WO2013174112A1 - 偏光板贴附精度检测装置及方法 - Google Patents

偏光板贴附精度检测装置及方法 Download PDF

Info

Publication number
WO2013174112A1
WO2013174112A1 PCT/CN2012/084848 CN2012084848W WO2013174112A1 WO 2013174112 A1 WO2013174112 A1 WO 2013174112A1 CN 2012084848 W CN2012084848 W CN 2012084848W WO 2013174112 A1 WO2013174112 A1 WO 2013174112A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
substrate
accuracy detection
tested
image
Prior art date
Application number
PCT/CN2012/084848
Other languages
English (en)
French (fr)
Inventor
赵建普
臧金翠
姚大青
葛光
唐鹏
王明龙
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Publication of WO2013174112A1 publication Critical patent/WO2013174112A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present disclosure relates to the field of display panel manufacturing technology, and in particular, to a polarizing plate attaching accuracy detecting apparatus and method. Background technique
  • Polarizing plate attachment is an extremely important process in the fabrication of thin film field effect transistor liquid crystal displays (TFT-LCDs). It attaches a polarizing plate to the surface of a glass substrate.
  • the accuracy of the polarizer attachment is measured by the distance from the edge to the edge of the glass substrate after the polarizing plate is attached. The smaller the distance, the higher the accuracy, and the greater the distance, the lower the accuracy. Since the accuracy of the attachment will directly affect the display effect of the TFT-LCD, it is necessary to detect the adhesion accuracy of the polarizing plate.
  • the operator manually checks the attachment accuracy of the product through a 10x magnification eyepiece, and the detection accuracy is low, and the detection accuracy can only be guaranteed to be 0.1 mm. Due to the manual manual detection, the detection speed is slow, and the detection time of the single panel (Panel) is time-consuming. The time is long; the detection speed is slow, and only the sampling method can be taken. Therefore, it is impossible to ensure that the adhesion accuracy of each panel is acceptable, and it is easy to miss the defective product, and the defective product flows into the downstream process.
  • the embodiment of the present disclosure provides a polarizing plate attaching accuracy detecting device, comprising: an image collecting unit, configured to collect an image of a substrate to be tested attached to the polarizing plate, and parse the polarizing plate from the substrate according to the image The distance value of the edge;
  • the accuracy detection control unit is connected to the image collection unit for comparing the distance value with a preset standard value range, and if the distance value is not within the standard value range, alarming.
  • the method further includes: a mechanical motion unit, connected to the image collection unit and a precision detection control unit, wherein the accuracy detection control unit is further configured to control the mechanical motion unit to drive the image collection unit according to preset positioning parameters. And moving the substrate to be tested, so that the image collection unit is set to be tested An image of the specified position of the substrate.
  • the mechanical movement unit includes: a mounting bracket and a first positioning mechanism, a second positioning mechanism, and a conveying mechanism located in the mounting bracket;
  • the first positioning mechanism is configured to clamp the substrate to be tested under the control of the precision detection control unit and move and position it in the longitudinal/lateral direction, and after positioning, send a signal to the precision detection control unit;
  • a second positioning mechanism for moving and positioning the image gathering unit in the longitudinal/horizontal direction under the control of the accuracy detecting control unit
  • the transport mechanism is configured to transmit the longitudinal movement of the substrate to be tested under the control of the accuracy detection control unit.
  • the first positioning mechanism comprises: a first servo motor, a longitudinal pushing cylinder, a sensor, a lateral clamping moving mechanism and a longitudinal positioning mechanism, wherein the lateral clamping moving mechanism comprises a longitudinal moving plate and a clip, and the clip is slidably fixed on the clip On the track of the longitudinal moving plate, the first servo motor is used to drive the clip to clamp the substrate to be tested under the control of the precision detecting control unit and to laterally move the clip along the track of the longitudinal moving plate;
  • the conveying mechanism is configured to longitudinally convey the longitudinal moving plate, and the vertical pushing cylinder is used to drive the vertical pushing positioning mechanism to drive the detecting the substrate to be tested against the vertical under the control of the precision detecting control unit
  • the positioning mechanism is pushed to send a signal to the accuracy detecting control unit.
  • the second positioning mechanism comprises: a second servo motor, a third servo motor, a traverse mechanism and a longitudinal movement mechanism, the traverse mechanism comprises a transverse plate and a longitudinal extension plate, and the longitudinal extension plate is slidably fixed on the transverse plate
  • the second servo motor is used to drive the longitudinally extending plate to move laterally along the track on the transverse plate under the control of the accuracy detecting control unit; the longitudinal moving mechanism is slidably fixed in the track of the longitudinally extending plate
  • the third servo motor is located on the longitudinal extension board.
  • the transmission mechanism comprises: a fourth servo motor, a fifth servo motor and two sets of transfer wheels, wherein the fourth servo motor and the fifth servo motor are in the Under the control of the accuracy detection control unit, each group drives a group of transfer wheels to rotate.
  • the method further includes: an input/output unit connected to the precision detection control unit, configured to input the standard value range and the positioning parameter, and output a detection result.
  • the method further includes: a control handle connected to the image collection unit, configured to adjust a collection parameter of the camera of the image collection unit.
  • a control handle connected to the image collection unit, configured to adjust a collection parameter of the camera of the image collection unit.
  • S1 collecting an image of the substrate to be tested attached with the polarizing plate, and parsing a distance value of the polarizing plate from the edge of the substrate according to the image;
  • S2 The distance value is compared with a preset standard value range, and if the distance value is not within the standard value range, an alarm is issued.
  • the step so includes the steps of: clamping the substrate to be tested and moving to a fixed position, and then moving the camera to a position specified by the positioning parameter according to a preset positioning parameter.
  • the step S and S1 further includes the step of: adjusting a collection parameter of the camera.
  • the step of parsing the distance value of the polarizing plate from the edge of the substrate according to the image in the step S1 includes:
  • the step of storing the distance value is further included, the statistical pass rate is completed after the detection is completed, and the statistical result is stored.
  • the distance between the edge of the polarizing plate and the edge of the substrate is obtained by collecting the image of the substrate to be tested in real time by the camera, and the polarizing plate is judged by comparing the distance value with the standard value range. The accuracy is attached, thereby improving the detection accuracy of the polarizing plate attachment.
  • FIG. 1 is a schematic structural view of a polarizing plate attaching accuracy detecting device according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic view of a substrate after attaching a polarizing plate
  • FIG. 3 is a schematic structural view of a polarizing plate attaching accuracy detecting device according to Embodiment 2 of the present disclosure
  • FIG. 4 is a schematic plan view of the mechanical moving unit in the polarizing plate attaching accuracy detecting device of FIG. detailed description
  • the polarizing plate attaching accuracy detecting apparatus of the embodiment includes: an image collecting unit and an accuracy detecting control unit, and an image collecting unit connecting precision detecting and controlling unit, which is used for collecting and attaching a polarizing plate to be tested.
  • An image of the substrate, and the distance value of the polarizing plate from the edge of the substrate is analyzed according to the image.
  • the accuracy detection control unit is connected to the image collection unit for comparing the distance value with a preset standard value range, and if the distance value is not within the standard value range, an alarm is generated.
  • the image collection unit includes: at least one camera, an image processor, and a power source.
  • the camera is connected to the image processor via a data cable that supplies power to the camera and image processor.
  • the camera sends the collected image to the image processor for processing.
  • the image processor parses the image to obtain pixel values of the edge of the polarizing plate 2 in the image from the edge of the substrate 1. As shown in FIG. 2, it is a schematic view of the substrate 2 to which the polarizing plate 1 is attached.
  • the camera transmits the image of the substrate 2 to the image processor, and the image processor obtains the pixel value of the edge of the polarizing plate 1 from the edge of the substrate 2 from the image, for example, obtains the pixel value marked as the edge of the polarizing plate 1 at the edge of the substrate 2 from the edge of the polarizing plate 1.
  • the image processor converts the pixel values into lengths in mm.
  • the precision detection control unit is a Programmable Logic Controller (PLC), and mainly includes: a CPU, a serial interface, and a plurality of memories (not shown).
  • PLC Programmable Logic Controller
  • the CPU completes the logic control of the entire system through a pre-designed PLC program.
  • the serial interface is used for data transfer between the PLC and the above image processor.
  • the CPU obtains the distance value transmitted by the image processor according to the pre-designed PLC program, and compares the distance value with the preset standard value range. If the distance value is within the standard value range, the polarizing plate on the substrate to be detected is indicated.
  • the attaching precision is high, the substrate is a qualified product, otherwise a warning is issued.
  • the alarm on the PLC emits a sound to prompt the user, and the polarizing plate attaching device can be immediately triggered to automatically stop, so that the staff can adjust the polarizing plate in time. device.
  • the above pre-designed PLC program, standard value range and other related parameters can be written into the PLC's memory by means of host computer programming.
  • the image collection unit described above can be implemented by using an existing image collection device, and the precision detection control unit can be implemented by using an FPGA-based and CPLD control chip in addition to the PLC.
  • the polarizing plate attaching accuracy detecting device of the present embodiment further includes a control handle.
  • the control handle is connected to the image processor, and the camera is controlled by the image processor for selecting the range of the image to be captured, such as adjusting the camera's collection parameters by the handle. For example, when adjusting the focus, adjust the focal length of the camera by the button on the handle to change the size of the captured image; adjust the exposure time, brightness and other parameters to make the edge of the polarizer and the edge of the glass substrate clearer in the image, reducing the image resolution.
  • the error makes the accuracy detection more accurate.
  • the polarizing plate attaching accuracy detecting apparatus of the present embodiment further includes an input/output device such as a touch screen.
  • the touch screen is connected with the PLC, and the standard value range and other related parameter values in the PLC memory are set in real time through the touch screen, and the parameter is not written every time by the programming of the upper computer, and the detected distance value can be displayed on the touch screen in real time. , providing a user experience.
  • the polarizing plate attaching accuracy detecting device of the embodiment collects the image of the substrate to be tested in real time by the camera, and obtains the distance value from the edge of the polarizing plate to the edge of the substrate, and compares the distance value with the standard value range to determine the attaching precision of the polarizing plate. Due to the high pixel of the camera, the measurement accuracy can be as high as 20um. Thereby, the detection accuracy of the polarizing plate attachment is improved.
  • the device is disposed on the pipeline, and the substrate after the polarizing plate is attached to the pipeline is online.
  • the inspection ensures that each panel 1 can detect the attachment accuracy, avoiding the inflow of defective products into the downstream process, saving manpower costs, and avoiding damage caused by personnel operations on the panel.
  • the polarizing plate attaching accuracy detecting apparatus of the present embodiment is improved on the basis of the first embodiment, and the mechanical motion unit is added.
  • the mechanical motion unit is connected to the image collection unit and the precision detection control unit.
  • the precision detection control unit controls the mechanical motion unit to drive the image collection unit and the substrate to be tested according to the preset positioning parameter, so that the image collection unit collects the image of the specified position of the substrate to be tested.
  • the specific structure of the mechanical motion unit is as shown in FIG. 4, and includes: a mounting bracket 3 and a first positioning mechanism, a second positioning mechanism, and a transport mechanism installed in the mounting bracket 3.
  • the first positioning mechanism is for clamping the substrate to be tested and moving and positioning it in the longitudinal/lateral direction.
  • the first positioning mechanism comprises: a servo motor 11, a longitudinal thrust cylinder (not shown), a sensor (not shown), a lateral clamping movement mechanism and a longitudinal positioning mechanism 26, transverse clamping
  • the moving mechanism includes a longitudinal moving plate 31 and two clips 15, and the two clips 15 are slidably fixed to the rails of the longitudinal moving plate 31.
  • the servo motor 11 drives the two clips 15 under the control of the accuracy detecting control unit to clamp the substrate to be tested and can move laterally along the track on the longitudinal moving plate 31, thereby moving the substrate to be tested in the lateral direction.
  • the clamped substrate to be tested drives the entire lateral clamping movement mechanism to move longitudinally under the conveying mechanism, moves to the longitudinal positioning mechanism 26, the conveying mechanism stops transmitting, and the vertical pushing cylinder is driven under the control of the precision detecting control unit.
  • the longitudinal positioning mechanism 26 moves in a direction opposite to the longitudinal conveying direction of the conveying mechanism, so that the substrate to be tested is pushed to the positioning mechanism 26, thereby moving the substrate to be tested to a fixed position to facilitate positioning of the image collecting unit.
  • the sensor sends a signal to the accuracy detection control unit after detecting that the substrate to be tested is pressed against the vertical positioning mechanism. After receiving the signal, the accuracy detecting control unit controls the transmitting mechanism to stop transmitting, and controls the second positioning mechanism to perform positioning according to the preset positioning parameter.
  • the first positioning mechanism is not limited to the implementation of the embodiment.
  • the thrust cylinder can also be realized by a servo motor or by the servo motor 11 and its corresponding gear set to achieve the substrate to be tested against the thrust positioning mechanism 26.
  • the lateral clamping moving mechanism may be a moving member capable of clamping the substrate to be tested and capable of both lateral movement and longitudinal movement along a predetermined track, and the sensor may be a pressure sensor.
  • the second positioning mechanism is for moving and positioning the image gathering unit in the vertical/horizontal direction.
  • the second positioning mechanism includes: a servo motor 9, a servo motor 10, a traverse mechanism, and a vertical movement mechanism 29.
  • the traverse mechanism includes a transverse plate 27 and a longitudinally extending plate 28 that is slidably secured in the track of the transverse plate 27.
  • the servo motor 9 drives the longitudinal extension plate 28 to move laterally along the track on the transverse plate 27 under the control of the accuracy detection control unit.
  • the servo motor 10 is located on a longitudinally extending plate 28, and a longitudinal mechanism 29 is slidably secured in the track of the longitudinally extending plate 28.
  • the servo motor 10 is driven to move longitudinally along the track on the longitudinally extending plate 28 under the control of the accuracy detecting control unit.
  • the camera 16 of the image collection unit is fixed to the vertical movement mechanism 29, and the lateral movement of the longitudinal extension plate 28 and the longitudinal movement of the vertical movement mechanism enable the camera 16 to move laterally and longitudinally.
  • the second positioning mechanism is not limited to the implementation of the embodiment.
  • Servo motor 9 and servo motor 10 can also be implemented using a servo motor and its corresponding gear set.
  • the traverse mechanism and the traverse mechanism 29 may be a camera-mounted moving member that can move both laterally and longitudinally along a predetermined track.
  • the transport mechanism is configured to transport the substrate to be tested to flow in, stop, and flow out of the polarizing plate attaching accuracy detecting device of the present embodiment on the pipeline.
  • the transport mechanism includes: a servo motor 12, a servo motor 13, and two sets of transfer wheels 14 driven by servo motors 12 and 13, respectively.
  • the servo motors 12 and 13 respectively drive the two sets of transfer wheels 14 under the control of the accuracy detecting control unit.
  • the sensor After detecting that the substrate to be tested has moved to the vertical positioning mechanism 26 and resisted, the sensor sends a signal to the accuracy detecting control unit to control the servo motor 12 and the servo motor 13 to stop driving the two sets of transfer wheels 14 to avoid scratching the substrate.
  • the transport mechanism can also be an electric servo motor and a set of transfer wheels driven by the servo motor, or a plurality of sets of transfer wheels driven by the servo motor and the corresponding gear set.
  • the camera 16 can collect images of a plurality of fixed point positions on the substrate to be tested through the second positioning mechanism, so that the detection accuracy is more accurate.
  • the accuracy detection control unit (PLC) of the embodiment is different from the first embodiment, and further includes: a positioning control module and a servo driver, and the servo driver is connected to the positioning control module.
  • the positioning control module controls the servo driver to drive the respective servo motors according to the preset positioning parameters to realize positioning of the camera 16 and the substrate to be tested, so that the camera 16 can collect images of the specified position, and can set multiple sets of positioning parameters. Sets images of multiple specified locations. As shown in FIG. 2, four sets of positioning parameters can be set to collect images at 5, 6, 7, and 8 on the edges of the polarizing plate 1 and the substrate 2. Real Multiple inspections of the edges are now available, making accuracy detection more accurate.
  • the positioning parameters is preferably set by a touch screen.
  • the preset positioning parameters are the coordinates of the specified points (5, 6, 7, and 8 in Fig. 2) on the edges of the polarizing plate 1 and the substrate 2 in the coordinate system established by the PLC.
  • PLC control of servo motors and thrust cylinders is a mature technology in the field of program control, and will not be described here.
  • the polarizing plate attaching accuracy detecting device of the present embodiment uses a mechanical motion unit to realize positioning of the camera and the substrate to be tested, so that the polarizing plate attaching accuracy detection is more accurate than that of the first embodiment.
  • the embodiment provides a method for detecting the accuracy of attaching a polarizing plate.
  • the method can be implemented by using the apparatus of the first embodiment or the second embodiment, and includes the following steps:
  • the image of the substrate to be tested to which the polarizing plate is attached is collected, and the distance value of the polarizing plate from the edge of the substrate is analyzed according to the image, and the steps of analyzing the distance value are:
  • the image of the lens of the lens is several millimeters corresponding to the pixel value of the camera; the pixel value obtained by the camera and the millimeter value of the steel ruler are divided to obtain the pixel value and the millimeter.
  • the ratio value of the value; the pixel value of the edge of the polarizing plate in the image of the substrate to be tested attached to the polarizing plate is converted from the edge of the substrate into a distance value expressed in units of length.
  • the distance value is compared with a preset standard value range, and if the distance value is not within the standard value range, an alarm is issued.
  • the standard value range can be set according to the actual situation, such as: The substrate size is different, and the standard value range is different.
  • the method further includes the steps of: clamping the substrate to be tested, and moving the substrate to be tested and/or the camera to make the camera gather.
  • the specific method is to clamp the substrate to be tested and move to a fixed position, and then the camera moves to a position specified by the positioning parameter according to the preset positioning parameter. Among them, in order to more clearly collect the image of the specified position, the image of the camera is adjusted before the image of the specified position is collected.
  • the focal length of the camera by the button on the handle to change the size of the captured image; adjust the exposure time, brightness and other parameters to make the edge of the polarizer and the edge of the glass substrate clearer in the image, reducing the image resolution.
  • the error makes the accuracy detection more accurate.
  • the step of storing the distance value is further included, and the measurement is qualified after the completion of the detection. Rate, and store statistical results.
  • the image of the substrate to be tested is collected by the camera in real time, and the distance value from the edge of the polarizing plate to the edge of the substrate is obtained, and the accuracy of the polarizing plate is determined by comparing the distance value with the standard value range, because the camera is high. Pixels, which can achieve measurement accuracy of 20um. Thereby, the detection accuracy of the polarizing plate attachment is improved.
  • the method can be implemented online, which ensures that each panel can be tested for attachment accuracy, avoiding the inflow of defective products into the downstream process, and at the same time facilitating the statistics of the test results, saving labor costs and avoiding personnel operation on the panel. Damage caused.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Polarising Elements (AREA)

Abstract

一种偏光板(1)贴附精度检测装置以及一种偏光板(1)贴附精度检测方法,该装置包括:图像采集单元,用于采集贴附偏光板(1)的待测基板(2)的图像,并根据所述图像解析出偏光板(1)距离基板(2)边缘的距离值;精度检测控制单元,连接所述图像采集单元,用于将所述距离值与预先设定的标准值范围比对,若所述距离值不在标准值范围内,则报警。从而提高了偏光板(1)贴附的检测精度。

Description

偏光板贴附精度检测装置及方法 技术领域
本公开涉及显示面板制造技术领域, 特别涉及一种偏光板贴附精度检测 装置及方法。 背景技术
偏光板贴附是薄膜场效应晶体管液晶显示器(TFT-LCD )制造工艺 中极其重要的一道工序。 它是将偏光板贴附至玻璃基板表面。 偏光板贴 附精度通过偏光板贴附完成后其边缘到玻璃基板边缘的距离来衡量, 距 离越小精度越高, 反之距离越大精度越低。 由于贴附精度的好坏, 会直 接影响到 TFT-LCD 的显示效果, 因此, 需要对偏光板贴附精度进行检 测。
目前, 作业人员通过 10 倍放大目镜手动对产品的贴附精度进行抽 检, 检测精度低, 检测精度只能保证 0.1mm; 由于为人工手动检测, 检 测速度慢、 单张面板(Panel )检测耗时时间长; 检测速度慢, 只能釆取 抽检的方式, 因此, 无法保证每一张 Panel的贴附精度都是合格的, 容 易漏检不良品, 使不良品流入下游工序。 另外, 需要专门的检查人员进 行对应检测, 产生巨大的人力成本, 而且釆用手动记录贴附精度的检测 结果, 不但消耗时间, 而且测量结果不易保存, 作业人员手动进行面板 的取放, 容易导致面板破损等不良后果。 发明内容
本公开的实施例提供了一种偏光板贴附精度检测装置, 包括: 图像釆集单元, 用于釆集贴附偏光板的待测基板的图像, 并根据所述图 像解析出偏光板距基板边缘的距离值;
精度检测控制单元, 连接所述图像釆集单元, 用于将所述距离值与预先 设定的标准值范围比对, 若所述距离值不在标准值范围内, 则报警。
其中, 还包括: 机械运动单元, 连接所述图像釆集单元和精度检测控制 单元, 所述精度检测控制单元还用于根据预设的定位参数控制所述机械运动 单元驱动所述图像釆集单元和所述待测基板移动, 使图像釆集单元釆集待测 基板指定位置的图像。
其中, 所述机械运动单元包括: 安装架及位于所述安装架内的第一定位 机构、 第二定位机构及传送机构;
第一定位机构用于在所述精度检测控制单元的控制下夹紧所述待测基 板并使其在纵 /横方向移动并定位, 定位后发送信号至所述精度检测控制单 元;
第二定位机构用于在所述精度检测控制单元的控制下使图像釆集单元 在纵 /横方向移动并定位;
传送机构用于在所述精度检测控制单元的控制下传送所述待测基板纵 向移动。
其中, 第一定位机构包括: 第一伺服电机、 纵推气缸、 传感器、 横向夹 紧移动机构和纵推定位机构, 横向夹紧移动机构包括纵向移动板和夹片, 夹 片可滑动地固定在纵向移动板的轨道上, 所述第一伺服电机在所述精度检测 控制单元的控制下用于驱动所述夹片夹紧待测基板并使所述夹片沿纵向移动 板的轨道横向移动; 所述传送机构用于纵向传送所述纵向移动板, 所述纵推 气缸在所述精度检测控制单元的控制下用于驱动所述纵推定位机构推动所述 于检测到待测基板抵住纵推定位机构后向所述精度检测控制单元发送信号。
其中, 第二定位机构包括: 第二伺服电机、 第三伺服电机、 横移机构和 纵移机构, 所述横移机构包括横向板和纵向延伸板, 纵向延伸板可滑动地固 定在横向板的轨道中, 第二伺服电机在所述精度检测控制单元的控制下用于 驱动纵向延伸板沿横向板上的轨道横向移动; 所述纵移机构可滑动地固定在 所述纵向延伸板的轨道中, 第三伺服电机位于纵向延伸板上, 在所述精度检 其中, 传送机构包括: 第四伺服电机、 第五伺服电机及两组传送轮, 所 述第四伺服电机和第五伺服电机在所述精度检测控制单元的控制下用于各驱 动一组传送轮转动。
其中, 还包括: 与所述精度检测控制单元连接的输入输出单元, 用于输 入所述标准值范围及所述定位参数, 并输出检测结果。
其中, 还包括: 与所述图像釆集单元连接的控制手柄, 用于调整所述图 像釆集单元的摄像头的釆集参数。 本公开实施例还提供了一种偏光板贴附精度检测方法, 包括以下步骤:
S1 : 釆集贴附偏光板的待测基板的图像, 并根据所述图像解析出偏光板 距基板边缘的距离值;
S2: 将所述距离值与预先设定的标准值范围比对, 若所述距离值不在标 准值范围内, 则报警。
其中, 在釆集贴附偏光板的待测基板的图像之前还包括步骤:
SO: 夹紧所述待测基板, 并移动所述待测基板和摄像头, 使摄像头根据 预设的定位参数釆集所述待测基板上指定位置的图像。
其中, 所述步骤 so 包括步骤: 夹紧所述待测基板并移动至固定位置, 然后摄像头根据预设的定位参数移动到所述定位参数指定的位置。
其中, 所述步骤 SO和 S1之间还包括步骤: 调节摄像头的釆集参数。 其中, 所述步骤 S1 中根据所述图像解析出偏光板距基板边缘的距离值 的步骤包括:
根据事先釆集的标准刻度的钢板尺任意几个毫米的图像得到钢板尺几 个毫米对应摄像头的像素值;
对像素值和毫米值进行除法运算, 得到像素值和毫米值的比例值; 根据所述比例值将贴附偏光板的待测基板的图像中偏光板边缘距离基 板边缘的像素值转换成以长度单位表示的距离值。
其中, 在检测出距离值之后还包括存储所述距离值的步骤, 检测完成后 统计合格率, 并存储统计结果。
根据本公开实施例的偏光板贴附精度检测装置及方法, 通过摄像头实时 釆集待测基板的图像得到偏光板边缘到基板边缘的距离值, 通过该距离值与 标准值范围对比来判断偏光板贴附精度,从而提高了偏光板贴附的检测精度。 附图说明
为了更清楚地说明本公开或现有技术中的技术方案, 下面将对本公开提 供的技术方案或现有技术描述中所需要使用的附图作简单地介绍, 显而易见 地, 下面描述中的附图仅仅是本公开的技术方案的部分具体实施方式图示说 明, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
为了更清楚地说明本公开实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本公开的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本公开实施例 1的一种偏光板贴附精度检测装置结构示意图; 图 2是贴附偏光板后的基板的示意图;
图 3是本公开实施例 2的一种偏光板贴附精度检测装置结构示意图; 图 4是图 3中偏光板贴附精度检测装置中机械运动单元的俯视示意图。 具体实施方式
下面将结合本公开实施例中的附图, 对本公开实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本公开一部分实施例, 而 不是全部的实施例。 基于本公开中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
实施例 1
如图 1所示, 本实施例的偏光板贴附精度检测装置包括: 图像釆集单元 和精度检测控制单元, 图像釆集单元连接精度检测控制单元, 用于釆集贴附 偏光板的待测基板的图像, 并根据图像解析出偏光板距基板边缘的距离值。 精度检测控制单元, 连接所述图像釆集单元, 用于将所述距离值与预先设定 的标准值范围比对, 若所述距离值不在标准值范围内, 则报警。
本实施例中, 图像釆集单元包括: 至少一个摄像头、 图像处理器及电源。 摄像头通过数据线与图像处理器连接, 电源为摄像头和图像处理器供电。 摄 像头将釆集到的图像发送到图像处理器处理。 图像处理器解析该图像, 获取 图像中偏光板 2边缘距离基板 1边缘的像素值。 如图 2所示, 为贴附有偏光 板 1的基板 2的示意图。 摄像头将该基板 2的图像发送到图像处理器, 图像 处理器从图像中获取偏光板 1边缘距离基板 2边缘的像素值, 例如获取标记 为 5处偏光板 1边缘距离基板 2边缘的像素值。 图像处理器将像素值转换成 以长度单位 mm 示 ^巨离 ^直。 具 灸方式为: 于有标准亥1 j 冈反 ^ίί 意几个毫米的图像进行釆集,从而得到钢板尺几个毫米对应摄像头的像素值, 对像素值和毫米值进行除法运算, 从而得到像素值和毫米值的比例值, 根据 该比例值将像素值转换成以长度单位表示的距离值。 图像处理器通过其上的 串行接口将该距离值传输到精度检测控制单元。
本实施例中, 精度检测控制单元为可编程逻辑控制器 (Programmable Logic Controller, PLC ), 主要包括: CPU、 串行接口及若干存储器(图中未 示出)。 CPU通过预先设计好的 PLC程序完成整个系统的逻辑控制。 串行接 口用于 PLC与上述图像处理器进行数据传输。 CPU根据预先设计好的 PLC 程序获取图像处理器传输过来的距离值, 将距离值与预设的标准值范围进行 比对, 若距离值在标准值范围内, 则说明待检测的基板上偏光板贴附精度较 高, 该基板为合格产品, 否则发出警告, 如 PLC上的报警器发光发声以提示 用户, 同时可立即触发偏光板贴附设备自动停止, 以使工作人员及时调整偏 光板贴附设备。 上述预先设计好的 PLC程序、 标准值范围及其他相关参数可 通过上位机编程的方式写入到 PLC的存储器中。
上述图像釆集单元可釆用现有的图像釆集设备来实现, 精度检测控制单 元除了 PLC以外, 还可以釆用基于 FPGA和 CPLD控制芯片来实现。
进一步地, 为了使精度检测更加准确, 本实施例的偏光板贴附精度检测 装置还包括控制手柄。 控制手柄与图像处理器连接, 通过图像处理器实现对 摄像头的控制, 用于选择拍摄图像的区域范围, 如通过手柄调节摄像头的釆 集参数。 如在釆集时, 通过手柄上的按键调整摄像头的焦距, 改变拍摄图像 的区域大小; 调整曝光时间、 亮度等参数, 使得图像中偏光板边缘和玻璃基 板边缘处更加清晰, 减小图像解析时的误差, 从而使得精度检测更加准确。
进一步地, 由于在实际的流水线生产过程中, 每次生产的基板大小不一 样, 因此对精度的要求也不一样。 为了方便根据不同的基板大小实时地设定 标准值范围及显示检测的距离值, 本实施例的偏光板贴附精度检测装置还包 括输入输出设备, 例如触摸屏。 触摸屏与 PLC连接, 通过该触摸屏实时地设 置 PLC的存储器中的标准值范围及其他相关参数值,不用每次通过上位机编 程的方式写入参数, 而且能将检测的距离值实时显示到触摸屏上, 提供了用 户体验。
本实施例的偏光板贴附精度检测装置通过摄像头实时釆集待测基板的 图像, 得到偏光板边缘到基板边缘的距离值, 通过该距离值与标准值范围对 比来判断偏光板贴附精度, 由于摄像头的高像素, 可使测量精度达到 20um。 从而提高了偏光板贴附的检测精度。
将该装置设置在流水线上, 对流水线上的贴附偏光板后的基板进行在线 检测, 保证了每张面板 1都能进行贴附精度的检测, 避免了不良产品流入下 游工序, 同时节约了人力成本, 也避免了人员操作对面板造成的损坏。
实施例 2
为了达到更好的检测精度, 本实施例的偏光板贴附精度检测装置在实施 例 1的基础上进行了改进, 增加了机械运动单元。 如图 3所示, 机械运动单 元连接图像釆集单元和精度检测控制单元。 精度检测控制单元根据预设的定 位参数控制机械运动单元驱动图像釆集单元和待测基板移动, 使图像釆集单 元釆集待测基板指定位置的图像。
机械运动单元的具体结构如图 4所示, 包括: 安装架 3及安装在安装架 3中的第一定位机构、 第二定位机构和传送机构。
第一定位机构用于夹紧所述待测基板并使其在纵 /横方向移动并定位。本 实施例中, 第一定位机构包括: 伺服电机 11、 纵推气缸(图中未示出)、 传 感器(图中未示出)、 横向夹紧移动机构和纵推定位机构 26, 横向夹紧移动 机构包括纵向移动板 31和两个夹片 15 , 两个夹片 15可滑动地固定在纵向移 动板 31的轨道上。 伺服电机 11在精度检测控制单元的控制下驱动两个夹片 15夹紧待测基板且可沿纵向移动板 31上的轨道横向移动, 从而使待测基板 沿横向移动。 被夹紧的待测基板在传送机构的传送下带动整个横向夹紧移动 机构纵向移动, 一直移动到纵推定位机构 26处, 传送机构停止传送, 纵推气 缸在精度检测控制单元的控制下驱动纵推定位机构 26 向与传送机构纵向传 送方向相反的方向移动, 以使得到待测基板氏住纵推定位机构 26, 从而将待 测基板移动到固定位置以方便图像釆集单元进行定位釆集。 传感器在检测到 待测基板顶住纵推定位机构后向精度检测控制单元发送信号。 精度检测控制 单元收到该信号后控制传送机构停止传送, 并控制第二定位机构根据预设的 定位参数进行定位。
其中, 第一定位机构并不限于本实施例的实现方式。 纵推气缸也可以釆 用一个伺服电机来实现,或通过伺服电机 11及其相应的齿轮组来实现, 以实 现待测基板抵住纵推定位机构 26。横向夹紧移动机构可以是一个能够夹紧待 测基板的沿预定轨道既能横向移动又能纵向移动的运动部件, 传感器可以是 压力传感器。
第二定位机构用于使图像釆集单元在纵 /横方向移动并定位。 本实施例 中, 第二定位机构包括: 伺服电机 9、伺服电机 10、横移机构和纵移机构 29。 横移机构包括横向板 27和纵向延伸板 28,纵向延伸板 28可滑动地固定在横 向板 27的轨道中。伺服电机 9在精度检测控制单元的控制下驱动纵向延伸板 28沿横向板 27上的轨道横向移动。 伺服电机 10位于纵向延伸板 28上, 纵 移机构 29可滑动地固定在所述纵向延伸板 28的轨道中。在伺服电机 10在精 度检测控制单元的控制下驱动纵移机构 29沿纵向延伸板 28上的轨道纵向移 动。 图像釆集单元的摄像头 16固定在纵移机构 29上,纵向延伸板 28的横向 移动及纵移机构的纵向移动使得摄像头 16能够横向和纵向移动。
其中, 第二定位机构并不限于本实施例的实现方式。 伺服电机 9和伺服 电机 10也可以釆用一个伺服电机及其相应的齿轮组来实现。横移机构和纵移 机构 29 可以是一个沿预定轨道既能横向移动又能纵向移动的载有摄像头的 运动部件。
传送机构用于传送待测基板, 使其在流水线上流入、 停留检测和流出本 实施例的偏光板贴附精度检测装置。 本实施例中, 传送构机包括: 伺服电机 12、 伺服电机 13及分别由伺服电机 12和 13驱动的两组传送轮 14。 伺服电 机 12和 13在精度检测控制单元的控制下分别驱动两组传送轮 14。传感器检 测到待测基板移动到纵推定位机构 26并抵住后,发送信号至精度检测控制单 元, 以控制伺服电机 12和伺服电机 13停止驱动两组传送轮 14, 以免划伤基 板。 在传送时, 第一组传送轮 14传送一个待测基板, 两个夹片 15将其夹起 后定位、釆集图像, 同时第一组传送轮 14可以传送下一个待测基板到被夹起 的区域等待, 而第一个待测基板检测后通过第二组传送轮 14传送到下一流 程, 这样可以提高检测效率。 当然传送机构也可以是一个电伺服电机及由该 伺月良电机驱动的一组传送轮, 或由该伺月良电机及相应的齿轮组驱动的多组传 送轮。
由于待测基板通过第一定位机构固定, 摄像头 16可通过第二定位机构 釆集待测基板上多个定点位置的图像, 使检测精度更加准确。
为了实现定位, 本实施例的精度检测控制单元(PLC )与实施例 1不同, 还包括: 定位控制模块和伺服驱动器, 伺服驱动器连接定位控制模块。 定位 控制模块根据预设的定位参数控制伺服驱动器驱动各自的伺服电机以实现对 摄像头 16和待测基板的定位, 使得摄像头 16能够釆集指定位置的图像, 同 时可以设定多组定位参数以釆集多个指定位置的图像。 如图 2所示, 可设定 四组定位参数以釆集偏光板 1和基板 2的边缘上 5、 6、 7和 8处的图像。 实 现了对边缘的多处检测, 从而使精度检测更加准确。 设置定位参数优选通过 是触摸屏进行设置。 预设的定位参数为在 PLC建立的坐标系下, 偏光板 1和 基板 2的边缘上指定点 (如图 2中 5、 6、 7和 8处) 的坐标。 PLC对伺服电 机及纵推气缸等的控制已是程控领域很成熟的技术, 此处不再赘述。
本实施例中, 图像釆集单元的具体结构及釆集原理与实施例 1类似, 此 处不再赘述。
本实施例的偏光板贴附精度检测装置釆用了机械运动单元来实现摄像 头和待测基板的定位, 使得偏光板贴附精度检测较实施例 1更加准确。
实施例 3
本实施例提供了一种偏光板贴附精度检测方法, 该方法可釆用但不限于 上述实施例 1或实施例 2的装置来实现, 包括以下步骤:
釆集贴附偏光板的待测基板的图像, 并根据该图像解析出偏光板距基板 边缘的距离值, 解析距离值的步骤为:
根据事先釆集的标准刻度的钢板尺任意几个毫米的图像得到钢板尺的 几个毫米对应摄像头的像素值; 对摄像头获得的像素值和钢板尺的毫米值进 行除法运算, 得到像素值和毫米值的比例值; 根据所述比例值将贴附偏光板 的待测基板的图像中偏光板边缘距离基板边缘的像素值转换成以长度单位表 示的距离值。
将距离值与预先设定的标准值范围比对, 若距离值不在标准值范围内, 则报警。 标准值范围可根据实际情况设定, 如: 基板大小不同, 标准值范围 不同。
为了釆集待测基板上指定位置的图像, 在釆集贴附偏光板的待测基板的 图像之前还包括步骤: 夹紧待测基板, 并移动待测基板和 /或摄像头, 使摄像 头釆集所述待测基板上指定位置的图像。 具体方式为夹紧待测基板并移动至 固定位置, 然后摄像头根据预设的定位参数移动到定位参数指定的位置。 其 中, 为了更清楚的地釆集指定位置的图像, 在釆集指定位置的图像前调整摄 像头的釆集参数。 如在釆集时, 通过手柄上的按键调整摄像头的焦距, 改变 拍摄图像的区域大小; 调整曝光时间、 亮度等参数, 使得图像中偏光板边缘 和玻璃基板边缘处更加清晰, 减小图像解析时的误差, 从而使得精度检测更 加准确。
在检测出距离值之后还包括存储该距离值的步骤,检测完成后统计合格 率, 并存储统计结果。
根据本实施例的方法, 由摄像头实时釆集待测基板的图像, 得到偏光板 边缘到基板边缘的距离值, 通过该距离值与标准值范围对比来判断偏光板贴 附精度, 由于摄像头的高像素, 可使测量精度达到 20um。从而提高了偏光板 贴附的检测精度。 而其该方法可在线实施, 保证了每张面板都能进行贴附精 度的检测, 避免了不良产品流入下游工序, 同时方便了检测结果的统计, 节 约了人力成本, 也避免了人员操作对面板造成的损坏。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。

Claims

权利要求书
1、 一种偏光板贴附精度检测装置, 其特征在于, 包括:
图像釆集单元, 用于釆集贴附偏光板的待测基板的图像, 并根据所述图 像解析出偏光板距基板边缘的距离值;
精度检测控制单元, 连接所述图像釆集单元, 用于将所述距离值与预先 设定的标准值范围比对, 若所述距离值不在标准值范围内, 则报警。
2、 如权利要求 1 所述的偏光板贴附精度检测装置, 其特征在于, 还包 括: 机械运动单元, 连接所述图像釆集单元和精度检测控制单元, 所述精度 检测控制单元还用于根据预设的定位参数控制所述机械运动单元, 从而驱动 所述图像釆集单元和所述待测基板移动, 使图像釆集单元釆集待测基板指定 位置的图像。
3、 如权利要求 2所述的偏光板贴附精度检测装置, 其特征在于, 所述 机械运动单元包括: 安装架及位于所述安装架内的第一定位机构、 第二定位 机构及传送机构;
第一定位机构用于在所述精度检测控制单元的控制下夹紧所述待测基 板并使其在纵 /横方向移动并定位, 定位后发送信号至所述精度检测控制单 元;
第二定位机构用于在所述精度检测控制单元的控制下使图像釆集单元 在纵 /横方向移动并定位;
传送机构用于在所述精度检测控制单元的控制下传送所述待测基板纵 向移动。
4、 如权利要求 3 所述的偏光板贴附精度检测装置, 其特征在于, 第一 定位机构包括: 第一伺服电机、 纵推气缸、 传感器、 横向夹紧移动机构和纵 推定位机构, 横向夹紧移动机构包括纵向移动板和夹片, 夹片可滑动地固定 在纵向移动板的轨道上, 所述第一伺服电机在所述精度检测控制单元的控制 下用于驱动所述夹片夹紧待测基板并使所述夹片沿纵向移动板的轨道横向移 动; 所述传送机构用于纵向传送所述纵向移动板, 所述纵推气缸在所述精度 检测控制单元的控制下用于驱动所述纵推定位机构推动所述纵向移动板向与 所述传送机构纵向传送方向相反的方向移动, 所述传感器用于检测到待测基 板抵住纵推定位机构后向所述精度检测控制单元发送信号。
5、 如权利要求 3 所述的偏光板贴附精度检测装置, 其特征在于, 第二 定位机构包括: 第二伺服电机、 第三伺服电机、 横移机构和纵移机构, 所述 横移机构包括横向板和纵向延伸板, 纵向延伸板可滑动地固定在横向板的轨 道中, 第二伺服电机在所述精度检测控制单元的控制下用于驱动纵向延伸板 沿横向板上的轨道横向移动; 所述纵移机构可滑动地固定在所述纵向延伸板 的轨道中, 第三伺服电机位于纵向延伸板上, 在所述精度检测控制单元的控
6、 如权利要求 3 所述的偏光板贴附精度检测装置, 其特征在于, 传送 机构包括: 第四伺服电机、 第五伺服电机及两组传送轮, 所述第四伺服电机 和第五伺服电机在所述精度检测控制单元的控制下用于各驱动一组传送轮转 动。
7、 如权利要求 2所述的偏光板贴附精度检测装置, 其特征在于, 还包 括: 与所述精度检测控制单元连接的输入输出单元, 用于输入所述标准值范 围及所述定位参数, 并输出检测结果。
8、 如权利要求 1 所述的偏光板贴附精度检测装置, 其特征在于, 还包 括: 与所述图像釆集单元连接的控制手柄, 用于调整所述图像釆集单元的摄 像头的釆集参数。
9、 一种偏光板贴附精度检测方法, 其特征在于, 包括以下步骤:
S1 : 釆集贴附偏光板的待测基板的图像, 并根据所述图像解析出偏光板 距基板边缘的距离值;
S2: 将所述距离值与预先设定的标准值范围比对, 若所述距离值不在标 准值范围内, 则报警。
10、 如权利要求 9所述的偏光板贴附精度检测方法, 其特征在于, 在釆 集贴附偏光板的待测基板的图像之前还包括步骤:
SO: 夹紧所述待测基板, 并移动所述待测基板和摄像头, 使摄像头根据 预设的定位参数釆集所述待测基板上指定位置的图像。
11、 如权利要求 10所述的偏光板贴附精度检测方法, 其特征在于, 所 述步骤 SO 包括步骤: 夹紧所述待测基板并移动至固定位置, 然后摄像头根 据预设的定位参数移动到所述定位参数指定的位置。
12、 如权利要求 10所述的偏光板贴附精度检测方法, 其特征在于, 所 述步骤 SO和 S1之间还包括步骤: 调节摄像头的釆集参数。
13、 如权利要求 9所述的偏光板贴附精度检测方法, 其特征在于, 所述 步骤 S1中根据所述图像解析出偏光板距基板边缘的距离值的步骤包括: 根据事先釆集的标准刻度的钢板尺任意几个毫米的图像得到所述钢板 尺的任意几个毫米所对应摄像头的像素值;
对所述摄像头的像素值和所述钢板尺的任意几个毫米的毫米值进行除 法运算, 得到像素值和毫米值的比例值;
根据所述比例值将贴附偏光板的待测基板的图像中偏光板边缘距离基 板边缘的像素值转换成以长度单位表示的距离值。
14、 如权利要求 9所述的偏光板贴附精度检测方法, 其特征在于, 在检 测出距离值之后还包括存储所述距离值的步骤, 检测完成后统计合格率, 并 存储统计结果。
PCT/CN2012/084848 2012-05-22 2012-11-19 偏光板贴附精度检测装置及方法 WO2013174112A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101605799A CN102736280A (zh) 2012-05-22 2012-05-22 偏光板贴附精度检测装置及方法
CN201210160579.9 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013174112A1 true WO2013174112A1 (zh) 2013-11-28

Family

ID=46992059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084848 WO2013174112A1 (zh) 2012-05-22 2012-11-19 偏光板贴附精度检测装置及方法

Country Status (2)

Country Link
CN (1) CN102736280A (zh)
WO (1) WO2013174112A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021463A1 (ja) * 2014-08-07 2016-02-11 日東電工株式会社 光学フィルム貼付位置測定装置及び光学表示装置製造ライン
CN114355640A (zh) * 2021-12-31 2022-04-15 深圳市深科达智能装备股份有限公司 偏光片贴合检测设备、系统及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736280A (zh) * 2012-05-22 2012-10-17 北京京东方光电科技有限公司 偏光板贴附精度检测装置及方法
CN104597642B (zh) * 2015-02-16 2017-09-22 合肥京东方光电科技有限公司 一种液晶显示装置及其制备方法
CN105182576A (zh) * 2015-10-19 2015-12-23 深圳市华星光电技术有限公司 偏光板贴附精度检测装置及检测方法
CN205427436U (zh) * 2016-03-23 2016-08-03 北京京东方光电科技有限公司 显示器件的对位检测设备及曝光工艺系统
CN105750156B (zh) * 2016-04-22 2019-02-01 大连理工大学 一种精密自动化点胶装置和方法
CN106768865A (zh) * 2016-12-28 2017-05-31 惠科股份有限公司 偏光片贴附品质检测系统及方法
CN107167939A (zh) * 2017-06-29 2017-09-15 武汉华星光电技术有限公司 偏光片贴附检测装置以及偏光片贴附设备
CN109143630A (zh) * 2018-09-29 2019-01-04 深圳市华星光电半导体显示技术有限公司 偏光板贴付装置
CN109353103B (zh) * 2018-10-25 2021-07-02 惠科股份有限公司 物体的贴附控制方法、贴附机及存储介质
CN109782459B (zh) 2018-12-24 2020-11-24 惠科股份有限公司 偏光片贴附检测方法、装置和显示装置
CN112596285B (zh) * 2020-12-15 2023-01-10 重庆惠科金渝光电科技有限公司 一种显示面板的检测装置和检测方法
CN112987354B (zh) * 2021-03-09 2022-09-30 深圳汇义科技有限公司 偏光片贴合精度检测装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179251A (ja) * 1994-12-20 1996-07-12 Sharp Corp 表示装置の製造装置および表示装置の製造方法
JP2004233184A (ja) * 2003-01-30 2004-08-19 Takatori Corp 液晶パネルの偏光板貼付け精度検査方法
CN1673823A (zh) * 2004-03-27 2005-09-28 鸿富锦精密工业(深圳)有限公司 偏光片贴附装置
CN102736280A (zh) * 2012-05-22 2012-10-17 北京京东方光电科技有限公司 偏光板贴附精度检测装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179251A (ja) * 1994-12-20 1996-07-12 Sharp Corp 表示装置の製造装置および表示装置の製造方法
JP2004233184A (ja) * 2003-01-30 2004-08-19 Takatori Corp 液晶パネルの偏光板貼付け精度検査方法
CN1673823A (zh) * 2004-03-27 2005-09-28 鸿富锦精密工业(深圳)有限公司 偏光片贴附装置
CN102736280A (zh) * 2012-05-22 2012-10-17 北京京东方光电科技有限公司 偏光板贴附精度检测装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021463A1 (ja) * 2014-08-07 2016-02-11 日東電工株式会社 光学フィルム貼付位置測定装置及び光学表示装置製造ライン
JP2016038565A (ja) * 2014-08-07 2016-03-22 日東電工株式会社 光学フィルム貼付位置測定装置
KR101756904B1 (ko) 2014-08-07 2017-07-11 닛토덴코 가부시키가이샤 광학 필름 첩부 위치 측정 장치
CN114355640A (zh) * 2021-12-31 2022-04-15 深圳市深科达智能装备股份有限公司 偏光片贴合检测设备、系统及方法

Also Published As

Publication number Publication date
CN102736280A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
WO2013174112A1 (zh) 偏光板贴附精度检测装置及方法
WO2021179608A1 (zh) 微观力学检测装置及其方法
CN105835045B (zh) 一种面板安装桁架机械手及安装方法
CN205449148U (zh) Ccd多点检测装置
US11635646B2 (en) Detecting device and detecting method thereof, and detecting apparatus
CN102661715A (zh) Ccd式的间隙测量系统及方法
CN103090823A (zh) 一种不规则图形面积计算的方法及装置
WO2016141671A1 (zh) 基板破损检查装置、生产系统及检查方法
TWI506388B (zh) 自動溫度測試系統及溫度測試方法
JP3946507B2 (ja) 基板の厚さを測定するためのオンライン測定装置及びその測定方法
CN107065244B (zh) 一种偏光片贴附方法及设备
TWI479145B (zh) 外觀瑕疵檢測系統及方法
CN103084927B (zh) 一种在线测量系统及其在线测量方法
CN203084370U (zh) 一种光学数据映射设备
CN207623355U (zh) 一种全自动瑕疵检测装置
CN207502412U (zh) 一种屏幕检测装置
CN203587517U (zh) 一种用以撷取一物件影像的撷取装置以及影像检测装置
CN203216465U (zh) 钣金共面度检测设备
CN206258397U (zh) 过滤网自动检测装置
WO2018227923A1 (zh) 一种光学检测装置及光学检测方法
CN204758617U (zh) 自动检测装置
CN210894402U (zh) 量测装置
CN102243385A (zh) 测量硅基液晶成像芯片光电特性曲线的装置
CN203011850U (zh) 太阳能光伏板故障诊断装置
CN208239310U (zh) 一种片材缺陷检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877362

Country of ref document: EP

Kind code of ref document: A1