WO2013172128A1 - 排気ガス浄化装置 - Google Patents

排気ガス浄化装置 Download PDF

Info

Publication number
WO2013172128A1
WO2013172128A1 PCT/JP2013/060669 JP2013060669W WO2013172128A1 WO 2013172128 A1 WO2013172128 A1 WO 2013172128A1 JP 2013060669 W JP2013060669 W JP 2013060669W WO 2013172128 A1 WO2013172128 A1 WO 2013172128A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
doc
csf
oxidation
Prior art date
Application number
PCT/JP2013/060669
Other languages
English (en)
French (fr)
Inventor
岡島 利典
永田 誠
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49583544&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013172128(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to JP2014515537A priority Critical patent/JP6040232B2/ja
Priority to US14/396,234 priority patent/US9480948B2/en
Priority to CN201380023860.0A priority patent/CN104321506B/zh
Priority to EP13791211.9A priority patent/EP2851528B1/en
Publication of WO2013172128A1 publication Critical patent/WO2013172128A1/ja
Priority to US15/252,862 priority patent/US9539544B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • B01J35/19
    • B01J35/647
    • B01J35/651
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification device, and more particularly, to particulate components such as hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and soot contained in exhaust gas from a lean combustion engine.
  • the present invention relates to an exhaust gas purification catalyst device that combines an oxidation catalyst (DOC) excellent in the oxidation performance of nitric oxide (NO) and the combustion performance of unburned fuel such as light oil and a catalytic combustion filter (CSF).
  • DOC oxidation catalyst
  • CSF catalytic combustion filter
  • Exhaust gas emitted from lean combustion engines such as boilers, gas turbines, lean burn gasoline engines, and diesel engines contains various harmful substances derived from fuel and combustion air.
  • harmful substances include hydrocarbons (HC), soluble organic fractions (also referred to as SOF), soot, carbon monoxide (CO), and nitrogen oxides (NOx).
  • HC hydrocarbons
  • SOF soluble organic fractions
  • SOF soot
  • CO carbon monoxide
  • NOx nitrogen oxides
  • a diesel engine is a combustion engine with good fuel consumption and low CO 2 emission, but the exhaust gas contains a large amount of NOx.
  • NOx emissions In order to suppress NOx emissions from diesel engines, it is conceivable to mechanically reduce the air-fuel ratio and supply a large amount of fuel that is also a reducing component to the engine, but this leads to deterioration of fuel consumption and CO 2 emissions. Will increase.
  • combustion control makes it impossible to take advantage of the diesel engine that fuel efficiency is good.
  • Non-Patent Document 1 In fact, in the purification of NOx by NH 3 component, the reaction is promoted in an atmosphere containing approximately half of NO and NO 2 as in the above formula (3) (see Non-Patent Document 1).
  • NO nitric oxide
  • Patent Document 2 Since most of the NOx component discharged from the lean combustion engine is nitric oxide (NO) (see Patent Document 1), the concentration of the NO 2 component in the exhaust gas is low in order to efficiently purify NOx.
  • NO oxidation means in the exhaust gas passage so as to increase (see Patent Document 2). Specifically, platinum (Pt) having a high NO oxidation ability is used as an oxidation catalyst.
  • Pt platinum having a high NO oxidation ability is used as an oxidation catalyst.
  • One of them is an oxidation catalyst in the exhaust gas flow path, a filter in the subsequent stage, spraying ammonia components in the subsequent stage, and purifying NOx with a selective reduction catalyst (SCR) arranged in the subsequent stage. Yes (see Patent Document 3).
  • SCR selective reduction catalyst
  • soot and SOF (hereinafter collectively referred to as “particulate component” or PM: Particulate Matter) purification technology also has an effect on improving the fuel efficiency of diesel engines.
  • a heat-resistant filter (DPF: Diesel Particulate Filter) is disposed in the exhaust gas flow path, and a method of filtering the fine particle component with this filter has been put into practical use.
  • the filtered particulate component accumulates on the filter, but if the particulate component continues to accumulate on the filter, the output of the engine is reduced due to an increase in back pressure accompanying filter clogging.
  • it has been studied to regenerate the filter by burning and removing particulate components deposited on the filter (Patent Documents 3 and 4).
  • a DPF is disposed after the DOC, and particulate components deposited on the filter are removed by combustion using NO 2 in addition to oxygen.
  • NO 2 the particulate component can be combusted from a lower temperature, so that combustion removal of the particulate component is promoted and an increase in pressure loss can be suppressed to increase the interval until filter regeneration.
  • the DPF coated with the catalyst component is also called CSF (Catalyzed Soot Filter).
  • DOC platinum (Pt), palladium (Pd), etc. are used for DOC for the purpose of oxidizing and removing HC and CO in exhaust gas, and for CSF for the purpose of oxidizing and purifying soot and SOF in exhaust gas, respectively.
  • DOC also has an action of oxidizing NO in exhaust gas to NO 2 .
  • the exhaust gas whose NO 2 amount is increased promotes NOx reduction purification in the rear SCR and combustion of particulate components in the DPF and CSF.
  • increasing the temperature of the exhaust gas by using HC in the exhaust gas at the DOC is effective for promoting the combustion removal of the particulate component deposited on the DPF or CSF disposed behind the DOC.
  • an HC component may be supplied to the DOC and the HC component may be burned (oxidized).
  • the HC component may be supplied for such an increase in the exhaust gas temperature.
  • the present applicant arranges an oxidizing means, a urea aqueous solution spraying means, and a specific selective reduction catalyst in this order in the exhaust gas passage discharged from the diesel engine, and platinum as a noble metal component as the oxidizing means.
  • Hydrocarbons in exhaust gas by an oxidation catalyst containing a component or palladium component the amount of this noble metal component being 0.1 to 3 g / L in terms of metal, and the amount of platinum in terms of metal in the noble metal component being 50 to 100 w%
  • the aqueous urea solution is sprayed from the urea aqueous solution spraying means to the selective reduction catalyst and contacted at 150 to 600 ° C.
  • An exhaust gas purification method characterized by decomposing nitrogen oxides into nitrogen and water with the produced ammonia has been proposed (see Patent Document 5).
  • JP 05-38420 A (Claim 1, paragraphs 0012, 0013, 0014) Japanese Patent Laid-Open No. 08-103636 (Claim 1, paragraphs 0002 and 0012) Japanese Patent Laid-Open No. 01-318715 JP-T-2002-502927 (Claim 1, paragraphs 0007 and 0008) JP 2009-262098 A (Claim 12, paragraph 0015)
  • the object of the present invention is to make particulate components such as hydrocarbon (HC), carbon monoxide (CO), nitrogen oxide (NOx), soot, etc. contained in the exhaust gas from a lean combustion engine.
  • an exhaust gas purification catalyst device combining an oxidation catalyst (DOC) and a catalytic combustion filter (CSF) excellent in oxidation performance of nitric oxide (NO) and combustion performance of unburned fuel such as light oil is provided.
  • DOC oxidation catalyst
  • CSF catalytic combustion filter
  • the present inventors have arranged a catalyst in the order of DOC, CSF, and SCR, and the NH 3 component as a reducing component between the DOC and the SCR catalyst.
  • the DOC carries the precious metal components Pt and Pd on one or more kinds of alumina having a pore diameter of 12 to 120 nm, and at that time, Pt and Pd are in a weight ratio of 1: 1 to 11. : 2 and having a catalyst layer to which barium oxide was added found that the oxidation activity of NO and the combustibility of unburned fuel such as light oil were promoted, and the present invention was completed.
  • carbon monoxide, hydrocarbons are used to purify particulate components such as carbon monoxide, hydrocarbons, nitrogen oxides, soot and the like in exhaust gas discharged from diesel engines.
  • particulate components such as carbon monoxide, hydrocarbons, nitrogen oxides, soot and the like
  • DOC oxidation catalyst
  • CSF catalytic combustion filter
  • SCR selective reduction catalyst
  • the oxidation catalyst (DOC) is made of alumina (Al 2 O 3 ) having a pore diameter of 12 to 120 nm, platinum (Pt),
  • an exhaust gas purification apparatus having a catalyst layer supporting radium (Pd) and barium oxide (BaO), wherein the ratio of platinum to palladium is 1: 1 to 11: 2 in terms of weight.
  • the exhaust gas purifying apparatus according to the first aspect, wherein the catalyst layer is covered more than one layer on the integral structure type carrier.
  • the exhaust gas purifying apparatus according to the first aspect wherein the catalyst layer has a base layer made of alumina in a lower layer.
  • the alumina having a pore diameter of 12 to 120 nm is a mixture of two or more kinds of alumina having different pore diameters.
  • the oxidation catalyst (DOC) is further installed between the catalyzed filter (CSF) and the reducing spray means.
  • An exhaust gas purification device is provided.
  • the oxidation catalyst (DOC) is characterized in that the amount of barium oxide is 0.5 to 4.0 g / L.
  • a purification device is provided.
  • the exhaust gas purification apparatus according to the first aspect, wherein the oxidation catalyst (DOC) has a catalyst layer covering amount of 50 to 300 g / L. Provided.
  • the oxidation catalyst (DOC) is characterized in that the total supported amount of noble metal is 0.5 to 4.0 g / L in terms of metal.
  • An exhaust gas purifying apparatus is provided.
  • the catalyzed combustion filter (CSF) is composed of alumina having a pore diameter of 12 to 120 nm or two kinds having different pore diameters within the range. Exhaust gas purification characterized by having a catalyst layer supporting platinum (Pt) and palladium (Pd) in the above alumina mixture, and the ratio of platinum to palladium is 1: 1 to 11: 4 in terms of weight.
  • An apparatus is provided.
  • the catalytic combustion filter (CSF) is characterized in that the coverage of the catalyst layer is 4 to 100 g / L.
  • An apparatus is provided.
  • the catalyzed combustion filter (CSF) has a total noble metal loading of 0.05 to 2.0 g / L in terms of metal.
  • an exhaust gas purifying device characterized by that.
  • an exhaust gas purification apparatus according to the first aspect, further comprising an ammonia oxidation catalyst (AMOX) disposed after the selective reduction catalyst (SCR). Is done.
  • AMOX ammonia oxidation catalyst
  • the exhaust gas purifying apparatus of the present invention is excellent in NO oxidation activity and combustibility of unburned fuel such as light oil, and among fine particulate components such as HC, CO, NOx, soot discharged from a lean combustion engine such as a diesel engine.
  • the oxidation performance of NO and the combustion performance of unburned fuel such as light oil are excellent.
  • the exhaust gas purification device of the present invention can be manufactured at a low cost because the amount of expensive noble metal used is small, and the exhaust gas purification device can be stably produced and supplied.
  • FIG. 1 schematically shows a configuration in which an oxidation catalyst (DOC), a catalytic filter (CSF), a reducing component supply means, and a selective reduction catalyst (SCR) are arranged in this order in the exhaust gas purification catalyst device of the present invention.
  • FIG. 2 shows an exhaust gas purification catalyst device according to the present invention, in which an oxidation catalyst (DOC), a catalytic filter (CSF), an oxidation catalyst (DOC), a reducing component supply means, and a selective reduction catalyst (SCR) are arranged in this order. It is explanatory drawing which shows typically the structure which carried out.
  • FIG. 1 schematically shows a configuration in which an oxidation catalyst (DOC), a catalytic filter (CSF), a reducing component supply means, and a selective reduction catalyst (SCR) are arranged in this order in the exhaust gas purification catalyst device of the present invention.
  • FIG. 2 shows an exhaust gas purification catalyst device according to the present invention, in which an oxidation catalyst (DOC), a cata
  • FIG. 3 is a graph showing NO, CO, and HC oxidation performance in a model gas evaluation test using an oxidation catalyst (DOC).
  • FIG. 4 is a graph showing NO oxidation activity in an exhaust gas purification test using a tabletop diesel engine using an oxidation catalyst (DOC).
  • FIG. 5 is a graph showing light oil combustibility in an exhaust gas purification test using a tabletop diesel engine using an oxidation catalyst (DOC).
  • FIG. 6 is a graph showing the oxidation activity of NO, CO, and HC in an exhaust gas purification test using a tabletop diesel engine using an oxidation catalyst (DOC) and a catalytic combustion filter (CSF).
  • DOC oxidation catalyst
  • CSF catalytic combustion filter
  • FIG. 7 is a graph showing the oxidation activity of NO, CO, and HC when two oxidation catalysts (DOC) and a catalyzed combustion filter (CSF) are arranged in series and an exhaust gas purification test is performed with a tabletop diesel engine. is there.
  • DOC oxidation catalysts
  • CSF catalyzed combustion filter
  • the present invention collects a specific oxidation catalyst (DOC) containing a noble metal component for oxidizing nitrogen oxide (NO) in exhaust gas discharged from a diesel engine, and a particulate component (PM) in exhaust gas. Then, a catalytic combustion filter (CSF) containing a noble metal component for removing combustion (oxidation), a reducing agent spraying means for supplying a reducing agent selected from a urea component or an ammonia component, and nitrogen oxide (NOx) is reduced.
  • DOC specific oxidation catalyst
  • PM particulate component
  • This is an exhaust gas purification device in which selective reduction catalyst (SCR) that does not contain precious metal to be reduced and removed by contact with the agent is arranged in this order from the upstream side of the exhaust gas flow path, and this exhaust gas purification catalyst device (DOC + CSF + SCR) Also referred to as catalyst device I. That is, as shown in FIG. 1, the catalyst device I of the present invention has a reducing agent spraying means behind the oxidation catalyst (DOC) 4 and the catalytic combustion filter (CSF) 5 in the exhaust gas flow path 2 from the diesel engine 1.
  • 3 is an exhaust gas purification catalyst device in which a selective reduction catalyst (SCR) 6 is disposed behind the injection means 3.
  • NO is oxidized to NO 2 by DOC and CSF, so that an aqueous urea solution or an aqueous ammonia solution in the SCR disposed behind them (hereinafter also referred to as an ammonia component or an NH 3 component).
  • an aqueous urea solution or an aqueous ammonia solution in the SCR disposed behind them (hereinafter also referred to as an ammonia component or an NH 3 component).
  • the soot accumulated in the CSF is burned in the DOC by periodically spraying the unburned light oil in the cylinder of the diesel engine or in the pipe between the diesel engine and the DOC. Exhaust gas temperature is raised and burned with the combustion heat.
  • the DOC used in the present invention is an oxidation catalyst containing a noble metal component that oxidizes unburned fuel such as NO, HC, CO, and light oil in exhaust gas.
  • a noble metal component that oxidizes unburned fuel such as NO, HC, CO, and light oil in exhaust gas.
  • the noble metal component at least a platinum component and a paradium component are included. contains.
  • a platinum component is generally used as a noble metal component, and a palladium component may also be used.
  • a palladium component may also be used.
  • the Pd component is easily poisoned by sulfur components in light oil and heavy oil, which are fuels for diesel engines, and may be deactivated after long-term use.
  • the price is considerably lower than that of Pt, and depending on the HC species and the atmosphere of the exhaust gas, it may show higher oxidation activity than Pt.
  • the ratio of Pt and Pd is preferably 1: 1 to 11: 2, more preferably 3: 2 to 11: 2. If the ratio is less than 1: 1, the reduction in the oxidation activity of HC, CO, NO, etc. accompanying the decrease in the platinum content, and the reduction in the heat generation capacity of the exhaust gas due to the combustion of unburned light oil, etc. increase. If it exceeds, there is a risk that the merit in price will be lost.
  • the supported amount of the precious metal component of the DOC is preferably 0.5 to 4.0 g / L in terms of metal per volume of the monolithic structure type carrier, and 0.8 g / L to 3.0 g / L. It is more preferable that If the amount of the precious metal component is too small, the oxidation removal performance of HC and CO, the oxidation performance of NO, and the combustibility of unburned fuel such as light oil cannot be obtained sufficiently. There is a risk that the benefits of. Further, in the present invention, the coating amount of the oxidation catalyst (DOC) catalyst layer is preferably 50 to 300 g / L, more preferably 70 to 250 g / L.
  • the coating amount of the catalyst layer is less than 50 g / L, the dispersibility of the noble metal such as platinum supported is deteriorated, so that the oxidation activity is lowered, and when it exceeds 300 g / L, the inside of the cell is narrowed. Since pressure loss increases, it is not preferable.
  • barium (Ba) is used as a promoter.
  • Ba is one of elements having a high ionization tendency, and gives electrons to noble metals such as Pt and Pd to promote reduction of the noble metal.
  • the starting salt of Ba is preferably a water-soluble salt for high dispersion on alumina.
  • Barium acetate, barium chloride, barium nitrate, barium hydroxide, barium oxide (barium hydroxide when dissolved in water) Is used.
  • barium acetate and barium hydroxide (barium oxide) are preferable because they have high solubility in water and are easily oxidized at a relatively low temperature when they are oxidized by heat treatment in an air furnace in an air atmosphere.
  • the supported amount of Ba is preferably 0.5 to 4.0 g / L, more preferably 0.5 to 3.0 g / L in terms of barium oxide. If the supported amount in terms of barium oxide is less than 0.5 g / L, there is a concern that the electron donating property to Pt or Pd becomes poor. On the other hand, if the supported amount in terms of barium oxide is more than 4.0 g / L, there is a concern that the ability to occlude NO 2 oxidized with Pt and release it as NO increases.
  • the noble metal component and the promoter component are supported on an inorganic oxide (inorganic base material), mixed with other catalyst components as necessary, and coated on a structural support as a catalyst composition.
  • an inorganic oxide as the base material supporting the noble metal component, a known exhaust gas purifying catalyst material can be used.
  • Such an inorganic material is preferably a porous inorganic oxide that has high heat resistance and a large specific surface area value, and can stably disperse the noble metal component stably.
  • An example of an inorganic oxide (inorganic base material) for supporting a noble metal or a promoter is alumina.
  • alumina material examples include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina, with ⁇ -alumina being preferred. Further, it is preferable to add lanthanum, zirconia, ceria or the like to ⁇ -alumina. In particular, ⁇ -alumina to which lanthanum is added has excellent heat resistance, and when a noble metal component such as a platinum component or a palladium component is supported, high catalytic activity can be maintained even at high temperatures (Japanese Patent Laid-Open No. 2004-2004). -290827).
  • alumina has a pore diameter (mode diameter, hereinafter the same) of preferably 12 to 120 nm, more preferably 12 to 80 nm, and further preferably 12 to 60 nm. If the pore diameter of alumina is smaller than 12 nm, the diffusion of gas in the pores will be slow, and the pores may be blocked by soot or the like. On the other hand, if the pore diameter is larger than 120 nm, the BET specific surface area becomes relatively small, and the dispersibility of noble metals, promoters and the like deteriorates.
  • mode diameter mode diameter, hereinafter the same
  • the BET specific surface area value (according to the BET method, hereinafter the same) of alumina is preferably 80 to 250 m 2 / g, and more preferably 100 to 200 m 2 / g.
  • the BET specific surface area value of alumina is larger than 250 m 2 / g, the pore diameter becomes relatively small, and there is a concern about deterioration of gas diffusion and pore clogging.
  • the BET specific surface area is less than 80 m 2 / g, there is a concern that the dispersibility of the noble metal or the promoter may be deteriorated.
  • one kind of alumina having a pore diameter of 12 to 120 nm may be used, but a mixture of two or more kinds of alumina having different pore diameters is preferable.
  • the base material with a smaller pore size is preferable for the gas species having a smaller molecular weight in terms of the contact probability between the gas and the active species. This is because it is considered preferable from the viewpoint of diffusion.
  • alumina having a relatively large pore diameter is preferable because it is difficult to enter the pores unless the pore diameter is as large as 20 to 120 nm. Since it is small, it can enter into the pore even if the pore diameter is as small as 12 to 20 nm and it reacts easily. Therefore, alumina having a relatively small pore diameter is preferable.
  • a monolithic flow-through type honeycomb structure is used as a DOC carrier.
  • this honeycomb structure has a quadrangular prism cell specification, when a catalyst slurry is applied, the catalyst tends to accumulate at the four corners due to surface tension. Therefore, the catalyst layer is thick only at the four corners of the quadrangular prism cell, and conversely, the catalyst layers at other portions are relatively thin.
  • the catalyst layer is thick, it takes time for the gas to diffuse from the surface of the catalyst layer to the bottom, so that the noble metal at the bottom is not effectively used in the thick part of the catalyst layer.
  • a base material to be a bottom layer and fill the four corners.
  • alumina, silica, zeolite or the like can be used. These materials are not limited by their physical properties, but those having a certain BET specific surface area and being inexpensive are preferable.
  • the coating amount of the base material is preferably 20 to 130 g / L, more preferably 30 to 100 g / L. If the coating amount of the base material is less than 20 g / L, there is a concern that the effect of filling the four corners of the quadrangular prism cell becomes poor. On the other hand, if it exceeds 130 g / L, the inside of the cell becomes narrow and the pressure loss increases, which is not preferable.
  • Precious metal starting salt and combustible substance In order to carry the noble metals platinum and palladium on the inorganic base material, as starting salt of platinum, ethanolamine solution of platinum (IV) hydroxide, tetraammineplatinum (II) acetate, tetraammineplatinum (II) carbonate, Tetraammine platinum (II) nitrate, nitric acid solution of platinum hydroxide (IV) acid, platinum nitrate, dinitrodiamine platinum nitric acid, platinum chloride (IV) acid and the like can be used.
  • platinum starting salts are ethanolamine solution of platinum hydroxide (IV) acid, platinum nitrate, dinitrodiamine platinum nitrate, tetraammineplatinum (II) nitrate, etc.
  • Components other than noble metals can be easily treated by heat treatment during catalyst preparation. Those which volatilize in the water. When chloride is used as a starting salt, chlorine may remain depending on the production method, which may adversely affect catalyst activity. After the aqueous solution of these metal salts and the inorganic base material are mixed, drying and baking can be appropriately performed by a known method.
  • platinum and palladium may be loaded separately.
  • the synergistic effect is expected, and in order to bring platinum and palladium as close as possible, the properties of the starting salt aqueous solution of each of platinum and palladium ( It is preferable to combine acidity and alkalinity.
  • platinum and palladium starting salt aqueous solutions By making the properties of the platinum and palladium starting salt aqueous solutions the same, even if both aqueous solutions are mixed, they will remain in a uniform solution without precipitation, and even after being supported on an inorganic base material.
  • the platinum particles and the palladium particles are present in a mixed state, and are easily brought close to each other.
  • a combustible material in advance when a slurry is prepared by adding a catalyst component.
  • the combustible material is baked and generates heat when firing, and the catalyst component is sintered on the support by generating a high temperature, and the noble metal component such as platinum is added to the inorganic matrix.
  • the temperature required for firing can be reduced by fixing the material.
  • the flammable substance burns (oxidizes) in the vicinity of the catalyst surface and consumes oxygen in the air, so the catalyst surface may be in a reduced state.
  • a reducing atmosphere is formed at a high temperature, and that noble metals such as platinum are maintained in a metal state and grow particles.
  • combustible substance an inexpensive and carbon-containing material is preferable, and examples include, in addition to purified sugar, monosaccharides such as fructose, glucose, and brain sugar, and disaccharides such as sucrose, maltose, and lactose.
  • monosaccharides such as fructose, glucose, and brain sugar
  • disaccharides such as sucrose, maltose, and lactose.
  • These combustible materials are safe as materials, have excellent solubility, have an ignition temperature of 350 ° C., and not only burn sufficiently under the conditions of applying a catalyst component to the honeycomb structure and firing, but also molecules.
  • a carrier having an integral structure that is, a honeycomb structure (hereinafter also referred to as a honeycomb carrier) is used for the DOC in order to carry a noble metal component with good dispersibility.
  • the honeycomb structure is a honeycomb-shaped structure in which a large number of through holes are concentrated.
  • stainless steel, silica, alumina, silicon carbide, cordierite, or the like can be used as the material of such a honeycomb structure.
  • any structure of the honeycomb structure can be used in the present invention.
  • honeycomb structure it is desirable to use not only DOC but also a flow-through type honeycomb structure in which through-holes opened at both ends are integrated into a honeycomb shape for use in SCR described later.
  • a wall flow honeycomb structure in which DPF and CSF, which will be described later, are formed in a honeycomb shape by accumulating through-holes having one through-hole opening and the other closed.
  • one honeycomb structure may be coated with a catalyst composition dedicated to each honeycomb structure type catalyst.
  • Such a honeycomb carrier can be selected from known honeycomb structure type carriers, and the overall shape thereof is also arbitrary, depending on the structure of the exhaust system to be applied, such as a cylindrical shape, a quadrangular prism shape, a hexagonal casting shape, etc. It can be selected as appropriate.
  • the number of holes in the opening is determined in consideration of the type of exhaust gas to be processed, gas flow rate, pressure loss or removal efficiency, etc. The number is preferably 100-1500 per inch 2 (6.45 cm 2 ), more preferably 100-900. If 1inch 2 (6.45cm 2) Cell density per 100 or more, it is possible to secure a contact area of the exhaust gas and the catalyst, purification function of sufficient exhaust gas is obtained, 1inch 2 (6.
  • the thickness of the cell wall of the honeycomb carrier is preferably 2 to 12 mil (milliinch: 0.05 to 0.3 mm), more preferably 3 to 8 mil (0.076 to 0.2 mm).
  • a wash coat method is generally used. First, a catalyst material and a honeycomb carrier are prepared. If necessary, the catalyst material is mixed with water or a solvent obtained by adding a water-soluble organic solvent to water to form a slurry mixture, and then applied to the honeycomb carrier, followed by drying, Manufactured by firing. That is, the catalyst material and water or a solvent obtained by adding a water-soluble organic solvent to water (hereinafter also referred to as an aqueous medium) are mixed at a predetermined ratio to obtain a slurry mixture.
  • the aqueous medium may be used in such an amount that each catalyst component can be uniformly dispersed in the slurry.
  • the catalyst material contains a noble metal component containing at least platinum as an inorganic base material.
  • the noble metal component can also be supported on an inorganic base material in advance.
  • the metal catalyst component and the inorganic base material are mixed in an aqueous medium to prepare a slurry.
  • a known method can be appropriately employed.
  • compounds such as nitrates, carbonates, acetates, chlorides, specifically, ethanolamine solutions of platinum hydroxide (IV) acid, tetraammineplatinum (II) acetate , Tetraammineplatinum (II) carbonate, tetraammineplatinum (II) nitrate, nitric acid solution of platinum hydroxide (IV) acid, platinum nitrate, dinitrodiamineplatinum nitrate, platinum chloride (IV) acid, etc.
  • a solution of the noble metal component raw material is prepared by selecting from these and dissolving in water or an organic solvent.
  • this noble metal component raw material solution is mixed with an inorganic base material together with an aqueous medium, dried at 50 to 200 ° C. to remove the solvent, and then fired at 300 to 1200 ° C.
  • a known catalyst material may be blended as a binder or the like.
  • known catalyst materials include alumina, silica, titania, zirconia, silica-alumina, ceria, alkali metal materials, alkaline earth metal materials, transition metal materials, rare earth metal materials, silver, silver salts, and the like. If necessary, a dispersant and a pH adjuster can be used in combination.
  • the catalyst composition is applied as a slurry mixture.
  • the catalyst composition may be a single layer or may be applied so as to have two or more layers.
  • drying and firing are performed.
  • the drying temperature is preferably from 100 to 300 ° C, more preferably from 100 to 200 ° C.
  • the firing temperature is preferably 300 to 600 ° C., particularly preferably 400 to 600 ° C.
  • the drying time is preferably 0.5 to 2 hours, and the firing time is preferably 1 to 3 hours. Heating can be performed by a known heating means such as an electric furnace or a gas furnace.
  • DOC function Most of the NOx contained in the exhaust gas from the engine is NO.
  • NO: NO 2 ratio is about 1: 1 in terms of molar ratio in an SCR catalyst containing zeolite such as Fe- ⁇ or MFI as a main component.
  • a DOC is disposed in front of the SCR catalyst to oxidize NO to NO 2 and increase the NO 2 concentration in NOx.
  • NO oxidation performance is higher in the noble metal component than the transition metal, and the Pt component is superior to the Pd component (Japanese Patent Laid-Open No.
  • Non-Patent Document 4 JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Vol. 40 (2007) No. 9 pp. 741-748.
  • a means for burning and removing fine particles such as soot trapped by the wall flow type honeycomb structure is disposed at the subsequent stage of the DOC.
  • the exhaust gas temperature is raised and the combustion heat Burn fine particles.
  • a wall flow type honeycomb structure alone (DPF) or a catalyzed wall flow type honeycomb structure (CSF) is used as the means for burning and removing fine particles.
  • DPF wall flow type honeycomb structure alone
  • CSF catalyzed wall flow type honeycomb structure
  • the use of a catalyzed wall flow type honeycomb structure (CSF) is common because it saves the fuel required for combustion and lowers the starting temperature for burning soot and other particulates.
  • the catalyzed combustion filter is a catalyzed combustion filter containing a noble metal component for collecting particulate matter (PM) in exhaust gas discharged from a diesel engine and removing it by combustion (oxidation). It is.
  • Catalytic combustion filter (CSF) is a catalyst in which platinum (Pt) and palladium (Pd) are supported on one kind of alumina having a pore diameter of 12 to 60 nm, or two or more kinds of alumina mixtures having different pore diameters within the range. It is preferable that the layer has a layer and the ratio of platinum to palladium is 1: 1 to 11: 4 in terms of weight.
  • the CSF may be a bag filter having high heat resistance, but is a wall flow type obtained by making a sintered body of an inorganic oxide such as silica, alumina, silicon carbide, cordierite, etc. porous. It is desirable to use the honeycomb type structure as a catalyst.
  • CSF contains at least a platinum component and a paradium component as noble metal components.
  • Pt component By containing the Pt component, even CSF can exhibit NO oxidation performance, increase the NO 2 concentration in the exhaust gas, and improve the NOx reduction and purification capacity of the SCR catalyst in the latter stage of CSF. Further, by adding the Pd component to the Pt component, it can be expected to suppress volatilization of the Pt component.
  • the ratio of platinum to palladium is preferably 1: 1 to 11: 4, more preferably 3: 2 to 11: 4 in terms of weight. Outside this range, it is not preferable as in the case of the DOC. If the ratio is less than 1: 1, the decrease in the oxidation activity of HC, CO, NO, etc.
  • the supported amount of platinum is preferably 0.05 to 2.0 g / L, more preferably 0.1 to 1.5 g / L in terms of metal.
  • the coating amount of the oxidizing component constituting the catalyst layer of the catalyzed combustion filter (CSF) is preferably 4 to 100 g / L, and more preferably 5 to 50 g / L.
  • the coating amount of the oxidizing component is less than 4 g / L, the dispersibility of the noble metal supported such as platinum is deteriorated, so that the oxidation activity is lowered. Innumerable open pores are not preferable because the pressure loss is increased by narrowing the pores.
  • Such a CSF can be said to be a “structure coated with an oxidation catalyst composition” similar to DOC in the present invention. Therefore, for the inorganic base material, all the porous inorganic oxides described in detail in the DOC section can be used. In addition, all starting materials described in detail in the DOC section can be used for starting salts of noble metals such as platinum.
  • a honeycomb structure (monolithic structure type carrier) is also used for the CSF.
  • a wall flow type carrier in which one of the through-hole openings is opened and the other through-holes are integrated to form a honeycomb.
  • the wall flow type carrier the wall of the through hole is made of a porous material, and the particulate component enters the through hole through the through hole opening together with the exhaust gas, and the exhaust gas passes through the porous hole of the through hole wall. Then, it is discharged backward, and the particulate component is deposited in the closed through hole.
  • the particulate component thus deposited is burned and removed as described above, whereby the CSF is regenerated, and the particulate component can be captured again from the exhaust gas.
  • a wall flow type honeycomb structure having a function as a filter is used, so the catalyst component used as CSF has the same function as DOC.
  • a function different from DOC is also required.
  • the same amount of catalyst component as the flow-through honeycomb structure is applied to the wall-flow honeycomb structure, the pressure loss increases abnormally even though the walls of the through holes are made of a porous material. The output of is significantly reduced. Therefore, when the catalyst component is applied to the wall flow type honeycomb structure, the amount of the catalyst component used per unit volume is preferably half or less than that of the flow through type honeycomb structure.
  • CSF function The main role of the CSF is to oxidize and remove particulate components such as soot trapped in the wall flow type honeycomb structure, and the function of the catalyst component on which the noble metal is supported is the starting temperature for oxidizing and removing particulate components such as soot. There is to lower.
  • CSF has an oxidation catalyst function, soot and soot adhering to the CSF can be combusted from a relatively low temperature, reducing consumption of fuel for combustion such as soot. Is possible.
  • DOC alone cannot sufficiently oxidize NO to NO 2
  • CSF can further oxidize NO that cannot be oxidized by DOC to NO 2 .
  • SCR catalyst selective reduction catalyst
  • the SCR catalyst is arranged at the rear stage of the DOC and CSF. This structure exhibits high purification performance for soot and SOF as well as HC, CO and NOx.
  • the SCR catalyst used in the exhaust gas purification apparatus of the present invention is for reducing and purifying NOx in exhaust gas using an ammonia component as a reducing agent.
  • SCR catalyst materials include zeolites and zeolite-like compounds (crystalline metal aluminophosphates) described later, transition metal oxides such as vanadium oxide, titania, zirconia, tungsten oxide, ceria, lanthanum, praseodymium, samarium, gadolinium And various inorganic materials such as rare earth oxides such as neodymium, stealth metal oxides such as gallium oxide and tin oxide, and composite oxides thereof.
  • the SCR catalyst preferably contains zeolite or crystalline metal aluminophosphate.
  • noble metal components such as Pt and Pd are preferably not included because they oxidize the ammonia component to generate NOx.
  • Zeolite is a general term for aluminosilicates having fine pores in the crystal, and molecules can be selectively taken into the pores to promote the reaction.
  • Such zeolite and the inorganic material have excellent NOx reduction and purification performance as an SCR material, but when they are contaminated with noble metals, the NOx reduction and purification performance is significantly reduced.
  • the precious metal component Pt in the DOC is supported on the honeycomb structure in a state in which it is difficult to scatter even when exposed to high temperatures, thereby preventing contamination of zeolite and the inorganic material.
  • the NOx reduction and purification performance excellent as an SCR catalyst can be stably exhibited over a long period of time.
  • the SCR catalyst is preferably a monolithic structure type carrier such as a flow-through honeycomb structure or a wall flow honeycomb structure.
  • the zeolite is not particularly limited, but Y type, ⁇ type, MFI type, CHA type, USY type, SUZ type, MCM type, PSH type, SSZ type, ERB type, ITQ type, mordenite, ferrierite. It can be selected appropriately.
  • crystalline metal aluminophosphate having a layered structure similar to that of zeolite can be mentioned (Japanese Patent Laid-Open No. 60-86011). As such a crystalline metal aluminophosphate, crystalline aluminum phosphate (ALPO) and crystalline aluminum silicate phosphate (SAPO) are known and are also studied as SCR catalyst materials.
  • zeolites and zeolite-like compounds may be used alone, or two or more kinds of materials may be mixed, or a plurality of materials may be coated on the surface of the structural support in multiple layers.
  • zeolite and zeolite-like compounds may be those obtained by ion exchange of transition metal components such as iron and copper and rare earth components such as cerium and lanthanum at the cation sites.
  • ⁇ -type zeolite is preferably used as the SCR catalyst material in the present invention.
  • ⁇ -type zeolite has a relatively complicated three-dimensional pore structure composed of linear pores having a relatively large diameter and unidirectionally aligned linear pores and curved pores intersecting the linear pores. Diffusion and diffusion of gas molecules such as NH 3 are easy, and the property is excellent in reactivity and durability.
  • zeolite has acid sites that can adsorb basic compounds such as NH 3 , and the number of acid sites varies depending on the Si / Al ratio.
  • zeolite with a low Si / Al ratio has a large number of acid points, but the degree of deterioration is large in durability in the presence of water vapor. There are few.
  • NH 3 is adsorbed on the acid sites of the zeolite, which becomes the active sites and reduces and removes nitrogen oxides such as NO 2. The lower one is advantageous for the denitration reaction.
  • the Si / Al ratio has a trade-off relationship between durability and activity, but considering these, the Si / Al ratio of zeolite is preferably 5 to 500, more preferably 10 to 100, and more preferably 15 to 50 is more preferable. Such characteristics are similarly possessed by ⁇ -type zeolites suitable for SCR catalysts and MFI-type zeolites.
  • ⁇ -type zeolite in which an iron element is ion-exchanged at the cation site of the zeolite as the SCR catalyst material.
  • the iron in which the iron element is ion-exchanged may contain iron oxide as an iron component.
  • the zeolite containing an iron element has a high NH 3 adsorption / desorption rate and high activity as an SCR, it is preferably contained as a main component.
  • the main component means 50 wt% or more of the total amount of zeolite specified for the catalyst composition coated on the support of the SCR catalyst.
  • ⁇ -type zeolite has a three-dimensional pore structure as described above, and can easily diffuse cations during ion exchange and gas molecules such as NH 3 .
  • ⁇ -type zeolite has a unique structure and a complicated pore structure. It is an effective material for automobile catalysts because it is less likely to cause structural breakdown by heat and has high stability.
  • zeolite has a cation as a counter ion as a solid acid point.
  • cation ammonium ion or proton is generally used, but ⁇ -type zeolite (hereinafter sometimes referred to as “Fe- ⁇ ”) to which an iron element is added as a cation species is preferable.
  • the ratio of ion exchange of ⁇ -type zeolite by iron element is such that one iron element (ion) and two [AlO 4/2 ] -units which are monovalent ion exchange sites in the zeolite form an ion pair. Based on the formation, it is preferably represented by the following formula (9).
  • the ion exchange rate is preferably 10 to 100%, more preferably 12 to 92%, still more preferably 30 to 70%.
  • the ion exchange rate is 92% or less, the framework structure of the zeolite is further stabilized, the heat resistance of the catalyst and thus the life of the catalyst is improved, and more stable catalytic activity can be obtained.
  • the ion exchange rate is too low and less than 10%, sufficient denitration performance may not be obtained.
  • the said ion exchange rate 100%, it means that all the cation seed
  • the ion-exchanged zeolite exhibits excellent purification ability.
  • transition metal oxides such as titania, zirconia, tungsten oxide, rare earth oxides such as ceria, lanthanum, praseodymium, samarium, gadolinium, neodymium, base metal oxides such as gallium oxide, tin oxide, Or it can select suitably from these complex oxides.
  • alumina and silica modified with alumina and silica, and rare earths, alkali metals, alkaline earths, etc. are excellent in heat resistance and have a larger specific surface area than the above oxides. This is more preferable because the specific surface area of the oxide itself can be increased.
  • ceria is known as a NOx adsorption functional material, and also has a function of promoting the SCR reaction between NH 3 and NOx by promoting NOx adsorption in the present invention.
  • zirconia can be expected to have an effect as a dispersion holding material for highly dispersing other components in a thermally stable state.
  • tungsten oxide is highly acidic and has a large adsorption power for urea and ammonia, which are alkali components.
  • the oxides are preferably used alone or in combination or in combination. These oxides and their composite oxides are not particularly limited depending on the composition, structure and production method.
  • starting materials having forms such as nitrates, sulfates, carbonates, acetates, and chlorides containing the above elements are dissolved in an aqueous solution and then mixed and precipitated as precipitates by pH adjustment or evaporated to dryness.
  • the solid material obtained by solidifying may be fired, or when mixing or complexing, a plurality of these metal salts may be solubilized at once and the above treatment may be performed. After forming the oxide by performing the above treatment on one or more metal salts, the remaining metal salts may be supported all at once or sequentially.
  • the reducing agent spraying means In the exhaust gas purifying catalyst device of the present invention, the reducing agent spraying means (Injector) supplies a reducing agent selected from a urea component or an ammonia component. Consists of an attached spray nozzle.
  • the position of the reducing agent spray means is installed behind the catalyzed combustion filter (CSF) and in front of the selective reduction catalyst (SCR) for reducing nitrogen oxide (NOx) in contact with the reducing agent.
  • the second oxidation catalyst (DOC) is installed between the CSF and the SCR, it is preferable to arrange the second oxidation catalyst (DOC) behind the second DOC.
  • the kind of reducing component is selected from a urea component or an ammonia component.
  • urea component a standardized urea aqueous solution having a concentration of 31.8 to 33.3% by weight, for example, the trade name Adblue, can be used. If the ammonia component is used, ammonia gas is used in addition to ammonia water. May be. However, NH 3 which is a reducing component itself has a harmful effect such as an irritating odor. Therefore, urea water is added from the upstream of the denitration catalyst rather than using the NH 3 component as the reducing component as it is. A system in which NH 3 is generated by decomposition or hydrolysis and this acts as a reducing agent is preferable.
  • an ammonia oxidation catalyst (AMOX) can be further disposed after the SCR, if necessary. Normally, in the SCR, AMOX is additionally used when NOx and NH 3 cannot be purified to below the regulation value. Therefore, the AMOX another catalyst having an oxidation function of NH 3, is also included a catalyst component having a NOx purification function.
  • a catalyst having an oxidation function of NH 3 a noble metal component having one or more elements selected from platinum, palladium, rhodium, etc.
  • an inorganic material made of one or more of alumina, silica, titania, zirconia, etc. Is preferred.
  • an inorganic material whose heat resistance is improved by adding a promoter such as rare earth, alkali metal, or alkaline earth metal.
  • Platinum and palladium as noble metals exhibit excellent oxidation activity.
  • the catalyst having the NOx purification function all of zeolites and oxides described in the SCR section can be used. These two types of catalysts may be mixed uniformly and applied to the honeycomb structure having an integral type, but the catalyst having the NH 3 oxidation function is applied to the lower layer and the catalyst having the NOx purification function is applied to the upper layer. May be.
  • exhaust gas purification device (DOC + CSF + DOC + SCR)
  • another DOC is arranged after the CSF with respect to the exhaust gas purification device (DOC + CSF + SCR), and in the first DOC, carbon monoxide (CO) in the exhaust gas discharged from the diesel engine, Hydrocarbons (HC) and nitrogen oxides (NO) are oxidized, particulate matter (PM) in exhaust gas is collected by the next CSF, burned (oxidized) and removed, and unburned by the next DOC.
  • CO carbon monoxide
  • HC Hydrocarbons
  • NO nitrogen oxides
  • PM particulate matter
  • this exhaust gas purification catalyst device (DOC + CSF + DOC + SCR) is also referred to as catalyst device II.
  • the catalyst device II of the present invention sandwiches the oxidation catalyst (DOC) 4 on both sides of the catalytic combustion filter (CSF) 5 in the exhaust gas passage 2 from the diesel engine 1 as shown in FIG.
  • the exhaust gas purification catalyst device is provided with a reducing agent spraying means 3 and a selective reduction catalyst (SCR) 6 disposed behind the injection means 3.
  • SCR selective reduction catalyst
  • pore diameter of the alumina used for the oxidation catalyst (DOC) and the catalytic combustion filter (CSF) used in this example and the comparative example was measured by the method shown below.
  • ⁇ Measurement of pore distribution> After drying 0.3 g of various alumina powders, the pore distribution of alumina was measured by the Hg intrusion method using PASCAL 140-440 manufactured by Thermo ⁇ adopted mode diameter (diameter) as the pore diameter ⁇ . Moreover, the oxidation test (DOC) and the catalyzed combustion filter (CSF) were used alone or in combination, and the durability test and the evaluation test using the engine were measured by the following methods.
  • DOC oxidation test
  • CSF catalyzed combustion filter
  • DOC oxidation catalyst
  • CSF catalyzed combustion filter
  • DOC oxidation catalyst
  • Comparative Example 1 a model gas evaluation catalyst size (24 mm diameter ⁇ 66 mm length, 30 mL) using a core drill and a diamond cutter. Then, heat treatment was performed in an electric furnace at 750 ° C. for 50 hours, and a temperature rise / fall light-off test was conducted using a model gas evaluation apparatus. 1.
  • NOT30 is the catalyst bed temperature of the catalyst when 30% of NO is oxidized
  • COT75 is the catalyst bed temperature of the catalyst when 75% of CO is oxidized
  • HCT75 is 75% of HC is oxidized. Is the catalyst bed temperature of the catalyst.
  • DOC oxidation catalysts
  • CSF catalyzed combustion filters
  • Light oil flammability Diesel engine rotation speed is 1,800 rpm
  • catalyst bed temperature is fixed at 250 ° C or 300 ° C
  • light oil is 20 mL / min (250 ° C) or 30 mL / min from a spray tube installed in front of the catalyst inlet. (300 ° C.) ON / OFF spraying at intervals of 5 minutes
  • the temperature of the exhaust gas is measured with a thermocouple installed behind the catalyst outlet, and the rise in exhaust gas temperature in the light oil spray ON / OFF ⁇ below ⁇ T ( ° C) ⁇ .
  • Higher ⁇ T indicates that light oil is more combusted and generates heat, and thus has better combustibility.
  • ⁇ T (° C) (Catalyst outlet exhaust gas temperature when light oil spray is ON)-(Catalyst outlet exhaust gas temperature when light oil spray is OFF)
  • an integral structure carrier that is, a honeycomb flow-through cordierite carrier ⁇ 300 cell / inch 2 (465 k / m 2 ) / 8 mil (0.2 mm), 7.5 inch (190.5 mm) diameter ⁇ 3.3 inch] (83.8 mm) length, 2.39 L ⁇ was immersed and applied by a wash coat method so that the alumina loading per unit volume was 65 g / L. Then, it was dried at 150 ° C. for 1 hour, and baked at 500 ° C. for 2 hours in an air atmosphere to obtain a DOC (1) undercoated product.
  • the ratio of platinum and palladium was 5: 1 by weight.
  • ⁇ -alumina powder B 600 g of ⁇ -alumina powder B, 400 g of ⁇ -alumina powder C having a BET specific surface area of 165 m 2 / g and a pore diameter of 14 nm, and the Pt—Pd mixed solution are 2.43% by weight in terms of noble metals.
  • Pt—Pd-supported alumina powder b was obtained by impregnation.
  • 543.2 g of Pt—Pd-supported alumina powder b, 30 g of silica sol in terms of silica, and water were charged into a ball mill and milled to a predetermined particle size to obtain slurry ⁇ .
  • the oxidation catalyst DOC (1) was cut into a model gas evaluation catalyst size (24 mm diameter ⁇ 66 mm length, 30 mL) using a core drill and a diamond cutter, and after the heat treatment at 750 ° C. for 50 hours, the oxidation catalyst DOC A model gas evaluation test according to (1) was performed. The results of NO, CO, and HC oxidation activities are shown in FIG. The components of the oxidation catalyst DOC (1) and the amount of noble metal are shown in Tables 2 and 3. Thereafter, the oxidation catalyst DOC (1) ⁇ 7.5 inch (190.5 mm) diameter ⁇ 3.3 inch (83.8 mm) length, 2.39 L ⁇ was heat treated at 750 ° C.
  • FIG. 3 summarizing the model gas evaluation test with the above catalyst after heat treatment at 750 ° C. for 50 hours, and Tables 2 and 3 showing the amount of noble metal, NO, CO in the case of an oxidation catalyst (DOC) alone, and It can be seen that the HC oxidation activity is as follows.
  • alumina A, D, and E having a pore diameter of 10 nm or less are used as base materials supporting noble metals.
  • the oxidation activity of NO exceeding the oxidation catalyst DOC (3) of Comparative Example 1 (see Table 3) used was exhibited.
  • the oxidation catalyst DOC (2) of Example 2 in which alumina C having a pore diameter of 14 nm is added to alumina B having a pore diameter of 23 nm as a base material supporting a noble metal is Example 1 in which only alumina A having a pore diameter of 23 nm is used. It exhibited higher NO oxidation activity than the oxidation catalyst DOC (1).
  • Pt—Pd—Ba-supported alumina powder h was obtained by impregnation so as to be 0.323 wt% in terms of barium oxide.
  • Pt—Pd—Ba supported alumina powder j was obtained by impregnation.
  • the oxidation catalyst DOC (4) is placed in the front stage in the catalytic converter, and the heat treatment product of CSF and SCR is connected in series with the catalytic converter in the subsequent stage in the same manner as in Example 1 and shown in FIG.
  • the apparatus of the present invention was configured. By using this device, good exhaust gas purification performance was confirmed.
  • the results of light oil combustibility are shown in FIG.
  • the components of the oxidation catalyst DOC (5) and the amount of noble metal are shown in Tables 4 and 5. Thereafter, the oxidation catalyst DOC (5) is placed in the front stage in the catalytic converter, and the heat treatment product of CSF and SCR is connected in series with the catalytic converter in the subsequent stage in the same manner as in Example 1 and shown in FIG. A device for comparison was constructed. Even if this apparatus was used, good exhaust gas purification performance could not be obtained.
  • the oxidation catalyst DOC (4) of Example 3 exhibits higher NO oxidation activity than the oxidation catalyst DOC (3) of Comparative Example 1 in which the amounts of platinum and palladium are each increased by slightly less than 30% by weight (see Table 5). However, the effect was remarkable at a low temperature (250 ° C.). Further, as is apparent from the results of the light oil flammability test of FIG. 5, the oxidation catalyst DOC (4) of Example 3 of the present invention is the oxidation catalyst DOC (5) of Comparative Example 2 having the same amount of platinum and palladium. Further, the temperature rise due to heat generation accompanying the combustion of light oil was high, and the effect was remarkable at a low temperature (250 ° C.).
  • the oxidation catalyst DOC (4) of Example 3 had a higher temperature increase due to combustion of light oil than the oxidation catalyst DOC (3) of Comparative Example 1 in which the amounts of platinum and palladium were each increased slightly by 30% by weight.
  • These include barium oxide (BaO), and the pore diameters of the two types of alumina are 12 nm to 40 nm ⁇ actually 23 nm (alumina A) and 14 nm (alumina B) (see Table 4) ⁇ .
  • Comparative Example 1 in which DOC (4) does not contain barium oxide and the pore diameter of alumina is 10 nm or less ⁇ actually, 8 nm (alumina C), 9 nm (alumina D), and 10 nm (alumina E) (see Table 1)) ⁇
  • DOC (3) and DOC (5) In addition to the NO oxidation activity of NO. 2 oxidation catalysts DOC (3) and DOC (5), it is shown that the combustibility of light oil is also excellent.
  • Example 4 ⁇ Device configuration>
  • the DOC (4) of Example 3 and the CSF (1) of Example 1 were each heat-treated at 750 ° C. for 100 hours, and then connected in series in a catalytic converter, and an engine evaluation test was performed.
  • the result of the oxidation activity of NO, CO, and HC is shown in FIG.
  • the components of DOC (4) + CSF (1) and the amount of noble metal are shown in Tables 6 and 7.
  • the apparatus of the present invention shown in FIG. 1 was configured by connecting the SCR heat-treated product in series with the catalytic converter in the same manner as in Example 1 after the ⁇ DOC (4) + CSF (1) ⁇ catalytic converter. . By using this device, good exhaust gas purification performance was confirmed.
  • ⁇ Device configuration> The DOC (4) of Example 3 and the CSF (2) were each heat-treated at 750 ° C.
  • the apparatus of the present invention shown in FIG. 1 was configured by connecting the SCR heat-treated product in series with the catalytic converter in the same manner as in Example 1 after the ⁇ DOC (4) + CSF (2) ⁇ catalytic converter. . By using this apparatus, relatively good exhaust gas purification performance was confirmed.
  • the result of the oxidation activity of NO, CO, and HC is shown in FIG.
  • the components of DOC (3) + CSF (3) and the amount of noble metal are shown in Tables 6 and 7.
  • the comparative apparatus shown in FIG. 1 was configured by connecting the SCR heat-treated products in series with the catalytic converter in the same manner as in Example 1 after the ⁇ DOC (3) + CSF (3) ⁇ catalytic converter. Even if this apparatus was used, good exhaust gas purification performance could not be obtained.
  • Example 5 of the present invention a catalytic combustion filter CSF (2) using alumina alone having a pore diameter of 10 nm is disposed after the oxidation catalyst DOC (4), but NO, All of CO and HC exhibit oxidizing activity.
  • the catalyst ⁇ combination of DOC (3) + CSF (3) ⁇ of Comparative Example 3 both the oxidation catalyst and the catalyzed combustion filter have a precious metal loading of about 30% by weight as compared with Examples 4 and 5.
  • NO, CO, and HC all had low oxidation activity.
  • Pt—Pd—Ba-supported alumina powder m was obtained by impregnation so as to be 0.268% by weight in terms of barium oxide.
  • an integral structure carrier that is, a honeycomb flow-through cordierite carrier ⁇ 300 cell / inch 2 (465 k / m 2 ) / 8 mil (0.2 mm), 7.5 inch (190.5 mm) diameter ⁇ 2.64 inch] (67.1 mm) in length, 1.91 L ⁇ was immersed and applied by a wash coat method so that the amount of catalyst supported per unit volume was 111.02 g / L. Then, it was dried at 150 ° C. for 1 hour and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain a DOC (6) lower layer coated catalyst.
  • Example 6 The SCR (4) in Example 6 is followed by the SCR heat treatment product in the same manner as in Example 1 to configure the apparatus of the present invention in FIG. 1 (What are the apparatuses in Examples 1 to 5?) This is different in that the DOC is divided into two parts and installed). By using this device, good exhaust gas purification performance was confirmed.
  • Example 7 ⁇ Device configuration> Using the DOC (6), DOC (7), and CSF (4) of Example 6 above, the apparatus of the present invention was configured by connecting in series in the catalytic converter in the order of DOC + CSF + DOC.
  • FIG. 7 shows the results of the NO, CO, and HC oxidation activity tests conducted by the engine temperature increase evaluation test.
  • the components of DOC (6), CSF (4), and DOC (7) and the amount of noble metal are shown in Tables 8 and 9.
  • the heat treatment product of SCR was arranged in the subsequent stage of the DOC (7) of Example 7 in the same manner as in Example 1 to configure the apparatus of the present invention shown in FIG. By using this device, good exhaust gas purification performance was confirmed.
  • Example 8 Manufacture of oxidation catalyst DOC (8)>
  • Pt 0.91 g / L
  • Pd 0.18 g / L
  • BaO 2.0 g / L
  • ⁇ Device configuration> Using the DOC (6) and CSF (4) of Example 6 and the DOC (8), the apparatus of the present invention was constructed by connecting them in series in the catalytic converter in the order of DOC + CSF + DOC.
  • Example 7 shows the results of the NO, CO, and HC oxidation activity tests conducted by the engine temperature increase evaluation test.
  • the components of CSF (4) and the amount of noble metal are shown in Tables 8 and 9.
  • an SCR heat-treated product was disposed after the DOC (8) in Example 8 to configure the apparatus of the present invention shown in FIG. By using this device, good exhaust gas purification performance was confirmed.
  • Example 7 in which DOC (6), CSF (4), and DOC (7) are arranged in series so as to sandwich the catalyzed combustion filter CSF (4) of the present invention, the total loading of both Pt and Pd is achieved. Although the amount was almost the same as in Example 4 (see Table 9), it exhibited excellent NO oxidation activity that exceeded that of Example 4. In addition, Example 7 was almost the same as Example 4 in terms of CO and HC oxidation activity, and exceeded that of Comparative Example 3 in which the total amount of noble metal supported was slightly less than 30% by weight.
  • the total supported amount of both Pt and Pd was further reduced by nearly 10% by weight compared to Example 7, and by approximately 30% by weight compared to Comparative Example 3 (see Table 9). Regardless, the oxidation activity of NO and CO exceeded that of Comparative Example 3 although the oxidation activity of HC was slightly inferior.
  • the present invention reduces the loading amount of expensive noble metals (Pt and Pd) by nearly 20 to 30% by weight while adding BaO, optimizing the pore specification of alumina, optimizing the arrangement of DOC, etc. It contributes to the improvement of NO, CO and HC oxidation activity. In particular, a remarkable effect is exhibited in improving the oxidation activity of NO.
  • the exhaust gas purification device of the present invention can be used for purification technology of NOx generated by lean combustion, for example, diesel vehicles, mobile vehicles such as gasoline vehicles, ships, stationary applications such as generators, It is particularly useful for diesel vehicles.

Abstract

希薄燃焼機関からの排気ガスに含まれる炭化水素、一酸化炭素、窒素酸化物、煤などの微粒子成分の内、特に一酸化窒素の酸化性能及び軽油の燃焼性能に優れた排気ガス浄化触媒装置の提供。 ディーゼルエンジンから排出される排気ガス中の一酸化炭素、炭化水素、窒素酸化物、煤などの微粒子成分を浄化するため、一酸化炭素、炭化水素、窒素酸化物の内、特に一酸化窒素を酸化し、軽油を燃焼するための貴金属成分を含む酸化触媒(DOC)と、煤などの微粒子成分を捕集し、燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルター(CSF)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物(NOx)を還元剤と接触させて還元除去するための貴金属を含まない選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化装置において、酸化触媒(DOC)は、細孔径が12~120nmのアルミナ(Al)に、白金(Pt)、パラジウム(Pd)、及び酸化バリウム(BaO)を担持した触媒層を有し、白金とパラジウムの比が重量換算で1:1~11:2であることを特徴とする排気ガス浄化装置。

Description

排気ガス浄化装置
 本発明は、排気ガス浄化装置に関し、より詳しくは、希薄燃焼機関からの排気ガスに含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)、煤などの微粒子成分の内、特に一酸化窒素(NO)の酸化性能及び軽油など未燃の燃料の燃焼性能に優れた酸化触媒(DOC)と触媒化燃焼フィルター(CSF)を組み合わせた排気ガス浄化触媒装置に関する。
 ボイラー、ガスタービン、リーンバーン型ガソリンエンジン、ディーゼルエンジン等の希薄燃焼機関から排出される排気ガスには、燃料や燃焼空気に由来した様々な有害物質が含まれる。このような有害物質としては炭化水素(HC)、可溶性有機成分(Soluble Organic Fraction:SOFともいう)、煤(Soot)、一酸化炭素(CO)、窒素酸化物(NOx)などがあり、これら有害成分の排出量に対する規制は年々強化されている。それら有害成分の浄化方法としては、排気ガスを触媒に接触させて浄化する方法が実用化されている。
 このような希薄燃焼機関では、燃料の種類や供給量や供給のタイミング、空気の量等を制御して有害物質の発生量を抑制することも検討されている。しかし、従来の触媒や制御方法では満足の行く排気ガスの浄化はできていなかった。特に、希薄燃焼機関では、窒素酸化物が排出されやすく、加えて、その規制は益々強化されているが、既存のNOx浄化技術では、自動車に搭載されるディーゼルエンジンの場合、その稼動条件は常に変化することから、有害物質の排出を抑制することは困難である。
 更に、近年、温室効果ガスとして二酸化炭素(CO)の排出量の規制も強化されている。COの排出量は、エンジンの稼動に使用する燃料の量に比例するため、燃焼機関では使用する燃料が少なく燃費の良いことが望まれる。ディーゼルエンジンは、燃費がよく、COの排出量の少ない燃焼機関であるが、排気ガスには多量のNOxが含まれる。
 ディーゼルエンジンからのNOx排出を抑制するには、機械的に空燃比を小さくし、エンジンに還元成分でもある燃料を多量に供給することも考えられるが、燃費の悪化を招き、COの排出も増やしてしまう。また、このような燃焼制御では、燃費が良いというディーゼルエンジンの利点を生かせなくなる。
 ディーゼルエンジン等の希薄燃焼機関から排出される排気ガス中のNOxを浄化する方法としては、NOx(NO及びNO)を含む排気ガスを尿素の分解で発生するアンモニア(NH)成分の存在下で、酸化チタン、酸化バナジウム、ゼオライト等を主成分とする選択還元触媒と接触させて還元脱硝する技術が知られており、選択還元法、または選択的触媒還元(Selective Catalytic Reduction:以下、SCRということがある)法といわれている。
 このNH成分を還元剤として用いるSCRでは、主として次に示す反応式(1)~(3)によって、NOxを最終的にNに還元する。
  4NO + 4NH + O → 4N + 6HO  …(1)
  6NO + 8NH     → 7N + 12HO …(2)
  NO + NO + 2NH → 2N + 3HO  …(3)
 実際、NH成分によるNOxの浄化では、上記式(3)のようにNOとNOが概ね半分ずつ含まれる雰囲気で反応が促進する(非特許文献1参照)。しかしながら、希薄燃焼機関から排出されるNOx成分の殆どは一酸化窒素(NO)である(特許文献1参照)ことから、NOxを効率的に浄化するため、排気ガス中のNO成分の濃度が増すように、排気ガス流路にNO酸化手段を配置することが提案されている(特許文献2参照)。具体的には、NOの酸化能力の高い白金(Pt)が酸化触媒として使用される。
 このようなNO酸化手段を利用して、有害微粒子成分、NOxを一つの触媒系で同時に浄化する方法も提案されている。その一つが、排気ガス流路中に酸化触媒と、その後段にフィルターを配置し、その後段でアンモニア成分を噴霧し、その後段に配置される選択還元触媒(SCR)でNOxを浄化するものである(特許文献3参照)。
 このような触媒配置によって、酸化触媒で排気ガス中のNOをNOに酸化し、微粒子成分の燃焼除去し、NOxを還元浄化するという手段を一つの触媒系で同時に行うことができる。そして、このNOの酸化触媒成分として白金成分が有効とされている(特許文献4、非特許文献2参照)。
 このように、NOxの浄化、微粒子成分の浄化手段が提案されているが、いずれの場合もSCRの前方にDOCを配置し、排気ガス中のNO濃度を増してSCRにおけるNOx浄化の効率化を図るものである。
 また、ディーゼルエンジンの燃費向上には、煤やSOF(これらをまとめて、以下「微粒子成分」またはPM:Particulate Matterということがある)の浄化技術も影響を与える。微粒子成分は、排気ガスの流路中に耐熱性フィルター(DPF:Diesel Particulate Filter)を配置し、このフィルターで微粒子成分を濾し取る方法が実用化されている。濾し取られた微粒子成分は、フィルターに堆積するがフィルターに微粒子成分が堆積し続けると、フィルター目詰まりに伴う背圧上昇によってエンジンの出力低下を招いてしまう。そこで、フィルターに堆積した微粒子成分を燃焼除去してフィルターを再生することが検討されている(特許文献3、特許文献4)。
 特許文献3、特許文献4のシステムでは、DOCの後段にDPFを配置し、フィルターに堆積した微粒子成分を酸素の他、NOを利用して燃焼除去している。NOを利用するとより低温から微粒子成分を燃焼させることができるので、微粒子成分の燃焼除去が促進されると共に圧損上昇を抑えてフィルター再生までのインターバルを長くすることができる。このように微粒子成分を捕集して燃焼除去するフィルターのうち、触媒成分を被覆したDPFはCSF(Catalyzed Soot Filter)ともいわれている。
 このように、DOCには排気ガス中のHCやCOを酸化除去する目的で、またCSFには排気ガス中の煤やSOFを酸化浄化する目的で、各々白金(Pt)やパラジウム(Pd)等の貴金属成分が使用されているが、DOCは前述のように排気ガス中のNOをNOに酸化する作用も有する。NO量を増加した排気ガスは、後方のSCRにおけるNOx還元浄化や、DPFやCSFにおける微粒子成分の燃焼を促進する。
 また、DOCで排気ガス中のHCを利用して排気ガスの温度を上昇させることは、DOCの後方に配置したDPF又はCSFに堆積した微粒子成分の燃焼除去を促進するのに有効である。そのため、ディーゼルエンジンの排気ガス浄化システムでは、DOCにHC成分を供給し、HC成分を燃焼(酸化)させることがある。このような排気ガス温度の上昇のためにHC成分を使用する手段としては、エンジンに燃料を多めに供給し、未燃焼のHCを発生させてDOCに供給する方法や、エンジンからDOCまでの間の配管中で燃料を噴霧して供給する方法がある。
 このように、様々なNOxの浄化、微粒子成分の浄化手段が提案されているが、近年、排気ガス規制の強化に伴い、希薄燃焼機関からの排気ガスに対応する排気ガス浄化システムに用いられる触媒の数が増えると共に、個々の触媒の高機能化も必要とされる傾向にある。そのため、DOCやCSFに使用される高価な貴金属の量が増大する傾向にある。
 そこで、PtやPdなどの貴金属を含有するDOCやCSFにはCO、HC、煤などの酸化除去性能、NOの酸化性能、及び軽油など未燃の燃料の燃焼性を向上させると同時に、貴金属の使用量を減らすと云う、相反する二つの課題の解決が求められるようになった。
 そのため、本出願人は、ディーゼル機関から排出される排気ガス流路に、酸化手段と、尿素水溶液噴霧手段と、特定の選択還元触媒をこの順序で配置し、該酸化手段である貴金属成分として白金成分またパラジウム成分を含み、この貴金属成分の量が金属換算で0.1~3g/L、貴金属成分中の金属換算の白金量が50~100w%である酸化触媒により、排気ガス中の炭化水素成分、一酸化炭素、一酸化窒素、亜酸化窒素を酸化して、二酸化窒素濃度を増した後、尿素水溶液噴霧手段から選択還元触媒に尿素水溶液を噴霧供給し、150~600℃で接触させて、生成したアンモニアによって窒素酸化物を窒素と水に分解することを特徴とする排気ガス浄化方法を提案した(特許文献5参照)。これにより、尿素の加水分解を触媒系の外で行うことなく、シンプルな構成で、規格化され容易に入手可能な尿素水を使用してNOxを浄化できるようになった。
 しかし、これは酸化触媒の改良に関するものではなく、まだ貴金属の使用量を十分に減らせたとはいえない。
特開平05-38420号公報(請求項1、段落0012、0013、0014) 特開平08-103636号公報(請求項1、段落0002、0012) 特開平01-318715号公報 特表2002-502927号公報(請求項1、段落0007、0008) 特開2009-262098号公報(請求項12、段落0015)
Catalysis Today 114(2006)3-12(第2頁左欄) 「低温の酸化雰囲気下、Pt触媒のNO酸化性能への担体物質とエージングの影響」(Influence of Support Materials and Aging on NO Oxidation Performance of Pt  Catalysts under an Oxidative Atmosphere at Low Temperature), JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Vol.40 (2007) No.9 pp.741-748
 本発明の目的は、上記従来技術の問題点に鑑み、希薄燃焼機関からの排気ガスに含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)、煤などの微粒子成分の内、特に一酸化窒素(NO)の酸化性能及び軽油など未燃の燃料の燃焼性能に優れた酸化触媒(DOC)と触媒化燃焼フィルター(CSF)を組み合わせた排気ガス浄化触媒装置を提供することにある。
 本発明者らは、上記従来技術の問題点を解決するために鋭意検討を重ねた結果、DOC、CSF、SCRの順に触媒を配置し、DOCとSCR触媒の間に還元成分としてNH成分の供給手段を配置した排気ガス浄化装置において、DOCが貴金属成分のPt及びPdを細孔径が12~120nmの一種以上のアルミナに担持し、その際、PtとPdを重量比で1:1~11:2とし、酸化バリウムを添加した触媒層を有することで、特に、NOの酸化活性及び軽油など未燃の燃料の燃焼性を促進することを見出して、本発明を完成するに至った。
 即ち、本発明の第1の発明によれば、ディーゼルエンジンから排出される排気ガス中の一酸化炭素、炭化水素、窒素酸化物、煤などの微粒子成分を浄化するため、一酸化炭素、炭化水素、窒素酸化物の内、特に一酸化窒素を酸化し、軽油を燃焼するための貴金属成分を含む酸化触媒(DOC)と、煤などの微粒子成分を捕集し、燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルター(CSF)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物を還元剤と接触させて還元除去する選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化装置において、酸化触媒(DOC)は、細孔径が12~120nmのアルミナ(Al)に、白金(Pt)、パラジウム(Pd)、及び酸化バリウム(BaO)を担持した触媒層を有し、白金とパラジウムの比が重量換算で1:1~11:2であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第2の発明によれば、第1の発明において、前記触媒層は、一体構造型担体に一層以上に被覆されることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第3の発明によれば、第1の発明において、前記触媒層は、その下層にアルミナからなる下地層を有することを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第4の発明によれば、第1の発明において、前記細孔径が12~120nmのアルミナは、細孔径が異なる二種以上のアルミナ混合物であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第5の発明によれば、第1の発明において、前記酸化触媒(DOC)は、触媒化フィルター(CSF)と還元噴霧手段との間にもさらに設置することを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第6の発明によれば、第1の発明において、前記酸化触媒(DOC)は、酸化バリウムの量が0.5~4.0g/Lであることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第7の発明によれば、第1の発明において、前記酸化触媒(DOC)は、触媒層の被覆量が50~300g/Lであることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第8の発明によれば、第1の発明において、前記酸化触媒(DOC)は、貴金属の総担持量が金属換算で0.5~4.0g/Lであることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第9の発明によれば、第1又は5の発明において、前記触媒化燃焼フィルター(CSF)は、細孔径が12~120nmのアルミナ又はその範囲内で細孔径が異なる二種以上のアルミナ混合物に、白金(Pt)及びパラジウム(Pd)を担持した触媒層を有し、白金とパラジウムの比が重量換算で1:1~11:4であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第10の発明によれば、第9の発明において、前記触媒化燃焼フィルター(CSF)は、触媒層の被覆量が4~100g/Lであることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第11の発明によれば、第9又は10の発明において、前記触媒化燃焼フィルター(CSF)は、貴金属の総担持量が金属換算で0.05~2.0g/Lであることを特徴とする排気ガス浄化装置が提供される。
 さらに、本発明の第12の発明によれば、第1の発明において、前記選択還元触媒(SCR)の後に、さらにアンモニア酸化触媒(AMOX)を配置することを特徴とする排気ガス浄化装置が提供される。
 本発明の排気ガス浄化装置は、NOの酸化活性、軽油など未燃の燃料の燃焼性に優れ、ディーゼルエンジンなどの希薄燃焼機関から排出されるHC、CO、NOx、煤などの微粒子成分の内、特にNOの酸化性能及び軽油など未燃の燃料の燃焼性能に優れている。
 さらに、本発明の排気ガス浄化装置は、高価な貴金属の使用量が少なくて済むから低コストで製造する事ができ、排気ガス浄化装置を安定的に生産し供給することができる。
図1は、本発明の排気ガス浄化触媒装置において、酸化触媒(DOC)、触媒化フィルター(CSF)、還元成分の供給手段、及び選択還元触媒(SCR)をこの順に配置した構成を模式的に示す説明図である。 図2は、本発明の排気ガス浄化触媒装置において、酸化触媒(DOC)、触媒化フィルター(CSF)、酸化触媒(DOC)、還元成分の供給手段、及び選択還元触媒(SCR)をこの順に配置した構成を模式的に示す説明図である。 図3は、酸化触媒(DOC)を用いたモデルガス評価試験におけるNO、CO、及びHCの酸化性能を示すグラフである。 図4は、酸化触媒(DOC)を用いた台上ディーゼルエンジンによる排気ガス浄化試験におけるNO酸化活性を示すグラフである。 図5は、酸化触媒(DOC)を用いた台上ディーゼルエンジンによる排気ガス浄化試験における軽油燃焼性を示すグラフである。 図6は、酸化触媒(DOC)と触媒化燃焼フィルター(CSF)を用いた台上ディーゼルエンジンによる排気ガス浄化試験における、NO、CO、及びHCの酸化活性を示すグラフである。 図7は、酸化触媒(DOC)2個と触媒化燃焼フィルター(CSF)を直列に並べ、台上ディーゼルエンジンで排気ガス浄化試験したときの、NO、CO、及びHCの酸化活性を示すグラフである。
 以下、本発明の排気ガス浄化装置をディーゼル自動車用途に適用した場合について主に詳述するが、本発明は発電など様々な電力源に使用されるディーゼルエンジンにも有効であることはいうまでもない。
I.[排気ガス浄化装置(DOC+CSF+SCR)]
 本発明は、ディーゼルエンジンから排出される排気ガス中の窒素酸化物(NO)を酸化するための貴金属成分を含む特定の酸化触媒(DOC)と、排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルター(CSF)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物(NOx)を還元剤と接触させて還元除去するための貴金属を含まない選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化装置であり、この排気ガス浄化触媒装置(DOC+CSF+SCR)を触媒装置Iともいう。
 すなわち、本発明の触媒装置Iは図1のように、ディーゼルエンジン1からの排気ガス流路2中、酸化触媒(DOC)4と触媒化燃焼フィルター(CSF)5の後方に、還元剤噴霧手段3を設け、この噴射手段3の後方に選択還元触媒(SCR)6を配置した排気ガス浄化触媒装置である。
 本発明の触媒装置Iでは、DOC及びCSFによりNOをNOに酸化することで、それらの後方に配置するSCRにおける尿素水溶液やアンモニア水溶液(以下、アンモニア成分、またはNH成分ということがある)を使用したNOx還元反応を促進する。
 また、CSF内で蓄積された煤は、ディーゼルエンジンの筒内又はディーゼルエンジンとDOCの中間部の配管内に未燃の軽油を定期的に噴霧することで未燃の軽油をDOCで燃焼させて排気ガス温度を上昇させ、その燃焼熱で燃焼される。
1.[DOC:酸化触媒]
 本発明に使用されるDOCは、排気ガス中のNO、HC、CO、及び軽油等の未燃の燃料を酸化する貴金属成分を含む酸化触媒であり、貴金属成分として、少なくとも白金成分とパラジム成分を含有する。
(貴金属成分)
 酸化触媒では、前記のとおり、貴金属成分として一般に白金成分が使用され、パラジウム成分も使用されることがある。但し、Pd成分のみでは充分なNO酸化活性を得ることは難しい。また、Pd成分は、ディーゼルエンジンの燃料である軽油や重油中の硫黄成分により被毒し易く、長期間の使用で失活してしまうことがある。
 Pdはこの様な問題点はあるものの、価格がPtに比べかなり安価なこと、HC種や排気ガスの雰囲気によっては、Ptより高い酸化活性を示す場合があるため、PtとPdの担持比率を適切に配分することにより、性能面、価格面で最適な条件を見出すことができる。
 本発明では、以上のことを勘案し、PtとPdの比率については、1:1~11:2であることが好ましく、3:2~11:2であることがより好ましい。1:1未満であると白金の含有量の減少に伴うHC、CO、NO等の酸化活性の低下、及び未燃の軽油等の燃焼による排気ガスの発熱能力の低下が大きくなり、11:2を超えると価格面でのメリットがなくなる恐れがある。
 また、本発明ではDOCの貴金属成分の担持量が一体構造型担体の体積あたりの金属換算で0.5~4.0g/Lであることが好ましく、0.8g/L~3.0g/Lであることがより好ましい。貴金属成分の量が少なすぎると、HCやCOの酸化除去性能、NOの酸化性能、及び軽油など未燃の燃料の燃焼性が十分に得られず、貴金属成分の量が多すぎると価格面でのメリットがなくなる恐れがある。
 さらに、本発明では酸化触媒(DOC)の触媒層の被覆量が、50~300g/Lであることが好ましく、70~250g/Lであることがより好ましい。触媒層の被覆量が、50g/L未満であると、担持される白金等の貴金属の分散性が悪化することにより酸化活性が低下し、300g/Lを超えると、セル内が狭くなることで圧損が増大するので好ましくない。
(助触媒成分)
 本発明の排気ガス浄化装置における酸化触媒(DOC)では、バリウム(Ba)が助触媒として使用される。Baは、イオン化傾向が高い元素の一つであり、電子をPtやPdなどの貴金属に与え、貴金属の還元を促進する。特に、BaはPdとの相性が良く、Pdの活性を促進する働きを有する。
 Baの出発塩としては、アルミナ上で高分散させるために、水に可溶な塩が好ましく、酢酸バリウム、塩化バリウム、硝酸バリウム、水酸化バリウム、酸化バリウム(水に溶かすと水酸化バリウムになる)が使用される。
 それらの中でも、酢酸バリウムや水酸化バリウム(酸化バリウム)は、水への溶解度が高く、電気炉内で空気雰囲気下、熱処理により酸化物にする際、比較的低温で酸化され易いので好ましい。
 本発明において、Baの担持量は、酸化バリウム換算で0.5~4.0g/Lが好ましく、0.5~3.0g/Lがより好ましい。酸化バリウム換算での担持量が0.5g/Lより少ないとPtやPdへの電子供与性に乏しくなることが懸念される。一方、酸化バリウム換算での担持量が4.0g/Lより多いと、Ptで酸化されたNOを吸蔵して、NOとして放出する能力が増大してしまうことが懸念される。
(無機母材)
 上記貴金属成分や助触媒成分は、無機酸化物(無機母材)に担持され、必要に応じ他の触媒成分と混合し、触媒組成物として構造型担体に被覆される。このように貴金属成分を担持する母材としての無機酸化物は、公知の排気ガス浄化用触媒材料が使用できる。このような無機材料は、耐熱性が高く、その比表面積値が大きいことで貴金属成分を安定に高分散できる多孔質の無機酸化物が好ましい。
 貴金属や助触媒を担持するための無機酸化物(無機母材)の一例として、アルミナが挙げられる。アルミナの素材としては、γ-アルミナ、β-アルミナ、δ-アルミナ、η-アルミナ、θ-アルミナが挙げられ、なかでもγ-アルミナが好ましい。また、γ-アルミナにランタン、ジルコニア、セリアなどを添加することが好ましい。特に、ランタンが添加されたγ-アルミナは、耐熱性に優れ、白金成分やパラジウム成分等の貴金属成分を担持させた場合、高温時にも高い触媒活性を維持することが可能である(特開2004-290827号公報)。
 本発明において、アルミナは、細孔径(モード径、以下同じ)が12~120nmであることが好ましく、更に、12~80nmであることがより好ましく、12~60nmであることがさらに好ましい。アルミナの細孔径が12nmより小さいと細孔内でのガスの拡散が遅くなる上、煤などにより細孔が閉塞される恐れがある。一方、細孔径が120nmより大きいと相対的にBET比表面積が小さくなり、貴金属や助触媒などの分散性が悪化するので好ましくない。
 また、アルミナのBET比表面積値(BET法による、以下同様)は、80~250m/gであることが好ましく、更に、100~200m/gであるものがより好ましい。アルミナのBET比表面積値が250m/gより大きいと相対的に細孔径が小さくなるので、ガスの拡散の悪化や細孔の閉塞が懸念される。一方、BET比表面積が80m/gより小さいと貴金属や助触媒の分散性の悪化が懸念される。
 本発明では、細孔径が12~120nmのアルミナは一種でもよいが、細孔径が異なる二種以上のアルミナ混合物であることが好ましい。それは分子量が小さいガス種ほど細孔径が小さい母材の方がガスと活性種との接触確率の面から好ましく、逆に分子量が大きいガス種ほど細孔径が大きい母材の方が細孔内ガス拡散の面から好ましいと考えられるためである。例えば、長鎖のHCは分子量が大きいので、細孔径が20~120nmと大きくないと細孔内に入りにくいので、細孔径の比較的大きいアルミナが好ましいが、一方でCOやNOは、分子が小さいので、細孔径が12~20nmと小さくても細孔内に入ることができ反応しやすいため、細孔径の比較的小さいアルミナが好ましいというわけである。
(下地材)
 本発明においては、DOCの担体として後述する両端が開口した通孔を集積してハニカム状にした一体構造のフロースルー型ハニカム構造体が使用される。通常、このハニカム構造体として、四角柱セル仕様の物が使用されるため、触媒スラリーを塗布すると表面張力により四隅に触媒が溜まり易くなる。そのため、四角柱セルの四隅だけ触媒層が厚くなり、逆に、それ以外の部位の触媒層が相対的に薄くなる。触媒層が厚くなるとガスが触媒層の表面から底まで拡散するのに時間を要すため、触媒層が厚い部分では底の方の貴金属が有効に使われないことになる。これを避けるため、予め、底層となる下地材料を塗布して、四隅を埋めておくことが好ましい。
 このような材料として、アルミナ、シリカ、ゼオライトなどが使用できる。これらの材料は、その物性によって限定されないが、ある程度のBET比表面積を有し、安価であるものが好ましい。
 なお、下地材の被覆量は20~130g/Lが好ましく、30~100g/Lがより好ましい。下地材の被覆量が20g/L未満であると、四角柱セルの四隅を埋める効果が乏しくなることが懸念される。一方、130g/Lを超えるとセル内が狭くなることで圧損が増大するので好ましくない。
(貴金属出発塩及び可燃性物質)
 上記の無機母材に貴金属の白金とパラジウムを担持させるため、白金の出発塩として、水酸化白金(IV)酸のエタノールアミン溶液、テトラアンミン白金(II)酢酸塩、テトラアンミン白金(II)炭酸塩、テトラアンミン白金(II)硝酸塩、水酸化白金(IV)酸の硝酸溶液、硝酸白金、ジニトロジアミン白金硝酸、塩化白金(IV)酸などを用いることができる。また、パラジウムの出発塩として、テトラアンミンパラジウム(II)酢酸塩、テトラアンミンパラジウム(II)炭酸塩、テトラアンミンパラジウム(II)硝酸塩、ジニトロジアンミンパラジウム、硝酸パラジウム、塩化パラジウムなどを用いることができる。白金の出発塩として好ましいのは、水酸化白金(IV)酸のエタノールアミン溶液、硝酸白金、ジニトロジアミン白金硝酸、テトラアンミン白金(II)硝酸塩などで、貴金属以外の成分が触媒調製時の熱処理により容易に揮発する物が好ましい。
 なお、塩化物を出発塩とする場合、製法によっては塩素が残留して触媒活性に悪影響を及ぼす恐れがある。
 これらの金属塩との水溶液と、無機母材とを混合した後は、適宜公知の方法により乾燥、焼成を行うことができる。
 担持に際しては白金とパラジウムを各々別々に担持してもよいが、本発明では、相乗効果を期待し、白金とパラジウムをできる限り多く近接させるため、白金とパラジウムの各々の出発塩水溶液の性質(酸性、アルカリ性)を合わせることが好ましい。例えば、テトラアンミン白金(II)酢酸塩-テトラアンミンパラジウム(II)酢酸塩(アルカリ性同士)、水酸化白金(IV)酸のエタノールアミン溶液-テトラアンミンパラジウム(II)酢酸塩(同左)、硝酸白金-硝酸パラジウム(酸性同士)、ジニトロジアミン白金硝酸-硝酸パラジウム(同左)、塩化白金(IV)酸-塩化パラジウム(同左)などの組み合わせが挙げられる。
 白金とパラジウムの出発塩水溶液の性質を同じにすることにより、両方の水溶液を混合させても沈殿を生じることなく、均一溶液のままで存在するようになり、無機母材に担持させた後も、白金粒子とパラジウム粒子は各々混合した状態で存在し、それぞれが近接し易くなる。
 また、本発明では、予め、触媒成分を加えてスラリーを製造する際に可燃性物質を添加しておくことが好ましい。スラリーを一体構造を有する担体にコート後、焼成する際に可燃性物質が焼かれて発熱し、高温を発生させることで担体上に触媒成分を焼結させると共に、白金等の貴金属成分を無機母材上に固着させることで焼成に要する温度を低減することができるからである。
 さらに、可燃性物質を用いると、触媒表面近傍で可燃性物質が燃焼(酸化)して空気中の酸素を消費するため、触媒表面が還元状態になる可能性があるので、白金等の貴金属が高温下で還元雰囲気となり、白金等の貴金属がメタルの状態を保ったまま、粒子成長することが期待できる。
 可燃性物質としては、安価で炭素を含む材料が好ましく、例えば、精製糖のほか、果糖、ブドウ糖、脳糖などの単糖類、ショ糖、麦芽糖、乳糖などの二糖類が挙げられる。
 これらの可燃性物質は、材料として安全である上、可溶性にも優れ、発火温度も350℃と触媒成分をハニカム構造体に塗布して焼成する際の条件で十分燃焼するだけでなく、分子を形成する炭素数も6~12と小さいため、燃焼しても完全燃焼し易く、煤等の残渣が残り難いという特色がある。
 このDOCは、装置内に1個だけ用いてもよいが、2個用いて(DOC+DOC+CSF+SCR)の装置としてもよい。
2.[一体型構造を有する担体]
 本発明において、DOCには貴金属成分を分散性よく担持するために一体型構造を有する担体、すなわちハニカム構造体(以下、ハニカム担体ともいう)が使用される。ハニカム構造体とは、多数の通孔が集中したハニカム形状の構造体である。このようなハニカム構造体の材質には、ステンレス、シリカ、アルミナ、炭化珪素、コーディエライトなどが使用できるが、本発明には、いずれの材質のハニカム構造体も使用できる。
 このようなハニカム構造体は、DOCだけでなく、後述するSCRの用途でも両端が開口した通孔を集積してハニカム状にしたフロースルー型ハニカム構造体が使用されることが望ましい。一方、後述するDPF、CSFには、通孔開口部の一方を開口し、もう一方を閉口した通孔を集積してハニカム状にしたウォールフロー型ハニカム構造体が使用されることが望ましい。このようなハニカム構造体型触媒では、一つのハニカム構造体に各ハニカム構造型触媒専用の触媒組成物を被覆しても良い。
 このようなハニカム担体は、公知のハニカム構造型担体の中から選択可能であり、その全体形状も任意であり、円柱型、四角柱型、六角注型など、適用する排気系の構造に応じて適宜選択できる。さらに、開口部の孔数は、処理すべき排気ガスの種類、ガス流量、圧力損失あるいは除去効率などを考慮して適正な孔数が決められるが、通常、ディーゼル自動車の排気ガス浄化用途としては、1inch(6.45cm)当たり100~1500個が好ましく、100~900個であることがより好ましい。1inch(6.45cm)当たりのセル密度が100個以上であれば、排気ガスと触媒の接触面積を確保することができ、充分な排気ガスの浄化機能が得られ、1inch(6.45cm)当たりのセル密度が1500個以下であれば、著しい排気ガスの圧力損出を生じることがなく内燃機関の性能を損なうことがない。
 また、ハニカム担体のセル壁の厚みは、2~12mil(ミリインチ:0.05~0.3mm)が好ましく、3~8mil(0.076~0.2mm)がより好ましい。
(触媒調製法)
 本発明に使用されるハニカム担体からDOCなどの触媒を調製するには、一般にウォッシュコート法が用いられる。
 まず、触媒材料、ハニカム担体を用意する。触媒材料は必要に応じてバインダーや界面活性剤などの添加剤を水または水に水溶性有機溶媒を加えた溶媒と混合してスラリー状混合物にしてから、ハニカム担体へ塗工した後、乾燥、焼成する事により製造される。すなわち、触媒材料と水または水に水溶性有機溶媒を加えた溶媒(以下、水系媒体ともいう)と所定の比率で混合してスラリー状混合物を得る。本発明においては、水系媒体は、スラリー中で各触媒成分が均一に分散できる量を用いれば良い。
 触媒材料は、少なくとも白金を含む貴金属成分を無機母材として含んでいる。貴金属成分は、予め無機母材に担持させておくこともできる。金属触媒成分と無機母材は水系媒体中で混合してスラリーを調製しておく。
 触媒材料を調製するにあたり、貴金属を、予め無機母材に担持させておく場合、適宜公知の方法を採用できる。
 その一例を示すと、まず、貴金属成分の原料として硝酸塩、炭酸塩、酢酸塩、塩化物などの化合物、具体的には水酸化白金(IV)酸のエタノールアミン溶液、テトラアンミン白金(II)酢酸塩、テトラアンミン白金(II)炭酸塩、テトラアンミン白金(II)硝酸塩、水酸化白金(IV)酸の硝酸溶液、硝酸白金、ジニトロジアミン白金硝酸、塩化白金(IV)酸などを用意し、パラジウムの出発塩として、テトラアンミンパラジウム(II)酢酸塩、テトラアンミンパラジウム(II)炭酸塩、テトラアンミンパラジウム(II)硝酸塩、ジニトロジアンミンパラジウム、硝酸パラジウム、塩化パラジウムなどを用意する。これらから選択して水、有機溶媒に溶解して貴金属成分原料の溶液を用意する。
 次に、この貴金属成分原料の溶液を、水系媒体と共に無機母材と混合した後、50~200℃で乾燥して溶媒を除去した後、300~1200℃で焼成する。なお、上記成分以外に、バインダー等として公知の触媒材料を配合してもよい。このような公知の触媒材料としてはアルミナ、シリカ、チタニア、ジルコニア、シリカ-アルミナ、セリア、アルカリ金属材料、アルカリ土類金属材料、遷移金属材料、希土類金属材料、銀、銀塩等が挙げられ、必要に応じて分散剤、pH調整剤を合わせて使用することができる。
 触媒組成物をハニカム担体に被覆するには、触媒組成物をスラリー状混合物として塗工する。触媒組成物は一層としてもよいし、二層以上になるように塗布してもよい。触媒組成物を塗工した後、乾燥、焼成を行う。なお、乾燥温度は、100~300℃が好ましく、100~200℃がより好ましい。また、焼成温度は、300~600℃が好ましく、特に400~600℃が好ましい。乾燥時間は0.5~2時間、焼成時間は1~3時間が好ましい。加熱は、電気炉やガス炉等の公知の加熱手段によって行う事ができる。
(DOCの機能)
 エンジンからの排気ガスに含まれるNOxは、その多くがNOである。従来の排気ガス浄化装置では、SCR触媒におけるNOx浄化を促進するため、NOとNOを適切な比率にすることが望ましいとされてきた。このNO:NO比率は、Fe-βやMFIなどのゼオライトを主要な成分としたSCR触媒では凡そモル比で1:1とされる。
 本発明の排気ガス浄化装置でも、SCR触媒の前方にDOCを配置して、NOをNOに酸化し、NOx中のNO濃度を上昇させる。このようなNO酸化性能は、貴金属成分が遷移金属より高く、Pd成分よりもPt成分の方が優れている(特開2009-167844:段落[0021]、特公表2008-526509:段落[0005]、特開2008-155204:段落[0006]、非特許文献4(JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Vol.40 (2007) No.9 pp.741-748)。
 また、DOCの後段には、ウォールフロータイプのハニカム構造体でトラップされた煤などの微粒子を燃焼除去する手段が配置される。また、ディーゼルエンジンの筒内又はディーゼルエンジンとDOCの中間部の配管内に、未燃の軽油を定期的に噴霧して燃焼させるために、排気ガス温度を上昇させ、その燃焼熱で煤などの微粒子を燃焼させる。微粒子の燃焼除去手段としては、ウォールフロータイプのハニカム構造体単独(DPF)や触媒化されたウォールフロータイプのハニカム構造体(CSF)が使用される。燃焼に要する燃料を節約し、煤などの微粒子を燃焼させるための開始温度を下げることができるために、触媒化されたウォールフロータイプのハニカム構造体(CSF)の使用が一般的である。
3.[CSF:触媒化燃焼フィルター]
 本発明において、触媒化燃焼フィルター(CSF)とは、ディーゼルエンジンから排出される排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルターである。触媒化燃焼フィルター(CSF)は、細孔径が12~60nmのアルミナ一種、又はその範囲内で細孔径が異なる二種以上のアルミナ混合物に、白金(Pt)、及びパラジウム(Pd)を担持した触媒層を有し、白金とパラジウムの比が重量換算で1:1~11:4であることが好ましい。
 本発明の触媒装置Iにおいて、CSFは耐熱性の高いバグフィルターでも良いが、シリカ、アルミナ、炭化珪素、コーディエライトなどの無機酸化物の焼結体を多孔質化して得られたウォールフロータイプのハニカム型構造体を触媒化して使用することが望ましい。
 CSFには貴金属成分として、少なくとも白金成分とパラジム成分を含有する。Pt成分を含有させることでCSFでもNO酸化性能を発揮させ、排気ガス中のNO濃度を増し、CSF後段のSCR触媒におけるNOx還元浄化能力を向上させることができる。
 また、Pt成分にPd成分を加えることで、Pt成分の揮発を抑制することが期待できる。触媒化燃焼フィルター(CSF)は、白金とパラジウムの比が重量換算で1:1~11:4であることが好ましく、3:2~11:4であることがより好ましい。この範囲を外れると、前記DOCの場合と同様に好ましくない。1:1未満であると白金の含有率の低下に伴うHC、CO、NO等の酸化活性の低下が大きくなり、11:4を超えるとパラジウムが共存しても揮発した白金等の貴金属によるSCRの脱硝性能の低下が大きくなるためである。そして、触媒化燃焼フィルター(CSF)は、白金の担持量が金属換算で0.05~2.0g/Lであることが好ましく、0.1~1.5g/Lであることがより好ましい。
 さらに、本発明では触媒化燃焼フィルター(CSF)の触媒層を構成する酸化成分の被覆量が、4~100g/Lであることが好ましく、5~50g/Lであることがより好ましい。酸化成分の被覆量が、4g/L未満であると、担持される白金等の貴金属の分散性が悪化することにより酸化活性が低下し、100g/Lを超えると、後述するようにフィルターセル壁に無数に開いた細孔が狭くなることで圧損が増大するので好ましくない。
 このようなCSFは、本発明ではDOCと同様の「酸化触媒組成物を被覆した構造体」であるといえる。そのため、無機母材については、DOCの項で詳細に述べた多孔質な無機酸化物がすべて使用できる。また、白金等の貴金属の出発塩についてもDOCの項で詳細に述べた原料がすべて使用できる。
 前記DOCと同様、CSFにもハニカム構造体(一体構造型担体)が使用される。特に、通孔開口部の一方を開口し、もう一方を閉口した通孔を集積してハニカム状にしたウォールフロー型担体の使用が望ましい。ウォールフロー型担体は、通孔の壁が多孔質からできていて、微粒子成分は排気ガスと共に通孔開口部から通孔の中に進入し、排気ガスが通孔壁の多孔質の孔を通過して後方に排出され、微粒子成分は閉口された通孔の中に堆積する。このように堆積した微粒子成分は、前述のとおり燃焼除去されることでCSFが再生され、再び排気ガスの中から微粒子成分を補足することができる。
 但し、DOCに使用されるフロースルー型ハニカム構造体とは異なり、フィルターとしての機能を有するウォールフロー型ハニカム構造体が使用されるため、CSFとして使用される触媒成分はDOCと同じ機能を有しながら、DOCとは異なる機能も求められる。
 実際、ウォールフロー型ハニカム構造体にフロースルー型ハニカム構造体と同じ量の触媒成分を塗布すると、通孔の壁が多孔質からできているとはいえ、圧損が異常に増大してしまい、エンジンの出力を著しく低下させる。そのため、ウォールフロー型ハニカム構造体に触媒成分を塗布する場合、フロースルー型ハニカム構造体に比べ、触媒成分の単位体積当たりの使用量は半分以下にすることが好ましい。
(CSFの機能)
 CSFの主たる役割は、ウォールフロータイプのハニカム構造体にトラップされた煤などの微粒子成分の酸化除去であり、貴金属が担持された触媒成分の機能は、煤など微粒子成分の酸化除去の開始温度を下げることにある。しかも、CSFには、酸化触媒機能があるので、CSFに付着した煤、SOFなどの浮遊粒子状物質を比較的低温から燃焼させることができるため、煤などの燃焼用燃料の消費を低減することが可能になる。また、NOの排出量が多い場合、DOCだけではNOを十分にNOに酸化しきれないが、CSFはDOCでは酸化しきれないNOをさらにNOに酸化することもできる。
4.[SCR触媒:選択還元触媒]
 本発明の触媒装置Iは、SCR触媒(選択還元触媒)をDOC、CSFの後段に配置している。この構造によりHC、COやNOxの他、煤やSOFについても高い浄化性能を発揮する。
 本発明の排気ガス浄化装置に使用されるSCR触媒は、アンモニア成分を還元剤として排気ガス中のNOxを還元浄化するものである。SCR触媒材料としては、ゼオライトや後述するゼオライト類似の化合物(結晶金属アルミノリン酸塩)の他、バナジウム酸化物、チタニア、ジルコニア、酸化タングステン等の遷移金属酸化物、セリア、ランタン、プラセオジム、サマリウム、ガドリニウム、ネオジム等の希土類酸化物、酸化ガリウム、酸化スズ等の碑金属酸化物、またはこれらの複合酸化物等の各種無機材料が挙げられる。また、アルミナやシリカ、及び希土類、アルカリ金属、アルカリ土類等で修飾されたアルミナやシリカと上記酸化物との混合物や複合化物等も挙げられる。ただし、自動車用途ではバナジウムのような有害な重金属を含まないことが望ましい。
 本発明では、SCR触媒がゼオライト又は結晶金属アルミノリン酸塩を含むことが好ましい。また、本発明では、PtやPdなどの貴金属成分は、アンモニア成分を酸化しNOxを生成するので含まないことが好ましい。
 ゼオライトは、結晶中に微細孔を持つアルミノ珪酸塩の総称であり、その細孔内に選択的に分子を取り込み、反応を促進させることができる。このようなゼオライトや上記無機材料は、SCR材料として優れたNOx還元浄化性能を有するが、貴金属に汚染されるとNOxの還元浄化性能を著しく低下させてしまう。ところが、本発明によれば、DOC中の貴金属成分であるPtが高温に晒されても飛散しにくい状態でハニカム構造体に担持されているので、ゼオライトや上記無機材料が汚染されるのを防ぎ、SCR触媒として優れたNOx還元浄化性能を長期間にわたって安定的に発揮させることができる。
 SCR触媒は、フロースルー型ハニカム構造体、又はウォールフロー型ハニカム構造体などの一体構造型担体であることが好ましい。
(ゼオライト及びゼオライト類似の化合物)
 本発明においてゼオライトは特に限定されないが、Y型、β型、MFI型、CHA型、USY型、SUZ型、MCM型、PSH型、SSZ型、ERB型、ITQ型、モルデナイト、フェリエライトの中から適宜選択できる。また、ゼオライトと同様の層状構造を有する結晶性金属アルミノリン酸塩(Crytal metal aluminophosphate)が挙げられる(特開昭60-86011)。このような結晶性金属アルミノリン酸塩は、結晶性リン酸アルミニウム(ALPO:Aluminophosphate)や、結晶性ケイ酸リン酸アルミニウム(SAPO:Silicoaluminophosphate)が知られており、SCR触媒材料としても検討されている(US2008/0241060)。このようなゼオライト、及びゼオライト類似の化合物は、単独でも良いが、2種以上の材料を混合してもよく、複数の材料を構造型担体表面に多層化して被覆してもよい。また、ゼオライト、及びゼオライト類似の化合物は、そのカチオンサイトに鉄や銅等の遷移金属成分や、セリウムやランタン等の希土類成分をイオン交換したものであってもよい。
 このようなゼオライト、及びゼオライト類似の化合物のうち、本発明ではSCR触媒材料としてβ型ゼオライトの使用が好ましい。β型ゼオライトは、比較的大きな径を有する一方向に整列した直線的細孔とこれに交わる曲線的細孔とからなる比較的複雑な3次元細孔構造を有し、イオン交換時のカチオンの拡散、およびNH等のガス分子の拡散が容易であると共に反応性と耐久性に優れるという性質を有している。
 また、ゼオライトは、NHのような塩基性化合物が吸着できる酸点を有しており、そのSi/Al比に応じてその酸点の数が異なる。一般的にSi/Al比が低いゼオライトは酸点の数が多いが、水蒸気共存下での耐久において劣化度合いが大きく、逆にSi/Al比が高いゼオライトは耐熱性に優れているが酸点は少ない。NH選択還元触媒においては、ゼオライトの酸点にNHが吸着し、そこが活性点になってNOなどの窒素酸化物を還元除去するので、酸点が多い方(Si/Al比が低い方)が脱硝反応には有利である。このようにSi/Al比には、耐久性と活性がトレードオフの関係にあるが、これらを考慮すると、ゼオライトのSi/Al比は5~500が好ましく、10~100がより好ましく、15~50がさらに好ましい。このような特性は、SCR触媒に好適なβ型ゼオライト、そしてMFI型ゼオライトも同様に有している。
(β型ゼオライト)
 本発明においてSCR触媒材料には、ゼオライトのカチオンサイトに鉄元素がイオン交換したβ型ゼオライトを使用することが好ましい。また、この鉄元素がイオン交換されたゼオライトには、鉄成分として酸化鉄が含まれていても良い。このようにして鉄元素を含むゼオライトはNH吸着脱離速度が速く、SCRとしての活性も高いため、主成分として含むことが好ましい。ここで、主成分とは、SCR触媒の担体に被覆される触媒組成物に仕様される全ゼオライト量のうち、50wt%以上であることをいう。
 β型ゼオライトは、前述のような3次元細孔構造を有し、イオン交換時のカチオンの拡散、およびNH等のガス分子の拡散が容易である。また、このような構造はモルデナイト、ホージャサイト等が一方向に整列した直線的な空孔のみを有するのに対して、特異な構造で、複雑な空孔構造であるがゆえに、β型ゼオライトは、熱による構造破壊が生じ難く安定性が高く、自動車用触媒にとって有効な材料である。
(鉄元素が添加されたβ型ゼオライト)
 一般にゼオライトには固体酸点として、カチオンがカウンターイオンとして存在する。カチオンとしては、アンモニウムイオンやプロトンが一般的であるが、カチオン種として鉄元素が添加されたβ型ゼオライト(以下、「Fe-β」ということがある)が好ましい。
 β型ゼオライトが鉄元素によりイオン交換される割合は、鉄元素(イオン)1個と、ゼオライト中の一価のイオン交換サイトである[AlO4/2]-単位の2個とがイオン対を形成することに基づいて、次の式(9)で表されることが好ましい。
 [単位重量のゼオライト中にイオン交換により含まれる鉄イオンのモル数/{(単位重量のゼオライト中の存在するAlのモル数)×(1/2)}]×100・・・(9)
 イオン交換率は、10~100%である事が好ましく、12~92%であることがより好ましく、30~70%であることが更に好ましい。イオン交換率が92%以下であると、ゼオライトの骨格構造がより安定化し、触媒の耐熱性、ひいては触媒の寿命が向上し、より安定した触媒活性を得ることができる。ただし、イオン交換率が低すぎて、10%未満になると充分な脱硝性能が得られない場合がある。なお、前記イオン交換率が100%である場合には、ゼオライト中のカチオン種全てが鉄イオンでイオン交換されていることを意味する。このように、イオン交換されたゼオライトは優れた浄化能力を発揮する。
(各種無機材料)
 本発明において、無機材料としては、チタニア、ジルコニア、酸化タングステン等の遷移金属酸化物、セリア、ランタン、プラセオジム、サマリウム、ガドリニウム、ネオジム等の希土類酸化物、酸化ガリウム、酸化スズ等の卑金属酸化物、またはこれらの複合酸化物等の中から適宜選択できる。それ以外にも、アルミナやシリカ、及び希土類、アルカリ金属、アルカリ土類等で修飾されたアルミナやシリカは耐熱性に優れ、比表面積が上記酸化物より大きいため、上記酸化物と混合または複合化することで上記酸化物自体の比表面積を増大させることができるので、より好ましい。
 なかでも、セリアは、NOx吸着機能材料として知られており、本発明においてもNOx吸着を促進することでNHとNOxのSCR反応を促進できる機能を有する。また、ジルコニアは、その他成分を熱的に安定な状態で高分散させる為の分散保持材料としての効果を期待できる。その他、タングステンの酸化物は、酸性が強く、アルカリ成分である尿素やアンモニアの吸着力が大きいので、タングステンの酸化物を使用することで脱硝性能が高くなるという作用効果を期待できるため、これらの酸化物を単独または混合もしくは複合化して使用することが好ましい。
 これらの酸化物およびそれらの複合酸化物は、組成、構造、製法によって特に限定されない。例えば、上記元素を含む硝酸塩、硫酸塩、炭酸塩、酢酸塩、塩化物等の形態を有する出発原料を水溶液中に溶解させた後、混合し、pH調整等により沈殿物として沈降させるか蒸発乾固させるかして得られた固形物を焼成してもよいし、混合もしくは複合化する際には、これらの複数の金属塩を一度に可溶化させて上記処理を行ってもよいし、単一もしくは複数の金属塩に上記処理を行うことにより酸化物を形成させた後、残りの金属塩を一度にまたは逐次に担持してもよい。
5.[還元剤噴霧手段]
 本発明の排気ガス浄化触媒装置において、還元剤噴霧手段(Injector)は、尿素成分又はアンモニア成分から選ばれる還元剤を供給するものであって、通常、還元剤の貯蔵タンクと配管、その先端に取り付けられた噴霧ノズルから構成される。
 還元剤噴霧手段の位置は、触媒化燃焼フィルター(CSF)の後方、かつ窒素酸化物(NOx)を還元剤と接触させて還元するための選択還元触媒(SCR)の前方に設置される。さらに、二個目の酸化触媒(DOC)がCSFとSCRの間に設置される場合は、二個目のDOCの後方に配置することが好ましい。
 還元成分の種類は、尿素成分又はアンモニア成分から選ばれる。尿素成分としては、濃度31.8~33.3重量%の規格化された尿素水溶液、例えば商品名アドブルー(Adblue)を使用でき、またアンモニア成分であれば、アンモニア水のほか、アンモニアガスを使用してもよい。ただし、還元成分であるNHは、それ自体に刺激臭等の有害性があるため、還元成分としてはNH成分をそのまま使用するよりも、脱硝触媒の上流から尿素水を添加して、熱分解や加水分解によりNHを発生させ、これを還元剤として作用させる方式が好ましい。
6.[AMOX:アンモニア酸化触媒] 
 本発明の排気ガス浄化装置においては、必要に応じ、SCRの後にさらにアンモニア酸化触媒(AMOX)を配置することができる。通常、SCRではNOxやNHが規制値以下まで浄化し切れない場合にAMOXが追加使用される。
 そのため、AMOXにはNHの酸化機能を有する触媒の他、NOxの浄化機能を有する触媒成分も含まれている。NHの酸化機能を有する触媒としては、貴金属成分として、白金、パラジウム、ロジウムなどから選ばれる一種以上の元素をアルミナ、シリカ、チタニア、ジルコニアなどの一種以上からなる無機材料の上に担持したものが好ましい。また、希土類、アルカリ金属、アルカリ土類金属等の助触媒を加えて耐熱性を向上させた無機材料を使用することも好ましい。貴金属としての白金及びパラジウムは、優れた酸化活性を発揮する。これを、比表面積が高く、耐熱性も高い上記無機材料に担持することにより、貴金属成分が焼結し難くなり、貴金属の比表面積を高く維持することで活性サイトが増え、高い活性を発揮することができる。
 一方、NOxの浄化機能を有する触媒としては、SCRの項で述べたゼオライト及び酸化物のすべてが使用できる。
 これら二種類の触媒は、均一に混合して一体型を有するハニカム構造体に塗布すればよいが、NHの酸化機能を有する触媒を下層に、NOxの浄化機能を有する触媒を上層に塗布してもよい。
II.[排気ガス浄化装置(DOC+CSF+DOC+SCR)]
 本発明では、上記排気ガス浄化装置(DOC+CSF+SCR)に対して、CSFの後段にもう一つのDOCを配置し、最初のDOCで、ディーゼルエンジンから排出される排気ガス中の一酸化炭素(CO)、炭化水素(HC)、及び窒素酸化物(NO)を酸化し、次のCSFで排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去し、さらに次のDOCで未燃のCO、HC、及びNOを酸化する機能を増強し、尿素成分又はアンモニア成分から選ばれる還元剤を供給した後、SCFで窒素酸化物(NOx)を還元剤と接触させて還元除去することができる。以下、この排気ガス浄化触媒装置(DOC+CSF+DOC+SCR)を触媒装置IIともいう。
 すなわち、本発明の触媒装置IIは図2のように、ディーゼルエンジン1からの排気ガス流路2中、酸化触媒(DOC)4を触媒化燃焼フィルター(CSF)5の両側に挟み込むと共に、その後方に、還元剤噴霧手段3を設け、この噴射手段3の後方に選択還元触媒(SCR)6を配置した排気ガス浄化触媒装置である。
 こうしてDOCをCSFの前後に設置し、前段DOCの貴金属の一部を後段のDOCに持ってくることにより、触媒システムとしての容量は増大するものの貴金属の総使用量を減らしながらNOの酸化性能を向上させることができ、それらの後方に配置するSCRにおける尿素水溶液やアンモニア水溶液(NH成分)を使用したNOx還元反応を促進する。
 以下に実施例及び比較例を示し、本発明の特徴を一層明確にするが、本発明は、これら実施例の態様に限定されるものではない。
 なお、本実施例、並びに比較例に使用する酸化触媒(DOC)及び触媒化燃焼フィルター(CSF)に使用されるアルミナの細孔径は下記に示す方法によって測定した。
<細孔分布測定>
 各種アルミナ粉末0.3gを乾燥後、Thermo社製PASCAL140-440を用いて、Hg圧入法により、アルミナの細孔分布を測定した{細孔径としてモード径(直径)を採用した}。
 また、酸化触媒(DOC)および触媒化燃焼フィルター(CSF)を単独又はそれらを組み合わせた耐久仕様及びエンジンによる評価試験は下記に示す方法によって測定した。
<触媒の耐久試験>
 下記実施例、比較例で得られた酸化触媒(DOC)及び触媒化燃焼フィルター(CSF)を、電気炉内で空気雰囲気下、モデルガス評価試験用触媒は750℃、50時間、エンジン評価試験用触媒は750℃、100時間熱処理した。 
<触媒のモデルガス評価試験>
 下記実施例1及び2、比較例1で得られた酸化触媒(DOC)は、コアドリル及びダイアモンドカッターを用いてモデルガス評価用触媒の大きさ(24mm径×66mm長さ、30mL)に切り出した後、750℃、50時間の電気炉による熱処理を実施し、モデルガス評価装置にて、昇温・降温ライトオフ試験を実施した。
1.昇温ライトオフ試験
 モデルガス評価用触媒をモデルガス評価装置のホルダーに装着した後、表1に示すガス成分をGHSV(Gas Hourly Space Velocity:気体時空間速度、触媒単位体積当たりの反応ガスの流入速度)40,000/hrで流しながら、室温から400℃まで30℃/分の速度で昇温させる。その際、NO、CO、又はHCの酸化率が各々の数値に達した際の触媒の触媒床温度を計測した。なお、NOT30は、NOの30%が酸化された時の触媒の触媒床温度、COT75は、COの75%が酸化された時の触媒の触媒床温度、またHCT75はHCの75%が酸化された時の触媒の触媒床温度である。
Figure JPOXMLDOC01-appb-T000001
<触媒のエンジン評価試験>
 下記実施例3~7、比較例1~4の酸化触媒(DOC)及び触媒化燃焼フィルター(CSF)は、750℃、100時間の電気炉による熱処理を実施した後、各々単独又はそれらを組み合わせてコンバーターに格納後、5Lディーゼルエンジンの排気口にコンバーターを装着して、以下の要領で定常試験と昇温・降温ライトオフ試験の2種類の評価試験を実施した。
1.定常試験
1-1.NO酸化性能
 ディーゼルエンジンの回転数を1,800rpmとし、触媒床温度を250℃及び300℃に固定し、触媒入口及び触媒出口から排気ガスの一部を吸引管で吸引し、NO計でNO濃度を測定し、その差から下記の式でNO酸化率を計算した。
  NO酸化率(%)={(入口NO濃度)-(出口NO濃度)}/(入口NO濃度)×100
1-2.軽油燃焼性
 ディーゼルエンジンの回転数を1,800rpmとし、触媒床温度を250℃又は300℃に固定し、触媒入口の手前に設置した噴霧管から軽油を20mL/分(250℃)又は30mL/分(300℃)、5分間隔でON/OFF噴霧し、触媒出口の後ろに設置した熱電対で排気ガスの温度を計測し、軽油噴霧ON/OFFにおける排気ガス温度の上昇分{下記のΔT(℃)}とした。ΔTが高いほど軽油がより燃焼して発熱していることを示しているので、燃焼性に優れている。
  ΔT(℃)=(軽油噴霧ON時の触媒出口排気ガス温度)-(軽油噴霧OFF時の触媒出口排気ガス温度)
2.昇温・降温ライトオフ試験
 ディーゼルエンジンの回転数を1,800rpmとし、触媒床温度を150℃に固定した後、10℃/分で400℃まで昇温させた後、10℃/分で150℃まで降温させた。この昇温時、NO、CO、又はHCの酸化率が各々の数値に達した際の一段目の酸化触媒(DOC)の触媒床温度を計測した。
 なお、NOT30はNOの30%が酸化された時の一段目の酸化触媒(DOC)の触媒床温度、COT75はCOの75%が酸化された時の一段目の酸化触媒(DOC)の触媒床温度、またHCT75はHCの75%が酸化された時の一段目の酸化触媒(DOC)の触媒床温度である。
[実施例1]
<酸化触媒DOC(1)の製造>
 =下層=
 BET比表面積150m/g、細孔径9nmのγ-アルミナ粉末Aを1kgと水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーαを得た。
 続いてこのスラリーに一体型構造担体、すなわちハニカムフロースルー型コージェライト担体{300cell/inch(465k/m)/8mil(0.2mm)、7.5inch(190.5mm)径×3.3inch(83.8mm)長さ、2.39L}を浸漬させ、単位体積あたりのアルミナ担持量が65g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(1)の下層塗布済み品を得た。
 =上層=
 貴金属成分原料として硝酸白金水溶液と硝酸パラジウム水溶液とを混合し、Pt-Pd混合溶液を得た。ここで白金とパラジウムの割合を、重量比で5:1とした。
 次に、BET比表面積150m/g、細孔径23nmのγ-アルミナ粉末B 1kgに、前記Pt-Pd混合溶液を貴金属換算で1.292重量%(Pt/Pd=5/1)となるよう含浸させて、Pt-Pd担持アルミナ粉末aを得た。このPt-Pd担持アルミナ粉末aを1114.4g、水酸化バリウムを酸化バリウム換算で8g、精製糖を45g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーβを得た。
 続いて、このスラリーに前記の下層塗布済み品を浸漬させ、単位体積あたりの触媒担持量が112.24g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(1)(Pt=1.2g/L、Pd=0.24g/L、BaO=0.8g/L、触媒量:112.24g/L、下層アルミナ量:65g/L)を得た。
<触媒化燃焼フィルターCSF(1)の製造>
 貴金属成分原料としての硝酸白金水溶液と硝酸パラジウム水溶液とを混合し、Pt-Pd混合溶液を得た。ここで白金とパラジウムの割合を、重量比で2:1とした。
 次に、γ-アルミナ粉末Bを600g、BET比表面積165m/g、細孔径14nmのγ-アルミナ粉末Cを400gに、前記Pt-Pd混合溶液を貴金属換算で2.43重量%となるよう含浸担持させてPt-Pd担持アルミナ粉末bを得た。
 そしてPt-Pd担持アルミナ粉末bを543.2g、シリカゾルをシリカ換算で30g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーγを得た。続いてこのスラリーに一体型構造担体、すなわちハニカムウォールフロー型コージェライト担体{300cell/inch(465k/m)/12mil(0.3mm)、7.5inch(190.5mm)径×6.7inch(170.2mm)長さ、4.85L}を浸漬させ、単位体積あたりの触媒担持量が28.66g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してCSF(1)(Pt=0.44g/L、Pd=0.22g/L、触媒量=28.66g/L)を得た。
<装置構成>
 上記の酸化触媒DOC(1)からコアドリル及びダイアモンドカッターを用いてモデルガス評価用触媒の大きさ(24mm径×66mm長さ、30mL)に切り出し、750℃、50時間の熱処理後、上記酸化触媒DOC(1)によるモデルガス評価試験を行った。NO、CO、及びHCの酸化活性の結果を図3に示す。なお、酸化触媒DOC(1)の成分、貴金属量を表2、3に示した。
 その後、上記の酸化触媒DOC(1){7.5inch(190.5mm)径×3.3inch(83.8mm)長さ、2.39L}を750℃、100時間熱処理後、触媒コンバーター内の前段に配置し、その後段に同条件で熱処理した上記のCSF(1)を置き、その後ろの別の触媒コンバーターに650℃、100時間、10%水蒸気を含む空気気流中で熱処理した選択還元触媒(SCR、特開2009-262098号公報参照)を配置し、これらを直列につないで、図1に示す本発明の装置を構成した。この装置を用いることで、良好な排ガス浄化性能を確認した。
[実施例2]
<酸化触媒DOC(2)の製造>
 =下層=
 実施例1の下層の調製方法と同様にして、DOC(2)の下層塗布済み品を得た。
 =上層=
 γ-アルミナ粉末B 1kgに、前記Pt-Pd混合溶液を貴金属換算で0.777重量%(Pt/Pd=5/1)となるよう含浸担持させて、Pt-Pd担持アルミナ粉末cを得た。また、γ-アルミナ粉末C 200gに、前記Pt-Pd混合溶液を貴金属換算で3.85重量%(Pt/Pd=5/1)となるよう含浸担持させて、Pt-Pd担持アルミナ粉末dを得た。
 そして、Pt-Pd担持アルミナ粉末cを927.2g、Pt-Pd担持アルミナ粉末dを187.2g、水酸化バリウムを酸化バリウム換算で8g、精製糖を45g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーδを得た。
 続いて、このスラリーに前記の下層塗布済み品を浸漬させ、単位体積あたりの触媒担持量が112.24g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(2)(Pt=1.2g/L、Pd=0.24g/L、BaO=0.8g/L、触媒量:112.24g/L、下層アルミナ量:65g/L)を得た。
<装置構成>
 上記の酸化触媒DOC(2)からコアドリル及びダイアモンドカッターを用いて切り出したモデルガス評価用触媒(24mm径×66mm長さ、30mL)を用いて、750℃、50時間の熱処理後の上記酸化触媒DOC(2)によるモデルガス評価試験を行った。NO、CO、及びHCの酸化活性の結果を図3に示す。なお、酸化触媒DOC(2)の成分、貴金属量を表2、3に示した。
 その後、上記の酸化触媒DOC(2){7.5inch(190.5mm)径×3.3inch(83.8mm)長さ、2.39L}を750℃、100時間熱処理後、触媒コンバーター内の前段に配置し、実施例1と同様にして、CSFとSCRの熱処理品を触媒コンバーターで直列につないで、図1に示す本発明の装置を構成した。この装置を用いることで、良好な排ガス浄化性能を確認した。
[比較例1]
<酸化触媒DOC(3)の製造>
 =下層=
 γ-アルミナ粉末A 341g、BET比表面積220m/g、細孔径8nmのγ-アルミナ粉末D 506g、BET比表面積160m/g、細孔径10nmのγ-アルミナ粉末E 253gに前記Pt-Pd混合溶液を貴金属換算で0.614重量%(Pt/Pd=5/1)となるよう含浸させることにより、Pt-Pd担持アルミナ粉末eを得た。
 そして、Pt-Pd担持アルミナ粉末eを1106.8g、精製糖を111g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーεを得た。
 続いてこのスラリーに実施例1と同様のハニカムフロースルー型コージェライト担体を浸漬させ、単位体積あたりの触媒担持量が110.68g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(3)の下層塗布済み触媒を得た。
 =上層=
 γ-アルミナ粉末A 279g、γ-アルミナ粉末D 414g、γ-アルミナE 207gに前記Pt-Pd混合溶液を貴金属換算で1.25重量%(Pt/Pd=5/1)となるよう含浸させることにより、Pt-Pd担持アルミナ粉末fを得た。
 そして、Pt-Pd担持アルミナ粉末fを911.4g、精製糖を91g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーζを得た。
 続いて、このスラリーに前記の下層塗布済み触媒を浸漬させ、単位体積あたりの触媒担持量が91.14g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(3)(Pt=1.52g/L、Pd=0.30g/L、触媒総量:201.82g/L)を得た。
<装置構成>
 上記の酸化触媒DOC(3)からコアドリル及びダイアモンドカッターを用いて切り出したモデルガス評価用触媒(24mm径×66mm長さ、30mL)を用いて、750℃、50時間の熱処理後の上記酸化触媒DOC(3)によるモデルガス評価試験を行った。NO、CO、及びHCの酸化活性の結果を図3に示す。なお、酸化触媒DOC(3)の成分、貴金属量を表2、3に示した。
 その後、上記の酸化触媒DOC(3){7.5inch(190.5mm)径×3.3inch(83.8mm)長さ、2.39L}を750℃、100時間熱処理後、触媒コンバーター内の前段に配置し、実施例1と同様にして、CSFとSCRの熱処理品を触媒コンバーターで直列につないで、図1に示す比較用の装置を構成した。この装置を用いても、良好な排ガス浄化性能は得られなかった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
「評価1」
 750℃、50時間の熱処理後の上記触媒によるモデルガス評価試験を取りまとめた図3及び触媒の成分、貴金属量を表した表2、3から酸化触媒(DOC)単独の場合のNO、CO、及びHCの酸化活性について次のことがわかる。
 まず、図3のNOの酸化活性試験の結果から明らかなように、本発明の実施例1の酸化触媒DOC(1)Pt/Pd=5/1(重量比、以下同じ)は、貴金属を担持する母材として細孔径23nmのアルミナBを使用しているので、白金とパラジウムの総量が26重量%も多いが、貴金属を担持する母材として細孔径10nm以下のアルミナA、D、Eを3種類使用した比較例1(表3参照)の酸化触媒DOC(3)を上回るNOの酸化活性を発揮した。さらに、貴金属を担持する母材として細孔径23nmのアルミナBに細孔径14nmのアルミナCを加えた実施例2の酸化触媒DOC(2)は、細孔径23nmのアルミナAだけを使用した実施例1の酸化触媒DOC(1)よりさらに高いNO酸化活性を発揮した。
 但し、COやHCの酸化活性は実施例1、2の酸化触媒DOC(1)、DOC(2)と比較例1の酸化触媒DOC(3)では差異はみられなかった。
 これらの結果は、NOの酸化活性の向上にPtやPdの貴金属の母材として12nm以上のアルミナを使用することが有効であり、また、12nm以上のアルミナを複数使用することがNOの酸化活性のさらなる向上に有効であることを示している。
[実施例3]
<酸化触媒DOC(4)の製造>
 =下層=
 γ-アルミナ粉末B 1kgに、前記Pt-Pd混合溶液を貴金属換算で0.293重量%(Pt/Pd=5/1)となるよう含浸させた後、水酸化バリウム水溶液を酸化バリウム換算で0.065重量%となるよう含浸させることにより、Pt-Pd-Ba担持アルミナ粉末gを得た。
 同様にして、γ-アルミナ粉末C 200gに、前記Pt-Pd混合溶液を貴金属換算で1.45重量%(Pt/Pd=5/1)となるよう含浸担持させた後、水酸化バリウム水溶液を酸化バリウム換算で0.323重量%となるよう含浸させることにより、Pt-Pd-Ba担持アルミナ粉末hを得た。
 そして、Pt-Pd-Ba担持アルミナ粉末gを920.3g、Pt-Pd-Ba担持アルミナ粉末hを186.3g、水酸化バリウムを酸化バリウム換算で5.8g、精製糖を111g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーηを得た。
 続いてこのスラリーに実施例1と同様のハニカムフロースルー型コージェライト担体を浸漬させ、単位体積あたりの触媒担持量が111.24g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(4)の下層塗布済み触媒を得た。
 =上層=
 γ-アルミナ粉末B 1kgに、前記Pt-Pd混合溶液を貴金属換算で0.595重量%(Pt/Pd=5/1)、水酸化バリウムを酸化バリウム換算で0.172重量%となるよう含浸担持させて、Pt-Pd-Ba担持アルミナ粉末iを得た。また、γ-アルミナ粉末C 200gに、前記Pt-Pd混合溶液を貴金属換算で2.89重量%(Pt/Pd=5/1)、水酸化バリウムを酸化バリウム換算で0.834重量%となるよう含浸担持させて、Pt-Pd-Ba担持アルミナ粉末jを得た。
 そして、Pt-Pd-Ba担持アルミナ粉末iを755.8g、Pt-Pd-Ba担持アルミナ粉末jを155.8g、水酸化バリウムを酸化バリウム換算で10.4g、精製糖を92g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーθを得た。
 続いて、このスラリーに前記の下層塗布済み触媒を浸漬させ、単位体積あたりの触媒担持量が92.2g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(4)(Pt=1.2g/L、Pd=0.24g/L、BaO=2.0g/L、触媒総量:203.44g/L)を得た。
<装置構成>
 上記の酸化触媒DOC(4)を用いて、750℃、100時間の熱処理後の上記酸化触媒DOC(4)によるエンジン評価試験を行った。NOの酸化活性の結果を図4に、軽油燃焼性の結果を図5に示す。なお、酸化触媒DOC(4)の成分、貴金属量を表4、5に示した。
 その後、上記の酸化触媒DOC(4)を触媒コンバーター内の前段に配置し、その後段に実施例1と同様にして、CSFとSCRの熱処理品を触媒コンバーターで直列につないで、図1に示す本発明の装置を構成した。この装置を用いることで、良好な排ガス浄化性能を確認した。
[比較例2]
<酸化触媒DOC(5)の製造>
 比較例1の酸化触媒DOC(3)において、すべてのPt-Pd担持アルミナ粉末のPt-Pd担持量を一律21重量%減量した以外は、DOC(2)と同じ触媒調製法でDOC(5)(Pt=1.20g/L、Pd=0.24g/L、触媒総量:201.44g/L)を得た。
<装置構成>
 上記の酸化触媒DOC(5)を用いて、750℃、100時間の熱処理後の上記酸化触媒DOC(5)によるエンジン評価試験を行った。NOの酸化活性の結果を図4に、軽油燃焼性の結果を図5に示す。なお、酸化触媒DOC(5)の成分、貴金属量を表4、5に示した。
 その後、上記の酸化触媒DOC(5)を触媒コンバーター内の前段に配置し、その後段に実施例1と同様にして、CSFとSCRの熱処理品を触媒コンバーターで直列につないで、図1に示す比較用の装置を構成した。この装置を用いても、良好な排ガス浄化性能が得られなかった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
「評価2」
 750℃、100時間の熱処理後の上記触媒によるエンジン定常評価試験を取りまとめた図4、5および触媒の成分、貴金属量を表した表4、5から酸化触媒(DOC)単独の場合のNO酸化活性及び軽油燃焼性について次のことがわかる。
 まず、図4のNO酸化活性試験の結果から明らかなように、本発明の実施例3の酸化触媒DOC(4)(Pt/Pd=5/1)は、白金とパラジウムの量が同一(表5参照)の比較例2の酸化触媒DOC(5)に比べ、特に低温(250℃)で優れたNOの酸化活性を発揮した。さらに、実施例3の酸化触媒DOC(4)は、白金とパラジウムの量を各々30重量%弱増量(表5参照)した比較例1の酸化触媒DOC(3)よりも高いNO酸化活性を発揮し、その効果は低温(250℃)で顕著であった。
 また、図5の軽油燃焼性試験の結果から明らかなように、本発明の実施例3の酸化触媒DOC(4)は、白金とパラジウムの量が同一の比較例2の酸化触媒DOC(5)より、軽油の燃焼に伴う発熱による温度上昇が高く、その効果は低温(250℃)で顕著であった。さらに、実施例3の酸化触媒DOC(4)は白金とパラジウムの量を各々30重量%弱増量した比較例1の酸化触媒DOC(3)よりも軽油の燃焼による発熱の温度上昇も高かった。これらのことは酸化バリウム(BaO)を含み、2種類のアルミナの細孔径が12nm~40nm{実際は23nm(アルミナA)と14nm(アルミナB)(表4参照)}である実施例3の酸化触媒DOC(4)が酸化バリウムを含まず、アルミナの細孔径も10nm以下{実際は、8nm(アルミナC)、9nm(アルミナD)、および10nm(アルミナE)(表1参照)}である比較例1、2の酸化触媒DOC(3)、DOC(5)よりNOの酸化活性の他、軽油の燃焼性にも優れていることを示している。
[実施例4]
<装置構成>
 前記実施例3のDOC(4)と前記実施例1のCSF(1)にそれぞれ750℃、100時間の熱処理を施した後、触媒コンバーター内で直列につないで、エンジン評価試験を行った。NO、CO、及びHCの酸化活性の結果を図6に示す。なお、DOC(4)+CSF(1)の成分、貴金属量を表6、7に示した。
 上記{DOC(4)+CSF(1)}の触媒コンバーターの後段に、実施例1と同様にして、SCRの熱処理品を触媒コンバーターで直列につないで、図1に示す本発明の装置を構成した。この装置を用いることで、良好な排ガス浄化性能を確認した。
[実施例5]
<触媒化燃焼フィルターCSF(2)の製造>
 BET比表面積95m/g、細孔径10nmのγ-アルミナ粉末F 1kgに、前記Pt-Pd混合溶液(Pt/Pd=2/1)を貴金属換算で2.43重量%となるよう含浸担持させてPt-Pd担持アルミナ粉末kを得た。
 そしてPt-Pd担持アルミナ粉末kを543.2g、アルミナゾルをアルミナ換算で30g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーιを得た。続いてこのスラリーに実施例1と同様のハニカムウォールフロー型コージェライト担体を浸漬させ、単位体積あたりの触媒担持量が28.66g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してCSF(2)(Pt=0.44g/L、Pd=0.22g/L、触媒量=28.66g/L)を得た。
<装置構成>
 前記実施例3のDOC(4)と上記CSF(2)にそれぞれ750℃、100時間の熱処理を施した後、触媒コンバーター内で直列につないで、エンジン評価試験を行った。NO、CO、及びHCの酸化活性の結果を図6に示す。なお、DOC(4)+CSF(2)の成分、貴金属量を表6、7に示した。
 上記{DOC(4)+CSF(2)}の触媒コンバーターの後段に、実施例1と同様にして、SCRの熱処理品を触媒コンバーターで直列につないで、図1に示す本発明の装置を構成した。この装置を用いることで、比較的良好な排ガス浄化性能を確認した。
[比較例3]
<触媒化燃焼フィルターCSF(3)の製造>
 実施例5の触媒化燃焼フィルターCSF(2)において、Pt-Pd担持アルミナ粉末のPt-Pd担持量を一律32重量%増量した以外は、CSF(2)と同じ触媒調製法でCSF(3)(Pt=0.58g/L、Pd=0.29g/L、触媒量=28.87g/L)を得た。
<装置構成>
 前記比較例1のDOC(3)と上記CSF(3)にそれぞれ750℃、100時間の熱処理を施した後、触媒コンバーター内で直列につないで、エンジン評価試験を行った。NO、CO、及びHCの酸化活性の結果を図6に示す。なお、DOC(3)+CSF(3)の成分、貴金属量を表6、7に示した。
 上記{DOC(3)+CSF(3)}の触媒コンバーターの後段に実施例1と同様にして、SCRの熱処理品を触媒コンバーターで直列につないで、図1に示す比較用の装置を構成した。この装置を用いても、良好な排ガス浄化性能を得ることができなかった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
「評価3」
 750℃、100時間の熱処理後の上記触媒によるエンジン定常評価試験を取りまとめた図6および触媒の構成、成分、貴金属量を表した表6、7から酸化触媒(DOC)と触媒化燃焼フィルター(CSF)を組み合わせた場合のNO、CO、HCの酸化活性について次のことがわかる。
 図6のNO、CO、及びHCの酸化活性試験から明らかなように、本発明の実施例4では、酸化触媒DOC(4)の後段に、12~120nmの細孔径を有する2種類のアルミナを使用した触媒化燃焼フィルターCSF(1)を配置した場合であるが、NO、CO、HCのすべてで酸化活性を発揮している。
 また、本発明の実施例5では、酸化触媒DOC(4)の後段に、10nmの細孔径を有するアルミナを単独で使用した触媒化燃焼フィルターCSF(2)を配置した場合であるが、NO、CO、HCのすべてで酸化活性を発揮している。
 一方、比較例3の触媒{DOC(3)+CSF(3)の組み合わせ}では、酸化触媒、触媒化燃焼フィルター共、実施例4、5よりも貴金属担持量が約30重量%も多いにもかかわらず、NO、CO、HCのすべてで酸化活性が低かった。
 以上の結果は、実施例4、5に使用されたDOCとCSFの総貴金属量(Pt+Pdの合計量)にそれほど大きな差異がないことから、DOC+CSFの組み合わせによるNO、CO、HCの酸化活性に及ぼす寄与は、後段のCSFより前段のDOCの方が大きいことを示唆しており、貴金属の低減はDOCよりもCSFに対して有効であると考えられる。
[実施例6]
<酸化触媒DOC(6)の製造>
 =下層=
 γ-アルミナ粉末B 1000gに、前記Pt-Pd混合溶液(Pt/Pd=2/1)を貴金属換算で0.336重量%(Pt/Pd=2/1)となるよう含浸させた後、水酸化バリウム水溶液を酸化バリウム換算で0.054重量%となるよう含浸させることにより、Pt-Pd-Ba担持アルミナ粉末lを得た。
 同様にして、γ-アルミナ粉末C 200gに、同Pt-Pd混合溶液を貴金属換算で1.66重量%(Pt/Pd=2/1)となるよう含浸担持させた後、水酸化バリウム水溶液を酸化バリウム換算で0.268重量%となるよう含浸させることにより、Pt-Pd-Ba担持アルミナ粉末mを得た。
 そして、Pt-Pd-Ba担持アルミナ粉末lを920.6g、Pt-Pd-Ba担持アルミナ粉末mを186.6g、水酸化バリウムを酸化バリウム換算で3g、精製糖を111g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーκを得た。
 続いてこのスラリーに一体型構造担体、すなわちハニカムフロースルー型コージェライト担体{300cell/inch(465k/m)/8mil(0.2mm)、7.5inch(190.5mm)径×2.64inch(67.1mm)長さ、1.91L}を浸漬させ、単位体積あたりの触媒担持量が111.02g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(6)の下層塗布済み触媒を得た。
 =上層=
 γ-アルミナ粉末B 1kgに、前記Pt-Pd混合溶液を貴金属換算で0.682重量%(Pt/Pd=2/1)、水酸化バリウムを酸化バリウム換算で0.099重量%となるよう含浸担持させて、Pt-Pd-Ba担持アルミナ粉末nを得た。また、γ-アルミナ粉末C 200gに、前記Pt-Pd混合溶液を貴金属換算で3.31重量%(Pt/Pd=2/1)、水酸化バリウムを酸化バリウム換算で0.481重量%となるよう含浸担持させて、Pt-Pd-Ba担持アルミナ粉末oを得た。
 そして、Pt-Pd-Ba担持アルミナ粉末nを755.9g、Pt-Pd-Ba担持アルミナ粉末oを155.9g、水酸化バリウムを酸化バリウム換算で4.5g、精製糖を92g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーλを得た。
 続いて、このスラリーに前記の下層塗布済み触媒を浸漬させ、単位体積あたりの触媒担持量が91.63g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(6)(Pt=1.1g/L、Pd=0.55g/L、BaO=1.0g/L、触媒総量:202.65g/L)を得た。
<酸化触媒DOC(7)の製造>
 実施例3のDOC(4)の製造において、ハニカムフロースルー型コージェライト担体のサイズを300cell/inch(465k/m)/8mil(0.2mm)、7.5inch(190.5mm)径×2.64inch(67.1mm)長さ、1.91Lに変える以外は、実施例3のDOC(4)と同じ触媒調製法により、DOC(7)(Pt=1.2g/L、Pd=0.24g/L、BaO=2.0g/L、触媒総量:203.44g/L)を得た。
<触媒化燃焼フィルターCSF(4)の製造>
 γ-アルミナ粉末Bを600g、γ-アルミナ粉末Cを400gに、前記Pt-Pd混合溶液(Pt/Pd=2/1)を貴金属換算で2.39重量%となるよう含浸担持させてPt-Pd担持アルミナ粉末pを得た。
 そして、Pt-Pd担持アルミナ粉末pを130.3g、シリカゾルをシリカ換算で7.2g、および水をボールミルに投入し、所定の粒度になるまでミリングしてスラリーμを得た。続いてこのスラリーに実施例1と同様のハニカムウォールフロー型コージェライト担体を浸漬させ、単位体積あたりの触媒担持量が6.876g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してCSF(4)(Pt=0.104g/L、Pd=0.052g/L、触媒量=6.876g/L)を得た。
<装置構成>
 上記のDOC(6)、DOC(7)、及びCSF(4)をこの順に触媒コンバーター内で直列につないで本発明の装置を構成した。これによるエンジン昇温評価試験を行って、NO、CO、及びHCの酸化活性試験の結果を図7に示す。なお、DOC(6)、DOC(7)、及びCSF(4)の成分、貴金属量を表8、9に示した。
 上記の実施例6のCSF(4)の後段に、実施例1と同様にして、SCRの熱処理品を配置し、図1の本発明の装置を構成した(実施例1~5の装置とはDOCが二分割されて設置されている点で相違している)。この装置を用いることで、良好な排ガス浄化性能を確認した。
[実施例7]
<装置構成>
 上記実施例6のDOC(6)、DOC(7)、及びCSF(4)を用い、DOC+CSF+DOCの順に触媒コンバーター内で直列につないで本発明の装置を構成した。これによるエンジン昇温評価試験を行って、NO、CO、及びHCの酸化活性試験の結果を図7に示す。なお、DOC(6)、CSF(4)、及びDOC(7)の成分、貴金属量を表8、9に示した。
 上記の実施例7のDOC(7)の後段に、実施例1と同様にして、SCRの熱処理品を配置し、図2の本発明の装置を構成した。この装置を用いることで、良好な排ガス浄化性能を確認した。
[実施例8]
<酸化触媒DOC(8)の製造>
 実施例3の酸化触媒DOC(4)において、すべてのPt-Pd担持アルミナ粉末のPt-Pd担持量を一律24重量%減量した以外は、実施例3と同じ触媒調製法でDOC(8)(Pt=0.91g/L、Pd=0.18g/L、BaO=2.0g/L、触媒総量:203.09g/L)を得た。
<装置構成>
 前記実施例6のDOC(6)及びCSF(4)と上記DOC(8)を用い、DOC+CSF+DOCの順に触媒コンバーター内で直列につないで本発明の装置を構成した。これによるエンジン昇温評価試験を行って、NO、CO、及びHCの酸化活性試験の結果を図7に示す。なお、CSF(4)の成分、貴金属量を表8、9に示した。
 上記の実施例8のDOC(8)の後段に、実施例1と同様にして、SCRの熱処理品を配置し、図2の本発明の装置を構成した。この装置を用いることで、良好な排ガス浄化性能を確認した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
「評価4」
 750℃、100時間の熱処理後の上記触媒(DOC+CSF、DOC+DOC+CSF、又はDOC+CSF+DOC)によるエンジン昇温評価試験を取りまとめた図7及び触媒の構成、成分、貴金属量を表した表8、9から次のことがわかる。
 評価3で得られた知見を基に貴金属担持量をDOCに集中させた本発明の酸化触媒DOC(6)(Pt/Pd=2/1)、酸化触媒DOC(7)(Pt/Pd=2/1)、とCSFの貴金属担持量を大幅に低減させた触媒化燃焼フィルターCSF(4)を直列に並べた実施例6は、PtおよびPdの両方の総担持量が上記実施例4とほぼ同じ(表9参照)であるにも関わらず、実施例4をさらに上回るCO及びHCの酸化活性を発揮したが、NOの酸化活性はやや悪化した。但し、それでも、NOの酸化活性は、貴金属の総担持量が30重量%弱上回る比較例3を上回った。これは、DOCに貴金属の担持を集中させたことでCOやHCの酸化反応がNOの酸化反応より優先して起こっていると考えられ、COやHCの酸化には適しているが、NOの酸化にはやや好ましくない組み合わせであると考えられる。
 さらに、本発明の触媒化燃焼フィルターCSF(4)を挟むようにDOC(6)、CSF(4)、DOC(7)の順に直列に並べた実施例7は、PtおよびPdの両方の総担持量が上記実施例4とほぼ同じ(表9参照)であるにも関わらず、実施例4をさらに上回るという優れたNOの酸化活性を発揮した。また、実施例7はCO、HCの酸化活性についても実施例4とほぼ同等で、貴金属の総担持量が30重量%弱上回る比較例3をも上回った。
 また、本発明の酸化触媒DOC(6)、触媒化燃焼フィルターCSF(4)、及び更に貴金属担持量を低減させた酸化触媒DOC(8)(Pt/Pd=5/1)を直列に並べた実施例8は、Pt及びPdの両方の総担持量が実施例7に比べさらに10重量%近く低減し、比較例3に比べると30重量%近くも低減(表9参照)しているにも関わらず、HCの酸化活性でやや劣るものの、NO及びCOの酸化活性は比較例3を上回った。
 この様に本発明は、高価な貴金属(PtおよびPd)の担持量を20~30重量%近くも下げながら、BaOの添加、アルミナの細孔仕様の最適化、DOCの配置の最適化などでNO、CO、HCの酸化活性の向上に寄与している。特に、NOの酸化活性の向上においては顕著な効果を発揮している。
 本発明の排気ガス浄化装置は、希薄燃焼により発生するNOxの浄化技術、例えばディーゼル自動車用途をはじめ、ガソリン自動車、船舶等の移動体用途や、発電機等の定置用途などに使用可能であり、特にディーゼル自動車用に有用である。
1 ディーゼルエンジン
2 排気ガス流路
3 還元剤噴霧手段
4 酸化触媒(DOC)
5 触媒化燃焼フィルター(CSF)
6 選択還元触媒(SCR)

Claims (12)

  1.  ディーゼルエンジンから排出される排気ガス中の一酸化炭素、炭化水素、窒素酸化物、煤などの微粒子成分を浄化するため、一酸化炭素、炭化水素、窒素酸化物の内、特に一酸化窒素を酸化し、軽油を燃焼するための貴金属成分を含む酸化触媒(DOC)と、煤などの微粒子成分を捕集し、燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルター(CSF)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物を還元剤と接触させて還元除去する選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化装置において、
     酸化触媒(DOC)は、細孔径が12~120nmのアルミナ(Al)に、白金(Pt)、パラジウム(Pd)、及び酸化バリウム(BaO)を担持した触媒層を有し、白金とパラジウムの比が重量換算で1:1~11:2であることを特徴とする排気ガス浄化装置。
  2.  前記触媒層は、一体構造型担体に一層以上に被覆されることを特徴とする請求項1に記載の排気ガス浄化装置。
  3.  前記触媒層は、その下層にアルミナからなる下地層を有することを特徴とする請求項1に記載の排気ガス浄化装置。
  4.  前記細孔径が12~120nmのアルミナは、細孔径が異なる二種以上のアルミナ混合物であることを特徴とする請求項1に記載の排気ガス浄化装置。
  5.  前記酸化触媒(DOC)は、触媒化フィルター(CSF)と還元噴霧手段との間にもさらに設置することを特徴とする請求項1に記載の排気ガス浄化装置。
  6.  前記酸化触媒(DOC)は、酸化バリウムの量が0.5~4.0g/Lであることを特徴とする請求項1に記載の排気ガス浄化装置。
  7.  前記酸化触媒(DOC)は、触媒層の被覆量が50~300g/Lであることを特徴とする請求項1に記載の排気ガス浄化装置。
  8.  前記酸化触媒(DOC)は、貴金属の総担持量が金属換算で0.5~4.0g/Lであることを特徴とする請求項1に記載の排気ガス浄化装置。
  9.  前記触媒化燃焼フィルター(CSF)は、細孔径が12~120nmのアルミナ又はその範囲内で細孔径が異なる二種以上のアルミナ混合物に、白金(Pt)及びパラジウム(Pd)を担持した触媒層を有し、白金とパラジウムの比が重量換算で1:1~11:4であることを特徴とする請求項1又は5に記載の排気ガス浄化装置。
  10.  前記触媒化燃焼フィルター(CSF)は、触媒層の被覆量が4~100g/Lであることを特徴とする請求項9に記載の排気ガス浄化装置。
  11.  前記触媒化燃焼フィルター(CSF)は、貴金属の総担持量が金属換算で0.05~2.0g/Lであることを特徴とする請求項9又は10に記載の排気ガス浄化装置。
  12.  前記選択還元触媒(SCR)の後に、さらにアンモニア酸化触媒(AMOX)を配置することを特徴とする請求項1に記載の排気ガス浄化装置。
PCT/JP2013/060669 2012-05-14 2013-04-09 排気ガス浄化装置 WO2013172128A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014515537A JP6040232B2 (ja) 2012-05-14 2013-04-09 排気ガス浄化装置
US14/396,234 US9480948B2 (en) 2012-05-14 2013-04-09 Exhaust gas purifier
CN201380023860.0A CN104321506B (zh) 2012-05-14 2013-04-09 废气净化装置
EP13791211.9A EP2851528B1 (en) 2012-05-14 2013-04-09 Exhaust gas purifier
US15/252,862 US9539544B1 (en) 2012-05-14 2016-08-31 Exhaust gas purifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-110519 2012-05-14
JP2012110519 2012-05-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/396,234 A-371-Of-International US9480948B2 (en) 2012-05-14 2013-04-09 Exhaust gas purifier
US15/252,862 Division US9539544B1 (en) 2012-05-14 2016-08-31 Exhaust gas purifier

Publications (1)

Publication Number Publication Date
WO2013172128A1 true WO2013172128A1 (ja) 2013-11-21

Family

ID=49583544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060669 WO2013172128A1 (ja) 2012-05-14 2013-04-09 排気ガス浄化装置

Country Status (5)

Country Link
US (2) US9480948B2 (ja)
EP (1) EP2851528B1 (ja)
JP (1) JP6040232B2 (ja)
CN (1) CN104321506B (ja)
WO (1) WO2013172128A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183587A (ja) * 2014-03-24 2015-10-22 日立建機株式会社 熱機関の排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒
CN105597732A (zh) * 2015-11-19 2016-05-25 湖南大学 一种具有同时脱硝脱汞的复合载体型scr脱硝催化剂及制备方法
JP2016517342A (ja) * 2013-03-12 2016-06-16 ビーエーエスエフ コーポレーション No酸化用触媒材料
CN105715337A (zh) * 2014-12-19 2016-06-29 罗伯特·博世有限公司 用于运行甲烷氧化催化剂的方法和废气后处理系统
EP2974791A4 (en) * 2013-03-15 2016-12-14 N E Chemcat Corp OXIDATION CATALYST AND EXHAUST GAS CLEANING PROCESS WITH THIS
JP2018505990A (ja) * 2015-02-20 2018-03-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 発電装置用の排気システム
JP2018122297A (ja) * 2012-11-21 2018-08-09 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 圧縮着火機関の排気ガスを処理するための酸化触媒
US10344641B2 (en) 2017-03-09 2019-07-09 Cataler Corporation Exhaust gas purifying catalyst
CN110461442A (zh) * 2017-02-14 2019-11-15 巴斯夫公司 具有hc氧化能力的与非pgm型催化剂组合的pgm催化剂
JP2021076057A (ja) * 2019-11-08 2021-05-20 エヌ・イーケムキャット株式会社 ディーゼルエンジン用排ガス浄化装置およびその用途
US11305270B2 (en) 2016-08-26 2022-04-19 N.E. Chemcat Corporation Honeycomb structure, honeycomb structure type catalyst and production methods therefor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017134081A (ru) * 2015-03-03 2019-04-03 Басф Корпорейшн АДСОРБИРУЮЩИЙ NOx КАТАЛИЗАТОР, СПОСОБЫ И СИСТЕМЫ
JP6219872B2 (ja) * 2015-03-27 2017-10-25 トヨタ自動車株式会社 排ガス浄化用触媒
CA2989133C (en) * 2015-06-12 2023-12-05 Basf Corporation Exhaust gas treatment system
CN105435620A (zh) * 2015-12-07 2016-03-30 山东骏飞化工有限公司 一种脱硝剂及其制备方法
PL3357558T3 (pl) * 2017-02-03 2020-03-31 Umicore Ag & Co. Kg Katalizator do oczyszczania gazów spalinowych silników wysokoprężnych
KR102659805B1 (ko) * 2017-11-10 2024-04-23 바스프 코포레이션 암모니아 산화가 감소된 촉매화된 매연 필터
JP7211709B2 (ja) * 2018-02-27 2023-01-24 エヌ・イーケムキャット株式会社 排ガス浄化用三元触媒及びその製造方法、並びに一体構造型排ガス浄化用触媒
CN110821625B (zh) * 2019-10-31 2021-07-27 中自环保科技股份有限公司 一种船舶发动机尾气后处理净化系统
CN115916402A (zh) * 2020-06-22 2023-04-04 三井金属矿业株式会社 废气净化用催化剂
CN112096485B (zh) * 2020-09-04 2022-06-07 珂黎艾净化技术江苏有限公司 一种Fe-SDPF催化排放控制净化器的加工工艺
CN112934234A (zh) * 2021-01-19 2021-06-11 惠州市瑞合环保科技有限公司 一种用于柴油尾气后处理系统中的doc催化剂
CN115869944A (zh) * 2022-11-29 2023-03-31 江苏优尚环境工程有限公司 一种应用于高水份环境的催化氧化催化剂及其制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086011A (ja) 1983-07-15 1985-05-15 ユニオン・カ−バイド・コ−ポレ−シヨン 結晶金属アルミノリン酸塩
JPH01318715A (ja) 1988-05-13 1989-12-25 Johnson Matthey Inc ディーゼル排ガスの微粒子除去方法とその装置
JPH0538420A (ja) 1991-01-08 1993-02-19 Agency Of Ind Science & Technol 窒素酸化物の除去処理方法
JPH08103636A (ja) 1994-10-06 1996-04-23 Babcock Hitachi Kk 低温脱硝装置
JP2002502927A (ja) 1998-02-06 2002-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 排ガス中のNOxの還元機構
JP2004290827A (ja) 2003-03-27 2004-10-21 Ne Chemcat Corp 軽油燃焼用酸化触媒
JP2005262071A (ja) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2008155204A (ja) 2006-11-29 2008-07-10 Ict:Kk 酸化触媒およびそれを用いた排気ガス浄化システム
JP2008526509A (ja) 2005-01-19 2008-07-24 クリーン ディーゼル テクノロジーズ インコーポレーテッド 多成分金属系燃焼触媒を用いる低排出物燃焼及び軽触媒化ディーゼル酸化触媒
US20080241060A1 (en) 2007-03-26 2008-10-02 Hong-Xin Li Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
JP2008279428A (ja) * 2007-04-12 2008-11-20 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2009026098A (ja) 2007-07-20 2009-02-05 Hitachi Ltd 日記作成支援システム
JP2009167844A (ja) 2008-01-11 2009-07-30 Mazda Motor Corp 排気ガス浄化触媒装置
JP2009262098A (ja) 2008-04-28 2009-11-12 Ne Chemcat Corp 選択還元触媒を用いた排気ガス浄化方法
WO2010083315A2 (en) * 2009-01-16 2010-07-22 Basf Catalysts Llc Diesel oxidation catalyst with layer structure for improved hydrocarbon conversion
JP2011506827A (ja) * 2007-12-12 2011-03-03 ビー・エイ・エス・エフ、コーポレーション 排気処理システム
JP2011220158A (ja) * 2010-04-07 2011-11-04 Ud Trucks Corp エンジンの排気浄化装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100632A (en) * 1984-04-23 1992-03-31 Engelhard Corporation Catalyzed diesel exhaust particulate filter
US4675308A (en) * 1984-06-14 1987-06-23 Engelhard Corporation Three-way catalyst for lean operating engines
US5024981A (en) * 1989-04-20 1991-06-18 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
US4961917A (en) * 1989-04-20 1990-10-09 Engelhard Corporation Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts
JP2889610B2 (ja) 1989-09-18 1999-05-10 株式会社ブリヂストン 防振装置
US6497851B1 (en) * 1994-12-06 2002-12-24 Englehard Corporation Engine exhaust treatment apparatus and method of use
JP3688871B2 (ja) * 1997-11-20 2005-08-31 ダイハツ工業株式会社 排気ガス浄化用触媒
US6110862A (en) 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
DE102005025045A1 (de) * 2005-05-30 2006-12-14 J. Eberspächer GmbH & Co. KG Abgasanlage
US8418444B2 (en) 2006-03-30 2013-04-16 Umicore Shokubai Japan Co., Ltd. Method for purification of exhaust gas from internal combustion engine
US7977276B2 (en) 2007-04-12 2011-07-12 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method of producing the same
US9993771B2 (en) * 2007-12-12 2018-06-12 Basf Corporation Emission treatment catalysts, systems and methods
US20090173063A1 (en) * 2008-01-07 2009-07-09 Boorse R Samuel Mitigation of Particulates and NOx in Engine Exhaust
US8524185B2 (en) 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
US8211392B2 (en) 2009-01-16 2012-07-03 Basf Corporation Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
US8415269B2 (en) * 2009-01-21 2013-04-09 WGCH Technology Limited Palladium-gold catalyst synthesis

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086011A (ja) 1983-07-15 1985-05-15 ユニオン・カ−バイド・コ−ポレ−シヨン 結晶金属アルミノリン酸塩
JPH01318715A (ja) 1988-05-13 1989-12-25 Johnson Matthey Inc ディーゼル排ガスの微粒子除去方法とその装置
JPH0538420A (ja) 1991-01-08 1993-02-19 Agency Of Ind Science & Technol 窒素酸化物の除去処理方法
JPH08103636A (ja) 1994-10-06 1996-04-23 Babcock Hitachi Kk 低温脱硝装置
JP2002502927A (ja) 1998-02-06 2002-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 排ガス中のNOxの還元機構
JP2004290827A (ja) 2003-03-27 2004-10-21 Ne Chemcat Corp 軽油燃焼用酸化触媒
JP2005262071A (ja) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2008526509A (ja) 2005-01-19 2008-07-24 クリーン ディーゼル テクノロジーズ インコーポレーテッド 多成分金属系燃焼触媒を用いる低排出物燃焼及び軽触媒化ディーゼル酸化触媒
JP2008155204A (ja) 2006-11-29 2008-07-10 Ict:Kk 酸化触媒およびそれを用いた排気ガス浄化システム
US20080241060A1 (en) 2007-03-26 2008-10-02 Hong-Xin Li Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
JP2008279428A (ja) * 2007-04-12 2008-11-20 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2009026098A (ja) 2007-07-20 2009-02-05 Hitachi Ltd 日記作成支援システム
JP2011506827A (ja) * 2007-12-12 2011-03-03 ビー・エイ・エス・エフ、コーポレーション 排気処理システム
JP2009167844A (ja) 2008-01-11 2009-07-30 Mazda Motor Corp 排気ガス浄化触媒装置
JP2009262098A (ja) 2008-04-28 2009-11-12 Ne Chemcat Corp 選択還元触媒を用いた排気ガス浄化方法
WO2010083315A2 (en) * 2009-01-16 2010-07-22 Basf Catalysts Llc Diesel oxidation catalyst with layer structure for improved hydrocarbon conversion
JP2011220158A (ja) * 2010-04-07 2011-11-04 Ud Trucks Corp エンジンの排気浄化装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Influence of Support Materials and Aging on NO Oxidation Performance of Pt Catalysts under an Oxidative Atmosphere at Low Temperature", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol. 40, no. 9, 2007, pages 741 - 748
CATALYSIS TODAY, vol. 114, 2006, pages 3 - 12
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol. 40, no. 9, 2007, pages 741 - 748
See also references of EP2851528A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122297A (ja) * 2012-11-21 2018-08-09 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 圧縮着火機関の排気ガスを処理するための酸化触媒
JP2016517342A (ja) * 2013-03-12 2016-06-16 ビーエーエスエフ コーポレーション No酸化用触媒材料
JP7114219B2 (ja) 2013-03-12 2022-08-08 ビーエーエスエフ コーポレーション No酸化用触媒材料
JP2020196010A (ja) * 2013-03-12 2020-12-10 ビーエーエスエフ コーポレーション No酸化用触媒材料
EP2974791A4 (en) * 2013-03-15 2016-12-14 N E Chemcat Corp OXIDATION CATALYST AND EXHAUST GAS CLEANING PROCESS WITH THIS
JP2015183587A (ja) * 2014-03-24 2015-10-22 日立建機株式会社 熱機関の排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒
CN105715337A (zh) * 2014-12-19 2016-06-29 罗伯特·博世有限公司 用于运行甲烷氧化催化剂的方法和废气后处理系统
JP2018505990A (ja) * 2015-02-20 2018-03-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 発電装置用の排気システム
JP7221262B2 (ja) 2015-02-20 2023-02-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 発電装置用の排気システム
JP2021058881A (ja) * 2015-02-20 2021-04-15 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 発電装置用の排気システム
CN105597732A (zh) * 2015-11-19 2016-05-25 湖南大学 一种具有同时脱硝脱汞的复合载体型scr脱硝催化剂及制备方法
US11305270B2 (en) 2016-08-26 2022-04-19 N.E. Chemcat Corporation Honeycomb structure, honeycomb structure type catalyst and production methods therefor
CN110461442A (zh) * 2017-02-14 2019-11-15 巴斯夫公司 具有hc氧化能力的与非pgm型催化剂组合的pgm催化剂
CN110461442B (zh) * 2017-02-14 2022-09-06 巴斯夫公司 具有hc氧化能力的与非pgm型催化剂组合的pgm催化剂
US10344641B2 (en) 2017-03-09 2019-07-09 Cataler Corporation Exhaust gas purifying catalyst
JP2021076057A (ja) * 2019-11-08 2021-05-20 エヌ・イーケムキャット株式会社 ディーゼルエンジン用排ガス浄化装置およびその用途
JP7389617B2 (ja) 2019-11-08 2023-11-30 エヌ・イーケムキャット株式会社 ディーゼルエンジン用排ガス浄化装置およびその用途

Also Published As

Publication number Publication date
CN104321506A (zh) 2015-01-28
JP6040232B2 (ja) 2016-12-07
CN104321506B (zh) 2016-11-16
EP2851528B1 (en) 2018-06-20
US20150078966A1 (en) 2015-03-19
EP2851528A1 (en) 2015-03-25
US9539544B1 (en) 2017-01-10
JPWO2013172128A1 (ja) 2016-01-12
US20160367943A1 (en) 2016-12-22
EP2851528A4 (en) 2016-01-13
US9480948B2 (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP6040232B2 (ja) 排気ガス浄化装置
JP6315717B2 (ja) 排気ガス浄化装置
JP6755306B2 (ja) すす触媒とscr触媒を有する触媒フィルタ
JP5989214B2 (ja) アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP5110954B2 (ja) 選択還元型触媒を用いた排気ガス浄化触媒装置並びに排気ガス浄化方法
JP5769708B2 (ja) 選択還元型触媒を用いた排気ガス浄化装置及び排気ガス浄化方法
US8865615B2 (en) Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
JP5769732B2 (ja) 選択還元型触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
WO2011162030A1 (ja) 選択還元触媒を用いた排気ガス浄化触媒装置、排気ガス浄化方法、および排気ガス浄化触媒装置を搭載したディーゼル自動車
JP2009262098A (ja) 選択還元触媒を用いた排気ガス浄化方法
WO2018025827A1 (ja) コールドスタート対応尿素scrシステム
KR20190036543A (ko) 배기 가스 촉매 및 필터 기재에 대한 촉매 결합제
JP5651727B2 (ja) 選択還元触媒を用いた排気ガス浄化方法
JP2012152744A (ja) 排気ガス浄化用選択還元触媒及びそれを用いた排気ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013791211

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014515537

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14396234

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE