WO2013174091A1 - 基于lte蜂窝通信系统的d2d设备发现方法及装置 - Google Patents

基于lte蜂窝通信系统的d2d设备发现方法及装置 Download PDF

Info

Publication number
WO2013174091A1
WO2013174091A1 PCT/CN2012/082960 CN2012082960W WO2013174091A1 WO 2013174091 A1 WO2013174091 A1 WO 2013174091A1 CN 2012082960 W CN2012082960 W CN 2012082960W WO 2013174091 A1 WO2013174091 A1 WO 2013174091A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
symbol
discovery
ofdm
ofdm symbols
Prior art date
Application number
PCT/CN2012/082960
Other languages
English (en)
French (fr)
Inventor
周晗
冯淑兰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12877444.5A priority Critical patent/EP2849494B1/en
Publication of WO2013174091A1 publication Critical patent/WO2013174091A1/zh
Priority to US14/550,307 priority patent/US9584997B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/16Test equipment located at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention belongs to the field of communications technologies, and in particular, to a D2D device discovery method and apparatus based on a Long Term Evolution (LTE) cellular communication system.
  • LTE Long Term Evolution
  • the cellular network is the main wireless communication network.
  • two terminal communication needs to be forwarded by the base station, and the same data packet from the terminal to the base station, and then from the base station to the terminal, occupies the air interface resource twice. If the two communication terminals are far away and cannot reach each other, this scheme is more feasible. However, if the two communicating parties are close to each other and are within the communication range of the other party, the data packets are directly transmitted between the terminals without going through the base station. Forwarding can save half of the resources.
  • D2D communication Device to Device
  • D2D communication Device to Device
  • the direct communication of the terminal device can utilize the spectrum resource more efficiently, increase the capacity of the cellular network, and reduce the overhead of the base station control signaling, which is a technology that can bring great benefits to the cellular network communication.
  • D2D communication is terminal and terminal Direct communication
  • the paging message needs to be sent directly from the paging terminal to the paged terminal without the help of the base station and the core network.
  • Some traditional technologies can implement D2D communication, such as wifi, BT, and ad hoc, but these systems all work in asynchronous mode. Therefore, in the D2D communication system, the system equipment works in the asynchronous mode, so that the D2D user equipment (User Equipment, UE) cannot discover other UEs effectively during the mutual discovery process, which wastes system power.
  • UE D2D user equipment
  • An object of the present invention is to provide a D2D device discovery method based on an LTE cellular communication system, which aims to improve the system efficiency of the D2D communication system to a certain extent.
  • a D2D device discovery method based on a long-term evolution LTE cellular communication system where the method includes:
  • the first D2D UE acquires its own timing information by using the LTE cellular communication system
  • the first D2D UE receives, according to the timing information, a device discovery signal that is sent by the second D2D UE through the discovery subframe in the discovery subframe, where the device discovery signal includes: Orthogonal Frequency Division Multiplexing (OFDM) OFDM) symbol and device information OFDM symbol;
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first D2D UE obtains the time when the device discovery signal of the second D2D UE arrives at the first D2D UE by correlating the pilot OFDM symbol of the device discovery signal received in the discovery subframe with the local pilot sequence, and parsing And discovering the device information OFDM symbol of the device discovery signal received by the subframe, acquiring device information of the second D2D UE, and implementing device discovery by the first D2D UE to the second D2D UE.
  • the embodiment of the present invention further provides a D2D device discovery device based on a long term evolution LTE cellular communication system, where the system includes:
  • An acquiring unit configured to acquire, by using an LTE cellular communication system, the timing information of the first D2D UE;
  • a receiving unit configured to receive, by the first D2D UE, a second in the discovery subframe according to the timing information
  • the D2D UE discovers a device discovery signal sent by the subframe, where the device discovery signal includes: a pilot orthogonal frequency division multiplexing OFDM symbol and a device information OFDM symbol;
  • a discovery unit configured to: obtain, by the first D2D UE, a time-domain correlation between the pilot OFDM symbol of the device discovery signal received in the discovery subframe and the local pilot sequence, to obtain the device discovery signal of the second D2D UE to reach the first D2D UE. Time, and parsing the device information OFDM symbol of the device discovery signal received in the subframe, and acquiring the device information of the second D2D UE, to implement device discovery by the first D2D UE to the second D2D UE.
  • the embodiment of the present invention has the following advantages: the first D2D UE acquires its own timing information, and receives the second D2D UE in the discovery subframe according to the timing information. Transmitting a device discovery signal, and acquiring, according to the received discovery signal, a time when the device discovery signal of the second D2D UE reaches the first D2D UE, and device information of the second device, thereby implementing D2D in the LTE cellular network system.
  • the D2D UE may send a device discovery signal or listen for device discovery signals sent by other devices in each discovery subframe, when in the same discovery subframe, two D2D UEs transmit one and the other
  • the device discovery can be implemented, thereby shortening the time of discovery between the D2D UEs, so that one D2D UE can effectively discover other D2D UEs, improve system efficiency, save power of the D2D UE, and Compatible with LTE cellular network systems, which is beneficial in cellular networks Now D2D communication.
  • FIG. 1 is a schematic diagram of network deployment of a D2D device discovery system based on an LTE cellular communication system according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of an implementation of a D2D device discovery method based on an LTE cellular communication system according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a timing structure of a D2D communication network according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic diagram of a D2D device discovery signal for receiving and receiving an uplink with an uplink timing according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic diagram of a D2D device discovery signal transmitted and received by a downlink timing according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic diagram of a timing structure of a discovery subframe according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic diagram of a maximum time difference of a device discovery signal according to Embodiment 5 of the present invention
  • FIG. 8 is a schematic diagram of a maximum delay of a device discovery signal according to Embodiment 5 of the present invention
  • FIG. 9 is a discovery subframe provided by Embodiment 6 of the present invention. Time-frequency structure diagram
  • FIG. 10 is a time-frequency structure diagram of another discovery subframe provided by Embodiment 6 of the present invention.
  • 11 is a time-frequency structure diagram of still another discovery subframe according to Embodiment 6 of the present invention
  • 12 is a schematic structural diagram of a D2D device discovery apparatus based on a Long Term Evolution (LTE) cellular communication system according to Embodiment 7 of the present invention
  • LTE Long Term Evolution
  • FIG. 13 is a schematic structural diagram of a D2D device discovery apparatus based on a long term evolution LTE cellular communication system according to Embodiment 8 of the present invention.
  • An embodiment of the present invention provides a D2D device discovery method based on a long-term evolution LTE cellular communication system, where the method includes:
  • the first D2D UE acquires its own timing information by using the LTE cellular communication system
  • the first D2D UE receives, according to the timing information, a device discovery signal that is sent by the second D2D UE through the discovery subframe in the discovery subframe, where the device discovery signal includes: pilot orthogonal frequency division multiplexing OFDM symbol and device information OFDM Symbol
  • the first D2D UE obtains the time when the device discovery signal of the second D2D UE arrives at the first D2D UE by correlating the pilot OFDM symbol of the device discovery signal received in the discovery subframe with the local pilot sequence, and parsing And discovering the device information OFDM symbol of the device discovery signal received by the subframe, acquiring device information of the second D2D UE, and implementing device discovery by the first D2D UE to the second D2D UE.
  • An embodiment of the present invention further provides a D2D device discovery apparatus based on a long term evolution LTE cellular communication system, where the system includes:
  • An acquiring unit configured to acquire, by the LTE cellular communication system, the timing of the first D2D UE Information
  • a receiving unit configured to receive, by the first D2D UE, a device discovery signal that is sent by the second D2D UE by using a discovery subframe according to the timing information, where the device discovery signal includes: pilot orthogonal frequency division multiplexing (OFDM) Symbol and device information OFDM symbols;
  • OFDM pilot orthogonal frequency division multiplexing
  • a discovery unit configured to: obtain, by the first D2D UE, a time-domain correlation between the pilot OFDM symbol of the device discovery signal received in the discovery subframe and the local pilot sequence, to obtain the device discovery signal of the second D2D UE to reach the first D2D UE. Time, and parsing the device information OFDM symbol of the device discovery signal received in the subframe, and acquiring the device information of the second D2D UE, to implement device discovery by the first D2D UE to the second D2D UE.
  • FIG. 1 is a schematic diagram of network deployment of a D2D device discovery system based on an LTE cellular communication system according to Embodiment 1 of the present invention.
  • the system includes multiple D2D UEs, and device discovery is performed based on an LTE cellular communication system between the D2D UE devices.
  • the process is as follows: Each D2D UE acquires its own timing through the LTE cellular system, discovers a subframe transmission device discovery signal, and receives a device discovery signal of other D2D UEs in the discovery subframe, the device discovery signal includes a pilot OFDM symbol.
  • the process of implementing device discovery by the first D2D UE 11 and the second D2D UE 12 based on the LTE cellular communication system is as follows:
  • the first D2D UE has its own uplink timing (or downlink) Timing), after discovering the subframe sending device discovery signal, the second D2D UE device receives the device discovery signal of the first D2D UE in the discovery subframe at its own uplink timing (or downlink timing), and the second D2D UE according to the a pilot OFDM symbol and a device information OFDM symbol of the first D2D UE, Performing the time domain correlation, acquiring the device discovery signal sent by the first D2D UE to the second D2D UE, and obtaining
  • FIG. 2 is a flowchart showing an implementation of a D2D device discovery method based on an LTE cellular communication system according to Embodiment 1 of the present invention, which is described in detail as follows:
  • the first D2D UE acquires its own timing information by using the LTE cellular communication system.
  • the D2D UE can obtain its own timing information by using the synchronization information of the cell, where the timing information is the time of signal transmission or reception. .
  • the first D2D UE receives the second D2D in the discovery subframe according to the timing information.
  • the UE discovers a signal by discovering a subframe, where the device discovery signal includes: a pilot OFDM symbol and a device information OFDM symbol;
  • the first D2D UE receives the device discovery signal sent by the second D2D UE through the discovery subframe according to the timing information according to the timing structure, and the timing structure includes the discovery subframe.
  • the device discovery signal includes: a device information OFDM symbol and a pilot OFDM symbol, where the device information OFDM symbol is used to carry the basic information of the device, such as a device ID, a device type, and the like; the pilot OFDM symbol is used for synchronization and Channel estimation.
  • the first D2D UE obtains the time when the device discovery signal of the second D2D UE arrives at the first D2D UE by performing time domain correlation between the pilot OFDM symbol of the device discovery signal received in the discovery subframe and the local pilot sequence. And parsing the device information OFDM symbol of the device discovery signal received in the subframe, and acquiring the device information of the second D2D UE, to complete the completion of the second D2D UE.
  • Device discovery
  • the first D2D UE and the second D2D UE may be in a sleep state for a long time, and only need to wake up when transmitting or receiving the device discovery signal, thereby effectively saving the power of the D2D UE.
  • the time when the device discovery signal of the second D2D UE arrives at the first D2D UE and the device information of the second device are calculated, and the sending time of the signal sent to the second D2D UE is calculated, thereby being between the D2D UEs. Further paging and communication provide conditions.
  • the first D2D UE acquires its own timing information by using the LTE cellular communication system, and receives, according to the timing information, a device discovery signal sent by the second D2D UE in the discovery subframe, and according to the discovery subframe.
  • Receiving the device discovery signal obtaining the time when the device discovery signal of the second D2D UE reaches the first D2D UE, and the device information of the second device, thereby implementing D2D communication in the LTE cellular network system, because in the synchronous communication system
  • the D2D UE may send a device discovery signal or listen for a device discovery signal sent by another device in each discovery subframe.
  • the D2D communication network timing structure may adopt a timing structure similar to that of the LTE cellular network.
  • each subframe has a length of 1 ms.
  • Two 0.5-millisecond time slots are formed, each time slot consisting of 6 (exponential prefix (CP)) or 7 (normal CP) OFDM symbols.
  • Each 10 subframes constitute a 10ms radio frame.
  • Each sub-frame is roughly classified into three types according to usage: discovery sub-frame, search Caller frame and communication subframe.
  • the discovery subframe is mainly used for device discovery, and carries information such as a pilot, a device identifier, a device type, and a service provided by the device.
  • Each D2D UE discovers other neighboring D2D UEs by discovering a subframe. And its equipment information, to provide sufficient conditions for further D2D communication.
  • T the discovery subframe
  • t the number of D2D UEs
  • All D2D UEs may be notified by dynamic or semi-static configuration by an evolved Node B (eNB) by means of broadcast.
  • eNB evolved Node B
  • the cellular resource scheduling center may further not schedule cellular communication at the discovery subframe position.
  • the discovery subframe includes multiple OFDM symbols, for example, the discovery subframe may include 12 OFDM symbols or 14 OFDM symbols, specifically, a pilot OFDM symbol and a device information OFDM symbol, and the OFDM The symbol is divided into M frequency resource units in the frequency domain, M is an integer greater than or equal to 1, and each frequency resource unit includes several subcarriers; further, one or more frequency resource units of each OFDM symbol are used as device discovery resources.
  • each D2D UE selects one or more of the device discovery resource units as a carrier of its own device discovery signal, and specifically, each D2D UE sends a device discovery signal on several device discovery resource units of the discovery subframe.
  • Each D2D UE receives a device discovery signal of another D2D UE on all device discovery resource units of the discovery subframe.
  • the paging subframe is mainly used for direct paging between D2D UEs, and is mainly used for carrying the device identifier of the paging destination UE, and may further carry the paging source communication device identifier, and is used for paging destination UE. Confirming the paging source to send the paging response information, and also carrying the frequency resource and power information of the communication of the communication subframe, to help the paging source and the paging destination UE communication parties establish a communication link, in order to implement the next data. Transmission provides protection.
  • the paging subframe is immediately following the discovery subframe. This is mainly based on two considerations: First, this can improve the efficiency of communication.
  • the UE When the UE finds the UE that wants to communicate after discovering the subframe, it can immediately Paging the UE, establishing a communication link to start communication, without having to wait for a long time, waiting for paging subframes to perform paging, thereby reducing delay and improving communication quality; Second, facilitating UE power saving considerations , to avoid frequent wake-up of the UE.
  • the communication subframe is the largest number of subframes and is mainly used for data transmission. This can greatly increase the data transfer rate of D2D.
  • the D2D device discovery method based on the LTE cellular communication system provided by the embodiment of the present invention may further include: the first D2D UE discovering, according to the timing information, a subframe sending device discovery signal to the second D2D UE, so as to enable the second The D2D UE receives the device discovery signal sent by the first D2D UE in the discovery subframe, and performs time domain correlation between the pilot OFDM symbol of the device discovery signal received in the discovery subframe and the local pilot sequence, and acquires the device of the first D2D UE.
  • This step may be performed before the first D2D UE discovers the device of the second D2D UE, or after the first D2D UE discovers the device of the second D2D UE.
  • the first D2D UE discovers the subframe discovery device to the second D2D UE according to the timing information, so that the second D2D UE finds according to the device discovery signal sent by the first D2D UE.
  • the device of the first D2D UE the process shortens the time found between the D2D UEs
  • the D2D UE can effectively discover other D2D UEs, improve system efficiency, and save power of the D2D UE.
  • the timing information is uplink timing or downlink timing
  • the first D2D UE in the first embodiment receives the second in the discovery subframe according to the timing information.
  • the device discovery signal sent by the D2D UE through the discovery subframe is specifically: the first D2D UE receives the device discovery signal sent by the second D2D UE in the discovery subframe by using its own uplink timing or downlink timing.
  • the first D2D UE in the third embodiment discovers the subframe sending device discovery signal to the second D2D UE, specifically: the first D2D UE discovers the subframe by using its own uplink timing or downlink timing.
  • the device discovery signal is sent to the second D2D UE.
  • the first D2D UE receives the device discovery signal sent by the second D2D UE in the discovery subframe and the first D2D UE transmits the discovery subframe in its own uplink timing or downlink timing by using the uplink timing or the downlink timing of the first D2D UE.
  • the implementation principle of the device discovery signal to the second D2D UE is described:
  • the first D2D UE receives the device discovery signal sent by the second D2D UE in the discovery subframe by the uplink timing of the first D2D UE; and the first D2D UE discovers the subframe discovery device to the second D2D by detecting the subframe at its own uplink timing.
  • FIG. 4 is a schematic diagram of the D2D device discovery signal transmitted and received by the uplink timing.
  • the left picture shows the timing relationship between the D2D UEs
  • the right picture shows the position relationship between the D2D UEs. It is assumed that the D2D UE1 is the D2D of the transmitting device discovery signal.
  • D2D UE2 receives D2D UEs of other D2D UE device discovery signals.
  • the D2D UE1 sends the device discovery signal with its own uplink timing ⁇ ⁇ ; at the same time, the D2D UE2 receives the D2D-UE1 device discovery signal with its own uplink timing.
  • D2D UE1 device discovery signals arrive at D2D- UE2 ⁇ ⁇ 'time, shown on the left in FIG. 4, wherein the timing ⁇ the eNB.
  • T f T i ( T B _ t _( t B — ⁇ 2) , where ⁇ can be used as D2D - the distance between UE1 and eNB, T B - ⁇ can be used as D2D - between UE2 and eNB Distance, the same reason' It can be used as a large separation between D2D UE1 and D2D UE2.
  • the first D2D UE receives the device discovery signal sent by the second D2D UE in the discovery subframe by the downlink timing of the first D2D UE; and the first D2D UE discovers the subframe discovery device to the second D2D UE by detecting the subframe at its own downlink timing.
  • FIG. 5 is a schematic diagram of the D2D discovery sub-frame signal transmitted and received by the downlink timing.
  • the left picture shows the timing relationship between the D2D UEs; the right picture shows the positional relationship between the D2D UEs, and the D2D UE1 is the D2D UE that transmits the device discovery signal; D2D UE2 A D2D UE that receives other D2D UE device discovery signals.
  • D2D - UE1 transmits the device discovery signal with its own downlink timing ⁇ ⁇ ; meanwhile, D2D - UE2 receives the device discovery signal of D2D - UE1 with its own downlink timing,
  • the device discovery signal of D2D - UE1 arrives at D2D - UE2 must be in D2D - UE2 receives other D2D UE device discovery letters.
  • the device discovery signal of other D2D UEs can be completely received, and the interference between the signals of different D2D UE devices and the uplink signals of other cellular UEs can be effectively avoided.
  • the D2D UE sends the device discovery signal by using its own uplink timing or downlink timing on the device discovery resource unit of the discovery subframe, or receives the device discovery signal of other D2D UEs by using its own uplink timing or downlink timing.
  • the device discovery signal is sent or received by each D2D UE, the device discovery signals of different UEs can be separated in the time domain and the frequency domain, the D2D UEs are prevented from finding conflicts, the success rate of device discovery is improved, and the discovery efficiency is improved.
  • the discovery subframe includes a plurality of OFDM symbols, and each OFDM symbol includes a Cyclic Prefix (CP), and the CP length may be in the following manner:
  • the discovery subframe, and the adjacent paging subframes after the discovery subframe are all using a normal CP; or
  • the discovery subframe, and the adjacent paging subframes after the discovery subframe use the extended CP.
  • the length of the CP and the device discovery distance mainly consider two requirements:
  • the maximum time difference between the D2D UEs of the D2D UEs that send the device discovery signals and the D2D UEs that arrive at the same receiving device discovery signal cannot be greater than the CP length, so as to avoid Inter-carrier interference caused by carrier orthogonality between D2D UEs.
  • GI guard interval
  • Length is a schematic diagram of the timing structure of the discovery subframe.
  • the CP length is 15.625us, for 20M.
  • the bandwidth is 480 Ts
  • the GI length is 12.5us
  • the 20M bandwidth is 384 Ts.
  • the subsequent paging subframe uses a normal CP. When this frame format is used, the maximum device discovery distance is 1.5625 km.
  • the maximum time difference of the D2D UE of the D2D UE of the plurality of transmitting device discovery signals reaching the D2D UE of the same receiving device discovery signal is calculated.
  • Figure 7 shows the maximum time difference of the device discovery signal.
  • the left picture shows the timing relationship of the device discovery signal.
  • the right picture shows the position relationship between the D2D UEs.
  • the D2D—UE1 sends the device discovery signal at its uplink timing ⁇ ⁇ , D2D UE2.
  • the device discovery signal is sent at its uplink timing, and the D2D UE3 receives the uplink timing.
  • D2D UE1 and D2D - UE2 device discovery signals receives the device discovery signal of D2D-UE1 at time 7, receives the device discovery signal of D2D-UE2 at the moment, and the device discovery signal of D2D-UE2 delays to delay, that is, the delay spread is ⁇ : 7 ⁇ ' — 7 ⁇ , It is generally considered that 7 ⁇ is equal to the propagation time of the signal. Then the time difference between the two device discovery signals arriving at D2D UE3 is:
  • the time at which the signal arrives at D2D-UE2 from D2D-UE1 is the time when the signal arrives at D2D-UE3 from D2D UE2, and T is the time when the signal arrives at D2D-UE3 from D2D-UE1. It can be seen from the above analysis that when D2D-UE1 and D2D-UE3 coincide, and D2D-UE2 is in a straight line between D2D-UE1 and eNB, the time difference between D2D-UE1 and D2D-UE2 device discovery signal reaching D2D-UE3 is the largest.
  • Figure 8 shows the maximum delay of the device discovery signal.
  • the left picture shows the timing relationship of the device discovery signal.
  • the right picture shows the position relationship between the D2D UEs.
  • the D2D-UE2 sends the device discovery signal at its uplink timing.
  • D2D—UE1 The device discovery signal of D2D-UE2 is received at its uplink timing.
  • D2D- UE1 is received at time D2D- UE2 device discovery signal
  • D2D- UE2 device discovery signal delay spread to the delay spread is 7 i.e.
  • a guard interval is added between the discovery subframe and the subsequent paging subframe. The length of this guard interval must satisfy +T CP ⁇ I ⁇ T U , where 7 ⁇ personally.TM.z is the length of the normal CP . From the above analysis, the length of the CP can be calculated by the following equations, the length of the guard interval and Maximum device discovery distance: CP ,dis > ⁇ 2
  • 1 cp is A i ⁇ J OFDM 1 GI 1 subframe
  • the CP length of the found sub-frame is calculated to be 15.78us, and the bandwidth of 20M is 485 Ts; the length of the GI is 10.55us, and the bandwidth of 20M is 324 Ts. Since the number of samples of the CP is preferably an integer multiple of 16, the CP length can be set to 15.625us, and the 20M bandwidth is 480 Ts; the GI length is 12.5us, and the 20M bandwidth is 384 Ts.
  • the maximum device discovery distance is 1.5625km.
  • the discovery subframe, and the adjacent paging subframes after the discovery subframe are all using a normal CP (normal CP), the normal CP length is 4.96 us, and the 20M bandwidth is 144 Ts, by using a normal CP. It can meet the requirements of the two aspects of D2D device discovery. For details, refer to the method in Method 1. The reason is not repeated here. At this time, the farthest distance discovered by the device is 469m.
  • the discovery subframe, and the adjacent paging subframes after the discovery subframe use the extended CP
  • Extended CP (Extended CP)
  • the extended CP length is 16.67 us
  • the 20M bandwidth is 512Ts.
  • the extended CP can also meet the requirements of the two aspects of D2D device discovery. For details, refer to the method in Method 1 for reasoning. At this point, the farthest distance the device found was 1.66km.
  • the subframe is configured with a CP of a suitable length.
  • a guard interval can be added between the discovery subframe and the paging subframe, so that interference between the device discovery signals between the D2D UEs can be effectively avoided.
  • the discovery subframe includes multiple OFDM symbols
  • the frame structure of the discovery subframe may be used in the following manner: selecting at least two of the multiple OFDM symbols in the discovery subframe
  • the OFDM symbols are a group, each group includes one pilot OFDM symbol and at least one device information OFDM symbol, and when the number of OFDM symbols included in each group is greater than 2, the pilot OFDM symbols are located in each A non-edge location in the group, wherein different pilot devices of the discovery subframe discover that the pilot sequences on the resource unit are orthogonal.
  • the frame structure of the found subframe is:
  • the 12 OFDM symbols of the subframe are found to be grouped into two groups, the first symbol of each group is a pilot OFDM symbol, and the second symbol is a device information OFDM symbol; or
  • the 12 OFDM symbols of the subframe are found to be grouped into two groups, the first symbol of each group is device information OFDM symbol, and the second symbol is pilot OFDM symbol; or
  • the 12 OFDM symbols of the subframe are found to be grouped into three groups, the first symbol and the third symbol of each group are device information OFDM symbols, and the second symbol is a pilot OFDM symbol; or
  • the 12 OFDM symbols of the subframe are found to be grouped into four groups, and the second symbol of each group is a pilot OFDM symbol, and the first symbol, the third symbol, and the fourth symbol are device information OFDM symbols; or
  • the 12 OFDM symbols of the subframe are found to be grouped into four groups, and the third symbol of each group is a pilot OFDM symbol, and the first symbol, the second symbol, and the fourth symbol are device information OFDM symbols;
  • the following describes the time-frequency resource structure design of the subframe by implementing an example: As shown in FIG. 9, the time-frequency structure diagram of the subframe signal is found, and it is found that each OFDM symbol of the subframe is divided into multiples in the frequency domain.
  • the device discovers the resource unit, and discovers that 12 OFDM symbols of the subframe are divided into two groups, the first symbol of each group is a pilot OFDM symbol, and the second symbol is a device information OFDM symbol, a pilot OFDM symbol and a device.
  • Pilot OFDM The symbols are mainly used for synchronization and channel estimation.
  • the device information OFDM symbol mainly carries basic information (device ID, etc.) of the device.
  • Each D2D UE selects one or several device discovery resource units to transmit pilot and device information on one or several sets of pilot OFDM symbols and device information OFDM symbols.
  • FIG. 10 is a time-frequency structure diagram of another discovery subframe signal, and it is found that 12 OFDM symbols of a subframe are grouped into three groups, and the first symbol and the third symbol of each group are device information OFDM. Symbol, the second symbol is a pilot OFDM symbol.
  • FIG. 11 is a time-frequency structure diagram of another discovery subframe signal, and it is found that 12 OFDM symbols of a subframe are grouped into four groups, and the second symbol of each group is a pilot OFDM symbol, the first one.
  • Symbol, third symbol, and fourth symbol are device information OFDM symbols
  • the frame structure of the discovery subframe is:
  • the 14 OFDM symbols of the subframe are found to be grouped into two groups, the first symbol of each group is a pilot OFDM symbol, and the second symbol is a device information OFDM symbol; or
  • the 14 OFDM symbols of the subframe are found to be grouped into two groups, the first symbol of each group is device information OFDM symbol, and the second symbol is pilot OFDM symbol; or
  • the 14 OFDM symbols of the subframe are found to be grouped into seven groups, and any one of the second symbol to the sixth symbol of each group is a pilot OFDM symbol, and the other six OFDM symbols are device information OFDM symbols.
  • FIG. 12 is a diagram showing a Long Term Evolution based LTE cellular communication system according to Embodiment 7 of the present invention.
  • the D2D device discovery apparatus may include: an obtaining unit 121, a receiving unit 122, and a finding unit 123.
  • the obtaining unit 121 is configured to acquire, by using the LTE cellular communication system, the first D2D UE, the timing information of the first D2D UE;
  • the receiving unit 122 is configured to: according to the timing information, the first D2D UE receives, in the discovery subframe, a device discovery signal that is sent by the second D2D UE by using a discovery subframe, where the device discovery signal includes: pilot orthogonal frequency division multiplexing OFDM symbol and device information OFDM symbol;
  • the discovery unit 123 is configured to: acquire, by the first D2D UE, the device discovery signal of the second D2D UE to the first D2D UE by performing time domain correlation between the pilot OFDM symbol of the device discovery signal received in the discovery subframe and the local pilot sequence. Time, and parsing the device information OFDM symbol of the device discovery signal received in the subframe, and acquiring the device information of the second D2D UE, to implement device discovery by the first D2D UE to the second D2D UE.
  • each OFDM symbol of the subframe signal is found to be divided into M frequency resource units in the frequency domain; one or more frequency resource units of each OFDM symbol are used as device discovery resource units, and each D2D UE selects one. Or a plurality of said devices discover resource elements as carriers of their own device discovery signals.
  • the D2D device discovery device based on the long-term evolution LTE cellular communication system provided by the embodiment of the present invention may be used in the foregoing first and second embodiments. For details, refer to the description of the first embodiment and the second embodiment, and details are not described herein again.
  • the D2D device discovery apparatus based on the Long Term Evolution (LTE) cellular communication system further includes a sending unit.
  • LTE Long Term Evolution
  • FIG. 13 the long-term performance based on the eighth embodiment of the present invention is shown.
  • Structure of the D2D device discovery apparatus of the LTE cellular communication system The system includes: an acquisition unit 131, a reception unit 132, a discovery unit 133, and a transmission unit 134.
  • the sending unit 134 is configured to: according to the timing information, the first D2D UE discovers a subframe sending device discovery signal to the second D2D UE, so that the second D2D UE receives the device discovery signal sent by the first D2D UE in the discovery subframe. And performing a time domain correlation between the pilot OFDM symbol of the device discovery signal received by the discovery subframe and the local pilot sequence, acquiring the time when the device discovery signal of the first D2D UE arrives at the second D2D UE, and parsing the discovery subframe.
  • the device information OFDM symbol of the received device discovery signal acquires device information of the first D2D UE, so that the second D2D UE implements device discovery for the first D2D UE.
  • the receiving unit 132 is specifically configured to: when the first D2D UE receives the second D2D UE, in the discovery subframe, by using the uplink timing or the downlink timing of the first D2D UE.
  • Device discovery signal when the first D2D UE receives the second D2D UE, in the discovery subframe, by using the uplink timing or the downlink timing of the first D2D UE.
  • the sending unit 134 is specifically configured to: when the first D2D UE is in its own uplink timing or downlink timing, discover the subframe sending device discovery signal to the second D2D UE.
  • the D2D device discovery device based on the long-term evolution LTE cellular communication system provided by the embodiment of the present invention can be used in the foregoing third and fourth embodiments of the method.
  • the D2D device discovery device based on the long-term evolution LTE cellular communication system provided by the embodiment of the present invention can be used in the foregoing third and fourth embodiments of the method.
  • the discovery subframe includes a plurality of OFDM symbols, and each OFDM symbol includes a CP, and the CP length is specifically:
  • the discovery subframe, and the adjacent paging subframes after the discovery subframe are all using a normal CP; or
  • the discovery subframe, and the adjacent paging subframes after the discovery subframe, use the extended CP.
  • the structure of the CP provided by the embodiment of the present invention may be specifically used in the foregoing method embodiment 5 of the foregoing method. For details, refer to the description in the foregoing fifth embodiment, and details are not described herein again.
  • the discovery subframe includes a plurality of OFDM symbols
  • the frame structure of the discovery subframe is: selecting at least two OFDM symbols into a group among a plurality of OFDM symbols in the discovery subframe, and each group includes one a pilot OFDM symbol and at least one device information OFDM symbol, and when the number of OFDM symbols included in each group is greater than 2, the pilot OFDM symbol is located at a non-edge position in each group;
  • the pilot sequence on the resource discovery unit of each device on the OFDM of the discovery subframe is orthogonal.
  • the frame structure of the discovered subframe is:
  • the 12 OFDM symbols of the subframe are found to be grouped into two groups, the first symbol of each group is a pilot OFDM symbol, and the second symbol is a device information OFDM symbol; or
  • the 12 OFDM symbols of the subframe are found to be grouped into two groups, the first symbol of each group is device information OFDM symbol, and the second symbol is pilot OFDM symbol; or
  • the symbol is a device information OFDM symbol
  • the second symbol is a pilot OFDM symbol
  • the 12 OFDM symbols of the discovery subframe are grouped into four groups, and the second symbol of each group is a pilot OFDM symbol, first
  • the third symbol, and the fourth symbol are device information OFDM symbols; or
  • the 12 OFDM symbols of the sub-frame are found to be grouped into four groups, and the third symbol of each group is a pilot.
  • the OFDM symbol, the first symbol, the second symbol, and the fourth symbol are device information OFDM symbols; when the discovery subframe includes 14 OFDM symbols, the frame structure of the discovery subframe is: Each of the 14 OFDM symbols is grouped into two, and the first symbol of each group is a pilot.
  • the second symbol is device information OFDM symbol
  • the 14 OFDM symbols of the subframe are found to be grouped into two groups, the first symbol of each group is device information OFDM symbol, and the second symbol is pilot OFDM symbol; or
  • the 14 OFDM symbols of the subframe are found to be grouped into seven groups, and any one of the second symbol to the sixth symbol of each group is a pilot OFDM symbol, and the other six OFDM symbols are device information.
  • the structure of the discovery sub-frames provided by the embodiment of the present invention may be specifically used in the foregoing sixth embodiment of the corresponding method. For details, refer to the description of the foregoing sixth embodiment, and details are not described herein again.
  • the same or similar parts between the various embodiments in the specification may be referred to each other.
  • Each embodiment focuses on differences from other embodiments, and the implementation processes described in the respective embodiments may be applied to other embodiments.
  • the included units are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be implemented; in addition, the specific names of the functional units are only In order to facilitate mutual differentiation, it is not intended to limit the scope of protection of the present invention.
  • the device embodiment since it is substantially similar to the method embodiment, It is relatively simple to describe, and the relevant parts can be referred to the description of the method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明适用于通信技术领域,提供了一种基于LTE蜂窝通信系统的D2D设备发现方法及装置,所述方法包括:通过LTE蜂窝通信系统,第一D2D UE获取自身的定时信息;根据定时信息,在发现子帧接收第二D2D UE通过发现子帧发送的设备发现信号;通过将在发现子帧接收的设备发现信号的导频OFDM符号与本地导频序列进行时域相关,获取第二D2D UE的设备发现信号到达第一D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备信息OFDM符号,获取第二D2D UE的设备信息,实现D2D UE的设备发现。本发明使得一个D2D UE可以有效的发现其它的D2D UE,提高了系统效率,节省了D2D UE的功率。

Description

基于 LTE蜂窝通信系统的 D2D设备发现方法及装置
技术领域
本发明属于通信技术领域, 尤其涉及一种基于长期演进 (Long Term Evolution , LTE )蜂窝通信系统的 D2D设备发现方法及装置。
背景技术 近 20年来, 无线通信技术获得了巨大的发展, 无线通信技术也是层出不
生活中不可缺少的一部分。 然而, 无线频谱资源有限, 随着使用无线通信网络的人数激增以及对无线 通信网络性能的要求日益提高,频谱资源紧张的缺点已经成为限制无线通信性 能的关键所在。 目前, 蜂窝网是主要的无线通信网络, 在这种通信中, 两个终 端通信需要经过基站转发, 同一个数据包从终端到基站, 再从基站到终端, 占 用空口资源两次。 如果两个通信终端距离较远, 无法到达对方, 则这种方案比 较可行, 但如果通信双方距离较近, 相互在对方的通信范围内, 则数据包直接 通过终端之间传输, 不需要经过基站转发, 可以节省一半的资源。 设备到设备之间的直接通信 (简称 D2D通信, Device to Device)能够使终端 设备之间直接通信而不需要任何中间的基础设施。 因此, 终端设备的直接通信 能够更高效率的利用频谱资源, 提高蜂窝网容量, 减少基站控制信令的开销, 是一项能给蜂窝网通信带来巨大利益的技术。 D2D通信既然是终端与终端的 直接通信,那么寻呼消息就需要从寻呼终端直接发送给被寻呼终端而不需要基 站及核心网的帮助。 传统的一些技术可以实现 D2D通信, 比如 wifi、 BT以及 ad hoc等, 但这些系统都工作在异步模式。 因而, 现有技术在 D2D通信系统 中, 系统设备都工作在异步模式, 使得 D2D 用户设备(User Equipment, UE ) 在相互发现过程中, UE无法有效发现其它的 UE, 浪费系统功率。 发明内容
本发明实施例的目的在于提供一种基于 LTE蜂窝通信系统的 D2D设备发 现方法, 旨在从一定程度上提高 D2D通信系统的系统效率。
为了实现上述目的, 本发明实施例提供如下技术方案:
本发明实施例是这样实现的,一种基于长期演进 LTE蜂窝通信系统的 D2D 设备发现方法, 所述方法包括:
通过 LTE蜂窝通信系统, 第一 D2D UE获取自身的定时信息;
第一 D2D UE根据所述定时信息,在发现子帧接收第二 D2D UE通过发现 子帧发送的设备发现信号, 所述设备发现信号包括: 导频正交频分复用 ( Orthogonal Frequency Division Multiplexing , OFDM )符号和设备信息 OFDM 符号;
第一 D2D UE通过将在发现子帧接收的设备发现信号的导频 OFDM符号 与本地导频序列进行时域相关, 获取第二 D2D UE的设备发现信号到达第一 D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备信息 OFDM符 号,获取第二 D2D UE的设备信息, 实现第一 D2D UE对第二 D2D UE的设备 发现。 本发明实施例还提供了一种基于长期演进 LTE蜂窝通信系统的 D2D设备 发现装置, 所述系统包括:
获取单元, 用于通过 LTE蜂窝通信系统, 第一 D2D UE获取自身的定时 信息;
接收单元, 用于第一 D2D UE根据所述定时信息, 在发现子帧接收第二
D2D UE通过发现子帧发送的设备发现信号, 所述设备发现信号包括: 导频正 交频分复用 OFDM符号和设备信息 OFDM符号;
发现单元,用于第一 D2D UE通过将在发现子帧接收的设备发现信号的导 频 OFDM符号与本地导频序列进行时域相关, 获取第二 D2D UE的设备发现 信号到达第一 D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备 信息 OFDM符号, 获取第二 D2D UE的设备信息, 实现第一 D2D UE对第二 D2D UE的设备发现。
本发明实施例与现有技术相比, 有益效果在于: 通过 LTE蜂窝通信系统, 第一 D2D UE获取自身的定时信息,根据所述定时信息,在发现子帧接收第二 D2D UE在发现子帧发送的设备发现信号, 并根据所述接收的发现信号, 获取 第二 D2D UE的设备发现信号到达第一 D2D UE的时间,及第二设备的设备信 息,从而实现在 LTE蜂窝网络系统中实现 D2D通信, 由于在同步通信系统中, D2D UE 可能在每个发现子帧发送设备发现信号或监听其它设备发送的设备 发现信号, 当在同一个发现子帧, 两个 D2D UE—个发送并且另一个接收设备 发现信号时, 就可以实现设备发现, 从而缩短了 D2D UE之间发现的时间, 使 得一个 D2D UE可以有效的发现其它的 D2D UE, 提高了系统效率, 节省了 D2D UE的功率, 并且由于与 LTE蜂窝网络系统兼容,有利于在蜂窝网络中实 现 D2D通信。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的基于 LTE蜂窝通信系统的 D2D设备发现系 统的网络部署示意图;
图 2是本发明实施例一提供的基于 LTE蜂窝通信系统的 D2D设备发现方 法的实现的流程示意图;
图 3是本发明实施例二提供的 D2D通信网络的定时结构的示意图; 图 4是本发明实施例四提供的用上行定时收发 D2D设备发现信号的示意 图;
图 5是本发明实施例四提供的用下行定时收发 D2D设备发现信号的示意 图;
图 6是本发明实施例五提供的发现子帧的定时结构的示意图;
图 7是本发明实施例五提供的设备发现信号的最大时间差示意图; 图 8是本发明实施例五提供的设备发现信号的最大时延示意图; 图 9是本发明实施例六提供的发现子帧的时频结构图;
图 10是本发明实施例六提供的另一发现子帧的时频结构图;
图 11是本发明实施例六提供的又一发现子帧的时频结构图; 图 12是本发明实施例七提供的基于长期演进 LTE蜂窝通信系统的 D2D 设备发现装置的结构示意图;
图 13是本发明实施例八提供的基于长期演进 LTE蜂窝通信系统的 D2D 设备发现装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
本发明实施例提供了一种基于长期演进 LTE蜂窝通信系统的 D2D设备发 现方法, 所述方法包括:
通过 LTE蜂窝通信系统, 第一 D2D UE获取自身的定时信息;
第一 D2D UE根据所述定时信息,在发现子帧接收第二 D2D UE通过发现 子帧发送的设备发现信号,所述设备发现信号包括:导频正交频分复用 OFDM 符号和设备信息 OFDM符号;
第一 D2D UE通过将在发现子帧接收的设备发现信号的导频 OFDM符号 与本地导频序列进行时域相关, 获取第二 D2D UE的设备发现信号到达第一 D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备信息 OFDM符 号,获取第二 D2D UE的设备信息, 实现第一 D2D UE对第二 D2D UE的设备 发现。
本发明实施例还提供了一种基于长期演进 LTE蜂窝通信系统的 D2D设备 发现装置, 所述系统包括:
获取单元, 用于通过 LTE蜂窝通信系统, 第一 D2D UE获取自身的定时 信息;
接收单元, 用于第一 D2D UE根据所述定时信息, 在发现子帧接收第二 D2D UE通过发现子帧发送的设备发现信号, 所述设备发现信号包括: 导频正 交频分复用 OFDM符号和设备信息 OFDM符号;
发现单元,用于第一 D2D UE通过将在发现子帧接收的设备发现信号的导 频 OFDM符号与本地导频序列进行时域相关, 获取第二 D2D UE的设备发现 信号到达第一 D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备 信息 OFDM符号, 获取第二 D2D UE的设备信息, 实现第一 D2D UE对第二 D2D UE的设备发现。 以下结合具体实施例对本发明的实现进行详细描述: 实施例一
图 1示出了本发明实施例一提供的基于 LTE蜂窝通信系统的 D2D设备发 现系统的网络部署示意图, 所述系统包括多个 D2D UE , 所述 D2D UE设备间 基于 LTE蜂窝通信系统实现设备发现的过程如下: 每个 D2D UE通过 LTE蜂 窝系统获取自己的定时, 在发现子帧发送设备发现信号, 并在发现子帧接收其 它 D2D UE的设备发现信号, 所述设备发现信号包括导频 OFDM符号和设备 信息 OFDM符号 , 从而完成 D2D UE间的设备发现 , 并获取相邻 D2D UE的 基本信息和定时 , 从而实现 D2D UE设备间的相互发现。 以第一 D2D UE 11 和第二 D2D UE 12为例, 第一 D2D UE 11和第二 D2D UE 12基于 LTE蜂窝 通信系统实现设备发现的过程如下: 第一 D2D UE以自己的上行定时(或下行 定时), 在发现子帧发送设备发现信号, 第二 D2D UE设备以自己的上行定时 (或下行定时), 在发现子帧接收第一 D2D UE的发送的设备发现信号, 第二 D2D UE根据所述第一 D2D UE的导频 OFDM符号和设备信息 OFDM符号, 进行时域相关,获取第一 D2D UE发送的设备发现信号到第二 D2D UE的时间, 并通过解析得到第一 D2D UE的设备信息,从而第二 D2D UE完成对第一 D2D UE的发现, 同理, 第一 D2D UE可以对第二 D2D UE进行发现, 以下通过实 施例进行说明:
图 2示出了本发明实施例一提供的基于 LTE蜂窝通信系统的 D2D设备发 现方法的实现的流程图, 详述如下:
在 S201中,通过 LTE蜂窝通信系统,第一 D2D UE获取自身的定时信息; 本实施例中, D2D UE可以通过小区的同步信息获取自身的定时信息, 所 述定时信息为信号发送或者接收的时间。
在 S202中, 第一 D2D UE根据所述定时信息, 在发现子帧接收第二 D2D
UE通过发现子帧发送的设备发现信号, 所述设备发现信号包括: 导频 OFDM 符号和设备信息 OFDM符号;
本实施例中, 第一 D2D UE根据所述定时信息, 按照定时结构, 在发现子 帧接收第二 D2D UE通过发现子帧发送的设备发现信号,定时结构包括发现子 帧。
本实施例中, 设备发现信号包括: 设备信息 OFDM符号和导频 OFDM符 号, 设备信息 OFDM符号用于承载设备的自身的基本信息, 如设备 ID、 设备 类型等; 导频 OFDM符号用于同步和信道估计。
在 S203中, 第一 D2D UE通过将在发现子帧接收的设备发现信号的导频 OFDM符号与本地导频序列进行时域相关, 获取第二 D2D UE的设备发现信 号到达第一 D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备信 息 OFDM符号, 获取第二 D2D UE的设备信息, 实现完成对第二 D2D UE的 设备发现。
本实施例中,第一 D2D UE和第二 D2D UE可以长期处于睡眠状态,只需 在发送或者接收设备发现信号时醒来, 实现有效的节省 D2D UE的功率。
本实施例中,通过获取的第二 D2D UE的设备发现信号到达第一 D2D UE 的时间, 及第二设备的设备信息, 计算向第二 D2D UE发送信号的发送时间, 从而为 D2D UE之间的进一步的寻呼和通信提供条件。
本实施例中, 通过 LTE蜂窝通信系统, 第一 D2D UE获取自身的定时信 息, 根据所述定时信息, 在发现子帧接收第二 D2D UE发送的设备发现信号, 并根据在所述发现子帧接收的设备发现信号,获取的第二 D2D UE的设备发现 信号到达第一 D2D UE的时间, 及第二设备的设备信息, 从而实现在 LTE蜂 窝网络系统中实现 D2D通信, 由于在同步通信系统中, D2D UE可能在每个 发现子帧发送设备发现信号或监听其它设备发送的设备发现信号,当在同一个 发现子帧, 两个 D2D UE—个发送并且另一个接收设备发现信号时,就可以实 现设备发现,从而缩短了 D2D UE之间发现的时间,使得一个 D2D UE可以有 效的发现其它的 D2D UE, 提高了系统效率, 节省了 D2D UE的功率, 并且由 于与 LTE蜂窝网络系统兼容, 有利于在蜂窝网络中实现 D2D通信。
实施例二
本实施例中, 在 D2D设备发现过程中, D2D通信网络定时结构可以釆用 类似于 LTE蜂窝网的定时结构, 如图 3所示, 与 LTE的定时结构相似, 每个 子帧长度为 1ms, 由 2个 0.5毫秒的时隙组成, 每个时隙由 6个(扩展循环前 缀( cyclic prefix, CP ) )或者 7 (普通 CP )个 OFDM符号组成。 每 10个子 帧组成一个 10ms的无线帧。 每个子帧根据用途大体分为三种: 发现子帧、 寻 呼子帧和通信子帧。
本实施例中, 发现子帧主要用于做设备发现, 它承载了导频, 设备标识、 设备类型、及设备提供的服务等信息,每个 D2D UE通过发现子帧发现其它的 相邻 D2D UE及其设备信息, 为进一步 D2D通信提够条件。
其中, 并不一定是每个无线帧都包含发现子帧, 如图 3所示,每隔 T个无 线帧, 有一个无线帧包含发现子帧, T=l,...,t, 其中 t的取值要考虑 UE的节电 和小区内蜂窝 UE和 D2D UE的负载情况确定, 当 D2D UE较多时, 可以增大 t值, 当 D2D UE较少时, 可以减小 t值, 另外 t值可以由演进型基站 (evolved Node B, eNB)通过广播的方式进行动态或半静态配置通知所有的 D2D UE。
本实施例中,为避免蜂窝通信与 D2D通信间的干扰,蜂窝资源调度中心 (基 站)可以进一步的不在发现子帧位置调度蜂窝通信。
本实施例中, 所述发现子帧包括多个 OFDM符号, 例如, 所述发现子帧 可以包括 12个 OFDM符号或者 14个 OFDM符号, 具体为导频 OFDM符号 和设备信息 OFDM符号, 所述 OFDM符号在频域上划分为 M个频率资源单 元, M为大于等于 1的整数, 每个频率资源单元包括若干个子载波; 进一步 的, 每个 OFDM符号的一个或者多个频率资源单元作为设备发现资源单元, 每个 D2D UE选择一个或多个所述设备发现资源单元作为自身的设备发现信 号的载体,具体的, 则每个 D2D UE在发现子帧的若干个设备发现资源单元上 发送设备发现信号,每个 D2D UE在发现子帧的全部设备发现资源单元上接收 其它 D2D UE的设备发现信号。
另夕卜,寻呼子帧主要用于 D2D UE间的直接寻呼,主要用于承载寻呼目的 UE的设备标识, 进一步也可以承载寻呼源通信设备标识, 用于寻呼目的 UE 确认寻呼源以发送寻呼响应信息,还可以承载通信子帧的通信的频率资源及功 率等信息, 以帮助寻呼源和寻呼目的 UE通信双方建立通信链路, 为实现下一 步的数据传输提供保障。寻呼子帧是紧跟在发现子帧后面的, 这主要是基于两 点考虑: 第一, 这样做可以提高通信的效率, 当 UE在发现子帧发现想要通信 的 UE后, 就可以立即寻呼该 UE, 建立通信链路开始通信, 而不必再等很长 时间, 等到寻呼子帧后再进行寻呼, 从而减少时延, 提高通信质量; 第二、 有 利于 UE节电的考虑, 避免 UE频繁被唤醒。
通信子帧是数量最多的子帧,主要用于数据传输。这样可以大大提高 D2D 的数据传输速率。
实施例三
本发明实施例提供的基于 LTE蜂窝通信系统的 D2D设备发现方法中, 还 可以包括: 第一 D2D UE根据所述定时信息,在发现子帧发送设备发现信号至 第二 D2D UE, 以使第二 D2D UE在发现子帧接收第一 D2D UE发送的设备发 现信号, 并将在发现子帧接收的设备发现信号的导频 OFDM符号与本地导频 序列进行时域相关,获取第一 D2D UE的设备发现信号到达第二 D2D UE的时 间, 并解析在发现子帧接收的设备发现信号的设备信息 OFDM符号, 获取第 一 D2D UE的设备信息, 以使第二 D2D UE实现对第一 D2D UE的设备发现。 该步骤可以在第一 D2D UE对第二 D2D UE的设备发现之前, 也可以在第一 D2D UE对第二 D2D UE的设备发现之后。
本实施例中, 第一 D2D UE根据所述定时信息,通过在发现子帧发送设备 发现信号至第二 D2D UE, 以使第二 D2D UE根据所述第一 D2D UE发送的设 备发现信号,发现第一 D2D UE的设备,该过程缩短了 D2D UE之间发现的时 间, 使得 D2D UE可以有效的发现其它的 D2D UE, 提高了系统效率, 节省了 D2D UE的功率。
实施例四
本实施例中, 定时信息为上行定时或者下行定时, 则
第一实施例中的第一 D2D UE根据所述定时信息, 在发现子帧接收第二
D2D UE通过发现子帧发送的设备发现信号具体为: 第一 D2D UE通过在自身 的上行定时或者下行定时, 在发现子帧接收第二 D2D UE发送的设备发现信 号。
第三实施例中的第一 D2D UE根据所述定时信息,在发现子帧发送设备发 现信号至第二 D2D UE具体为:第一 D2D UE通过在自身的上行定时或者下行 定时, 在发现子帧发送设备发现信号至第二 D2D UE。
以下对第一 D2D UE通过在自身的上行定时或者下行定时,在发现子帧接 收第二 D2D UE发送的设备发现信号和第一 D2D UE通过在自身的上行定时或 者下行定时,在发现子帧发送设备发现信号至第二 D2D UE的实现原理进行说 明:
第一 D2D UE通过在自身的上行定时,在发现子帧接收第二 D2D UE发送 的设备发现信号; 及第一 D2D UE通过在自身的上行定时,在发现子帧发送设 备发现信号至第二 D2D UE的情况, 请参阅图 4为用上行定时收发 D2D设备 发现信号的示意图,左图为 D2D UE间的定时关系,右图为 D2D UE间的位置 关系, 假设 D2D UE1为发送设备发现信号的 D2D UE; D2D UE2接收其它 D2D UE设备发现信号的 D2D UE。 D2D UE1以自己的上行定时 τι发送设备发 现信号;同时 D2D— UE2以自己的上行定时 接收 D2D— UE1的设备发现信号, D2D UE1的设备发现信号在 τι'时刻到达 D2D— UE2 , 如图 4左图所示, 其中^ 为 eNB定时。 为 ΔΤ = TfTi = (TB _t _(tB —Τ2) , 其中^ 可以作为 D2D— UEl 与 eNB之间的距离 , TB - ^可以作为 D2D— UE2与 eNB之间的距离,同理 '
Figure imgf000013_0001
可以作为 D2D UE1与 D2D UE2之间的 巨离。 再才艮据 D2D UE1、 D2D UE2 与 eNB的位置关系可知 (^- ^ - , 可以得到 D2D— UE1的设备发 现信号到达 D2D— UE2的时间一定在 D2D— UE2接收其它 D2D UE设备发现信 号的时刻 ^之后, 这样就可以完全接收其它 D2DUE的设备发现信号, 而且可 以有效的避免不同 D2D UE发现子帧信号间的干扰以及对其它蜂窝 UE上行信 号的干扰。
第一 D2D UE通过在自身的下行定时,在发现子帧接收第二 D2D UE发送 的设备发现信号; 及第一 D2DUE通过在自身的下行定时,在发现子帧发送设 备发现信号至第二 D2DUE的, 请参阅图 5为用下行定时收发 D2D发现子帧 信号的示意图,左图为 D2DUE间的定时关系;右图为 D2DUE间的位置关系, 假设 D2D UE1为发送设备发现信号的 D2D UE; D2D UE2接收其它 D2D UE 设备发现信号的 D2DUE。 D2D— UEl以自己的下行定时 τι发送设备发现信号; 同时 D2D— UE2以自己的下行定时 接收 D2D— UE1的设备发现信号,
D2D UE1的设备发现信号在 时刻到达 D2D— UE2,如图 5左图所示, 其中7 « 为 eNB定时。 因为 Δ = 2- ^X^- , 其中 Γι- ^可以作为 D2D— UEl 与 eNB之间的距离 , - 可以作为 D2D— UE2与 eNB之间的距离,同理 '
Figure imgf000013_0002
可以作为 D2D UE1与 D2D UE2之间的 巨离。 再才艮据 D2D UE1、 D2D UE2 与 eNB的位置关系可知 ) — , 可以得到 D2D— UE1的设备发 现信号到达 D2D— UE2的时间一定在 D2D— UE2接收其它 D2D UE设备发现信 号的时刻 ^之后, 这样就可以完全接收其它 D2D UE的设备发现信号, 而且可 以有效的避免不同 D2D UE设备发现信号间的干扰以及对其它蜂窝 UE上行信 号的干扰。
本实施例中, D2D UE在发现子帧的若干个设备发现资源单元上以自己的 上行定时或下行定时发送设备发现信号,或者以自己的上行定时或下行定时接 收其它 D2D UE的设备发现信号,使得每个 D2D UE发送或者接收设备发现信 号时, 可以将不同 UE的设备发现信号在时域和频域分开, 避免了 D2D UE发 现冲突, 提高设备发现的成功率, 并且提高了发现效率。
实施例五
本实施例中, 所述发现子帧包括多个 OFDM符号, 每个 OFDM符号包含 一个循环前缀(Cyclic Prefix, CP ) , 所述 CP长度可以釆用以下方式:
1、 在发现子帧中增加一个保护间隔 (Gard Interval, GI ) , 所述 GI位于 发现子帧的 CP长度; 或者
2、 所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用普通 CP; 或者
3、 所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用扩展 CP。 为了适应 D2D设备发现场景下的需求, 需要确定发现子帧信号的 CP长 度, 并且根据 CP长度确定设备发现距离, CP的长度和设备发现距离主要考 虑两个方面的要求:
第一:多个发送设备发现信号的 D2D UE的发现子帧信号到达同一个接收 设备发现信号的 D2D UE的最大时间差不能大于 CP长度, 以避免由于破坏不 同 D2D UE间载波正交性而引起的载波间干扰。
第二: 发现子帧的最后一个 OFDM符号的最大时延扩展不能干扰到其后 的寻呼子帧信号的第一 OFDM符号, 以避免符号间干扰。
以下对上述三种 CP长度确定的方法进行说明:
1、 在发现子帧中增加一个保护间隔 GI, 所述 GI位于所述发现子帧与所 述发现子帧之后相邻的寻呼子帧之间,根据所述 GI,确定发现子帧的 CP长度, 如图 6所示为发现子帧的定时结构的示意图,通过在发现子帧与其后的寻呼子 帧之间增加一个保护间隔(GI ) , 此时, CP长度为 15.625us, 对于 20M带宽 为 480个 Ts, GI长度为 12.5us, 对于 20M带宽为 384个 Ts。 其后的寻呼子帧 釆用普通 CP, 釆用这种帧格式时, 最大设备发现距离为 1.5625km。
首先,考虑第一个方面的要求,计算多个发送设备发现信号的 D2D UE的 设备发现信号到达同一个接收设备发现信号的 D2D UE的最大时间差。如图 7 所示为设备发现信号的最大时间差示意图, 左图为设备发现信号的定时关系, 右图为 D2D UE间的位置关系, D2D— UE1在其上行定时 τι发送设备发现信号, D2D UE2在其上行定时 ^发送设备发现信号, D2D UE3在其上行定时 接收
D2D UE1和 D2D— UE2的设备发现信号。 D2D— UE3在7时刻接收到 D2D— UE1 的设备发现信号, 在 时刻接收到 D2D— UE2的设备发现信号, 而 D2D— UE2 的设备发现信号延时扩展到 , 即延迟扩展为 ^:7^'—7^ , —般认为7^等于信 号的传播时间。 那么两个设备发现信号到达 D2D UE3的时间差为:
Figure imgf000015_0001
可以看出, 当且仅当( D U^且 ^ 卜^,^ -^卜^时等号成 立,其中 为信号从 D2D— UE1到达 D2D— UE2的时刻, 为信号从 D2D UE2 到达 D2D— UE3的时刻 , T为信号从 D2D— UE1到达 D2D— UE3的时刻。 由以 上分析可知, 当 D2D— UE1与 D2D— UE3重合, D2D— UE2在 D2D— UE1与 eNB 之间并成一条直线时 D2D— UE1与 D2D— UE2的设备发现信号到达 D2D— UE3 的时间差最大。 此时7 ^= 2 , 最大时延差为 Δ7^=37ί2。 同时, 为了避免发现子 帧的符号间干扰和载波间干扰, 必须要求发现子帧的 CP的长度 满足
1cp ―■ 1n 下面考虑第二个方面的要求,计算发现子帧的时延扩展对其后的寻呼子帧 的最大影响。如图 8所示为设备发现信号的最大时延示意图, 左图为设备发现 信号的定时关系,右图为 D2DUE间的位置关系, D2D— UE2在其上行定时 ^发 送设备发现信号, D2D— UE1在其上行定时 接收 D2D— UE2的设备发现信号。 随后, D2D— UE1在 时刻接收到 D2D— UE2的设备发现信号, D2D— UE2的设 备发现信号延时扩展到7^ 即延迟扩展为 = T2' _ , 一般认为7^等于信号的 传播时间。 那么 D2D— UE2的设备发现信号到达 D2D— UE1的延迟时间差为: Ar = |r2-r1+rd| = |r2+r12-r1+rd|<|r2-r1|+r12+rd<2r12+rd
可见, 当且仅当 Γ2 - 时等号成立, 其中: 为信号从 D2D— UE2到 D2D UE1的传输时间, 此时 Ta = Tn , 最大延迟时间为 Δ2^ = ΐ2。 此时, 为 了避免发现子帧的最后一个 OFDM符号对其后的寻呼子帧的第一个 OFDM符 号造成符号间干扰,在发现子帧与其后的寻呼子帧之间增加一个保护间隔, 这 个保护间隔的长度必须满足 +TCP~I ^TU , 其中 7^„。™。z为普通 CP的长度。 由以上分析, 可通过下面的方程组计算 CP的长度, 保护间隔的长度和最大的 设备发现距离: CP ,dis > \2
< TQI + T CP, normal ―
1 cp is A i ~ J OFDM 1 GI 1 subframe
因此,计算出发现子帧的 CP长度为 15.78us,对于 20M带宽为 485个 Ts; GI长度为 10.55us, 对于 20M带宽为 324个 Ts。 由于 CP的釆样点数最好为 16的整数倍, 因此可以将 CP长度定为 15.625us,对于 20M带宽为 480个 Ts; GI长度为 12.5us,对于 20M带宽为 384个 Ts。最大设备发现距离为 1.5625km。
2、 所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用普通 CP ( normal CP ) , 普通 CP长度为 4.96 us, 20M带宽为 144Ts, 通过釆用普通 CP也能满足 D2D设备发现的两方面要求,具体可以参照方法 1中的方式进行 推理, 在此不再赘述, 此时, 设备发现的最远距离为 469m。
3、 所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用扩展 CP
( extended CP ) , 扩展 CP长度为 16.67 us, 20M带宽为 512Ts, 通过釆用扩 展 CP也能满足 D2D设备发现的两方面要求, 具体可以参照方法 1中的方式 进行推理, 在此不再赘述, 此时设备发现的最远距离为 1.66km。
值得说明的是, 上述方法 2和方法 3中的普通 CP和扩展 CP为 LTE通信 系统中通常釆用的两种 CP长度, 为本领域技术人员公知常识。
本实施例中, 发现子帧釆用合适长度的 CP, 例如可以在发现子帧和寻呼 子帧之间增加保护间隔,实现可以有效的避免 D2D UE间设备发现信号间的干 扰。
实施例六
本实施例中, 所述发现子帧包括多个 OFDM符号, 所述发现子帧的帧结 构可以釆用以下方式: 在所述发现子帧中的多个 OFDM符号中选择至少二个 OFDM符号为一组, 每一组中包含一个导频 OFDM符号和至少一个设备信息 OFDM符号, 且当每一组中包含的 OFDM符号的个数大于 2时, 所述导频 OFDM符号位于每一组中的非边缘位置, 其中, 所述发现子帧的不同设备发 现资源单元上的导频序列正交。
具体的, 当所述发现子帧包括 12个 OFDM符号时, 所述发现子帧的帧结 构为:
发现子帧的 12个 OFDM符号每两个分为一组,每组的第一个符号为导频 OFDM符号, 第二个符号为设备信息 OFDM符号; 或者
发现子帧的 12个 OFDM符号每两个分为一组,每组的第一个符号为设备 信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者
发现子帧的 12个 OFDM符号每三个分为一组,每组的第一个符号和第三 个符号为设备信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者
发现子帧的 12个 OFDM符号每四个分为一组,每组的第二个符号为导频 OFDM符号, 第一个符号、第三个符号和第四个符号为设备信息 OFDM符号; 或者
发现子帧的 12个 OFDM符号每四个分为一组,每组的第三个符号为导频 OFDM符号, 第一个符号、第二个符号和第四个符号为设备信息 OFDM符号; 为了便于理解, 以下通过实现示例说明发现子帧的时频资源结构设计: 如图 9所示为发现子帧信号的时频结构图, 发现子帧的每个 OFDM符号 在频域上被分成多个设备发现资源单元,发现子帧的 12个 OFDM符号每两个 分为一组, 每组的第一个符号为导频 OFDM符号, 第二个符号为设备信息 OFDM符号,导频 OFDM符号与设备信息 OFDM符号间隔分布。导频 OFDM 符号主要用来同步和信道估计, 设备信息 OFDM符号主要承载设备的基本信 息 (设备 ID等)。 每个 D2D UE在 1组或几组的导频 OFDM符号与设备信息 OFDM符号上选择 1个或几个设备发现资源单元发送导频和设备信息。
如图 10所示为另一发现子帧信号的时频结构图,发现子帧的 12个 OFDM 符号每三个分为一组, 每组的第一个符号和第三个符号为设备信息 OFDM符 号, 第二个符号为导频 OFDM符号。
如图 11所示为又一发现子帧信号的时频结构图,发现子帧的 12个 OFDM 符号每四个分为一组, 每组的第二个符号为导频 OFDM符号, 第一个符号、 第三个符号和第四个符号为设备信息 OFDM符号
同理, 当所述发现子帧包括 14个 OFDM符号时, 所述发现子帧的帧结构 为:
发现子帧的 14个 OFDM符号每两个分为一组,每组的第一个符号为导频 OFDM符号, 第二个符号为设备信息 OFDM符号; 或者
发现子帧的 14个 OFDM符号每两个分为一组,每组的第一个符号为设备 信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者
发现子帧的 14个 OFDM符号每七个分为一组,每组的第二个符号至第六 个符号任选一个符号为导频 OFDM符号, 其它的六个 OFDM符号为设备信息 OFDM符号。
实施例七
图 12示出了本发明实施例七提供的基于长期演进 LTE蜂窝通信系统的
D2D设备发现装置的结构示意图, 为了便于说明, 仅示出了与本发明实施例 相关的部分。 该 D2D设备发现装置可以包括: 获取单元 121、 接收单元 122和发现单 元 123。
获取单元 121 ,用于通过 LTE蜂窝通信系统,第一 D2D UE获取自身的定 时信息;
接收单元 122, 用于第一 D2D UE根据所述定时信息, 在发现子帧接收第 二 D2D UE通过发现子帧发送的设备发现信号, 所述设备发现信号包括: 导频 正交频分复用 OFDM符号和设备信息 OFDM符号;
发现单元 123 , 用于第一 D2D UE通过将在发现子帧接收的设备发现信号 的导频 OFDM符号与本地导频序列进行时域相关, 获取第二 D2D UE的设备 发现信号到达第一 D2D UE的时间,并解析在发现子帧接收的设备发现信号的 设备信息 OFDM符号, 获取第二 D2D UE的设备信息, 实现第一 D2D UE对 第二 D2D UE的设备发现。
本实施例中, 发现子帧信号的每个 OFDM符号在频域上划分为 M个频率 资源单元; 每个 OFDM符号的一个或多个频率资源单元作为设备发现资源单 元,每个 D2D UE选择一个或多个所述设备发现资源单元作为自身的设备发现 信号的载体。
本发明实施例提供的基于长期演进 LTE蜂窝通信系统的 D2D设备发现装 置可以使用在前述对应的方法实施例一、 二中, 详情参见上述实施例一、 二的 描述, 在此不再赘述。
实施例八
对于上述实施例七所述基于长期演进 LTE蜂窝通信系统的 D2D设备发现 装置还包括发送单元, 请参阅图 13示出了本发明实施例八提供的基于长期演 进 LTE蜂窝通信系统的 D2D设备发现装置的结构图: 所述系统包括: 获取单 元 131、 接收单元 132、 发现单元 133和发送单元 134。
本发明与实施例七的区别在于:
发送单元 134, 用于第一 D2D UE根据所述定时信息, 在发现子帧发送设 备发现信号至第二 D2D UE, 以使第二 D2D UE在发现子帧接收第一 D2D UE 发送的设备发现信号, 并将在发现子帧接收的设备发现信号的导频 OFDM符 号与本地导频序列进行时域相关,获取第一 D2D UE的设备发现信号到达第二 D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备信息 OFDM符 号, 获取第一 D2D UE的设备信息, 以使第二 D2D UE实现对第一 D2D UE 的设备发现。
可选的, 当所述定时信息为上行定时或者下行定时, 所述接收单元 132, 具体用于第一 D2D UE通过在自身的上行定时或者下行定时,在发现子帧接收 第二 D2D UE发送的设备发现信号;
所述发送单元 134, 具体用于第一 D2D UE通过在自身的上行定时或者下 行定时, 在发现子帧发送设备发现信号至第二 D2D UE。
本发明实施例提供的基于长期演进 LTE蜂窝通信系统的 D2D设备发现装 置可以使用在前述对应的方法实施例三、 四中, 详情参见上述实施例三、 四的 描述, 在此不再赘述。
实施例九
本实施例中, 所述发现子帧包括多个 OFDM符号, 每个 OFDM符号包括 一个 CP, 所述 CP长度具体为:
在发现子帧中增加一个保护间隔 GI,所述 GI位于所述发现子帧与所述发 现子帧之后相邻的寻呼子帧之间, 根据所述 GI, 确定发现子帧的 CP长度; 或 者
所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用普通 CP; 或 者
所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用扩展 CP。 本发明实施例提供的 CP的结构具体可以使用在前述对应的方法实施例五 中, 详情参见上述实施例五的描述, 在此不再赘述。
实施例十
所述发现子帧包括多个 OFDM符号, 所述发现子帧的帧结构为: 在所述发现子帧中的多个 OFDM符号中选择至少二个 OFDM符号为一 组, 每一组中包含一个导频 OFDM符号和至少一个设备信息 OFDM符号, 且 当每一组中包含的 OFDM符号的个数大于 2时, 所述导频 OFDM符号位于每 一组中的非边缘位置;
其中, 所述发现子帧的每个 OFDM上的不同设备发现资源单元上的导频 序列正交。
可选的, 当所述发现子帧包括 12个 OFDM符号时, 所述发现子帧的帧结 构为:
发现子帧的 12个 OFDM符号每两个分为一组,每组的第一个符号为导频 OFDM符号, 第二个符号为设备信息 OFDM符号; 或者
发现子帧的 12个 OFDM符号每两个分为一组,每组的第一个符号为设备 信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者
发现子帧的 12个 OFDM符号每三个分为一组,每组的第一个符号和第三 个符号为设备信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者 发现子帧的 12个 OFDM符号每四个分为一组,每组的第二个符号为导频 OFDM符号, 第一个符号、第三个符号和第四个符号为设备信息 OFDM符号; 或者
发现子帧的 12个 OFDM符号每四个分为一组,每组的第三个符号为导频
OFDM符号, 第一个符号、第二个符号和第四个符号为设备信息 OFDM符号; 当所述发现子帧包括 14个 OFDM符号时, 所述发现子帧的帧结构为: 发现子帧的 14个 OFDM符号每两个分为一组,每组的第一个符号为导频
OFDM符号, 第二个符号为设备信息 OFDM符号; 或者
发现子帧的 14个 OFDM符号每两个分为一组,每组的第一个符号为设备 信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者
发现子帧的 14个 OFDM符号每七个分为一组,每组的第二个符号至第六 个符号任选一个符号为导频 OFDM符号, 其它的六个 OFDM符号为设备信息
OFDM符号。
本发明实施例提供的发现子帧的结构具体可以使用在前述对应的方法实 施例六中, 详情参见上述实施例六的描述, 在此不再赘述。
本说明书中的各个实施例之间相同相似的部分互相参见即可,每个实施例 重点说明的都是与其他实施例的不同之处,各个实施例中描述的实现过程可以 应用于其它实施例中。 尤其, 对于装置实施例而言, 所包括的各个单元只是按 照功能逻辑进行划分的,但并不局限于上述的划分, 只要能够实现相应的功能 即可; 另外, 各功能单元的具体名称也只是为了便于相互区分, 并不用于限制 本发明的保护范围。 对于装置实施例而言, 由于其基本相似于方法实施例, 所 以描述得比较简单, 相关之处参见方法实施例的部分说明即可。
另外 ,本领域普通技术人员可以理解实现上述各实施例方法中的全部或部 分步骤是可以通过程序来指令相关的硬件来完成,相应的程序可以存储于一计 算机可读取存储介质中, 所述的存储介质, 如 U盘、 移动硬盘、 只读存储器 ( Read-Only Memory, ROM ) 、 随机存取存 4诸器 ( Random Access Memory, RAM ) 、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求
1、 一种基于长期演进 LTE蜂窝通信系统的 D2D设备发现方法, 其特征 在于, 所述方法包括:
通过 LTE蜂窝通信系统, 第一 D2D用户设备 UE获取自身的定时信息; 第一 D2D UE根据所述定时信息,在发现子帧接收第二 D2D UE通过发现 子帧发送的设备发现信号,所述设备发现信号包括:导频正交频分复用 OFDM 符号和设备信息 OFDM符号;
第一 D2D UE通过将在发现子帧接收的设备发现信号的导频 OFDM符号 与本地导频序列进行时域相关, 获取第二 D2D UE的设备发现信号到达第一 D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备信息 OFDM符 号,获取第二 D2D UE的设备信息, 实现第一 D2D UE对第二 D2D UE的设备 发现。
2、如权利要求 1所述的方法,其特征在于,所述发现子帧包括多个 OFDM 符号, 所述 OFDM符号在频域上划分为 M个频率资源单元, M为大于等于 1 的整数;
每个 OFDM符号的一个或多个频率资源单元作为设备发现资源单元, 每 个 D2D UE选择一个或多个所述设备发现资源单元作为自身的设备发现信号 的载体。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述定时信息为上行定 时或者下行定时, 所述第一 D2D UE根据所述定时信息,在发现子帧接收第二
D2D UE通过发现子帧发送的设备发现信号具体为:
第一 D2D UE通过在自身的上行定时或者下行定时,在发现子帧接收第二 D2D UE发送的设备发现信号。
4、 如权利要求 1-3任一项所述的方法, 其特征在于, 所述发现子帧包括 多个 OFDM符号, 所述 OFDM符号包括一个循环前缀 CP, 所述 CP长度具体 为:
在发现子帧中增加一个保护间隔 GI,所述 GI位于所述发现子帧与所述发 现子帧之后相邻的寻呼子帧之间, 根据所述 GI, 确定发现子帧的 CP长度; 或 者
所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用普通 CP; 或 者
所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用扩展 CP。
5、 如权利要求 1-3任一项所述的方法, 其特征在于, 所述发现子帧包括 多个 OFDM符号, 所述发现子帧的帧结构为:
在所述发现子帧中的多个 OFDM符号中选择至少二个 OFDM符号为一 组, 每一组中包含一个导频 OFDM符号和至少一个设备信息 OFDM符号, 且 当每一组中包含的 OFDM符号的个数大于 2时, 所述导频 OFDM符号位于每 一组中的非边缘位置。
6、 如权利要求 5所述的方法, 其特征在于, 当所述发现子帧包括 12个 OFDM符号时, 所述发现子帧的帧结构为:
发现子帧的 12个 OFDM符号每两个分为一组,每组的第一个符号为导频 OFDM符号, 第二个符号为设备信息 OFDM符号; 或者,
发现子帧的 12个 OFDM符号每两个分为一组,每组的第一个符号为设备 信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者, 发现子帧的 12个 OFDM符号每三个分为一组,每组的第一个符号和第三 个符号为设备信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者,
发现子帧的 12个 OFDM符号每四个分为一组,每组的第二个符号为导频 OFDM符号, 第一个符号、第三个符号和第四个符号为设备信息 OFDM符号; 或者,
发现子帧的 12个 OFDM符号每四个分为一组,每组的第三个符号为导频 OFDM符号, 第一个符号、第二个符号和第四个符号为设备信息 OFDM符号; 当所述发现子帧包括 14个 OFDM符号时, 所述发现子帧的帧结构为: 发现子帧的 14个 OFDM符号每两个分为一组,每组的第一个符号为导频 OFDM符号, 第二个符号为设备信息 OFDM符号; 或者,
发现子帧的 14个 OFDM符号每两个分为一组,每组的第一个符号为设备 信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者,
发现子帧的 14个 OFDM符号每七个分为一组,每组的第二个符号至第六 个符号任选一个符号为导频 OFDM符号, 其它的六个 OFDM符号为设备信息 OFDM符号。
7、 如权利要求 1-3任一项所述的方法, 其特征在于, 所述方法还包括: 第一 D2D UE根据所述定时信息, 在发现子帧发送设备发现信号至第二 D2D UE, 以使第二 D2D UE在发现子帧接收第一 D2D UE发送的设备发现信 号, 并将在发现子帧接收的设备发现信号的导频 OFDM符号与本地导频序列 进行时域相关, 获取第一 D2D UE的设备发现信号到达第二 D2D UE的时间, 并解析在发现子帧接收的设备发现信号的设备信息 OFDM符号, 获取第一 D2D UE的设备信息, 以使第二 D2D UE实现对第一 D2D UE的设备发现。
8、 如权利要求 7述的方法, 其特征在于, 所述定时信息为上行定时或者 下行定时, 所述第一 D2D UE根据所述定时信息,在发现子帧发送设备发现信 号至第二 D2D UE具体为:
第一 D2D UE通过在自身的上行定时或者下行定时,在发现子帧发送设备 发现信号至第二 D2D UE。
9、 一种基于长期演进 LTE蜂窝通信系统的 D2D设备发现装置, 其特征 在于, 所述系统包括:
获取单元, 用于通过 LTE蜂窝通信系统, 第一 D2D UE获取自身的定时 信息;
接收单元, 用于第一 D2D UE根据所述定时信息, 在发现子帧接收第二
D2D UE通过发现子帧发送的设备发现信号, 所述设备发现信号包括: 导频正 交频分复用 OFDM符号和设备信息 OFDM符号;
发现单元,用于第一 D2D UE通过将在发现子帧接收的设备发现信号的导 频 OFDM符号与本地导频序列进行时域相关, 获取第二 D2D UE的设备发现 信号到达第一 D2D UE的时间,并解析在发现子帧接收的设备发现信号的设备 信息 OFDM符号, 获取第二 D2D UE的设备信息, 实现第一 D2D UE对第二
D2D UE的设备发现。
10、如权利要求 9所述的装置,其特征在于,所述发现子帧包括多个 OFDM 符号, 所述 OFDM符号在频域上划分为 M个频率资源单元, M为大于等于 1 的整数;
每个 OFDM符号的一个或多个频率资源单元作为设备发现资源单元, 每 个 D2D UE选择一个或多个所述设备发现资源单元作为自身的设备发现信号 的载体。
11、 如权利要求 9或 10所述的装置, 其特征在于, 所述定时信息为上行 定时或者下行定时, 所述接收单元,具体用于第一 D2D UE通过在自身的上行 定时或者下行定时, 在发现子帧接收第二 D2D UE发送的设备发现信号。
12、 如权利要求 9-11任一项所述的装置, 其特征在于, 所述发现子帧包 括多个 OFDM符号, 所述 OFDM符号包括一个循环前缀 CP, 所述 CP长度具 体为:
在发现子帧中增加一个保护间隔 GI,所述 GI位于所述发现子帧与所述发 现子帧之后相邻的寻呼子帧之间, 根据所述 GI, 确定发现子帧的 CP长度; 或 者
所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用普通 CP; 或 者
所述发现子帧, 及所述发现子帧之后相邻的寻呼子帧都釆用扩展 CP。
13、 如权利要求 9-11任一项所述的装置, 其特征在于, 所述发现子帧包 括多个 OFDM符号, 所述发现子帧的帧结构为:
在所述发现子帧中的多个 OFDM符号中选择至少二个 OFDM符号为一 组, 每一组中包含一个导频 OFDM符号和至少一个设备信息 OFDM符号, 且 当每一组中包含的 OFDM符号的个数大于 2时, 所述导频 OFDM符号位于每 一组中的非边缘位置。
14、 如权利要求 13所述的装置, 其特征在于, 当所述发现子帧包括 12 个 OFDM符号时, 所述发现子帧的帧结构为:
发现子帧的 12个 OFDM符号每两个分为一组,每组的第一个符号为导频 OFDM符号, 第二个符号为设备信息 OFDM符号; 或者,
发现子帧的 12个 OFDM符号每两个分为一组,每组的第一个符号为设备 信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者,
发现子帧的 12个 OFDM符号每三个分为一组,每组的第一个符号和第三 个符号为设备信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者,
发现子帧的 12个 OFDM符号每四个分为一组,每组的第二个符号为导频
OFDM符号, 第一个符号、第三个符号和第四个符号为设备信息 OFDM符号; 或者,
发现子帧的 12个 OFDM符号每四个分为一组,每组的第三个符号为导频 OFDM符号, 第一个符号、第二个符号和第四个符号为设备信息 OFDM符号; 当所述发现子帧包括 14个 OFDM符号时, 所述发现子帧的帧结构为: 发现子帧的 14个 OFDM符号每两个分为一组,每组的第一个符号为导频 OFDM符号, 第二个符号为设备信息 OFDM符号; 或者,
发现子帧的 14个 OFDM符号每两个分为一组,每组的第一个符号为设备 信息 OFDM符号, 第二个符号为导频 OFDM符号; 或者,
发现子帧的 14个 OFDM符号每七个分为一组,每组的第二个符号至第六 个符号任选一个符号为导频 OFDM符号, 其它的六个 OFDM符号为设备信息 OFDM符号。
15、 如权利要求 9-11任一项所述的装置, 其特征在于, 所述装置还包括: 发送单元,用于第一 D2D UE根据所述定时信息,在发现子帧发送设备发现信 号至第二 D2D UE, 以使第二 D2D UE在发现子帧接收第一 D2D UE发送的设 备发现信号, 并将在发现子帧接收的设备发现信号的导频 OFDM符号与本地 导频序列进行时域相关, 获取第一 D2D UE的设备发现信号到达第二 D2D UE 的时间, 并解析在发现子帧接收的设备发现信号的设备信息 OFDM符号, 获 取第一 D2D UE的设备信息,以使第二 D2D UE实现对第一 D2D UE的设备发 现。
16、 如权利要求 15所述的装置, 其特征在于, 所述定时信息为上行定时 或者下行定时, 所述发送单元, 具体用于第一 D2D UE通过在自身的上行定时 或者下行定时, 在发现子帧发送设备发现信号至第二 D2D UE。
PCT/CN2012/082960 2012-05-23 2012-10-15 基于lte蜂窝通信系统的d2d设备发现方法及装置 WO2013174091A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12877444.5A EP2849494B1 (en) 2012-05-23 2012-10-15 Lte cellular communication system based d2d device discovering method and apparatus
US14/550,307 US9584997B2 (en) 2012-05-23 2014-11-21 D2D device discovery method and apparatus based on LTE cellular communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210162246.X 2012-05-23
CN201210162246.XA CN103428817B (zh) 2012-05-23 2012-05-23 基于lte蜂窝通信系统的d2d设备发现方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/550,307 Continuation US9584997B2 (en) 2012-05-23 2014-11-21 D2D device discovery method and apparatus based on LTE cellular communications system

Publications (1)

Publication Number Publication Date
WO2013174091A1 true WO2013174091A1 (zh) 2013-11-28

Family

ID=49623050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082960 WO2013174091A1 (zh) 2012-05-23 2012-10-15 基于lte蜂窝通信系统的d2d设备发现方法及装置

Country Status (4)

Country Link
US (1) US9584997B2 (zh)
EP (1) EP2849494B1 (zh)
CN (1) CN103428817B (zh)
WO (1) WO2013174091A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812089A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 D2d的通信方法及ue
CN106160986A (zh) * 2015-04-21 2016-11-23 电信科学技术研究院 一种数据传输方法及装置
EP3133873A4 (en) * 2014-05-09 2017-04-26 Huawei Technologies Co. Ltd. Method and apparatus for receiving d2d discovery information
US10880822B2 (en) 2013-02-08 2020-12-29 Huawei Technologies Co., Ltd. Device-to-device communication method, terminal, and network device

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10250678B2 (en) * 2010-07-07 2019-04-02 Qualcomm Incorporated Hybrid modes for peer discovery
CN103517398B (zh) * 2012-06-20 2017-04-26 华为技术有限公司 终端到终端的通信方法及终端
JP6026549B2 (ja) * 2012-09-26 2016-11-16 京セラ株式会社 移動通信システム、基地局及びユーザ端末
US9628212B2 (en) * 2013-03-14 2017-04-18 Fujitsu Limited Signal timing in device-to-device communication
WO2014175919A1 (en) * 2013-04-26 2014-10-30 Intel IP Corporation Shared spectrum reassignment in a spectrum sharing context
PL3010197T3 (pl) * 2013-06-13 2022-02-21 Shanghai Langbo Communication Technology Company Limited Sposób i urządzenie do komunikacji w urządzeniu użytkownika obsługującym komunikację d2d systemu tdd
US9480007B2 (en) * 2013-07-26 2016-10-25 Intel IP Corporation Techniques for efficient small cell discovery
US9532361B2 (en) * 2013-08-09 2016-12-27 Futurewei Technologies, Inc. System and method for resource allocation device-to-device for open discovery
JP2017504242A (ja) 2013-12-06 2017-02-02 富士通株式会社 D2dディスカバリー信号を送信する方法及び装置並びに通信システム
CN104768233A (zh) * 2014-01-03 2015-07-08 中兴通讯股份有限公司 一种d2d通讯方法及终端
CN110557236B (zh) 2014-01-07 2022-08-05 瑞典爱立信有限公司 用于使无线装置能够在非许可谱中与无线电网络节点进行通信的方法和设备
EP2911425B1 (en) 2014-01-13 2016-08-31 Industrial Technology Research Institute Device to device discovery method for user equipment and network entity and user equipment and network entity using the same
JP6364196B2 (ja) * 2014-01-30 2018-07-25 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システム及び無線通信方法
US9961573B2 (en) * 2014-01-30 2018-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Measurement on SCC SCell and on/off discovery signals
JP6313477B2 (ja) * 2014-02-10 2018-04-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) タイミング測定に基づくデバイスツーデバイス通信のための送信構成適合
EP3101953B1 (en) * 2014-02-22 2020-04-29 Huawei Technologies Co., Ltd. Discovery resource time-frequency jumping method and terminal
CN106134243B (zh) * 2014-03-20 2019-08-02 Lg 电子株式会社 无线通信系统中发送d2d信号的方法及其设备
CN104936166B (zh) * 2014-03-20 2018-07-20 电信科学技术研究院 一种信号发送、接收方法及装置
WO2015147618A1 (ko) 2014-03-28 2015-10-01 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
US9877259B2 (en) * 2014-03-31 2018-01-23 Huawei Technologies Co., Ltd. Dynamic energy-efficient transmit point (TP) muting for virtual radio access network (V-RAN)
LT3141006T (lt) * 2014-05-09 2021-01-25 Deutsche Telekom Ag Įrenginio su įrenginiu ryšio gerinimas
US9369961B2 (en) * 2014-06-05 2016-06-14 Sony Corporation User equipment, cellular communication network node and method of controlling operation of a user equipment
CN105472529B (zh) * 2014-06-09 2019-10-01 北京三星通信技术研究有限公司 一种lte网络中的d2d发现信号发送方法和装置
WO2016019512A1 (zh) 2014-08-05 2016-02-11 华为技术有限公司 D2d终端、系统及d2d发现方法
KR102322769B1 (ko) * 2014-08-18 2021-11-10 삼성전자 주식회사 무선 통신 시스템에서 단말의 d2d 탐색 신호 송신방법
BR112017003670B1 (pt) 2014-08-28 2023-03-07 Telefonaktiebolaget Lm Ericsson (Publ) Método para gerenciar transmissão de símbolos de referência de célula, e, nó de rede
EP3185630B1 (en) * 2014-09-19 2019-07-24 Huawei Technologies Co., Ltd. Device and method for coexistence of discovery signal and cellular signal
US20180278308A1 (en) * 2014-10-24 2018-09-27 Interdigital Patent Holdings, Inc. Wlan designs for supporting an outdoor propagation channel
JP6469239B2 (ja) * 2015-01-30 2019-02-13 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線バックホール経路上の送信協調のための方法およびネットワークノード
CN106034283A (zh) * 2015-03-19 2016-10-19 阿尔卡特朗讯 智能设备与移动硬盘之间直接通信连接的方法与设备
US10531371B2 (en) 2015-04-08 2020-01-07 Lg Electronics Inc. Method and device for transmitting and receiving plurality of D2D signals in wireless communication system
US20190045345A1 (en) * 2015-05-14 2019-02-07 Lg Electronics Inc. Method for transmitting and receiving d2d signal in wireless communication system, and apparatus therefor
CN106257958B (zh) 2015-06-30 2019-10-15 北京智谷睿拓技术服务有限公司 消息发送方法、消息接收方法及其装置
US10609679B2 (en) * 2015-07-28 2020-03-31 Qualcomm Incorporated Protocol for device-to-device positioning
US9913233B2 (en) * 2015-07-28 2018-03-06 Qualcomm Incorporated Synchronization for device-to-device positioning in wireless networks
EP3694264B1 (en) * 2017-11-27 2022-06-15 Huawei Technologies Co., Ltd. Synchronization method and apparatus
CN111107517B (zh) * 2019-12-31 2022-02-11 北京紫光展锐通信技术有限公司 通信资源的配置方法、装置、终端及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771615A (zh) * 2010-01-26 2010-07-07 华为技术有限公司 邻居关系建立方法、通信设备及系统
WO2011080533A1 (en) * 2009-12-30 2011-07-07 Nokia Corporation Method and apparatus for autonomous ofdma beacon reception measurement
WO2011161560A1 (en) * 2010-06-23 2011-12-29 Nokia Corporation Method and apparatus for device-to-device network coordination

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20002902A (fi) * 2000-12-29 2002-06-30 Nokia Corp Viestintälaite ja menetelmä lähettimen ja vastaanottimen kytkemiseksi
US6957081B2 (en) * 2001-12-21 2005-10-18 Motorola, Inc. Multi-mode mobile communications device with continuous mode transceiver and methods therefor
US6726099B2 (en) * 2002-09-05 2004-04-27 Honeywell International Inc. RFID tag having multiple transceivers
ATE358358T1 (de) * 2003-08-25 2007-04-15 Sony Ericsson Mobile Comm Ab Antennenschalterstruktur für ein mobiles endgerät in einem drahtlosen kommunikationssystem
US7742486B2 (en) * 2004-07-26 2010-06-22 Forestay Research, Llc Network interconnect crosspoint switching architecture and method
US20070123174A1 (en) * 2005-11-28 2007-05-31 Wiessner Randy A Device and method for single connector access to multiple transceivers
US7920524B2 (en) * 2006-09-29 2011-04-05 Vixs Systems, Inc. Multimedia server with channel control module and methods for use therewith
US8630281B2 (en) * 2007-07-10 2014-01-14 Qualcomm Incorporated Coding methods of communicating identifiers in peer discovery in a peer-to-peer network
US8493887B2 (en) * 2008-12-30 2013-07-23 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
TWI406526B (zh) * 2009-06-12 2013-08-21 Univ Nat Taiwan Science Tech 用於光網路監控及錯誤檢測之光信號切換模組
US9166644B2 (en) * 2010-02-01 2015-10-20 Broadcom Corporation Transceiver and antenna assembly
US8812657B2 (en) * 2010-04-15 2014-08-19 Qualcomm Incorporated Network-assisted peer discovery
US9485069B2 (en) 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080533A1 (en) * 2009-12-30 2011-07-07 Nokia Corporation Method and apparatus for autonomous ofdma beacon reception measurement
CN101771615A (zh) * 2010-01-26 2010-07-07 华为技术有限公司 邻居关系建立方法、通信设备及系统
WO2011161560A1 (en) * 2010-06-23 2011-12-29 Nokia Corporation Method and apparatus for device-to-device network coordination

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880822B2 (en) 2013-02-08 2020-12-29 Huawei Technologies Co., Ltd. Device-to-device communication method, terminal, and network device
CN104812089A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 D2d的通信方法及ue
CN104812089B (zh) * 2014-01-28 2019-07-02 中兴通讯股份有限公司 D2d的通信方法及ue
EP3133873A4 (en) * 2014-05-09 2017-04-26 Huawei Technologies Co. Ltd. Method and apparatus for receiving d2d discovery information
US10021640B2 (en) 2014-05-09 2018-07-10 Huawei Technologies Co., Ltd. Method for receiving D2D discovery information and apparatus
US10244471B2 (en) 2014-05-09 2019-03-26 Huawei Technologies Co., Ltd. Method for receiving D2D discovery information and apparatus
US10701631B2 (en) 2014-05-09 2020-06-30 Huawei Technologies Co., Ltd. Method for receiving D2D discovery information and apparatus
CN106160986A (zh) * 2015-04-21 2016-11-23 电信科学技术研究院 一种数据传输方法及装置
CN106160986B (zh) * 2015-04-21 2019-08-16 电信科学技术研究院 一种数据传输方法及装置

Also Published As

Publication number Publication date
EP2849494A4 (en) 2015-06-03
CN103428817A (zh) 2013-12-04
EP2849494B1 (en) 2016-12-21
US9584997B2 (en) 2017-02-28
US20150078466A1 (en) 2015-03-19
EP2849494A1 (en) 2015-03-18
CN103428817B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2013174091A1 (zh) 基于lte蜂窝通信系统的d2d设备发现方法及装置
CN102547984B (zh) 一种设备到设备通信中寻呼的方法及装置
CN110099460B (zh) 用于协调正交信道接入(coca)的方法和装置
EP2494838B1 (en) Access point scheduled peer-to-peer communication
WO2017004774A1 (zh) 一种数据传输的方法、无线网络设备和通信系统
CN104349421B (zh) 设备发现方法和用户设备、网络侧设备
US20140254429A1 (en) Signaling for device-to-device wireless communication
JP2019511174A (ja) 情報通信方法、ユーザー機器、およびネットワークデバイス
CN109479299A (zh) V2x消息发送方法、装置及系统
CN110337133B (zh) 通信方法、通信装置和通信系统
WO2018028490A1 (zh) 信息传输方法、终端及网络设备
US20200112910A1 (en) Facilitating fast passive discovery
WO2015176517A1 (zh) 设备到设备的资源配置方法、网络设备及用户设备
WO2016161981A1 (zh) 设备到设备d2d传输方法及装置
US9906391B2 (en) Methods and apparatus for packet acquisition in mixed-rate wireless communication networks
CN113330709B (zh) 终端设备、网络设备及其中的方法
CN106233791A (zh) 不同ndp ps轮询类型的定义
WO2015109433A1 (zh) D2d通信同步信号的传输方法及系统、发送端及接收端
JP2016536880A (ja) 混合フォーマットを使用するワイヤレス通信のための方法および装置
JP2016540429A (ja) 高効率ワイヤレスネットワークにおける通信効率の改善のためのシステムおよび方法
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
JP6231201B2 (ja) 高効率ワイヤレスネットワーク中での向上された通信効率のためのシステムおよび方法
WO2013189200A1 (zh) 终端到终端的通信方法及终端
CN104812053A (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2022052857A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012877444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012877444

Country of ref document: EP