  • the entire slab 3 can be efficiently squeezed regardless of the cross-sectional size of the slab 3, and zaku and porosity can be pressure-bonded. Can do.
  • the reduction of the slab 3 may be performed continuously or only necessary portions may be intermittently performed.
  • the rolling condition of the slab 3 can be changed by changing the rising speed of the roll 5.
  • the rising speed of the roll 5 may not be the same as the drawing speed of the slab 3.
  • the roll 5 is raised to a predetermined position in the vicinity of the lower part of the mold 2 without lowering the slab 3, and the upper part from that position is raised. What is necessary is just to roll down the slab 3 while raising the roll 5 to a predetermined position.
  • the slab 3 is moved up to a predetermined position above the predetermined position near the lower part of the mold 2 without being reduced, and the slab is lowered from the position to a predetermined position near the lower part of the mold 2 while lowering the roll 5. 3 may be reduced.
  • the same continuous casting machine can be used to produce a slab having a good internal quality at a low equipment cost and without causing a reduction in surface quality, regardless of the size of the cross section. Can be cast. Moreover, since it is continuous casting, a slab can be cast with a higher yield than the ingot method.
  • the continuous casting machine to which the present invention can be applied is not limited to the vertical type, and there is a portion that casts vertically from directly below the mold. If it exists, a vertical bending type, a curved arc type, or the like can be applied.
  • the cast slab preferably has a circular cross section.
  • the solidified shell around the roll contact part is not greatly deformed against zaku and porosity generated at the center of the slab, This is because deformation only between the pair of roll contact portions is sufficient, and zaku and porosity can be efficiently crimped with a small reduction reaction force.
  • the reduction of the slab may be performed with the unsolidified portion remaining in the slab or with the slab completely solidified.
  • the reduction may be performed after the slab is completely solidified.
  • zaku and porosity can be sufficiently pressed under pressure after completely solidifying.
  • Preliminary test 1-1 Test conditions The slab to be cast was a small slab having a diameter of 300 mm and a length of 1800 mm, and the steel type was 13% Cr steel in which zaku and porosity were easily increased.
  • the continuous casting machine shown in FIG. 1 was used. However, a support roll group that supports the solidified shell of the slab was not provided.
  • the movable roll reduction device had a roll diameter of 450 mm, a maximum reduction force of 100 t, and a maximum reduction torque of 50 t ⁇ m.
  • the reduction rate of the movable roll reduction device was 0.8 m / min, and after the casting of the entire length of the slab was completed, the rolling was reduced over the entire length of the slab.
  • the reduction amount of the slab was 20 to 70 mm in terms of the reduction in the diameter of the slab in the reduction direction. However, the cross-sectional shape of the slab became flat due to the reduction.
  • the diameter of the unsolidified portion at the reduced position (hereinafter referred to as “unsolidified diameter”) was set to 70 mm or 110 mm. This is a value when an isotherm corresponding to a solid phase ratio of 0.8 is defined as a solid-liquid interface.
  • the position of the interface at which the solid fraction becomes 0.8 was determined by unsteady primary heat transfer solidification analysis of a cylindrical cross section. The accuracy of the analysis should be sufficient by comparing the results of measurement of the surface of the slab surface, measurement of the temperature inside the slab with a thermocouple, and measurement of the unsolidified diameter with the addition of a tracer such as S. confirmed.
  • each slab was cut so that the longitudinal cross section passing through the center of the slab was exposed, and the cut surface was cut and polished, and then the occurrence of zaku, porosity, and shrinkage was investigated.
  • Each of these defects exhibited voids in the cross section of the slab, and the degree was calculated by the ratio (void ratio) of the area of the voids to the total area of the cross section.
  • the porosity is divided by the porosity of a slab that is cast separately from the slab that has been reduced, and that is not squeezed by a roll (hereinafter referred to as “non-reduced slab”), and the value obtained by the removal is determined as a defect. It was defined as the area ratio and used as an index for the occurrence of defects.
  • the area of the void was measured using general-purpose image photograph analysis software, but may be measured by other methods.
  • FIG. 3 is a diagram showing the relationship between the ratio of the rolling amount to the unsolidified diameter of the slab (rolling amount / unsolidified diameter) and the defect area ratio.
  • FIG. The figure (b) shows the results in the upper part of the slab respectively.
  • the upper part of the slab refers to a region where a crush and a shrinkage cavity are generated in the unsqueezed cast slab, and a region corresponding to a region where a crush and a shrinkage cavity are generated in the unsqueezed slab.
  • a stationary part means the area
  • Main test 2-1 Examination of casting conditions Based on the results of preliminary tests, the casting conditions were examined for the case where the scale of molten steel was increased as the main test.
  • the cast slab was 800 mm in diameter and 10 m in length, and the steel type was 13% Cr steel.
  • the amount of molten steel used for casting this slab was about 40 t. This corresponds to four ingot castings (molten steel amount 10 t) by a normal ingot method.
  • ingots are cast using hot water in order to prevent shrinkage cavities at the top of the slab and the occurrence of zack. Since the amount of molten steel required for the hot water is 10% of the mass per ingot, an extra 4t of molten steel is required. After casting the ingot, it is necessary to cut off the hot metal portion, so that a loss occurs accordingly, but this loss does not occur in the continuous casting method.
  • the continuous casting machine shown in FIG. 1 was used.
  • the mold was a water-cooled copper type having a diameter of 800 mm and a length of 800 mm.
  • a support roll group was provided immediately below the mold, and the length of the support area was 800 mm.
  • the diameter of the roll provided was 650 mm.
  • the slab was cooled by spray cooling with a specific water amount of 0.2 L / kg-steel.
  • the slab was drawn out at a casting speed of 0.25 m / min, and the drawing was stopped when the length of the slab reached 10 m.
  • the other conditions were the same as in the preliminary test.
  • the surface temperature of the slab when drawing is stopped is about 1220 ° C. at 4 m from the meniscus in the mold in the casting direction, and at 10 m. Estimated at about 980 ° C.
  • the unsolidified diameter at this point was estimated to be about 620 mm at a position 4 m from the meniscus and 500 mm at a position 10 m from the solid phase ratio of 0.8.
  • the amount of slab reduction by the movable roll reduction device was 225 mm, and the ascent rate of the movable roll reduction device was 0.25 m / min. Since this rising speed is the same as the drawing speed of the slab, the rolling conditions (the unsolidified diameter of the slab at the lower part and the surface temperature of the slab) are the same over the entire area of the slab.
  • the unsolidified diameter in the lower part at the start of reduction is about 500 mm, and the surface temperature is 980 ° C.
  • the value of reduction amount / unsolidified diameter is 0.45. Therefore, from FIG. In the upper half, it is estimated that 4.8%, both of which are greatly reduced. Since the roll provided in the movable roll reduction device has a diameter of 650 mm and the deformation resistance of 13% Cr steel to be cast is 6 kgf / mm 2 , the contact angle between the roll and the slab is 32 °. The necessary rolling force is 650 t.
  • the continuous casting machine having a low equipment cost does not cause a reduction in surface quality, and a large zaku, porosity, and shrinkage cavity regardless of the size of the cross section of the slab.
  • the slab can be cast with a high yield.

Abstract

 鋳片を連続鋳造する方法であって、鋳片の圧下が可能で、かつ鋳型から鋳片に沿いつつ鉛直方向に移動が可能なロールを備えた可動ロール圧下装置を用い、鋳片の引き抜きを完了した後、前記ロールを、停止した鋳片に沿って鉛直方向に移動しながら圧下することを特徴とする鋳片の連続鋳造方法。前記ロールの、鋳片を圧下しながらの移動方向が鉛直方向上向きであってもよい。また、鋳片の横断面が円形であってもよい。この連続鋳造方法により、低い設備コストでかつ表面品質の低下を招くことなく、断面積の大きさに関わらず、鋳片の中心部におけるザクおよびポロシティ、ならびに鋳片上部の引け巣やザクを低減することができる。

Description

鋳片の連続鋳造方法
 本発明は、一対のロールを用いて鋳片を圧下することにより、内部欠陥であるザク、ポロシティおよび引け巣の発生を低減させる鋳片の連続鋳造方法に関し、特に移動可能なロールを用いる連続鋳造方法に関する。
 現在、鋼の製造においては、連続鋳造法により鋳片を鋳造し、最終製品に向けて、その鋳片に分塊圧延、圧延等の加工を施すのが一般的である。しかし、最終製品として、例えばボイラータンクや大型の金型の素材のように断面が大きい大型素材は、小ロットであることと、大断面の鋳片を必要とすることから、大型素材に用いる鋳片は、連続鋳造ではなく、鋳型に溶鋼を流し込んで凝固させ、大型のインゴットとして鋳造しているのが現状である。以下、この手法を「インゴット法」という。
 小ロットといえども、インゴット法で大型のインゴットを鋳造するのは、連続鋳造法と比較して格段に能率が低く、また、インゴット上部の押し湯の必要性、または湯道、給湯管への溶鋼の残存等を考慮すると、歩留まりが非常に悪い。なお、ここでいう押し湯とは、インゴットを鋳込む際に、溶鋼の凝固収縮による引け巣や収縮割れの発生を防止するため、凝固収縮分の溶鋼を補給することである。
 また、大断面の鋳片を連続鋳造法によって鋳造した場合、鋳片の中心部に発生するザク、気泡欠陥であるポロシティ、および偏析が大きくなり易い。ここでいうザクとは、合金スラブを鋳造する場合にスラブの中心部に発生する空洞欠陥のことである。また、鋳造終了時には、鋳型内への溶鋼の供給停止後、鋳片のメニスカス(湯面)からその鋳造方向下流側部分にかけて、凝固収縮によって、通常のインゴット法で見られるような大きな引け巣が発生する。これらの内部欠陥等は、製品の歩留りを悪化させるばかりではなく、場合によっては最終製品に残存し、製品欠陥の要因となる。
 内部品質が良好な大断面の鋳片の製造方法として、特許文献1には、極厚偏平鋳塊等の、厚さの点から従来の連続鋳造機では鋳造が困難である大型鋼塊を製造するための半連続鋳造において、上広テーパの鋳型を用いることが提案されている。また、同文献には、鋼塊トップ(上部)のメニスカスを電気的方法で加熱することによって鋼塊の品質をさらに向上させることができることが記載されている。
 特許文献2には、鋳片の連続鋳造において、鋳片の形状を両側面が上方に向かって漸次拡開するテーパ状とすることによって、ザクやポロシティ等の内部欠陥の発生を軽減できることが記載されている。
 一方、鋳片の連続鋳造においてポロシティや偏析等の内部欠陥を低減するために、凝固末期に鋳片の表面を圧下する方法が一般に知られている。例えば、特許文献3には、鋳片を未凝固圧下する方法が記載されている。
 特許文献1および2に記載の技術のようにテーパ状の鋳型を用いることや鋳片の形状をテーパ状とすることによって、従来の押し湯の役割を多少なりとも補うことができる。しかし、これらの方法は、鋳込み方法が複雑で、設備コストが高いわりに、ザクおよびポロシティの抑制効果は限定的であり、鋳片の断面が大きくなるのに伴ってその効果は小さくなる。また、鋳片上部のメニスカスを加熱する方法は、鋳片長が長いと鋳片の中央部まで内部品質を向上させる効果は得られず、設備の面で高価であり、エネルギーの面でも不経済であることから、あまり有効な方法とは言えない。
 これに対して、通常の連続鋳造機における連続鋳造のように、鋳片をロール等で表面から圧下して、内部のポロシティをその生成段階で潰す方法(インライン圧下法)は、決定的で大変有効な方法である。しかし、このインライン圧下法を大断面の鋳片の連続鋳造に採用する場合、以下の2つの問題点がある。
 1つ目の問題点は、インライン圧下法は、鋳片に発生したポロシティを、鋳造のどの段階で圧着してもよいわけではなく、最適圧下時期があることである。例えば、ポロシティの生成段階で鋳片を圧下するのであれば、中心固相率が0.5程度から完全凝固までの間の凝固末期の時期が良いとされており、完全凝固後であれば、鋳片の中心部の温度がまだ十分に高い凝固直後が良いとされている。そのため、通常の連続鋳造では、連続鋳造機の出口近傍といった特定の位置に圧下ロール等の圧下装置を設置するのが一般的である。
 ところが、大断面の鋳片を鋳造する場合、連続鋳造機の出口近傍に設置した圧下装置によって、ザクおよびポロシティの圧着に最適な条件で鋳片を圧下するには、鋳片が完全に凝固するまでの時間を確保するために、連続鋳造機の長さを長くする必要がある。ここで、鋳型内のメニスカスから鋳片の最終凝固位置までの長さは、鋳片の厚さの2乗に比例すると考えられる。このため、例えば厚さ300mmの鋳片の場合を基準とすれば、厚さ900mmの鋳片では9倍の長さの連続鋳造機が必要となり、多大な建設費用が必要である。
 一方、連続鋳造機の長さを長く取れないとすると、鋳片が完全に凝固するまでの時間を確保するには、鋳造速度を低下させる方法が考えられる。最終凝固位置での鋳造速度(鋳片の速度)は、鋳片の厚さの2乗に反比例すると一般的に考えられる。このため、例えば厚さ300mmの鋳片の鋳造速度が1m/minである場合を基準とすれば、厚さ900mmの鋳片では0.11m/minと極めて低速の鋳造としなければならない。このような極低速鋳造は、鋳型内のメニスカスにおける熱供給不足を生じ、メニスカスの皮張り凝固や、メニスカスでの凝固シェルの収縮によるリップル状の鋳肌の発生等、鋳片の表面品質の大幅な低下を招く。この表面品質の低下を防止するために、プラズマ加熱やジュール熱によるメニスカス加熱の併用も考えられるものの、上述したように設備コストが高く、エネルギーの面で不経済である。
 2つ目の問題点は、鋳片の断面が大きい場合には、圧下の鋳片内部への浸透が不十分であり、ザクやポロシティを十分に圧着できないことが懸念されることである。
特開昭62-161445号公報 特開2004-243352号公報 特開2000-288705号公報
 上述のように、従来の連続鋳造における、断面の大きな鋳片の中心部におけるザクやポロシティ、および鋳片上部の引け巣やザクを低減する方法には、設備コストやエネルギーの面、表面品質の面で問題があった。
 本発明は、このような従来技術における問題に鑑みてなされたものであり、その課題は、連続鋳造において、低い設備コストでかつ表面品質の低下を招くことなく、断面の大きさに関わらず、鋳片の中心部におけるザクおよびポロシティ、ならびに鋳片上部の引け巣やザクを低減する方法を提供することにある。
 本発明者らは、上記の課題を解決するために、連続鋳造における鋳片の圧下方法について検討した。その結果、鋳片を圧下するのに、移動可能なロールを用いることによって、鋳片の断面の大きさに関わらず、ザク、ポロシティおよび引け巣の圧着に最適な位置での圧下が可能となることを知見した。この場合、特定の位置に固定したロールを用いる場合のような連続鋳造機の長さや鋳造速度の調整を必要とせず、設備コストは非常に低い。
 本発明は、上記知見に基づいてなされたものであり、その要旨は下記の(1)~(4)に示す鋳片の連続鋳造方法にある。
(1)鋳片を連続鋳造する方法であって、鋳片の案内支持と圧下の切替えが可能で、かつ鋳型の下方で鋳片に沿って鉛直方向に移動が可能な一対のロールを用い、鋳片の引き抜き中は移動を停止した状態で鋳片を案内支持し、鋳片の引き抜きを完了した後は、停止した鋳片を鉛直方向に移動しながら圧下することを特徴とする鋳片の連続鋳造方法。
(2)鋳片を圧下しながらの前記ロールの移動方向が鉛直方向上向きであることを特徴とする前記(1)に記載の鋳片の連続鋳造方法。
(3)鋳片の横断面が円形であることを特徴とする前記(1)または(2)に記載の鋳片の連続鋳造方法。
 本発明の鋳片の連続鋳造方法によれば、設備コストの低い連続鋳造機によって、表面品質の低下を招くことなく、鋳片の断面の大きさに関わらず、大幅なザク、ポロシティおよび引け巣の低減が可能であり、かつ高い歩留まりで鋳片の鋳造が可能である。
図1は、本発明の方法が適用可能な連続鋳造機の構成図であり、図1(a)は正面図、図1は(b)は側面図である。 図2は、本発明の連続鋳造方法による鋳造工程を説明する図であり、図2(a)は鋳造開始時点の状態、図2(b)は鋳片の引き抜き中の状態、図2(c)は引き抜き完了後に可動ロールを可動範囲の下端に移動させた状態、図2(d)は鋳片を圧下しながら可動ロールを上昇させる状態、図2(e)は圧下完了の状態をそれぞれ示す。 図3は、鋳片の未凝固径に対する圧下量の比率(圧下量/未凝固径)と、欠陥面積率との関係を示す図であり、図3(a)は定常部での実績を、図3(b)は鋳片上部での実績をそれぞれ示す。
 図1は、本発明の方法が適用可能な連続鋳造機の構成図であり、同図(a)は正面図、同図(b)は側面図である。同図に示す連続鋳造機は垂直型であり、鋳片の鋳造方向が鉛直下向きである。この連続鋳造機は、溶鋼を収容する取鍋1と、取鍋1から図示しない浸漬ノズルを介して溶鋼が供給される鋳型2と、鋳型2から下方に引き抜いた鋳片3を圧下する可動ロール圧下装置4とを備える。鋳型2は、半割鋳型を組み合わせたものである。可動ロール圧下装置4は、一対のロール5と、ロール5を支持するフレーム6を備え、このフレーム6はロール5と一体で鋳型2の下方で鋳片2に沿いつつ鉛直方向上下に移動が可能である。
 鋳型2の直下には、後述する図2に示すように、サポートロール群7が配置されており(図1には不図示)、鋳片3の凝固シェル3aのサポート域を形成する。連続鋳造機には、少なくとも鋳型2の直下において、鋳型2の長さの1/4~同等程度の領域で凝固シェル3aをサポートすることが好ましい。後述する図2では、サポート域の長さが鋳型2の長さと同等である態様を示す。
 ロール5は、鋳片3を案内支持するピンチロールの役割と鋳片3を圧下する圧下ロールの役割とを兼ねるように両役割を切替え可能に構成され、鋳片3に接触するように背面から油圧によって鋳片方向に押し付けられる。また、ロール5は、ユニバーサルジョイント8を介して大型減速機9に接続されており、駆動ロールとして動作する。
 フレーム6は、鉛直に配置されたボールスクリューからなる4本のジャッキ軸10によって鉛直方向に移動可能に支持され、ジャッキ軸10のジャッキ機構によって鉛直方向上下に移動可能な駆動力も与えられる。
 ロール5は、フレーム6と一体であるため、鋳片2に沿いつつ鉛直方向上下に移動可能であり、鋳片3の圧下位置を変更すること、および圧下しながら移動することが可能である。ロール5の移動は、ロール5自身を、鋳片3を挟んだ状態で回転させることによって行うことができ、ロール5の回転方向を変更することによって移動方向を変更することができる。また、ロール5が鋳片3と接触しない状態では、ジャッキ軸10のジャッキ機構によって移動することができる。
 図2は、本発明の連続鋳造方法による鋳造工程を説明する図であり、同図(a)は鋳造開始時点の状態、同図(b)は鋳片の引き抜き中の状態、同図(c)は引き抜き完了後に可動ロールを可動範囲の下端に移動させた状態、同図(d)は鋳片を圧下しながら可動ロールを上昇させる状態、同図(e)は圧下完了の状態をそれぞれ示す。
 図2を用いて本発明の連続鋳造方法について説明する。まず、同図(a)に示すように鋳片3の鋳造を開始し、同図(b)に示すように鋳片3を連続的に引き抜く。この際、ロール5は鋳型2の直下、実際にはサポートロール群7の直下に配置し、ピンチロールとして使用される。鋳片3を連続鋳造機の限界まで引き抜くと、鋳片3を停止させて引き抜きを完了する。その後、同図(c)に示すようにロール5を可動範囲の最下端まで移動させる。その後、鋳片3の中心部の温度および凝固シェル3aの厚さが圧下に最適な条件となるまで待機する。
 鋳片3の状態が圧下に最適な条件となった後、鋳片3の圧下量が所定の量となるまでロール5を鋳片3に押し付け、引き抜き時とは反対方向にロール5を回転させて、図2(d)に示すように、鋳片3の軸に沿ってロール5を上昇させながら鋳片3を圧下する。凝固シェル3aの内部に未凝固溶鋼3bを有する場合には、同図(e)に示すように、鋳片3を圧下しながらロール5を上昇させることによって、未凝固溶鋼3bは上部のメニスカス上に吐出される。この吐出溶鋼量は、鋳片圧下時の未凝固部の大きさにもよるが、鋳片の横断面が円形の場合には、他の形状の場合と比較して、さほど多くはなく、鋳型2内に収容可能な程度である。一方、鋳片3が内部まで完全に凝固した後に、圧下しながらロール5を上昇させる場合には、当然ながら未凝固溶鋼の吐出はない。
 このように、可動ロール圧下装置4を用いて鋳片3を圧下することにより、鋳片3の断面の大きさに関わらず鋳片3全体を効率的に圧下し、ザク、ポロシティを圧着させることができる。鋳片3の圧下は、連続的に行っても、必要部分だけを断続的に行ってもよい。
 鋳片3の圧下条件の変更は、ロール5の上昇速度を変化させることにより可能である。例えば、ロール5の上昇速度を鋳片3の引き抜き速度と同一とすることにより、鋳片3全体にわたって同一条件で圧下することができる。これは、ロール5の圧下上昇開始後の時間経過中にも、鋳片3内部の未凝固溶鋼の凝固が進行し、未凝固部は縮小していくが、ロール5の上昇速度を鋳片3の引き抜き速度と同一とすることで圧下位置については鋳造してから圧下されるまでの時間が一定となり、圧下位置での未凝固部の大きさがほぼ一定に保たれるからである。ただし、ロール5の上昇速度は、鋳片3の引き抜き速度と同一としなくてもよい。
 メニスカス下の引け巣およびザクの発生のみを抑制の対象とする場合には、ロール5を、鋳型2下部近傍の所定の位置まで、鋳片3を圧下させずに上昇させ、その位置から上部の所定位置までロール5を上昇させながら鋳片3を圧下すればよい。逆に、鋳型2下部近傍の所定の位置よりも上部の所定位置まで、鋳片3を圧下させずに上昇させ、その位置から鋳型2下部近傍の所定の位置までロール5を下降させながら鋳片3を圧下してもよい。
 以上の工程により、1回の鋳片引抜から圧下上昇までの工程が完了するため、鋳片を搬出した後、次の鋳込みは再度図2に示す工程を繰り返せばよい。
 このように、移動可能なロールを用いることにより、同一の連続鋳造機によって、低い設備コストでかつ表面品質の低下を招くことなく、良好な内部品質を有する鋳片を断面の大きさによらず鋳造することができる。また、連続鋳造であるため、インゴット法よりも高い歩留まりで鋳片を鋳造することができる。
 以上の説明では、連続鋳造方法として、垂直型の連続鋳造機を用いる場合について説明したが、本発明が適用可能な連続鋳造機は垂直型に限られず、鋳型直下から鉛直下向きに鋳造する部分があれば、垂直ベンディング型、円弧湾曲型等の形式でも、適用可能である。
 鋳造する鋳片は、横断面が円形であることが好ましい。横断面が円形の鋳片は、フラットな一対のロールで圧下すると、鋳片の中心部で生成するザク、ポロシティに対して、ロール接触部を除いた周りの凝固シェルを大きく変形させることなく、一対のロール接触部間のみの変形でよいことになり、少ない圧下反力で効率的にザク、ポロシティを圧着させることができるからである。
 また、可動ロール圧下装置を配置する場合には、従来の連続鋳造機に設けられていた鋳片のサポートロール群やそれを保持するローラエプロンは、この可動ロール圧下装置と幾何的に干渉するため、設置することが極めて困難である。サポートロール群を設置しないと、鋳片内部の未凝固溶鋼の静圧に凝固シェルが押されることによる鋳片バルジングの発生が懸念される。しかし、鋳片の横断面が円形とすることにより、サポートロール群をある程度設置しない状態で凝固シェルが溶鋼静圧を受けても、バルジングを発生しにくくすることができる。
 鋳片の圧下は、鋳片内部に未凝固部が残存している状態で行っても、鋳片が完全に凝固した状態で行ってもよい。鋳造の対象とする鋼種によって、未凝固部が残存している状態で圧下すると鋳片に内部割れが発生する場合があり、この場合には鋳片が完全に凝固してから圧下すればよい。また、鋼種によっては発生するザクおよびポロシティが比較的大きくないため、その場合には完全に凝固してからの圧下でザクおよびポロシティの圧着は十分に行うことができる。
 本発明の鋳片の連続鋳造方法の効果を確認するため、以下の鋳造試験(予備試験および本試験)を行った。
1.予備試験
1-1.試験条件
 鋳造する鋳片は、直径300mm、長さ1800mmの小型の鋳片とし、鋼種はザクおよびポロシティの増大しやすい13%Cr鋼とした。連続鋳造機として、前記図1に示すものを用いた。ただし、鋳片の凝固シェルをサポートするサポートロール群は設けなかった。可動ロール圧下装置は、設けられたロールの直径が450mmであり、圧下力は最大で100t、最大圧下トルクは50t・mであった。可動ロール圧下装置の圧下上昇速度は0.8m/minとし、鋳片全長の鋳造終了後、鋳片全長にわたって圧下した。鋳片の圧下量は、圧下方向の鋳片の直径の減少量で20~70mmとした。ただし、圧下により鋳片の断面形状が偏平となった。
 また、圧下位置での未凝固部分の直径(以下「未凝固径」という。)は70mmまたは110mmとした。これは、固相率0.8に相当する等温線を固液界面として定義した場合の値である。固相率が0.8となる界面の位置は、円筒断面の非定常一次伝熱凝固解析によって求めた。鋳片表面の温度測定、熱電対による鋳片内部の温度測定、S等のトレーサの添加による未凝固径の測定の各結果と計算結果とを対比して、解析の精度が十分であることを確認した。
1-2.試験結果
 試験終了後、鋳片の中心を通る縦断面が露出するように各鋳片を切断し、切断面を切削、研磨した後、ザク、ポロシティおよび引け巣の発生状況について調査した。これらの各欠陥は、鋳片の断面において空隙を呈しており、その程度を断面全体の面積に占める空隙の面積の割合(空隙率)で算出した。この空隙率を、圧下を行った鋳片とは別に鋳造した、ロールによる圧下を行っていない鋳片(以下「非圧下鋳片」という。)の空隙率で除し、その除した値を欠陥面積率と定義し、欠陥の発生状況の指標とした。空隙の面積は、汎用の画像写真解析ソフトを用いて測定したが、他の方法で測定してもよい。
 図3は、鋳片の未凝固径に対する圧下量の比率(圧下量/未凝固径)と、欠陥面積率との関係を示す図であり、同図(a)は定常部での実績を、同図(b)は鋳片上部での実績をそれぞれ示す。鋳片上部とは、非圧下鋳片においてはザクおよび引け巣が発生する領域をいい、圧下した鋳片においては、非圧下鋳片でザクおよび引け巣が発生する領域に相当する領域をいう。定常部とは、鋳片上部以外の鋳片の領域をいう。
 図3(a)に示すように、圧下量/未凝固径の値が大きくなると、ザクおよびポロシティを大幅に低減できることが判明した。また、同図(b)からは、鋳片上部では、定常部と比較して、さらに大幅な欠陥の低減効果があることが確認できた。
2.本試験
2-1.鋳造条件の検討
 予備試験の結果に基づき、本試験として溶鋼規模を大きくした場合について、鋳造条件の検討を行った。鋳造する鋳片は、直径800mm、長さ10mとし、鋼種は13%Cr鋼とした。この鋳片の鋳造に用いる溶鋼量を約40tとした。これは、通常のインゴット法によるインゴットの鋳造(溶鋼量10t)の4本分に相当する。通常、インゴットの鋳造には、鋳片上部における引け巣、およびザクの発生防止のために押し湯が用いられる。押し湯に必要な溶鋼量が、インゴット1本当たり、その質量の10%であるため4tの溶鋼が余分に必要になる。インゴットの鋳造後、押し湯部分は切り捨てる必要があるため、その分ロスが発生するが、連続鋳造法ではこのロスは発生しない。
 連続鋳造機として、前記図1に示すものを用いた。鋳型は、直径800mm、長さ800mmの銅製の水冷式とした。鋳型直下には、サポートロール群を設け、サポート領域の長さは800mmとした。可動ロール圧下装置は、設けられたロールの直径を650mmとした。鋳片の冷却は、比水量0.2L/kg-steelのスプレー冷却とした。鋳造速度は0.25m/minとして鋳片を引き抜き、鋳片の長さが10mに達した時点で引き抜きを停止した。それ以外の条件は、上記の予備試験と同一とした。
 以上の条件での連続鋳造について行った凝固伝熱解析によると、引き抜き停止時の鋳片の表面温度は、鋳型内のメニスカスから鋳造方向に4mの箇所で約1220℃であり、10mの箇所で約980℃と推定された。この時点での未凝固径は、固相率0.8を基準として、メニスカスから4mの箇所で約620mm、10mの箇所で500mmと推定された。この解析結果に基づいて、可動ロール圧下装置による鋳片の圧下量を225mm、可動ロール圧下装置の上昇速度を0.25m/minとした。この上昇速度は、鋳片の引き抜き速度と同じであるため、圧下条件(圧下部の鋳片の未凝固径および鋳片の表面温度)は鋳片の全域にわたって同一となる。
 この場合は、圧下開始時の圧下部における未凝固径は約500mm、表面温度は980℃である。未凝固径500mmに対して圧下量が225mmでは、圧下量/未凝固径の値は0.45であるため、予備試験結果である前記図3から欠陥面積率は、定常部では20%、鋳片上部では4.8%と、いずれも大幅に減少すると推測される。可動ロール圧下装置に設けられたロールの直径が650mmであり、鋳造対象である13%Cr鋼の変形抵抗が6kgf/mmであることから、ロールと鋳片との接触角が32°とすると、必要圧下力は650tとなる。
2-2.試験結果
 以上の条件で鋳造した鋳片は、可動ロール圧下装置を設けない場合と比較して、ザク、ポロシティおよび引け巣の発生が少なく、内部品質および表面品質が良好であった。また、インゴット法で鋳造した同等の大きさのインゴットと比較して、高い歩留まりが得られた。
 本発明の鋳片の連続鋳造方法によれば、設備コストの低い連続鋳造機によって、表面品質の低下を招くことなく、鋳片の断面の大きさに関わらず、大幅なザク、ポロシティおよび引け巣の低減が可能であり、かつ高い歩留まりで鋳片の鋳造が可能である。
1:取鍋、 2:鋳型、 3:鋳片、 3a:凝固シェル、 
3b:未凝固溶鋼、 4:可動ロール圧下装置、 5:ロール対、 
6:フレーム、 7:サポートロール群、 8:ユニバーサルジョイント、
9:大型減速機、 10:ジャッキ軸

Claims (3)

  1.  鋳片を連続鋳造する方法であって、
     鋳片の案内支持と圧下の切替えが可能で、かつ鋳型の下方で鋳片に沿って鉛直方向に移動が可能な一対のロールを用い、
     鋳片の引き抜き中は移動を停止した状態で鋳片を案内支持し、
     鋳片の引き抜きを完了した後は、停止した鋳片を鉛直方向に移動しながら圧下することを特徴とする鋳片の連続鋳造方法。
  2.  鋳片を圧下しながらの前記ロールの移動方向が鉛直方向上向きであることを特徴とする請求項1に記載の鋳片の連続鋳造方法。
  3.  鋳片の横断面が円形であることを特徴とする請求項1または2に記載の鋳片の連続鋳造方法。
PCT/JP2012/003388 2012-05-24 2012-05-24 鋳片の連続鋳造方法 WO2013175536A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020147031133A KR20140147883A (ko) 2012-05-24 2012-05-24 주편의 연속 주조 방법
IN8553DEN2014 IN2014DN08553A (ja) 2012-05-24 2012-05-24
PL12877100T PL2857122T3 (pl) 2012-05-24 2012-05-24 Sposób ciągłego odlewania wlewka płaskiego
EP12877100.3A EP2857122B1 (en) 2012-05-24 2012-05-24 Continuous casting method for slab
JP2014516513A JPWO2013175536A1 (ja) 2012-05-24 2012-05-24 鋳片の連続鋳造方法
PCT/JP2012/003388 WO2013175536A1 (ja) 2012-05-24 2012-05-24 鋳片の連続鋳造方法
CN201280073444.7A CN104334297A (zh) 2012-05-24 2012-05-24 铸坯的连续铸造方法
ES12877100.3T ES2651136T3 (es) 2012-05-24 2012-05-24 Método para colar planchón de manera continua

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003388 WO2013175536A1 (ja) 2012-05-24 2012-05-24 鋳片の連続鋳造方法

Publications (1)

Publication Number Publication Date
WO2013175536A1 true WO2013175536A1 (ja) 2013-11-28

Family

ID=49623271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003388 WO2013175536A1 (ja) 2012-05-24 2012-05-24 鋳片の連続鋳造方法

Country Status (8)

Country Link
EP (1) EP2857122B1 (ja)
JP (1) JPWO2013175536A1 (ja)
KR (1) KR20140147883A (ja)
CN (1) CN104334297A (ja)
ES (1) ES2651136T3 (ja)
IN (1) IN2014DN08553A (ja)
PL (1) PL2857122T3 (ja)
WO (1) WO2013175536A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107116192A (zh) * 2017-06-27 2017-09-01 中冶京诚工程技术有限公司 连铸坯压下设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161445A (ja) 1986-01-10 1987-07-17 Kawasaki Steel Corp 鋼の造塊方法
JPS6333163A (ja) * 1986-07-26 1988-02-12 Kawasaki Steel Corp 大型鋼塊の製造方法
JPH06190521A (ja) * 1992-12-26 1994-07-12 Sumitomo Metal Ind Ltd 大型鋳片の製造方法
JPH08206803A (ja) * 1995-01-30 1996-08-13 Daido Steel Co Ltd 異鋼種連続鋳造方法
JP2000288705A (ja) 1999-04-06 2000-10-17 Sumitomo Metal Ind Ltd 連続鋳造方法
JP2004243352A (ja) 2003-02-12 2004-09-02 Daido Steel Co Ltd 連続鋳造方法
JP2011140044A (ja) * 2010-01-08 2011-07-21 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法
JP2012115898A (ja) * 2010-12-03 2012-06-21 Sumitomo Metal Ind Ltd 鋳片の連続鋳造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2964560B2 (ja) * 1989-08-16 1999-10-18 大同特殊鋼株式会社 垂直連続鋳造装置
DE19921296A1 (de) * 1999-05-07 2000-11-09 Sms Demag Ag Verfahren und Vorrichtung zum Herstellen von stranggegossenen Stahlerzeugnissen
CN2579561Y (zh) * 2002-11-27 2003-10-15 钢铁研究总院 一种带轻压下功能的连铸坯拉矫机装置
JP5741402B2 (ja) * 2011-11-25 2015-07-01 新日鐵住金株式会社 円形断面鋳片の連続鋳造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161445A (ja) 1986-01-10 1987-07-17 Kawasaki Steel Corp 鋼の造塊方法
JPS6333163A (ja) * 1986-07-26 1988-02-12 Kawasaki Steel Corp 大型鋼塊の製造方法
JPH06190521A (ja) * 1992-12-26 1994-07-12 Sumitomo Metal Ind Ltd 大型鋳片の製造方法
JPH08206803A (ja) * 1995-01-30 1996-08-13 Daido Steel Co Ltd 異鋼種連続鋳造方法
JP2000288705A (ja) 1999-04-06 2000-10-17 Sumitomo Metal Ind Ltd 連続鋳造方法
JP2004243352A (ja) 2003-02-12 2004-09-02 Daido Steel Co Ltd 連続鋳造方法
JP2011140044A (ja) * 2010-01-08 2011-07-21 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法
JP2012115898A (ja) * 2010-12-03 2012-06-21 Sumitomo Metal Ind Ltd 鋳片の連続鋳造方法

Also Published As

Publication number Publication date
EP2857122B1 (en) 2017-09-20
EP2857122A1 (en) 2015-04-08
KR20140147883A (ko) 2014-12-30
CN104334297A (zh) 2015-02-04
JPWO2013175536A1 (ja) 2016-01-12
ES2651136T3 (es) 2018-01-24
EP2857122A4 (en) 2016-01-20
IN2014DN08553A (ja) 2015-05-15
PL2857122T3 (pl) 2018-02-28

Similar Documents

Publication Publication Date Title
CN108817341B (zh) 小方坯连铸机降低拉速提高快换成功率的方法
KR100326560B1 (ko) 강재의연속주조법및연속주조·압연법
JP5477269B2 (ja) 鋳片の連続鋳造方法
KR20150104198A (ko) 주편의 연속 주조 방법
JP5835531B2 (ja) 極厚鋼板用鋳片の連続鋳造方法
JP5741402B2 (ja) 円形断面鋳片の連続鋳造方法
JP6390718B2 (ja) 連続鋳造鋳片とその製造方法および製造装置、厚鋼板の製造方法および製造装置
EP2656946A1 (en) Method for enhancing self-feeding ability of heavy section casting blank
WO2013175536A1 (ja) 鋳片の連続鋳造方法
JP5157664B2 (ja) 継目無鋼管用丸鋳片の連続鋳造方法
JP4544544B1 (ja) 連続鋳造鋳片から鋼片への成形方法
JP5343746B2 (ja) 継目無鋼管用丸鋳片の連続鋳造方法
JP7226043B2 (ja) 連続鋳造方法
KR102526952B1 (ko) 주편의 제조 방법
JPH08164460A (ja) 内質の良好な連続鋳造鋳片の製造方法
KR101565517B1 (ko) 주조 설비
JP5387205B2 (ja) 丸鋳片の連続鋳造方法および連続鋳造設備
JP5691949B2 (ja) 大断面鋳片の連続鋳造方法
JP4285288B2 (ja) 鋼の連続鋳造方法
JP3394730B2 (ja) 鋼鋳片の連続鋳造方法
JP5817665B2 (ja) 鋳片の連続鋳造方法
JP3601591B2 (ja) 内部割れの少ない鋼の連続鋳造方法
JP2021087972A (ja) 薄肉鋳片の製造方法
CN116727638A (zh) 一种无夹杂液态模锻方法
JPH01258801A (ja) 丸型連続鋳造鋳片の鍛圧方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516513

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147031133

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012877100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012877100

Country of ref document: EP