WO2013168648A1 - オイル劣化抑制装置 - Google Patents

オイル劣化抑制装置 Download PDF

Info

Publication number
WO2013168648A1
WO2013168648A1 PCT/JP2013/062663 JP2013062663W WO2013168648A1 WO 2013168648 A1 WO2013168648 A1 WO 2013168648A1 JP 2013062663 W JP2013062663 W JP 2013062663W WO 2013168648 A1 WO2013168648 A1 WO 2013168648A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
deterioration
porous layer
deterioration suppressing
inorganic material
Prior art date
Application number
PCT/JP2013/062663
Other languages
English (en)
French (fr)
Inventor
豪人 森下
泰啓 斉藤
一平 福富
村上 元一
克一 宮坂
康裕 大宮
浩司 森谷
遠山 護
成人 龍田
Original Assignee
トヨタ紡織株式会社
トヨタ自動車株式会社
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ紡織株式会社, トヨタ自動車株式会社, 株式会社豊田中央研究所 filed Critical トヨタ紡織株式会社
Priority to EP13787477.2A priority Critical patent/EP2848780A4/en
Priority to US14/398,306 priority patent/US20150083655A1/en
Priority to CN201380023153.1A priority patent/CN104379888A/zh
Publication of WO2013168648A1 publication Critical patent/WO2013168648A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D27/00Cartridge filters of the throw-away type
    • B01D27/08Construction of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/005Filters specially adapted for use in internal-combustion engine lubrication or fuel systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/08Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one sorption step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/16Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/0058Working-up used lubricants to recover useful products ; Cleaning by filtration and centrifugation processes; apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/0091Treatment of oils in a continuous lubricating circuit (e.g. motor oil system)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/10Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/30Filter housing constructions
    • B01D2201/301Details of removable closures, lids, caps, filter heads
    • B01D2201/302Details of removable closures, lids, caps, filter heads having inlet or outlet ports
    • B01D2201/303Details of removable closures, lids, caps, filter heads having inlet or outlet ports not arranged concentrically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/11Clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/52Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection
    • B01D29/54Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection arranged concentrically or coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/02Precoating the filter medium; Addition of filter aids to the liquid being filtered
    • B01D37/025Precoating the filter medium; Addition of filter aids to the liquid being filtered additives incorporated in the filter
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • C10G2300/1007Used oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/10Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters
    • F01M2001/1007Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters characterised by the purification means combined with other functions
    • F01M2001/1014Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters characterised by the purification means combined with other functions comprising supply of additives

Definitions

  • the present invention relates to an oil deterioration suppressing device. More specifically, the present invention relates to an oil deterioration suppressing device that can improve the effect of capturing oil deterioration components and can suppress an increase in pressure loss by reducing oil passage resistance.
  • a filter medium made of fine particles (for example, hydrotalcite) and fibers for removing carbon, acid, deteriorated substances and the like generated in an internal combustion engine is known (for example, see Patent Document 1).
  • an oil inflow path 205 through which oil sent from the oil pan flows into the housing 202 is formed in the housing 202 that houses the filter medium 210.
  • an oil outflow path 206 is formed through which oil filtered by the filter medium 210 flows out to a lubrication target portion (for example, a crankshaft, a cylinder wall, a valve mechanism, etc.) of the engine.
  • a lubrication target portion for example, a crankshaft, a cylinder wall, a valve mechanism, etc.
  • the oil flowing into the housing 202 from the oil inflow path 205 is filtered by the filter medium 210, the carbon is removed by the fine particles 217, and the oil flows out from the oil outflow path 206 to the lubrication part target portion of the engine.
  • a filter using a filter medium obtained by heat-molding an adhesive fiber processed material and a filter medium material containing sepiolite is known (for example, see Patent Document 2).
  • this filter by using sepiolite in combination, it is possible to obtain a filter having an excellent capturing effect even for oily impure components. Therefore, it is particularly suitable for automobile engine lubrication.
  • This invention is made in view of the said present condition, While providing the capture effect of an oil deterioration component, providing an oil deterioration suppression apparatus which can suppress an increase in pressure loss by reducing oil flow resistance. With the goal.
  • the initial deterioration product of oil is polymerized and sludged. Therefore, an initial deterioration product such as nitrate ester is adsorbed on the pore surface of the mesoporous inorganic material held in the deterioration suppressing portion provided in the oil filter before sludge formation. Thereby, sludge formation can be suppressed and deterioration of oil can be suppressed.
  • the arrangement position of the deterioration suppressing portion that holds the mesoporous inorganic material that can be an oil flow resistance is optimized with respect to the oil flow in the filter. Thereby, it can be set as the structure where the raise of a pressure loss is suppressed.
  • the present invention has been made based on such knowledge.
  • the invention described in claim 1 includes a filtering unit including a filter medium for filtering oil, and a deterioration suppressing unit including a powdery deterioration suppressing agent that suppresses deterioration of the oil.
  • the deterioration inhibitor includes a mesoporous inorganic material, and among the oils sent from the oil storage part, the oil filtered by the filtration part is sent to the lubrication target part, and the deterioration is suppressed by the deterioration prevention part.
  • the gist is that the oil is returned to the oil storage part or sent to the lubrication target part.
  • the invention according to claim 2 is summarized in that, in claim 1, the mesoporous inorganic material has an average pore diameter of 1 to 30 nm.
  • the gist of the invention described in claim 3 is that, in claim 1, the pore volume of the mesoporous inorganic material is 0.3 to 4.0 cm 3 / g.
  • the gist of the invention described in claim 4 is that, in claim 1, the mesoporous inorganic material has a specific surface area of 120 to 2000 m 2 / g.
  • the invention according to claim 5 is the oxide inorganic material according to any one of claims 1 to 4, wherein the mesoporous inorganic material includes an element selected from the group consisting of Si, Al, Fe, Ca, and Mg.
  • the gist of a sixth aspect of the present invention is that, in any one of the first to fifth aspects, the deterioration suppressing unit includes a porous layer that holds the deterioration suppressing agent and allows oil to pass therethrough.
  • the invention according to claim 7 is the invention according to claim 6, wherein the porous layer has a first porous layer and a second porous layer laminated in the oil passing direction, and the upstream side of the first porous layer
  • the gist is that the porosity is larger than the porosity of the second porous layer on the downstream side.
  • the invention according to claim 8 is the intermediate according to claim 6 or 7, wherein the deterioration suppressing portion is disposed between the plurality of porous layers, the deterioration suppressing agent cannot pass through, and the oil can pass through.
  • the gist is to provide a layer.
  • a ninth aspect of the present invention provides the housing according to any one of the first to eighth aspects, further comprising a housing that accommodates the filtering part and the deterioration suppressing part, and the housing receives oil sent from the oil storage part.
  • the gist is that an oil return path for returning to the reservoir is formed.
  • the oil deterioration suppressing device of the present invention among the oils sent from the oil storage part, the oil filtered by the filtering part is sent to the lubrication target part.
  • the oil whose deterioration is suppressed by the deterioration suppressing portion holding the deterioration suppressing agent containing the mesoporous inorganic material is returned to the oil storage portion or sent to the lubrication target portion.
  • part of the oil sent from the oil reservoir is bypass-flowed, and the oil passage resistance can be reduced to suppress an increase in pressure loss.
  • the average pore diameter of the mesoporous inorganic material is 1 to 30 nm
  • the initial deteriorated product easily enters the pores of the mesoporous inorganic material, is sufficiently adsorbed in the pores, and sludge formation is further suppressed. Oil deterioration is suppressed.
  • the pore volume is 0.3 to 4.0 cm 3 / g, since there is a sufficient pore space for adsorbing the initial deteriorated product, the initial deteriorated product is easily adsorbed, and sludge formation is further improved. It is suppressed and deterioration of oil is suppressed.
  • the mesoporous inorganic material has a sufficient surface area for adsorbing the initially deteriorated material, so that the easily deteriorated material is easily adsorbed and sludge formation is further suppressed. Oil deterioration is suppressed.
  • the mesoporous inorganic material is an oxide-based inorganic material having an element selected from the group consisting of Si, Al, Fe, Ca and Mg, it functions sufficiently as a deterioration inhibitor, and the initial deteriorated material is a pore. It is adsorbed on the surface and sludge formation is suppressed, and deterioration of oil is sufficiently suppressed.
  • a deterioration suppression part when a deterioration suppression part is equipped with a porous layer, a deterioration inhibitor can be hold
  • the oil flows while gradually spreading from the first porous layer toward the second porous layer. Therefore, the oil passage resistance can be further reduced, and the oil deterioration suppressing effect by the deterioration suppressing portion can be further increased.
  • the deterioration suppressing unit includes an intermediate layer, the deterioration suppressing agent does not move between the plurality of porous layers by the intermediate layer. Therefore, aggregation of the deterioration inhibitor in the downstream porous layer is prevented. Therefore, the oil passage resistance can be further reduced, and the oil deterioration suppressing effect by the deterioration suppressing portion can be further increased.
  • the housing includes a housing for storing the filtration unit and the deterioration suppressing unit, and in the case where an oil inflow path, an oil outflow path, and an oil return path are formed in the housing, the oil sent from the oil storage section Oil that flows into the housing through the oil inflow passage and is filtered by the filtration portion flows out to the lubrication target portion through the oil outflow passage.
  • the oil whose deterioration is suppressed by the deterioration suppressing unit is returned to the oil storing unit via the oil return path.
  • an oil deterioration suppression apparatus, a filtration part, and a deterioration suppression part can be replaced
  • FIG. 1 is a longitudinal sectional view of an oil deterioration suppressing device according to Embodiment 1.
  • FIG. FIG. 2 is an enlarged sectional view taken along line II-II in FIG. 1. It is explanatory drawing for demonstrating an effect
  • FIG. 10 is a schematic diagram of the filtration apparatus which evaluates the degradation thing capture
  • FIG. It is a chart of the infrared spectroscopic analysis of the nitrate ester which is an initial stage deterioration thing. It is a graph which shows the capture
  • 6 is a schematic diagram of an apparatus used in a deterioration test of Test Example 2.
  • 10 is a graph showing the amount of initially deteriorated material in Test Example 3.
  • 10 is a graph showing a base number in Test Example 3.
  • 10 is a graph showing an acid value in Test Example 3.
  • the oil deterioration suppressing device (1, 101) according to the present invention includes a filtering section (3, 103) including a filter medium (10) for filtering oil, and a deterioration including a powdery deterioration suppressing agent (17) for suppressing oil deterioration.
  • the deterioration inhibitor contains a mesoporous inorganic material, and among the oil sent from the oil reservoir (9), the oil filtered by the filter is sent to the lubrication target part. On the other hand, the oil whose deterioration is suppressed by the deterioration suppressing unit is returned to the oil storage unit or sent to the lubrication target unit.
  • Embodiment 1 The oil deterioration suppressing device (1, 101) according to the present invention has such a configuration (see, for example, FIGS. 1 and 5).
  • oil reservoir examples include an oil pan used in a wet sump engine, an oil tank used in a dry sump engine, and an oil pan used in an automatic transmission.
  • oil pan examples include engine mechanism parts (for example, a crankshaft, a cylinder wall, a valve mechanism, etc.) and automatic transmission mechanism parts.
  • type, shape, etc. of the “filter medium” are not particularly limited as long as the oil can be filtered.
  • the filter medium include fiber bodies such as nonwoven fabric, paper, woven fabric, and knitted fabric, resin foams such as urethane, and resin porous films.
  • the above-mentioned “powder-like deterioration inhibitor” includes a mesoporous inorganic material, and its type, deterioration suppression form, etc. are not particularly limited as long as it can suppress oil deterioration.
  • the mesoporous inorganic material is a porous inorganic material having mesopores, and the average pore diameter of the mesopores is usually 1 to 50 nm, more preferably 1 to 30 nm, and preferably 2 to 25 nm. When the average pore diameter of the mesopores is less than 1 nm, the mesopore diameter is often less than the size of the substance to be captured, and the capture performance tends to be lowered.
  • the average pore diameter exceeds 30 nm, particularly 50 nm, the specific surface area tends to be small, and the trapping performance tends to decrease. Therefore, it is preferable to select and use a mesoporous inorganic material having an average pore size suitable for the size of the substance to be captured.
  • the pore volume of the mesoporous inorganic material is preferably 0.3 ⁇ 4.0cm 3 / g, particularly preferably 0.4 ⁇ 2.0cm 3 / g.
  • the pore volume is less than 0.3 cm 3 / g, the initial deteriorated product is not sufficiently adsorbed, and the generation of sludge tends to be not sufficiently suppressed.
  • a mesoporous inorganic material having a pore volume exceeding 4.0 cm 3 / g can be produced, the strength and shape as a mesoporous structure may not be maintained.
  • the pore volume is 0.4 to 2.0 cm 3 / g, the initially deteriorated product is sufficiently adsorbed.
  • a mesoporous inorganic material can be easily produced, and can be a mesoporous inorganic material having sufficient strength and having a shape maintained.
  • the mesoporous inorganic material preferably contains about 60% or more of the total pore volume in the range of about ⁇ 40% of the average pore diameter in the pore diameter distribution curve.
  • a mesoporous inorganic material satisfying this condition means that the pore diameter is highly uniform.
  • “the range of about ⁇ 40% of the average pore diameter in the pore diameter distribution curve includes about 60% or more of the total pore volume” means that, for example, when the average pore diameter is about 3 nm, this about It means that the total volume of mesopores having an average pore diameter in the range of about 1.8 to 4.2 nm of about ⁇ 40% of 3 nm occupies about 60% or more of the total pore volume. .
  • the specific surface area of the mesoporous inorganic material is preferably 120 ⁇ 2000m 2 / g, more preferably 400 ⁇ 1200m 2 / g.
  • the specific surface area is less than 120 m 2 / g, the initial deteriorated product is not sufficiently adsorbed, and the generation of sludge tends to be not sufficiently suppressed.
  • the specific surface area is 400 to 1200 m 2 / g, it is possible to obtain a mesoporous inorganic material in which the initially deteriorated material is sufficiently adsorbed and has sufficient strength and shape.
  • the mesoporous inorganic material is not particularly limited as long as the mesoporous inorganic material has mesopores and can suppress deterioration of the oil, but is preferably a mesoporous inorganic material having an average pore diameter, a pore volume, and a specific surface area as described above. . Further, no mesoporous material having an average pore diameter of 1 to 30 nm, preferably 2 to 25 nm, and a pore volume of 0.3 to 4.0 cm 3 / g, preferably 0.4 to 2.0 cm 3 / g. Equipment is preferred.
  • a mesoporous inorganic material having an average pore diameter of 1 to 30 nm, preferably 2 to 25 nm and a specific surface area of 120 to 2000 m 2 / g, preferably 400 to 1200 m 2 / g is more preferable.
  • the mesoporous inorganic material which is g is more preferable.
  • the average pore diameter is 1 to 30 nm, preferably 2 to 25 nm
  • the pore volume is 0.3 to 4.0 cm 3 / g, preferably 0.4 to 2.0 cm 3 / g
  • the average pore diameter, pore volume, and specific surface area of the mesoporous inorganic material can be measured as follows.
  • the nitrogen adsorption isotherm at 77K is measured by a constant volume method using a fully automatic gas adsorption measuring device (manufactured by Nippon Bell Co., Ltd., model “BELSORP-mini II”).
  • the pore size distribution is obtained by the BJH method, and the peak value of this pore size distribution is defined as the average pore size. Further, the specific surface area is calculated by the BET plot from the amount of adsorption when P / P0 (relative pressure) is 0.05 to 0.20.
  • the mesoporous inorganic material include oxide-based inorganic materials having various elements.
  • an oxide-based inorganic material having an element selected from the group consisting of Si, Al, Fe, Ca, and Mg can be used.
  • an oxide-based inorganic material having an element such as Nb, Ta, Zr, Ti, or Zn can also be used.
  • an oxide-based inorganic material having Si and / or Al is preferable.
  • oxide-based inorganic materials include amorphous mesoporous silica-based inorganic materials called FSM (Folded-Sheet-Mesoporous-Material) having a honeycomb structure, activated clay, Si, Al, and the like having Si and Al. Can be mentioned. Sepiolite is excluded from the mesoporous inorganic material in the present invention because it has a small pore volume and a low ability to adsorb nitrate ester, which is an initial deterioration product of oil, even if it has mesopores.
  • FSM Flexible-Sheet-Mesoporous-Material
  • the deterioration inhibitor only needs to contain a mesoporous inorganic material, but when the total amount of the deterioration inhibitor is 100% by mass, the mesoporous inorganic material is preferably 10% by mass or more. Furthermore, the mesoporous inorganic material is more preferably 20% by mass or more, and the total amount of the deterioration inhibitor is particularly preferably a mesoporous inorganic material.
  • the other deterioration inhibitors are not particularly limited. For example, acidic clay, diatomaceous earth, zeolite, nonporous silica, hydrotalcite, and various ion exchange resins Can be mentioned.
  • the average particle diameter of the mesoporous inorganic material is not particularly limited, but is preferably in the range of, for example, 0.1 to 200 ⁇ m, more preferably in the range of 2.5 to 150 ⁇ m, and in the range of 10 to 100 ⁇ m. It is particularly preferred that This average particle diameter is the particle diameter (median diameter) when the cumulative weight is 50% in the particle size distribution measurement by the laser beam diffraction method.
  • the deterioration suppressing portion (4, 104) includes a porous layer (18, 118) that holds the deterioration suppressing agent (17) and through which oil can pass (for example, 1 and 5).
  • the porous layer include fiber bodies such as nonwoven fabric, paper, woven fabric, and knitted fabric, resin foams such as urethane, and resin porous films.
  • the porous layer (18, 118) includes a first porous layer (18a, 118a) and a second porous layer (18b, 118b) stacked in the oil passing direction.
  • the porosity of the 1st porous layer used as an upstream can be made larger than the porosity of the 2nd porous layer used as a downstream (for example, refer FIG. 4 etc.).
  • the porosity of the first porous layer is 0.7 to 0.99 (preferably 0.9 to 0.99), and the porosity of the second porous layer is 0.5 to 0.95 ( Preferably, it can be 0.8 to 0.95).
  • the “porosity” is usually calculated by the formula ⁇ 1- [weight of porous layer / (thickness of porous layer ⁇ density of material constituting porous layer)] ⁇ .
  • the basis weight of the porous layer means the weight per unit area of the porous layer.
  • the average particle diameter of the deterioration inhibitors other than the mesoporous inorganic material among the deterioration inhibitors can be in the same numerical range as the average particle diameter of the mesoporous inorganic material.
  • the average particle diameter is also the median diameter.
  • the deterioration suppressing unit (4, 104) can include an intermediate layer (19, 119) disposed between the plurality of porous layers (18, 118). Further, the intermediate layers (19, 119) cannot pass the deterioration inhibitor (17) and allow oil to pass (see, for example, FIG. 4).
  • the material of the intermediate layer include fiber bodies such as nonwoven fabric, paper, woven fabric, and knitted fabric, resin foams such as urethane, and resin porous films.
  • Embodiment 1 Examples of the oil deterioration suppressing device according to the present invention include a form [A] (for example, refer to FIG. 1 and the like) including a housing (2) that houses the filtering unit (3) and the deterioration suppressing unit (4). .
  • the housing has an oil inflow passage (5) for allowing the oil sent from the oil reservoir (9) to flow into the housing, and the oil filtered by the filtration portion flows out to the lubrication target portion. And an oil return path (7) for returning the oil whose deterioration has been suppressed by the deterioration suppressing portion to the oil storage portion.
  • the form [B] (for example, refer FIG.
  • the housing (102) which accommodates the said filtration part (103) and the deterioration suppression part (104) can be mentioned.
  • the housing is deteriorated by the oil inflow passage (105) for allowing the oil sent from the oil storage portion (9) to flow into the housing, the oil filtered by the filtration portion, and the deterioration suppressing portion.
  • An oil outflow path (106) is formed for allowing the oil with suppressed to flow out to the lubrication target portion.
  • the maximum cross-sectional area (S1) of the oil outflow passage (6) is larger than the maximum cross-sectional area (S2) of the oil return passage (7) (see, for example, FIG. 2). ).
  • S1 / S2 of the maximum cross-sectional area of each passage may be 10 to 1000 (preferably 50 to 200).
  • the filtering part (3) and the deterioration suppressing part (4) are arranged so that the internal space of the housing (2) is connected to the upstream space (R1) connected to the oil inflow path (5). And a downstream space (R2) connected to the oil outflow passage (6).
  • the said deterioration suppression part (4) is provided with the storage case (20) which accommodates a deterioration inhibitor (17).
  • the storage case has an inlet (21) that opens to the upstream space, and an outlet (22) that is isolated from the upstream space and the downstream space and is connected to the oil return path (7). (See, for example, FIG. 1).
  • the oil sent from the oil reservoir flows into the upstream space inside the housing via the oil inflow path. Furthermore, the oil filtered by the filtering part flows out to the lubrication target part through the downstream space and the oil outflow path. On the other hand, the oil flowing into the housing case from the inflow port is returned to the oil reservoir through the outflow port and the oil return path after the deterioration is suppressed by the deterioration inhibitor.
  • the filtering part (103) and the deterioration suppressing part (104) are configured so that the internal space of the housing (102) is connected to the upstream space (R1) connected to the oil inflow path (105). And a downstream space (R2) connected to the oil outflow passage (106).
  • the said deterioration suppression part (104) is provided with the accommodating part (120) which accommodates a deterioration inhibitor (17).
  • the accommodating portion may be formed with an inlet (121) that opens to the upstream space and an outlet (122) that opens to the downstream space (see, for example, FIG. 5).
  • the oil filtered by the filtering part flows out to the lubrication target part through the downstream space and the oil outflow path.
  • the oil flowing into the accommodating portion from the inlet is discharged to the lubrication target portion through the outlet, the downstream space, and the oil outlet after the deterioration is suppressed by the deterioration inhibitor.
  • the tubular filtration part (3) and the deterioration suppressing part (4) are arranged along the axial direction inside the housing (2).
  • the said storage case (20) has a cylindrical inner wall (20a) and an outer wall (20b), and the plate-shaped bottom wall (20c) which connects the one end side of these inner walls and an outer wall.
  • the inflow port (21) is provided at one end side in the axial direction of the housing case so as to open facing the end surface in the axial direction of the tubular filter medium (10), and the outflow port (22) is It is provided on the other end side in the axial direction of the housing case.
  • the said deterioration inhibitor (17) can be accommodated in the space enclosed by the inner wall of this accommodation case, the outer wall, and the bottom wall (for example, refer FIG. 1 etc.).
  • the oil that has flowed into the housing case from the inflow port flows through the entire deterioration inhibitor and flows from the outflow port to the oil return path. Therefore, the effect of suppressing deterioration of oil by the deterioration suppressing unit can be further enhanced. Furthermore, it is possible to easily dispose the filtering unit and the deterioration suppressing unit and to reduce the size of the apparatus.
  • oil deterioration suppressing device that suppresses deterioration of engine oil (hereinafter also simply referred to as “oil”) is exemplified. Moreover, the test which evaluates the deterioration inhibitory effect was done using various mesoporous inorganic materials.
  • Oil degradation suppression apparatus 1 which concerns on a present Example is provided with the filtration part 3 and the degradation suppression part 4 accommodated in the housing 2, as shown in FIG.
  • the housing 2 is formed in a bottomed cylindrical case 2a whose one end side in the axial direction is open, a disc-shaped bottom plate 2b which closes one end open portion of the case 2a, and a central portion of the bottom plate 2b. And a shaft member 2c screwed into the hole.
  • a plurality of oil inflow passages 5 are formed at predetermined intervals along the circumferential direction.
  • Each of these oil inflow passages 5 is connected to an oil pan 9 (illustrated as an “oil storage portion” according to the present invention, see FIG. 3) that stores oil via a pipe or the like.
  • a rubber check valve 16 is provided in the housing 2 so as to cover the opening of the oil inflow passage 5.
  • An oil outflow passage 6 is formed in the central portion of the shaft member 2c for sending the oil filtered by the filtration unit 3 to the engine lubrication target part (for example, crankshaft, cylinder wall, valve mechanism, etc.). Yes.
  • the oil outflow path 6 is connected to a lubrication target portion of the engine through a passage formed in the engine.
  • an oil return path 7 for returning the oil whose deterioration has been suppressed by the deterioration suppressing portion 4 to the oil pan 9 is formed on the outer peripheral side of the oil outflow path 6 of the shaft member 2c.
  • the oil return path 7 is connected to the oil pan 9 via a pipe or the like.
  • the cross-sectional area S1 of the oil outflow passage 6 is about 113 mm 2
  • the cross-sectional area S2 of the oil return passage 7 is about 1.13 mm 2 . Therefore, the ratio (S1 / S2) of the cross-sectional areas of these passages 6 and 7 is about 100.
  • the filtration unit 3 includes a filter medium 10 for filtering oil as shown in FIG.
  • the filter medium 10 is formed into a tubular shape (also referred to as “chrysanthemum shape”) by folding a non-woven sheet material.
  • a cylindrical protector 11 having a large number of through holes 12 is attached to the inner peripheral side of the filter medium 10.
  • the protector 11 has a large-diameter portion 11a that supports the filter medium 10, and a small-diameter portion 11b that protrudes in the axial direction from one end side of the large-diameter portion 11a.
  • the filter medium 10 has an internal space of the housing 2 filtered through an upstream space R1 before filtration connected to the oil inflow passage 5 (that is, a space where oil before filtration exists) and an oil outflow passage 6. It is provided so as to be partitioned into a rear downstream space R2 (that is, a space where oil after filtration exists).
  • the protector 11 is biased toward the bottom plate 2b by a spring 14 provided between the case 2a.
  • a known relief valve 15 is provided on one end side of the protector 11 in the axial direction. When the pressure difference between the upstream and downstream spaces R1 and R2 of the filter medium 10 in the housing 2 exceeds a set value, the relief valve 15 acts to connect both the spaces R1 and R2.
  • a powdery deterioration inhibitor 17 made of a mesoporous inorganic material that suppresses deterioration of oil.
  • the deterioration inhibitor 17 is held by a plurality of porous layers 18 (five in FIG. 1) made of a nonwoven fabric through which oil can pass and having a cylindrical shape.
  • the powdery deterioration inhibitor 17 is dispersed and mixed in the process of forming the porous layer 18.
  • each of the porous layers 18 has a first porous layer 18a and a second porous layer 18b that are stacked in the oil passing direction.
  • the porosity of the first porous layer 18a on the upstream side is about 0.98
  • the porosity of the second porous layer 18b on the downstream side is about 0.92. Therefore, the density of the first porous layer 18a is set to a value smaller than the density of the second porous layer 18b, and more deterioration inhibitor 17 is held in the second porous layer 18b than in the first porous layer 18a.
  • a ring plate-like intermediate layer 19 made of a nonwoven fabric through which the deterioration inhibitor 17 cannot pass and oil can pass is disposed.
  • the porous layer 18 and the intermediate layer 19 are accommodated in an accommodation case 20 as shown in FIG.
  • the housing case 20 includes a cylindrical inner wall 20a and an outer wall 20b that are concentrically arranged, and a ring plate-shaped bottom wall 20c that connects one end side of the inner wall 20a and the outer wall 20b.
  • the housing case 20 is formed with an inlet 21 that opens at one end side in the axial direction so as to face the end face in the axial direction of the filter medium 10, and the flow that continues to the oil return path 7 at the other end side in the axial direction.
  • An outlet 22 is formed.
  • middle layer 19 are accommodated in the lamination
  • the small diameter portion 11b of the protector 11 is inserted into one end side of the inner wall 20a of the housing case 20, and the distal end side of the shaft member 2c is inserted into the other end side.
  • a rubber-made ring-shaped seal member 23 provided on the outer peripheral side of the tip end of the shaft member 2c is in pressure contact with the inner wall 20a of the housing case 20.
  • the housing case 20 is sandwiched in the axial direction between the rubber-made ring-shaped sealing material 24 and the check valve 16 disposed on the outer peripheral side of the small diameter portion 11 b of the protector 11.
  • the inner space 25 of the inner wall 20 a of the housing case 20 is connected to the inner space 26 of the protector 11 and the oil outflow path 6.
  • outlet 22 of the housing case 20 is isolated from the inner space 25 of the inner wall 20a through the space 27 surrounded by the check valve 16, the sealing material 23, the inner wall 20a and the shaft member 2c, and is connected to the oil return path 7. It is lined up.
  • the differential pressure P2 (several hundred kPa) of the deterioration suppressing unit 4 is usually larger than the differential pressure P1 (several kPa) of the filtering unit 3 (see FIG. 3), an appropriate amount of oil is allowed to pass through the deterioration suppressing unit 4. And the effect of suppressing deterioration of oil is great.
  • the oil sent from the oil pan 9 is divided into the filtering unit 3 and the deterioration suppressing unit 4. And the oil filtered by the filtration part 3 is sent to the lubrication object part of an engine, without passing the deterioration suppression part 4.
  • the oil whose deterioration is suppressed by the deterioration suppressing unit 4 is returned to the oil pan 9 without passing through the filtering unit 3. Thereby, a part of the oil sent from the oil pan 9 is bypass-flowed, and the oil passage resistance of the oil can be reduced to suppress an increase in pressure loss.
  • the deterioration suppressing unit 4 since the deterioration suppressing unit 4 includes the porous layer 18, the deterioration suppressing agent 17 (mesoporous inorganic material) can be appropriately dispersed in the porous layer 18. Therefore, the oil passage resistance can be further reduced, and the oil deterioration suppressing effect by the deterioration suppressing portion 4 can be further increased.
  • the porous layer 18 has the first porous layer 18a and the second porous layer 18b, and the porosity of the first porous layer 18a on the upstream side is the void of the second porous layer 18b on the downstream side. Greater than rate. Accordingly, more deterioration inhibitor 17 can be held in the second porous layer 18b than in the first porous layer 18a, and the oil flows while gradually spreading from the first porous layer 18a toward the second porous layer 18b (FIG. 4). reference). Therefore, the oil passage resistance can be further reduced, and the oil deterioration suppressing effect by the deterioration suppressing portion 4 can be further increased.
  • the deterioration suppressing unit 4 since the deterioration suppressing unit 4 includes the intermediate layer 19, the intermediate layer 19 is separated between the plurality of porous layers 18, and the deterioration inhibitor 17 does not move between the porous layers 18. Aggregation of the degradation inhibitor 17 on the porous layer 18 is prevented. Therefore, the oil passage resistance can be further reduced, and the oil deterioration suppressing effect by the deterioration suppressing portion 4 can be further increased.
  • a housing 2 that accommodates the filtering portion 3 and the deterioration suppressing portion 4 is provided, and an oil inflow passage 5, an oil outflow passage 6, and an oil return passage 7 are formed in the housing 2. Yes. Therefore, the oil sent from the oil pan 9 flows into the housing 2 through the oil inflow passage 5, and the oil filtered by the filter portion 3 flows out to the lubrication target portion of the engine through the oil outflow passage 6 and deteriorates. The oil whose deterioration is suppressed by the suppression unit 4 is returned to the oil pan 9 through the oil return path 7. Thereby, the oil deterioration suppression apparatus 1, the filtration part 3, and the deterioration suppression part 4 can be replaced
  • the cross-sectional area S1 of the oil outflow path 6 is larger than the cross-sectional area S2 of the oil return path 7, so that a relatively large amount of oil flows through the oil outflow path 6 and the engine lubrication target portion is suitably used. Can be lubricated. On the other hand, the oil flow resistance can be further reduced by flowing a comparatively small amount of oil through the oil return path 7.
  • the filtering unit 3 and the deterioration suppressing unit 4 divide the internal space of the housing 2 into an upstream space R1 continuous with the oil inflow passage 5 and a downstream space R2 continuous with the oil outflow passage 6.
  • the deterioration suppression part 4 is equipped with the storage case 20 which accommodates the deterioration inhibitor 17, and in this storage case 20, the inflow port 21 opened to upstream space R1, upstream space R1, and downstream space R2 is provided.
  • An outflow port 22 that is isolated from the oil return path 7 and is connected to the oil return path 7 is formed.
  • the oil sent from the oil pan 9 flows into the upstream space R1 inside the housing 2 through the oil inflow path 5, and the oil filtered by the filtering unit 3 passes through the downstream space R2 and the oil outflow path 6. It flows out to the lubrication target part of the engine.
  • the oil flowing into the housing case 20 from the inlet 21 is returned to the oil pan 9 through the outlet 22 and the oil return path 7 after deterioration is suppressed by the deterioration inhibitor 17.
  • the storage case 20 includes a cylindrical inner wall 20a and an outer wall 20b, and a plate-like bottom wall 20c that connects one end side of the inner wall 20a and the outer wall 20b.
  • the inflow port 21 is provided on one end side in the axial direction of the housing case 20 so as to open facing the axial end surface of the tubular filter medium 10, and the inflow port 22 is disposed in the axial direction of the housing case 20. It is provided on the other end side.
  • the degradation inhibitor 17 is accommodated in the space enclosed by the inner wall 20a, the outer wall 20b, and the bottom wall 20c of this accommodation case 20.
  • FIG. Therefore, the oil that has flowed into the housing case 20 from the inlet 21 flows over the entire deterioration inhibitor 17 and flows from the outlet 22 to the oil return path 7. Therefore, the oil deterioration suppressing effect by the deterioration suppressing unit 4 can be further enhanced. Furthermore, the filtration unit 3 and the degradation suppressing unit 4 can be easily arranged and the apparatus can be downsized.
  • Example 2 the configuration of the oil deterioration suppressing device according to the second embodiment will be described.
  • the same reference numerals are given to substantially the same components as those of the oil deterioration suppression device 1 according to the first embodiment, and detailed description thereof is omitted.
  • Oil degradation suppression apparatus 101 which concerns on a present Example is provided with the filtration part 103 and the degradation suppression part 104 which are accommodated in the housing 102, as shown in FIG.
  • the housing 102 has a bottomed cylindrical case that is open at one end in the axial direction, a disk-shaped bottom plate 102b that closes one end open portion of the case, and a hole formed at the center of the bottom plate 102b. And a shaft member 102c that is screwed into the portion.
  • a plurality of oil inflow passages 105 are formed at predetermined intervals along the circumferential direction.
  • Each of these oil inflow paths 105 is connected to an oil pan 9 (illustrated as an “oil storage section” according to the present invention, see FIG. 6) that stores oil via a pipe or the like.
  • a rubber check valve 16 is provided in the housing 102 so as to cover the opening of the oil inflow passage 105.
  • An oil outflow passage 106 is formed in the central portion of the shaft member 102c for sending the oil filtered by the filtration portion 103 to the lubrication target portion (for example, crankshaft, cylinder wall, valve mechanism, etc.) of the engine. Yes.
  • the oil outflow passage 106 is connected to a lubrication target portion of the engine through a passage formed in the engine. Furthermore, a communication path that continues to the oil outflow path 106 is formed on the outer peripheral side of the shaft member 102c.
  • the filtration unit 103 includes a filter medium 10 that filters oil.
  • a cylindrical protector 111 is attached to the inner peripheral side of the filter medium 10.
  • the protector 111 has a large-diameter portion 111a that supports the filter medium 10, and a small-diameter portion 111b that protrudes in the axial direction from one end side of the large-diameter portion 111a.
  • a large number of through holes 112 are formed in the molding wall of the large diameter portion 111a. Further, one end side of the small diameter portion 111b is fixed to the outer peripheral surface of the shaft member 102c.
  • the filter medium 10 has an internal space of the housing 102 that is connected to the oil inflow passage 105 before the filtration upstream space R1 (that is, a space in which the oil before filtration exists) and the oil outflow passage 106 after the filtration. And a downstream space R2 (that is, a space in which oil after filtration exists).
  • the protector 111 is urged toward the bottom plate 102b by a spring 14 provided between the protector 111 and the case.
  • a well-known relief valve 15 is provided on one end side of the protector 111 in the axial direction.
  • the deterioration suppressing unit 104 includes a powdery deterioration suppressing agent 17 made of a mesoporous inorganic material that suppresses deterioration of oil.
  • the deterioration inhibitor 17 is held by a plurality of (three in FIG. 5) porous layers 118 made of a non-woven fabric through which oil can pass and having a cylindrical shape.
  • the plurality of porous layers 118 are arranged concentrically around the axis of the housing 102. In this embodiment, it is assumed that the powdery deterioration inhibitor 17 is dispersed and mixed in the process of forming the porous layer 118.
  • Each porous layer 118 has a first porous layer 118a and a second porous layer 118b that are stacked in the oil passage direction.
  • the porosity of the first porous layer 118a on the upstream side is about 0.98
  • the porosity of the second porous layer 118b on the downstream side is about 0.92. Therefore, the density of the first porous layer 118a is set to a value smaller than the density of the second porous layer 118b, and more deterioration inhibitor 17 is held in the second porous layer 118b than in the first porous layer 118a.
  • a ring plate-shaped intermediate layer 119 made of a nonwoven fabric through which the deterioration inhibitor 17 cannot pass and oil can pass is disposed.
  • the porous layer 118 and the intermediate layer 119 are accommodated in the accommodating portion 120.
  • the accommodating portion 120 includes a small diameter portion 111b of the protector 111 and upper and lower annular plates 120a disposed on the outer periphery of the small diameter portion 111b.
  • an inflow port 121 that opens to the upstream space R1 is formed on the outer peripheral side of the accommodating portion 120.
  • the small diameter part 111b has the outflow port 122 opened to the downstream space R2.
  • the filter medium 10 In the oil reaching the filter 103, foreign matters (for example, dust, metal wear pieces, sludge, etc.) in the oil are captured by the filter medium 10, and the downstream space R ⁇ b> 2 and the oil outflow path 106 are passed through the through holes 112 of the protector 111. And sent to the lubrication target part of the engine.
  • the oil that reaches the deterioration suppressing portion 104 flows into the accommodating portion 120 through the inlet 121, passes through the porous layer 118 and the intermediate layer 119, and foreign matter in the oil (for example, in the engine) by the deterioration suppressing agent 17.
  • the generated acidic substance or the like is adsorbed and removed, and is sent to the lubrication target portion of the engine through the downstream space R2 and the oil outflow path 106 via the outlet 122.
  • the oil deterioration suppressing device 101 of the present embodiment there are substantially the same operations and effects as the oil deterioration suppressing device 1 of the first embodiment.
  • the oil sent from the oil pan 9 is diverted to the filtering unit 103 and the deterioration suppressing unit 104, and the oil filtered by the filtering unit 103 does not pass through the deterioration suppressing unit 104 and becomes the lubrication target portion of the engine. Sent.
  • the oil whose deterioration is suppressed by the deterioration suppressing unit 104 is sent to the lubrication target portion of the engine without passing through the filtering unit 103. Thereby, a part of the oil sent from the oil pan 9 is bypass-flowed, and the oil passage resistance of the oil can be reduced to suppress an increase in pressure loss.
  • a housing 102 that accommodates the filtering part 103 and the deterioration suppressing part 104 is provided, and an oil inflow path 105 and an oil outflow path 106 are formed in the housing 102. Accordingly, the oil sent from the oil pan 9 flows into the housing 102 through the oil inflow passage 105, and the oil filtered by the filtration portion 103 flows out to the lubrication target portion through the oil outflow passage 106 and deteriorates. The oil whose deterioration is suppressed by the suppression unit 104 flows out to the lubrication target portion via the oil outflow path 106.
  • the filtering unit 103 and the deterioration suppressing unit 104 divide the internal space of the housing 102 into an upstream space R1 that is continuous with the oil inflow passage 105 and a downstream space R2 that is continuous with the oil outflow passage 106.
  • the deterioration suppression part 104 is equipped with the accommodating part 120 which accommodates the deterioration inhibitor 17, and in this accommodating part 120, the inflow port 121 opened to upstream space R1, and the outflow port 122 opened to downstream space R2 are provided. And are formed.
  • the oil sent from the oil pan 9 flows into the upstream space R1 inside the housing 102 via the oil inflow path 105, and the oil filtered by the filtering unit 103 passes through the downstream space R2 and the oil outflow path 106. It flows out to the lubrication target part.
  • the oil flowing into the accommodating portion 120 from the inflow port 121 is discharged to the lubrication target portion through the outflow port 122, the downstream space R ⁇ b> 2, and the oil outflow passage 106 after deterioration is suppressed by the deterioration inhibitor 17.
  • the present invention is not limited to the first and second embodiments, but can be variously modified examples within the scope of the present invention depending on the purpose and application. That is, in Examples 1 and 2 described above, the deterioration suppressing units 4 and 104 are illustrated in which each of the plurality of porous layers 18 and 118 is a multilayer including the first and second porous layers 18a, 18b, 118a, and 118b. However, it is not limited to this, For example, as shown to Fig.7 (a), each of the some porous layer 31 can be set as the deterioration suppression part 32 which is a single layer. Moreover, as shown in FIG.7 (b), it can also be set as the deterioration suppression part 34 formed by combining the single
  • the mode in which the porous layers 18 and 118 include the two first and second porous layers 18a, 18b, 118a, and 118b is illustrated.
  • the porous layer may be composed of layers having different porosity of 3 or more.
  • middle layers 19 and 119 between the some porous layers 18 and 118 were illustrated.
  • the present invention is not limited to this.
  • the intermediate layer 19 may not be disposed, and a deterioration suppressing unit in which adjacent porous layers 18 and 118 among the plurality of porous layers 18 and 118 are directly stacked may be used.
  • a deterioration suppressing unit in which adjacent porous layers 18 and 118 among the plurality of porous layers 18 and 118 are directly stacked may be used.
  • the deterioration suppression part 4 which accommodates the porous layers 18 and 118 in the storage case 20 or the storage part 120 was illustrated, it is not limited to this,
  • the storage case 20 or The porous layers 18 and 118 may be disposed in the housing 2 without providing the accommodating portion 120.
  • the deterioration suppression parts 4 and 104 provided with the several porous layers 18 and 118 were illustrated, it is not limited to this, For example, as shown to Fig.8 (a), it is single. It is good also as the deterioration suppression part 36 provided with the porous layer 35 of this.
  • the deterioration suppression parts 4 and 104 provided with the porous layers 18 and 118 holding the powdery deterioration inhibitor 17 were illustrated.
  • the present invention is not limited to this.
  • the deterioration inhibitor 17 is sealed in the housing case 20 (or the housing portion 120) without including the porous layers 18 and 118. It is good also as the deterioration suppression part 39 which becomes.
  • the form in which the entire apparatus including the housings 2 and 102 is replaced as the oil deterioration suppressing apparatuses 1 and 101 is exemplified.
  • the present invention is not limited to this, and for example, an oil deterioration suppressing device in which the housings 2 and 102 can be disassembled and the filtering units 3 and 103 and / or the deterioration suppressing units 4 and 104 can be directly replaced may be used. .
  • the filtering units 3 and 103 and the deterioration suppressing units 4 and 104 are accommodated in the single housings 2 and 102 .
  • the present invention is not limited to this.
  • the filtering units 3 and 103 housed in the first housing and the deterioration suppressing units 4 and 104 housed in the second housing different from the first housing are provided. May be.
  • the oil deterioration suppressing devices 1 and 101 used in the wet sump engine are exemplified.
  • the present invention is not limited to this.
  • an oil deterioration suppressing device used in a dry sump engine or an oil deterioration suppressing device used in an automatic transmission may be used.
  • Filter media used in the test Various filter media described in Tables 1 and 2 were used. The details of each filter medium are as shown in Tables 1 and 2. Incidentally, the five types of filter media [the following (e) to (i)] shown in Table 2 are comparative test examples.
  • A Amorphous mesoporous silica (FSM) (trade name “TMPS-4” manufactured by Taiyo Kagaku Co., Ltd.)
  • B Activated clay (made by Musashi Yuka Co., Ltd., trade name “Musashilite V”)
  • C Silica gel (Wako Pure Chemical Industries, trade name “C-500HG”)
  • D Activated alumina (product name “VGL15” manufactured by Union Showa Co., Ltd.)
  • E Sepiolite (trade name “P-80V” manufactured by Omi Kogyo Co., Ltd.)
  • F Acid clay (product name “Nikkanite S-200”, manufactured by Nippon Kakuhaku Co., Ltd.)
  • G Diatomaceous earth (made by Showa Chemical Co., Ltd., trade name “Radio Light Special Flow”)
  • H Zeolite (trade name “Zeoram A-3” manufactured by Tosoh Corporation)
  • I Non-porous silica (manufactured by
  • Filtration of NOx deteriorated oil was performed using the apparatus shown in FIG.
  • a particulate filter medium having an apparent volume of about 6 cm 3 was dispersed on a membrane filter (trade name “POREFLON FP045”, pore size: 0.45 ⁇ m, manufactured by Sumitomo Electric Industries, Ltd.), and compression molded at a pressure of 4 MPa with a hydraulic molding machine.
  • a membrane filter manufactured by Sumitomo Electric Co., Ltd., trade name “POREFLON FP100”, pore size: 1 ⁇ m
  • the pressure was increased at each pressure for 2 hours while gradually increasing the pressure with N 2 gas to 20, 50, 100, 150, and 200 kPa.
  • FIG. 11 shows an example of the IR spectrum of the nitrate ester of the test NOx-degraded oil.
  • FSM activated clay
  • silica gel having an average pore size as small as 2.7 to 7 nm and a specific surface area of 426 to 900 m 2 / g have a capture rate of over 80%, resulting in a better capture effect.
  • ⁇ Test Example 2> (Deterioration suppression evaluation using an oil deterioration test apparatus) In the filtration test of Test Example 1, using activated clay that had a capture rate of over 80% and had an excellent capture effect, the degradation suppression effect in a real-time test closer to the oil degradation condition in an actual engine was evaluated. .
  • the NOx deterioration test apparatus shown in FIG. 13 was used for the real-time test. Specifically, the lower part of a three-necked flask type glass test vessel is immersed in an oil bath adjusted to a predetermined temperature, and 3% by mass of activated clay is dispersed as a test oil from the central port, Toyota's genuine oil (trade name “Toyota Castle SM 5W-30”, acid value at the time of new oil; 2.5 mgKOH / g), which is a commercially available gasoline engine oil, was introduced and tested according to the test conditions shown in Table 4. A deterioration test with NO 2 was carried out for 24 hours. The air containing NO 2 and moisture was introduced into the sample oil from the left inlet in FIG. 13 and out from the right outlet for the test.
  • Test Example 3 Evaluation of oil deterioration suppression by actual engine (1) Oil degradation inhibitor The oil degradation inhibitor of the bypass flow structure of FIG. 1 was produced. Further, as the deterioration inhibitor, FSM having a capture rate exceeding 90% in the filtration test of Test Example 1 and having an excellent trapping effect was used, and 10 g was held in the deterioration suppressor. Using this oil deterioration suppression device, an evaluation test of oil deterioration suppression by an actual engine was conducted.
  • FIG. 15 shows the amount of initially deteriorated material in 150 cycles (corresponding to about 15000 km as a travel distance) by 54% compared with the case where the device is not used.
  • FIG. 16 shows the base number measured by the hydrochloric acid method in accordance with the JIS K 2501 petroleum product and lubricating oil-neutralization number test method. According to FIG.
  • the oil filtered by the oil deterioration suppressing device has a longer time required for the base number, which is one of the indicators of the degree of oil deterioration, to decrease to 1 mgKOH / g, compared with the case where the device is not used. It turns out that it becomes about 2 times. Furthermore, according to FIG. 17 showing the increase in acid value, it can be seen that the acid value in 150 cycles is 74% lower than when no apparatus is used, and the increase in acidic substances can be suppressed.
  • it is suitably used as a technology for suppressing deterioration of engine oil of vehicles such as passenger cars, buses, trucks and the like, railway vehicles such as trains and trains, construction vehicles, agricultural vehicles, and industrial vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Filtration Of Liquid (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Lubricants (AREA)

Abstract

 オイル劣化成分の捕捉効果が向上するとともに、通油抵抗を減らして圧力損失の上昇を抑制することができるオイル劣化抑制装置を提供する。本オイル劣化抑制装置(1)は、オイルを濾過する濾材(10)を備える濾過部(3)と、オイルの劣化を抑制する粉状の劣化抑制剤(17)を備える劣化抑制部(4)と、を備え、劣化抑制部はメソポーラス無機材を含み、オイル貯留部(9)から送られるオイルのうちで、濾過部で濾過されたオイルを潤滑対象部に送るとともに、劣化抑制部で劣化が抑制されたオイルをオイル貯留部に戻すか又は前記潤滑対象部に送るようにした。

Description

オイル劣化抑制装置
 本発明は、オイル劣化抑制装置に関する。更に詳しくは、オイル劣化成分の捕捉効果が向上するとともに、通油抵抗を減らして圧力損失の上昇を抑制することができるオイル劣化抑制装置に関する。
 従来の濾材として、内燃機関で生じるカーボン、酸、劣化物等を除去するための微粒子(例えば、ハイドロタルサイト等)及び繊維からなるものが知られている(例えば、特許文献1参照)。この濾材を用いたオイルフィルタでは、例えば、図9に示すように、濾材210を収容するハウジング202には、オイルパンから送られるオイルをハウジング202内部に流入させるオイル流入路205が形成されている。また、濾材210で濾過されたオイルをエンジンの潤滑対象部(例えば、クランクシャフト、シリンダー壁、動弁機構等)に流出させるオイル流出路206が形成されている。そして、オイル流入路205からハウジング202内部に流入されるオイルは、濾材210で濾過されつつ微粒子217によりカーボンが除去されてオイル流出路206からエンジンの潤滑部対象部に流出される。
 また、接着性繊維加工材と、セピオライトを含有する濾過材用材料を加熱成形して得られる濾過材を用いたフィルターが知られている(例えば、特許文献2参照。)。このフィルターでは、セピオライトを併用することで、油性の不純成分に対しても優れた捕捉効果を有するフィルターとすることができる。従って、特に自動車エンジン潤滑用として好適である。
特開平03-296408号公報 特開2001-38119号公報
 しかし、上記特許文献1に記載された従来のオイルフィルタでは、オイルパンから送られる全てのオイルが濾材を通過する形態(いわゆる、フルフロー形態)である。そのため、濾材を構成するハイドロタルサイト等の微粒子が抵抗となり圧力損失が上昇してしまうという問題がある。また、上記特許文献2に記載されたフィルターでは、カーボンブラック及び酸化第二鉄等を含む特定の試験用ダストを含有する試験用オイルを用いて捕捉効果が評価されているに過ぎない。この文献では、他の劣化成分の捕捉については検証されていない。更に、セピオライトはエンジンオイルの劣化物の1種である硝酸エステルの捕捉効果が小さいという問題もある。
 本発明は、上記現状に鑑みてなされたものであり、オイル劣化成分の捕捉効果が向上するとともに、通油抵抗を減らして圧力損失の上昇を抑制することができるオイル劣化抑制装置を提供することを目的とする。
 オイルの初期劣化物は重合してスラッジ化する。そこで、硝酸エステル等の初期劣化物を、スラッジ化する前にオイルフィルタ内に備えられた劣化抑制部に保持されたメソポーラス無機材の細孔表面に吸着させる。これにより、スラッジ化を抑制することができ、オイルの劣化が抑えられる。また、オイルフィルタにおいて、オイル流れの抵抗となり得るメソポーラス無機材が保持された劣化抑制部の配設位置を、フィルタ内のオイル流れに対して適正化する。これにより、圧力損失の上昇が抑制される構造とすることができる。
 本発明は、このような知見に基づいてなされたものである。
 上記問題点を解決するために、請求項1に記載の発明は、オイルを濾過する濾材を備える濾過部と、オイルの劣化を抑制する粉状の劣化抑制剤を備える劣化抑制部と、を備え、前記劣化抑制剤はメソポーラス無機材を含み、オイル貯留部から送られるオイルのうちで、前記濾過部で濾過されたオイルを潤滑対象部に送るとともに、前記劣化抑制部で劣化が抑制されたオイルを前記オイル貯留部に戻すか又は前記潤滑対象部に送るようにしたことを要旨とする。
 請求項2に記載の発明は、請求項1において、前記メソポーラス無機材の平均細孔径が1~30nmであることを要旨とする。
 請求項3に記載の発明は、請求項1において、前記メソポーラス無機材の細孔容積が0.3~4.0cm/gであることを要旨とする。
 請求項4に記載の発明は、請求項1において、前記メソポーラス無機材の比表面積が120~2000m/gであることを要旨とする。
 請求項5に記載の発明は、請求項1乃至4のいずれか1項において、前記メソポーラス無機材が、Si、Al、Fe、Ca及びMgからなる群より選ばれる元素を有する酸化物系無機材であることを要旨とする。
 請求項6に記載の発明は、請求項1乃至5のいずれか1項において、前記劣化抑制部は、前記劣化抑制剤を保持し且つオイルが通過可能である多孔層を備えることを要旨とする。
 請求項7に記載の発明は、請求項6において、前記多孔層は、オイルの通過方向に積層される第1多孔層及び第2多孔層を有し、上流側となる前記第1多孔層の空隙率は、下流側となる前記第2多孔層の空隙率より大きいことを要旨とする。
 請求項8に記載の発明は、請求項6又は7において、前記劣化抑制部は、複数の前記多孔層の間に配置され且つ前記劣化抑制剤が通過不能であり且つオイルが通過可能である中間層を備えることを要旨とする。
 請求項9に記載の発明は、請求項1乃至8のいずれか1項において、前記濾過部及び前記劣化抑制部を収容するハウジングを備え、前記ハウジングには、前記オイル貯留部から送られるオイルを該ハウジング内部に流入させるためのオイル流入路と、前記濾過部で濾過されたオイルを前記潤滑対象部に流出させるためのオイル流出路と、前記劣化抑制部で劣化が抑制されたオイルを前記オイル貯留部に戻すためのオイル戻し路と、が形成されていることを要旨とする。
 本発明のオイル劣化抑制装置によると、オイル貯留部から送られるオイルのうちで、濾過部で濾過されたオイルは潤滑対象部に送られる。一方、メソポーラス無機材を含む劣化抑制剤を保持した劣化抑制部で劣化が抑制されたオイルはオイル貯留部に戻されるか又は潤滑対象部に送られる。これにより、オイル貯留部から送られるオイルの一部がバイパスフローされることとなり、オイルの通油抵抗を減らして圧力損失の上昇を抑制することができる。
 また、メソポーラス無機材の平均細孔径が1~30nmである場合は、初期劣化物がメソポーラス無機材の細孔内に侵入し易く、細孔内に十分に吸着され、スラッジ化がより抑制されてオイルの劣化が抑えられる。
 更に、細孔容積が0.3~4.0cm/gである場合は、初期劣化物を吸着するための十分な細孔空間を有するため、初期劣化物が吸着され易く、スラッジ化がより抑制されてオイルの劣化が抑えられる。
 また、比表面積が120~2000m/gである場合は、メソポーラス無機材が初期劣化物を吸着するための十分な表面積を有するため、初期劣化物が吸着され易く、スラッジ化がより抑制されてオイルの劣化が抑えられる。
 更に、メソポーラス無機材が、Si、Al、Fe、Ca及びMgからなる群より選ばれる元素を有する酸化物系無機材である場合は、劣化抑制剤として十分に機能し、初期劣化物が細孔表面に吸着されてスラッジ化が抑制され、オイルの劣化が十分に抑えられる。
 また、劣化抑制部が多孔層を備える場合は、多孔層において劣化抑制剤を適当に分散された状態で保持できる。そのため、オイルの通油抵抗を更に低減できるとともに、劣化抑制部によるオイルの劣化抑制効果を更に高めることができる。
 更に、多孔層が第1多孔層及び第2多孔層を有し、上流側となる第1多孔層の空隙率が下流側となる第2多孔層の空隙率より大きい場合は、第1多孔層に比べて第2多孔層で多くの劣化抑制剤を保持できる。そのため、オイルは第1多孔層から第2多孔層に向かって徐々に拡がりつつ流れる。よって、オイルの通油抵抗を更に低減できるとともに、劣化抑制部によるオイルの劣化抑制効果を更に高めることができる。
 また、劣化抑制部が中間層を備える場合は、中間層により複数の多孔層間で劣化抑制剤が移動しない。そのため、下流側の多孔層への劣化抑制剤の凝集が防止される。よって、オイルの通油抵抗を更に低減できるとともに、劣化抑制部によるオイルの劣化抑制効果を更に高めることができる。
 更に、濾過部及び劣化抑制部を収容するハウジングを備え、ハウジングには、オイル流入路と、オイル流出路と、オイル戻し路と、が形成されている場合は、オイル貯留部から送られるオイルがオイル流入路を介してハウジング内部に流入され、濾過部で濾過されたオイルがオイル流出路を介して潤滑対象部に流出される。一方、劣化抑制部で劣化が抑制されたオイルがオイル戻し路を介してオイル貯留部に戻される。これにより、オイル劣化抑制装置や濾過部及び劣化抑制部を容易に交換することができる。
 本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施例1に係るオイル劣化抑制装置の縦断面図である。 図1のII-II線断面拡大図である。 上記オイル劣化抑制装置の作用を説明するための説明図である。 上記オイル劣化抑制装置の作用を説明するための説明図である。 実施例2に係るオイル劣化抑制装置の縦断面図である。 上記オイル劣化抑制装置の作用を説明するための説明図である。 その他の形態の劣化抑制部の要部縦断面図であり、(a)は複数の多孔層のそれぞれが単層である形態を示し、(b)は単層の多孔層と複層の多孔層とが組み合わせられた形態を示す。 その他の形態の劣化抑制部の要部縦断面図であり、(a)は単一の多孔層を備える形態を示し、(b)は多孔層を備えずに劣化抑制剤を封入した形態を示す。 従来のオイル劣化抑制装置の縦断面図である。 試験例1に係る劣化物捕捉の評価をする濾過装置の模式図である。 初期劣化物である硝酸エステルの赤外分光分析のチャートである。 硝酸エステルの捕捉結果を示すグラフである。 試験例2の劣化試験に用いた装置の模式図である。 活性白土の使用時、無使用時の酸価を比較して示すグラフである。 試験例3における初期劣化物量を示すグラフである。 試験例3における塩基価を示すグラフである。 試験例3における酸価を示すグラフである。
 ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。
 本実施形態1.に係るオイル劣化抑制装置(1、101)は、オイルを濾過する濾材(10)を備える濾過部(3、103)と、オイルの劣化を抑制する粉状の劣化抑制剤(17)を備える劣化抑制部(4、104)と、を備える。劣化抑制剤はメソポーラス無機材を含み、オイル貯留部(9)から送られるオイルのうちで、濾過部で濾過されたオイルは潤滑対象部に送られる。一方、劣化抑制部で劣化が抑制されたオイルはオイル貯留部に戻されるか又は潤滑対象部に送られる。本実施形態1.に係るオイル劣化抑制装置(1、101)は、このような構成であることを特徴とする(例えば、図1及び図5等参照)。
 なお、上記「オイル貯留部」としては、例えば、ウェットサンプエンジンで用いられるオイルパン、ドライサンプエンジンで用いられるオイルタンク、自動変速機で用いられるオイルパン等を挙げることができる。また、上記「潤滑対象部」としては、例えば、エンジンの各機構部(例えば、クランクシャフト、シリンダー壁、動弁機構等)や自動変速機の各機構部などを挙げることができる。また、上記「濾材」は、オイルを濾過することができる限り、その種類、形状等は特に問わない。この濾材としては、例えば、不織布、紙、織物、編物等の繊維体、ウレタン等の樹脂連泡体、樹脂多孔質フィルムなどを挙げることができる。
 更に、上記「粉状の劣化抑制剤」は、メソポーラス無機材を含み、オイルの劣化を抑制できる限り、その種類、劣化抑制形態等は特に問わない。メソポーラス無機材は、メソ孔を有する多孔質の無機材であり、メソ孔の平均細孔径は、通常、1~50nm、更に1~30nmであり、2~25nmであることが好ましい。メソ孔の平均細孔径が1nm未満であると、メソ孔の径が捕捉対象物質の大きさ未満になることが多く、捕捉性能が低下する傾向がある。一方、平均細孔径が30nm、特に50nmを超えるときは、比表面積が小さくなり、捕捉性能が低下する傾向がある。そのため、捕捉対象物質の寸法に適した平均細孔径を有するメソポーラス無機材を選択して用いることが好ましい。
 また、メソポーラス無機材の細孔容積は、0.3~4.0cm/gであることが好ましく、0.4~2.0cm/gであることが特に好ましい。細孔容積が0.3cm/g未満であると、初期劣化物が十分に吸着されず、スラッジの発生を十分に抑制することができない傾向がある。一方、細孔容積が4.0cm/gを超えるメソポーラス無機材の作製は物理的に困難である。更に、細孔容積が4.0cm/gを超えるメソポーラス無機材を作製することができたとしても、メソポーラス構造体としての強度及び形状を保持できなくなることがある。この細孔容積が0.4~2.0cm/gであれば、初期劣化物が十分に吸着される。また、メソポーラス無機材の作製も容易であり、十分な強度を有し、且つ形状が保持されるメソポーラス無機材とすることができる。
 メソポーラス無機材は、細孔径分布曲線における平均細孔径の約±40%の範囲に、全細孔容積の約60%以上が含まれることが好ましい。この条件を満たすメソポーラス無機材は、細孔の直径の均一性が高いことを意味する。ここで、「細孔径分布曲線における平均細孔径の約±40%の範囲に全細孔容積の約60%以上が含まれる」とは、例えば、平均細孔径が約3nmである場合、この約3nmの約±40%、即ち、平均細孔径が約1.8~4.2nmの範囲にあるメソ孔の容積の合計が、全細孔容積の約60%以上を占めていることを意味する。
 更に、メソポーラス無機材の比表面積は、120~2000m/gであることが好ましく、400~1200m/gであることがより好ましい。比表面積が120m/g未満であると、初期劣化物が十分に吸着されず、スラッジの発生を十分に抑制することができない傾向がある。一方、比表面積が2000cm/gを超えるメソポーラス無機材の作製は物理的に困難である。また、比表面積が2000m/gを超えるメソポーラス無機材を作製することができたとしても、メソポーラス構造体としての強度及び形状を保持できなくなることがある。この比表面積が400~1200m/gであれば、初期劣化物が十分に吸着されるとともに、十分な強度を有し、且つ形状が保持されるメソポーラス無機材とすることができる。
 メソポーラス無機材は、メソ孔を有し、オイルの劣化を抑制することができればよく、特に限定されないが、前述のような、平均細孔径、細孔容積、及び比表面積を有するメソポーラス無機材が好ましい。また、平均細孔径が1~30nm、好ましくは2~25nmであり、且つ細孔容積が0.3~4.0cm/g、好ましくは0.4~2.0cm/gであるメソポーラス無機材がより好ましい。更に、平均細孔径が1~30nm、好ましくは2~25nmであり、且つ比表面積が120~2000m/g、好ましくは400~1200m/gであるメソポーラス無機材がより好ましい。また、細孔容積が0.3~4.0cm/g、好ましくは0.4~2.0cm/gであり、且つ比表面積が120~2000m/g、好ましくは400~1200m/gであるメソポーラス無機材がより好ましい。更に、平均細孔径が1~30nm、好ましくは2~25nmであり、細孔容積が0.3~4.0cm/g、好ましくは0.4~2.0cm/gであって、且つ比表面積が120~2000m/g、好ましくは400~1200m/gであるメソポーラス無機材が特に好ましい。
 メソポーラス無機材の平均細孔径、細孔容積、及び比表面積は下記のようにして測定することができる。
 77Kにおける窒素吸着等温線を、全自動ガス吸着測定装置(日本ベル社製、型式「BELSORP-mini II」)を用いて、定容法により測定する。尚、吸着水の影響を除去するため、前処理として、真空下で150℃、2時間の熱処理を行う。得られた吸着等温線より、P/P0(相対圧)=0.95における吸着量から細孔容積(Vp)を求める。また、BJH法により細孔径分布を求め、この細孔径分布のピーク値を平均細孔径とする。更に、P/P0(相対圧)が0.05~0.20における吸着量からBETプロットにより比表面積を算出する。
 メソポーラス無機材の具体例としては、各種の元素を有する酸化物系無機材が挙げられる。例えば、Si、Al、Fe、Ca及びMgからなる群より選ばれる元素を有する酸化物系無機材を用いることができる。この他に、Nb、Ta、Zr、Ti、Zn等の元素を有する酸化物系無機材を用いることもできる。メソポーラス無機材としては、Si及び/又はAlを有する酸化物系無機材が好ましい。このような酸化物系無機材としては、例えば、蜂の巣型構造を有するFSM(Folded Sheet Mesoporous Material)と呼ばれる不定形メソポーラスシリカ系無機材、Si及びAl等を有する活性白土、シリカゲル、活性アルミナ等が挙げられる。尚、セピオライトは、メソ孔を有していても、細孔容積が小さく、且つオイルの初期劣化物である硝酸エステルの吸着能が低いため、本発明におけるメソポーラス無機材からは除くものとする。
 また、劣化抑制剤にはメソポーラス無機材が含まれておればよいが、劣化抑制剤の全量を100質量%とした場合に、メソポーラス無機材は10質量%以上であることが好ましい。更に、メソポーラス無機材は20質量%以上であることがより好ましく、劣化抑制剤の全量がメソポーラス無機材であることが特に好ましい。メソポーラス無機材を除く他の劣化抑制剤が含まれる場合、この他の劣化抑制剤は特に限定されず、例えば、酸性白土、珪藻土、ゼオライト、無孔シリカ、ハイドロタルサイト、及び各種のイオン交換樹脂の粉末などを挙げることができる。
 更に、メソポーラス無機材の平均粒子径は、特に限定されないが、例えば、0.1~200μmの範囲であることが好ましく、2.5~150μmの範囲であることが更に好ましく、10~100μmの範囲であることが特に好ましい。この平均粒子径は、レーザー光回折法による粒度分布測定において累積重量が50%となるときの粒子径(メジアン径)である。
 本実施形態1.に係るオイル劣化抑制装置としては、例えば、上記劣化抑制部(4、104)が、劣化抑制剤(17)を保持し且つオイルが通過可能である多孔層(18、118)を備える形態(例えば、図1及び図5等参照)を挙げることができる。この多孔層としては、例えば、不織布、紙、織物、編物等の繊維体、ウレタン等の樹脂連泡体、樹脂多孔質フィルムなどを挙げることができる。
 上述の形態の場合、例えば、上記多孔層(18、118)は、オイルの通過方向に積層される第1多孔層(18a、118a)及び第2多孔層(18b、118b)を有する。そして、上流側となる第1多孔層の空隙率を、下流側となる第2多孔層の空隙率より大きくすることができる(例えば、図4等参照)。この場合、例えば、第1多孔層の空隙率は0.7~0.99(好ましくは0.9~0.99)であり、第2多孔層の空隙率は0.5~0.95(好ましくは0.8~0.95)とすることができる。なお、上記「空隙率」は、通常、{1-〔多孔層の目付量/(多孔層の厚さ×多孔層を構成する材質の密度)〕}の式で算定される。この多孔層の目付量とは、多孔層の単位面積当たりの重量を意味する。更に、上記劣化抑制剤のうちのメソポーラス無機材を除く他の劣化抑制剤の平均粒子径は、上述のメソポーラス無機材の平均粒子径と同様の数値範囲とすることができる。また、この平均粒子径は同様にメジアン径である。
 上述の形態の場合、例えば、上記劣化抑制部(4、104)は、複数の多孔層(18、118)の間に配置される中間層(19、119)を備えることができる。また、この中間層(19、119)は、劣化抑制剤(17)が通過不能であり且つオイルが通過可能である(例えば、図4等参照)。この中間層の材質としては、例えば、不織布、紙、織物、編物等の繊維体、ウレタン等の樹脂連泡体、樹脂多孔質フィルムなどを挙げることができる。
 本実施形態1.に係るオイル劣化抑制装置としては、例えば、上記濾過部(3)及び劣化抑制部(4)を収容するハウジング(2)を備える形態〔A〕(例えば、図1等参照)を挙げることができる。この形態〔A〕では、ハウジングには、オイル貯留部(9)から送られるオイルをハウジング内部に流入させるためのオイル流入路(5)と、濾過部で濾過されたオイルを潤滑対象部に流出させるためのオイル流出路(6)と、劣化抑制部で劣化が抑制されたオイルをオイル貯留部に戻すためのオイル戻し路(7)と、が形成されている。また、上記濾過部(103)及び劣化抑制部(104)を収容するハウジング(102)を備える形態〔B〕(例えば、図5等参照)を挙げることができる。この形態〔B〕では、ハウジングには、オイル貯留部(9)から送られるオイルをハウジング内部に流入させるためのオイル流入路(105)と、濾過部で濾過されたオイル及び劣化抑制部で劣化が抑制されたオイルを潤滑対象部に流出させるためのオイル流出路(106)と、が形成されている。
 上述の〔A〕形態の場合、例えば、上記オイル流出路(6)の最大横断面積(S1)は、オイル戻し路(7)の最大横断面積(S2)より大きい形態(例えば、図2等参照)を挙げることができる。これにより、オイル流出路に比較的多量のオイルを流して潤滑対象部を好適に潤滑し得る。一方、オイル戻し路に比較的少量のオイルを流してオイルの通油抵抗を更に低減できる。この場合、例えば、上記各通路の最大横断面積の比(S1/S2)は10~1000(好ましくは50~200)であることができる。
 上述の〔A〕形態の場合、例えば、上記濾過部(3)及び劣化抑制部(4)は、ハウジング(2)の内部空間を、上記オイル流入路(5)に連なる上流側空間(R1)と上記オイル流出路(6)に連なる下流側空間(R2)とに仕切るように設けられる。また、上記劣化抑制部(4)は、劣化抑制剤(17)を収容する収容ケース(20)を備える。この収容ケースには、上流側空間に開口する流入口(21)と、上流側空間及び下流側空間に対して隔離されて上記オイル戻し路(7)に連なる流出口(22)と、が形成されていることができる(例えば、図1等参照)。これにより、オイル貯留部から送られるオイルがオイル流入路を介してハウジング内部の上流側空間に流入される。更に、濾過部で濾過されたオイルが下流側空間及びオイル流出路を介して潤滑対象部に流出される。一方、流入口から収容ケース内に流入するオイルは劣化抑制剤により劣化が抑制されてから流出口及びオイル戻し路を介してオイル貯留部に戻される。
 上述の〔B〕形態の場合、例えば、上記濾過部(103)及び劣化抑制部(104)は、ハウジング(102)の内部空間を、上記オイル流入路(105)に連なる上流側空間(R1)と上記オイル流出路(106)に連なる下流側空間(R2)とに仕切るように設けられる。また、上記劣化抑制部(104)は、劣化抑制剤(17)を収容する収容部(120)を備える。この収容部には、上流側空間に開口する流入口(121)と、下流側空間に開口する流出口(122)と、が形成されていることができる(例えば、図5等参照)。これにより、オイル貯留部から送られるオイルがオイル流入路を介してハウジング内部の上流側空間に流入される。更に、濾過部で濾過されたオイルが下流側空間及びオイル流出路を介して潤滑対象部に流出される。一方、流入口から収容部内に流入するオイルは劣化抑制剤により劣化が抑制されてから流出口、下流側空間及びオイル流出路を介して潤滑対象部に流出される。
 上述の〔A〕形態の場合、例えば、上記ハウジング(2)内部には、その軸方向に沿って筒状の上記濾過部(3)及び劣化抑制部(4)が配置されている。また、上記収容ケース(20)は、筒状の内壁(20a)及び外壁(20b)と、これら内壁及び外壁の一端側を繋ぐ板状の底壁(20c)と、を有する。更に、上記流入口(21)は、収容ケースの軸方向の一端側に筒状の濾材(10)の軸方向の端面に対向して開口するように設けられ、上記流出口(22)は、収容ケースの軸方向の他端側に設けられる。そして、この収容ケースの内壁、外壁及び底壁で囲まれた空間に上記劣化抑制剤(17)が収容されていることができる(例えば、図1等参照)。これにより、流入口から収容ケース内に流入したオイルは、劣化抑制剤の全体にわたって流れて流出口からオイル戻し路に流れる。そのため、劣化抑制部によるオイルの劣化抑制効果を更に高めることができる。更に、濾過部及び劣化抑制部を容易に配置できるとともに装置の小型化を図ることができる。
 以下、図面を用いて実施例により本発明を具体的に説明する。なお、本実施例では、エンジンオイル(以下、単に「オイル」とも記載する。)の劣化を抑制するオイル劣化抑制装置を例示する。また、各種のメソポーラス無機材等を用いて、その劣化抑制効果を評価する試験を行った。
1.劣化抑制装置
<実施例1>
(1)オイル劣化抑制装置
 本実施例に係るオイル劣化抑制装置1は、図1に示すように、ハウジング2内に収容される濾過部3及び劣化抑制部4を備えている。このハウジング2は、軸方向の一端側を開放した有底筒状のケース2aと、このケース2aの一端開放部を閉鎖する円盤状のボトムプレート2bと、このボトムプレート2bの中央部に形成された孔部に螺合される軸部材2cと、を備えている。このボトムプレート2bの孔部の周囲には円周方向に沿って所定間隔で複数のオイル流入路5が形成されている。これら各オイル流入路5は、配管等を介してオイルを貯留するオイルパン9(本発明に係る「オイル貯留部」として例示する。図3参照)に接続されている。また、ハウジング2内には、オイル流入路5の開口を覆うようにゴム製のチェック弁16が設けられている。
 上記軸部材2cの中央部には、濾過部3で濾過されたオイルをエンジンの潤滑対象部(例えば、クランクシャフト、シリンダー壁、動弁機構等)に送るためのオイル流出路6が形成されている。このオイル流出路6は、エンジン内部に形成された通路等を介してエンジンの潤滑対象部に接続されている。更に、軸部材2cのオイル流出路6の外周側には、劣化抑制部4で劣化が抑制されたオイルをオイルパン9に戻すためのオイル戻し路7が形成されている。このオイル戻し路7は、配管等を介してオイルパン9に接続されている。ここで、図2に示すように、上記オイル流出路6の横断面積S1は約113mmとされ、オイル戻し路7の横断面積S2は約1.13mmとされている。よって、これら各通路6、7の横断面積の比(S1/S2)は約100とされている。
 上記濾過部3は、図1に示すように、オイルを濾過する濾材10を備えている。この濾材10は、不織布製のシート材をひだ折りして筒状(「菊花状」とも称される。)とされている。この濾材10の内周側には、多数の貫通孔12を有する筒状のプロテクタ11が取り付けられている。このプロテクタ11は、濾材10を支持する大径部11aと、この大径部11aの一端側から軸方向に突出する小径部11bと、を有している。また、上記濾材10は、ハウジング2の内部空間を、上記オイル流入路5に連なる濾過前の上流側空間R1(すなわち、濾過前のオイルが存在する空間)と、上記オイル流出路6に連なる濾過後の下流側空間R2(すなわち、濾過後のオイルが存在する空間)とに仕切るように設けられている。
 上記プロテクタ11は、ケース2aとの間に設けられたバネ14によりボトムプレート2b側に向かって付勢されている。また、プロテクタ11の軸方向の一端側には、周知のリリーフ弁15が設けられている。このリリーフ弁15は、ハウジング2内における濾材10の上流側及び下流側空間R1、R2の圧力差が設定値を超えた場合に、これら両空間R1、R2を連通させるように作用する。
 上記劣化抑制部4は、図1に示すように、オイルの劣化を抑制するメソポーラス無機材からなる粉状の劣化抑制剤17を備えている。この劣化抑制剤17は、オイルが通過可能である不織布製であり且つ形状が筒状の複数(図1中で5つ)の多孔層18に保持されている。なお、本実施例では、多孔層18を成形する過程で粉状の劣化抑制剤17が分散混入されるものとする。
 上記各多孔層18は、図4に示すように、オイルの通過方向に積層される第1多孔層18a及び第2多孔層18bを有している。ここで、上流側となる第1多孔層18aの空隙率は約0.98とされ、下流側となる第2多孔層18bの空隙率は約0.92とされている。よって、第1多孔層18aの密度は、第2多孔層18bの密度より小さな値とされており、第1多孔層18aに比べて第2多孔層18bで多くの劣化抑制剤17が保持されている。また、複数の多孔層18の間には、劣化抑制剤17が通過不能であり且つオイルが通過可能である不織布製でリング板状の中間層19が配置されている。
 上記多孔層18及び中間層19は、図1に示すように、収容ケース20内に収容されている。この収容ケース20は、同心円状に配置される筒状の内壁20a及び外壁20bと、これら内壁20a及び外壁20bの一端側を繋ぐリング板状の底壁20cと、を有している。この収容ケース20には、その軸方向の一端側に濾材10の軸方向の端面に対向して開口する流入口21が形成され、その軸方向の他端側に上記オイル戻し路7に連なる流出口22が形成されている。そして、この収容ケース20の内壁20a、外壁20b及び底壁20cで囲まれた空間に上記多孔層18及び中間層19が積層状態で収容されている。
 上記収容ケース20の内壁20aには、その一端側に上記プロテクタ11の小径部11bが挿入され、その他端側に上記軸部材2cの先端側が挿入されている。また、収容ケース20の内壁20aには、軸部材2cの先端外周側に設けられたゴム製でリング状のシール部材23が圧接している。更に、収容ケース20は、プロテクタ11の小径部11bの外周側に配置されたゴム製でリング状のシール材24とチェック弁16との間で軸方向に挟持されている。そして、収容ケース20の内壁20aの内側空間25は、プロテクタ11の内側空間26と上記オイル流出路6とに連なっている。また、収容ケース20の流出口22は、チェック弁16、シール材23、内壁20a及び軸部材2cで囲まれた空間27を介して内壁20aの内側空間25から隔離されて上記オイル戻し路7に連なっている。
(2)オイル劣化抑制装置の作用
 次に、上記構成のオイル劣化抑制装置1の作用について説明する。ポンプ29(図3参照)の作動によりオイルパン9内に貯留されるオイルがオイル劣化抑制装置1に送られる。そして、図1に示すように、オイル流入路5に送られるオイルは、チェック弁16を弾性変形させてハウジング2内部の上流側空間R1内に流入して濾過部3及び劣化抑制部4に至る。
 上記濾過部3に至るオイルは、濾材10によりオイル中の異物(例えば、塵埃、金属磨耗片、スラッジ等)が捕捉され、プロテクタ11の貫通孔12を介して下流側空間R2及びオイル流出路6を通ってエンジンの潤滑対象部に送られる。一方、劣化抑制部4に至るオイルは、流入口21を介して収容ケース20内に流入して多孔層18及び中間層19を通過する。そして、劣化抑制剤17によりオイル中の異物(例えば、エンジンで生じる酸性物質等)が吸着除去され、流出口22を介して空間27及びオイル戻し路7を通ってオイルパン9に戻される。ここで、通常、濾過部3の差圧P1(数kPa)より劣化抑制部4の差圧P2(数百kPa)が大きいため(図3参照)、適量のオイルを劣化抑制部4を通過させることができ且つオイルの劣化抑制効果も大きい。
(3)実施例の効果
 以上より、本実施例のオイル劣化抑制装置1によると、オイルパン9から送られるオイルは濾過部3及び劣化抑制部4のそれぞれに分流する。そして、濾過部3で濾過されたオイルは劣化抑制部4を通らずにエンジンの潤滑対象部に送られる。一方、劣化抑制部4で劣化が抑制されたオイルは濾過部3を通らずにオイルパン9に戻される。これにより、オイルパン9から送られるオイルの一部がバイパスフローされることとなり、オイルの通油抵抗を減らして圧力損失の上昇を抑制することができる。
 また、本実施例では、劣化抑制部4が多孔層18を備えるので、多孔層18において劣化抑制剤17(メソポーラス無機材)を適当に分散された状態で保持できる。そのため、オイルの通油抵抗を更に低減できるとともに、劣化抑制部4によるオイルの劣化抑制効果を更に高めることができる。
 また、本実施例では、多孔層18が第1多孔層18a及び第2多孔層18bを有し、上流側となる第1多孔層18aの空隙率が下流側となる第2多孔層18bの空隙率より大きい。従って、第1多孔層18aに比べて第2多孔層18bで多くの劣化抑制剤17を保持でき、オイルは第1多孔層18aから第2多孔層18bに向かって徐々に拡がりつつ流れる(図4参照)。よって、オイルの通油抵抗を更に低減できるとともに、劣化抑制部4によるオイルの劣化抑制効果を更に高めることができる。
 また、本実施例では、劣化抑制部4が中間層19を備えるので、中間層19により複数の多孔層18間で隔てられ、多孔層18間で劣化抑制剤17が移動しないため、下流側の多孔層18への劣化抑制剤17の凝集が防止される。よって、オイルの通油抵抗を更に低減できるとともに、劣化抑制部4によるオイルの劣化抑制効果を更に高めることができる。
 更に、本実施例では、濾過部3及び劣化抑制部4を収容するハウジング2を備え、ハウジング2には、オイル流入路5と、オイル流出路6と、オイル戻し路7と、が形成されている。そのため、オイルパン9から送られるオイルがオイル流入路5を介してハウジング2内部に流入され、濾過部3で濾過されたオイルがオイル流出路6を介してエンジンの潤滑対象部に流出され、劣化抑制部4で劣化が抑制されたオイルがオイル戻し路7を介してオイルパン9に戻される。これにより、オイル劣化抑制装置1や濾過部3及び劣化抑制部4を容易に交換することができる。
 また、本実施例では、オイル流出路6の横断面積S1は、オイル戻し路7の横断面積S2より大きいので、オイル流出路6に比較的多量のオイルを流してエンジンの潤滑対象部を好適に潤滑し得る。一方、オイル戻し路7に比較少量のオイルを流してオイルの通油抵抗を更に低減することができる。
 また、本実施例では、濾過部3及び劣化抑制部4は、ハウジング2の内部空間は、オイル流入路5に連なる上流側空間R1とオイル流出路6に連なる下流側空間R2とに仕切るように設けられている。そして、劣化抑制部4は、劣化抑制剤17を収容する収容ケース20を備え、この収容ケース20には、上流側空間R1に開口する流入口21と、上流側空間R1及び下流側空間R2に対して隔離されてオイル戻し路7に連なる流出口22と、が形成されている。従って、オイルパン9から送られるオイルがオイル流入路5を介してハウジング2内部の上流側空間R1に流入され、濾過部3で濾過されたオイルが下流側空間R2及びオイル流出路6を介してエンジンの潤滑対象部に流出される。一方、流入口21から収容ケース20内に流入するオイルは劣化抑制剤17により劣化が抑制されてから流出口22及びオイル戻し路7を介してオイルパン9に戻される。
 更に、本実施例では、ハウジング2内部には、その軸方向に沿って筒状の濾過部3及び劣化抑制部4が配置されている。また、収容ケース20は、筒状の内壁20a及び外壁20bと、これら内壁20a及び外壁20bの一端側を繋ぐ板状の底壁20cと、を有する。更に、流入口21は、収容ケース20の軸方向の一端側に筒状の濾材10の軸方向の端面に対向して開口するように設けられ、流入口22は、収容ケース20の軸方向の他端側に設けられている。そして、この収容ケース20の内壁20a、外壁20b及び底壁20cで囲まれた空間に劣化抑制剤17が収容されている。従って、流入口21から収容ケース20内に流入したオイルは、劣化抑制剤17の全体にわたって流れて流出口22からオイル戻し路7に流れる。よって、劣化抑制部4によるオイルの劣化抑制効果を更に高めることができる。更に、濾過部3及び劣化抑制部4を容易に配置できるとともに装置の小型化を図ることができる。
<実施例2>
 次に、本実施例2に係るオイル劣化抑制装置の構成について説明する。なお、本実施例2のオイル劣化抑制装置では、上記実施例1に係るオイル劣化抑制装置1と略同じ構成部位には同符号を付けて詳説を省略する。
(1)オイル劣化抑制装置
 本実施例に係るオイル劣化抑制装置101は、図5に示すように、ハウジング102内に収容される濾過部103及び劣化抑制部104を備えている。このハウジング102は、軸方向の一端側を開放した有底筒状のケースと、このケースの一端開放部を閉鎖する円盤状のボトムプレート102bと、このボトムプレート102bの中央部に形成された孔部に螺合される軸部材102cと、を備えている。このボトムプレート102bの孔部の周囲には円周方向に沿って所定間隔で複数のオイル流入路105が形成されている。これら各オイル流入路105は、配管等を介してオイルを貯留するオイルパン9(本発明に係る「オイル貯留部」として例示する。図6参照)に接続されている。また、ハウジング102内には、オイル流入路105の開口を覆うようにゴム製のチェック弁16が設けられている。
 上記軸部材102cの中央部には、濾過部103で濾過されたオイルをエンジンの潤滑対象部(例えば、クランクシャフト、シリンダー壁、動弁機構等)に送るためのオイル流出路106が形成されている。このオイル流出路106は、エンジン内部に形成された通路等を介してエンジンの潤滑対象部に接続されている。更に、軸部材102cの外周側には、オイル流出路106に連なる連絡路が形成されている。
 上記濾過部103は、オイルを濾過する濾材10を備えている。この濾材10の内周側には筒状のプロテクタ111が取り付けられている。このプロテクタ111は、濾材10を支持する大径部111aと、この大径部111aの一端側から軸方向に突出する小径部111bと、を有している。この大径部111aの成形壁には多数の貫通孔112が形成されている。また、小径部111bの一端側は、軸部材102cの外周面に固定されている。また、濾材10は、ハウジング102の内部空間を、上記オイル流入路105に連なる濾過前の上流側空間R1(すなわち、濾過前のオイルが存在する空間)と、上記オイル流出路106に連なる濾過後の下流側空間R2(すなわち、濾過後のオイルが存在する空間)とに仕切るように設けられている。なお、上記プロテクタ111は、ケースとの間に設けられたバネ14によりボトムプレート102b側に向かって付勢されている。また、プロテクタ111の軸方向の一端側には、周知のリリーフ弁15が設けられている。
 上記劣化抑制部104は、オイルの劣化を抑制するメソポーラス無機材からなる粉状の劣化抑制剤17を備えている。この劣化抑制剤17は、オイルが通過可能である不織布製であり且つ形状が筒状の複数(図5中で3つ)の多孔層118に保持されている。これら複数の多孔層118は、ハウジング102の軸心を中心として同心円状に配設されている。なお、本実施例では、多孔層118を成形する過程で粉状の劣化抑制剤17が分散混入されるものとする。
 上記各多孔層118は、オイルの通過方向に積層される第1多孔層118a及び第2多孔層118bを有している。ここで、上流側となる第1多孔層118aの空隙率は約0.98とされ、下流側となる第2多孔層118bの空隙率は約0.92とされている。よって、第1多孔層118aの密度は、第2多孔層118bの密度より小さな値とされており、第1多孔層118aに比べて第2多孔層118bで多くの劣化抑制剤17が保持されている。また、複数の多孔層118の間には、劣化抑制剤17が通過不能であり且つオイルが通過可能である不織布製でリング板状の中間層119が配置されている。
 上記多孔層118及び中間層119は、収容部120内に収容されている。この収容部120は、プロテクタ111の小径部111bと、この小径部111bの外周に配設される上下の環状板120aと、を備えている。また、収容部120の外周側には、上流側空間R1に開口する流入口121が形成されている。また、小径部111bには、下流側空間R2に開口する流出口122が形成されている。
(2)オイル劣化抑制装置の作用
 次に、上記構成のオイル劣化抑制装置101の作用について説明する。ポンプ29(図6参照)の作動によりオイルパン9内に貯留されるオイルがオイル劣化抑制装置101に送られる。そして、図5に示すように、オイル流入路105に送られるオイルは、チェック弁16を弾性変形させてハウジング102内部の上流側空間R1内に流入して濾過部103及び劣化抑制部104に至る。
 上記濾過部103に至るオイルは、濾材10によりオイル中の異物(例えば、塵埃、金属磨耗片、スラッジ等)が捕捉され、プロテクタ111の貫通孔112を介して下流側空間R2及びオイル流出路106を通ってエンジンの潤滑対象部に送られる。一方、劣化抑制部104に至るオイルは、流入口121を介して収容部120内に流入して多孔層118及び中間層119を通過して劣化抑制剤17によりオイル中の異物(例えば、エンジンで生じる酸性物質等)が吸着除去され、流出口122を介して下流側空間R2及びオイル流出路106を通ってエンジンの潤滑対象部に送られる。
(3)実施例の効果
 以上より、本実施例のオイル劣化抑制装置101によると、上記実施例1のオイル劣化抑制装置1と略同様の作用・効果を奏する。これに加えて、オイルパン9から送られるオイルは濾過部103及び劣化抑制部104のそれぞれに分流し、濾過部103で濾過されたオイルは劣化抑制部104を通らずにエンジンの潤滑対象部に送られる。一方、劣化抑制部104で劣化が抑制されたオイルは濾過部103を通らずにエンジンの潤滑対象部に送られる。これにより、オイルパン9から送られるオイルの一部がバイパスフローされることとなり、オイルの通油抵抗を減らして圧力損失の上昇を抑制することができる。
 また、本実施例では、濾過部103及び劣化抑制部104を収容するハウジング102を備え、ハウジング102には、オイル流入路105と、オイル流出路106と、が形成されている。従って、オイルパン9から送られるオイルはオイル流入路105を介してハウジング102内部に流入され、濾過部103で濾過されたオイルはオイル流出路106を介して潤滑対象部に流出されるとともに、劣化抑制部104で劣化が抑制されたオイルはオイル流出路106を介して潤滑対象部に流出される。
 また、本実施例では、濾過部103及び劣化抑制部104は、ハウジング102の内部空間を、オイル流入路105に連なる上流側空間R1とオイル流出路106に連なる下流側空間R2とに仕切るように設けられている。そして、劣化抑制部104は、劣化抑制剤17を収容する収容部120を備え、この収容部120には、上流側空間R1に開口する流入口121と、下流側空間R2に開口する流出口122と、が形成されている。そして、オイルパン9から送られるオイルがオイル流入路105を介してハウジング102内部の上流側空間R1に流入され、濾過部103で濾過されたオイルが下流側空間R2及びオイル流出路106を介して潤滑対象部に流出される。一方、流入口121から収容部120内に流入するオイルは劣化抑制剤17により劣化が抑制されてから流出口122、下流側空間R2及びオイル流出路106を介して潤滑対象部に流出される。
 尚、本発明においては、上記実施例1及び2に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。即ち、上記実施例1及び2では、複数の多孔層18、118のそれぞれが第1及び第2多孔層18a、18b、118a、118bを備える複層である劣化抑制部4、104を例示した。しかし、これに限定されず、例えば、図7(a)に示すように、複数の多孔層31のそれぞれが単層である劣化抑制部32とすることができる。また、図7(b)に示すように、単層の多孔層33aと複層の多孔層33bとを組み合わせてなる劣化抑制部34とすることもできる。
 また、上記実施例1及び2では、多孔層18、118が2つの第1及び第2多孔層18a、18b、118a、118bを備える形態を例示した。しかし、これに限定されず、例えば、多孔層が3以上の空隙率の異なる層からなるようにしてもよい。また、上記実施例1及び2では、複数の多孔層18、118の間に中間層19、119を配置してなる劣化抑制部4、104を例示した。しかし、これに限定されず、例えば、中間層19を配置せずに、複数の多孔層18、118のうちの隣接する多孔層18、118が直接積層される劣化抑制部としてもよい。更に、上記実施例1及び2では、収容ケース20又は収容部120内に多孔層18、118を収容してなる劣化抑制部4を例示したが、これに限定されず、例えば、収容ケース20又は収容部120を設けずに、多孔層18、118をハウジング2内に配置するようにしてもよい。
 また、上記実施例1及び2では、複数の多孔層18、118を備える劣化抑制部4、104を例示したが、これに限定されず、例えば、図8(a)に示すように、単一の多孔層35を備える劣化抑制部36としてもよい。また、上記実施例1及び2では、粉状の劣化抑制剤17を保持する多孔層18、118を備える劣化抑制部4、104を例示した。しかし、これに限定されず、例えば、図8(b)に示すように、多孔層18、118を備えずに、収容ケース20内(又は収容部120内)に劣化抑制剤17を封入してなる劣化抑制部39としてもよい。
 また、上記実施例1及び2では、オイル劣化抑制装置1、101としてハウジング2、102を含む装置全体を交換する形態(いわゆる、スピンオン形態)を例示した。しかし、これに限定されず、例えば、ハウジング2、102が分解可能とされ、濾過部3、103及び/又は劣化抑制部4、104を直接的に交換可能とされたオイル劣化抑制装置としてもよい。
 また、上記実施例1及び2では、単一のハウジング2、102内に濾過部3、103及び劣化抑制部4、104を収容してなる形態を例示した。しかし、これに限定されず、例えば、第1ハウジングに収容された濾過部3、103と、第1ハウジングとは別の第2ハウジングに収容された劣化抑制部4、104と、を備えるようにしてもよい。
 更に、上記実施例1及び2では、ウェットサンプエンジンで用いられるオイル劣化抑制装置1、101を例示した。しかし、これに限定されず、例えば、ドライサンプエンジンで用いられるオイル劣化抑制装置としたり、自動変速機で用いられるオイル劣化抑制装置としたりしてもよい。
2.劣化抑制剤の評価試験例
<試験例1>[各種の劣化抑制剤を濾過材として用いた劣化抑制効果(劣化物捕捉効果)の評価]
 オイル劣化抑制技術における劣化物除去の一手法として、初期劣化物が重合してスラッジ化する前に初期劣化物を捕捉し、オイル劣化を抑制することを検討した。劣化抑制剤(濾過材)としては、所定の平均細孔径等を有するメソ孔を備える複数のメソポーラス無機材を用いた。また、劣化物捕捉効果を比較するため、細孔径分布がピーク値を有さないセピオライト、細孔径分布がピーク値を有さない酸性白土、平均細孔径が過大な珪藻土、平均細孔径が過小なゼオライト、及び無孔シリカを試験に供した。
 (1)試験に供した濾過材
 表1、2に記載の各種の濾過材を用いた。各濾過材の詳細は表1、2に記載のとおりである。尚、表2に記載の5種類の濾過材[下記の(e)~(i)]は比較試験例である。
 (a)不定形メソポーラスシリカ(FSM)(太陽化学社製、商品名「TMPS-4」)
 (b)活性白土(武蔵油化社製、商品名「ムサシライトV」)
 (c)シリカゲル(和光純薬工業社製、商品名「C-500HG」)
 (d)活性アルミナ(ユニオン昭和社製、商品名「VGL15」)
 (e)セピオライト(近江工業社製、商品名「P-80V」)
 (f)酸性白土(日本活性白土社製、商品名「ニッカナイトS-200」)
 (g)珪藻土(昭和化学社製、商品名「ラジオライト スペシャルフロー」)
 (h)ゼオライト(東ソー社製、商品名「ゼオラム A-3」)
 (i)無孔シリカ(アドマッテックス社製、商品名「SO-E2」)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (2)試験
 NOx劣化オイルを使用し、濾過材として用いたメソポーラス無機材と、比較試験例の濾過材による濾過試験を実施した。具体的には、濾過後のオイル成分をフーリエ変換赤外分光分析(FT-IR)により解析して、初期の劣化成分である硝酸エステルの捕捉効果を検証した。
 (3)供試NOx劣化オイル
 市販のガソリンエンジンオイルであるトヨタ純正オイル(商品名「トヨタ キャッスル SM 5W-30」)にNOガスをバブリングさせて劣化させ、ガソリンエンジンで長期間使用されたオイルを模擬したNOx劣化オイルを調製し、試験に供した。バブリング条件は表3に記載のとおりである。
Figure JPOXMLDOC01-appb-T000003
 尚、表3において、総ガス流量283mL/minのうちの、空気流量205mL/min及び窒素ガス流量50mL/minとの差、28mL/minは、1質量%のNOを含む窒素ガスとしてガスボンベから供給した。
 (4)濾過方法
 NOx劣化オイルの濾過は、図10に記載の装置を用いて行った。見掛け体積約6cmの粒子状の濾過材をメンブランフィルタ(住友電工社製、商品名「POREFLON FP045」、ポアサイズ;0.45μm)上に分散させ、油圧成形機により圧力4MPaで圧縮成形した。その後、成形された濾過材上に、メンブランフィルタ(住友電工社製、商品名「POREFLON FP100」、ポアサイズ;1μm)を載せ、この積層体を濾過装置に装着し、NOx劣化オイルを3mL注入した。次いで、Nガスにより、20、50、100、150及び200kPaと段階的に昇圧させながら、各圧力で2時間加圧した。
 (5)劣化物捕捉効果の評価方法
 (5-1)オイル成分の解析
 供試NOx劣化オイルと、濾過後のオイルの各々を、FT-IRにより解析した。使用装置と解析条件は下記のとおりである。
 フーリエ変換赤外分光分析装置;サーモニコレー・ジャパン社製、型式「Avatar360」
 使用セル;JASCO社製、液体用固定セル、KBr、t=0.1mm
 積算回数;32回
 (5-2)初期劣化物の捕捉率
 初期劣化生成物の1成分である硝酸エステル(波数;1630cm-1)に着目し、濾過前後のNOx劣化オイルの硝酸エステルのピーク高さを測定し、その減少割合から初期劣化物の捕捉率を求めた。図11に供試NOx劣化オイルの硝酸エステルのIRスペクトルの一例を示す。
 (6)劣化物捕捉効果の評価結果
 評価結果を図12に示す。図12によれば、比較試験例である細孔径分布がピーク値を有さないセピオライト、細孔径分布がピーク値を有さない酸性白土、平均細孔径が300nmと過大な珪藻土、平均細孔径が0.3nmと過小なゼオライト、及び無孔シリカでは、いずれも初期劣化物捕捉率が20%未満であり、捕捉効果が劣っている。一方、メソポーラス無機材であるFSM、活性白土、シリカゲル及び活性アルミナでは、捕捉率が50%を超えており、優れた捕捉効果を有していることが分かる。特に、平均細孔径が2.7~7nmと小さく、且つ比表面積が426~900m/gであるFSM、活性白土及びシリカゲルでは、捕捉率は80%を超えており、より優れた捕捉効果を有していることが分かる。
<試験例2>(オイル劣化試験装置による劣化抑制評価)
 試験例1の濾過試験において捕捉率が80%を超え、優れた捕捉効果を有していた活性白土を使用し、実際のエンジンでのオイル劣化条件により近いリアルタイム試験での劣化抑制効果を評価した。
 (1)試験方法
 リアルタイム試験には図13に示すNOx劣化試験装置を用いた。具体的には、三口フラスコ型のガラス製の試験容器の下部を、所定温度に調温されたオイルバスに浸漬し、中央口より、供試油として、3質量%の活性白土を分散させ、含有させた市販のガソリンエンジンオイルであるトヨタ純正オイル(商品名「トヨタ キャッスル SM 5W-30」、新油時の酸価;2.5mgKOH/g)を投入し、表4に記載の試験条件により、NOによる劣化試験を24時間実施した。NO及び水分を含む空気は、図13における左側の流入口から供試油中に流入させ、右側の流出口から流出させて試験を行った。
Figure JPOXMLDOC01-appb-T000004
 尚、表4において、総ガス流量283mL/minのうちの、空気流量205mL/min及び窒素ガス流量50mL/minとの差、28mL/minは、1質量%のNOを含む窒素ガスとしてガスボンベから供給した。
 (2)試験結果
 試験結果を試験後のオイルの酸価の変化によって評価した。評価結果を図14に示す。図14によれば、活性白土を含有させたときの酸価は、含有させなかった時の酸価の50%未満である。このことから、活性白土を含有させることによって、NOx劣化試験に伴う酸価の上昇が十分に抑制されており、オイル中の酸性物質の増加が抑えられていることが分かる。
[3]試験例3(実機エンジンによるオイル劣化抑制評価)
 (1)オイル劣化抑制装置
 図1のバイパスフロー構造のオイル劣化抑制装置を作製した。また、劣化抑制剤としては、試験例1の濾過試験において捕捉率が90%を超え、優れた捕捉効果を有していたFSMを使用し、劣化抑制部に10g保持させた。このオイル劣化抑制装置を使用し、実機エンジンによるオイル劣化抑制の評価試験を実施した。
 (2)試験方法
 試験は、エンジンオイルパンから取り出したオイルをポンプにより、上記(1)に記載のFSMが保持された劣化抑制部を備えるオイル劣化抑制装置に循環させた場合と、この装置を取り付けない場合について、表5に記載の試験条件によりエンジンを運転させて実施した。そして、エンジンの運転に伴ってオイル中に生成し、混入してくる初期劣化物量、並びにオイルの塩基価及び酸価を測定することにより評価した。
Figure JPOXMLDOC01-appb-T000005
 (3)試験結果
 試験中のオイルを採取し、遠心分離機を用いて測定した初期劣化物量を図15に示す。図15によれば、オイル劣化抑制装置により濾過したオイルは、150サイクル(走行距離にして約15000kmに相当する。)における初期劣化物量が、装置を用いないときと比べて54%低減できることが分かる。また、JIS K 2501 石油製品及び潤滑油-中和価試験方法に準拠し、塩酸法により測定した塩基価を図16に示す。この図16によれば、オイル劣化抑制装置により濾過したオイルは、オイル劣化度合いの指標の一つである塩基価が1mgKOH/gに低下するまでに要する時間が、装置を用いないときと比べて約2倍になることが分かる。更に、酸価の上昇を示す図17によれば、150サイクルにおける酸価が、装置を用いないときと比べて74%低く、酸性物質の増加を抑制できることが分かる。
 前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述および図示において使用された文言は、限定的な文言ではなく説明的および例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲または精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料および実施例を参照したが、本発明をここにける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。
 本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。
 オイルの劣化を抑制する技術として広く利用される。特に、乗用車、バス、トラック等の他、列車、汽車等の鉄道車両、建設車両、農業車両、産業車両などの車両のエンジンオイルの劣化を抑制する技術として好適に利用される。
 1,101;オイル劣化抑制装置、2,102;ハウジング、3、103;濾過部、4,104,32,34,36,39;劣化抑制部、5,105;オイル流入路、6,106;オイル流出路、7;オイル戻し路、9;オイルパン、10;濾材、17;劣化抑制剤、18,118、31,33a,33b,35;多孔層、18a、118a;第1多孔層;18b、118b;第2多孔層、19、119;中間層。

Claims (9)

  1.  オイルを濾過する濾材を備える濾過部と、
     オイルの劣化を抑制する粉状の劣化抑制剤を備える劣化抑制部と、を備え、
     前記劣化抑制剤はメソポーラス無機材を含み、
     オイル貯留部から送られるオイルのうちで、前記濾過部で濾過されたオイルを潤滑対象部に送るとともに、前記劣化抑制部で劣化が抑制されたオイルを前記オイル貯留部に戻すか又は前記潤滑対象部に送るようにしたことを特徴とするオイル劣化抑制装置。
  2.  前記メソポーラス無機材の平均細孔径が1~30nmである請求項1記載のオイル劣化抑制装置。
  3.  前記メソポーラス無機材の細孔容積が0.3~4.0cm/gである請求項1記載のオイル劣化抑制装置。
  4.  前記メソポーラス無機材の比表面積が120~2000m/gである請求項1記載のオイル劣化抑制装置。
  5.  前記メソポーラス無機材が、Si、Al、Fe、Ca及びMgからなる群より選ばれる元素を有する酸化物系無機材である請求項1乃至4のいずれか1項に記載のオイル劣化抑制装置。
  6.  前記劣化抑制部は、前記劣化抑制剤を保持し且つオイルが通過可能である多孔層を備える請求項1乃至5のいずれか1項に記載のオイル劣化抑制装置。
  7.  前記多孔層は、オイルの通過方向に積層される第1多孔層及び第2多孔層を有し、上流側となる前記第1多孔層の空隙率は、下流側となる前記第2多孔層の空隙率より大きい請求項6記載のオイル劣化抑制装置。
  8.  前記劣化抑制部は、複数の前記多孔層の間に配置され且つ前記劣化抑制剤が通過不能であり且つオイルが通過可能である中間層を備える請求項6又は7に記載のオイル劣化抑制装置。
  9.  前記濾過部及び前記劣化抑制部を収容するハウジングを備え、
     前記ハウジングには、前記オイル貯留部から送られるオイルを該ハウジング内部に流入させるためのオイル流入路と、前記濾過部で濾過されたオイルを前記潤滑対象部に流出させるためのオイル流出路と、前記劣化抑制部で劣化が抑制されたオイルを前記オイル貯留部に戻すためのオイル戻し路と、が形成されている請求項1乃至8のいずれか1項に記載のオイル劣化抑制装置。
PCT/JP2013/062663 2012-05-07 2013-04-30 オイル劣化抑制装置 WO2013168648A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13787477.2A EP2848780A4 (en) 2012-05-07 2013-04-30 DEVICE FOR PREVENTING DEGRADATION OF OIL
US14/398,306 US20150083655A1 (en) 2012-05-07 2013-04-30 Oil degradation prevention device
CN201380023153.1A CN104379888A (zh) 2012-05-07 2013-04-30 机油劣化抑制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012106261A JP5855526B2 (ja) 2012-05-07 2012-05-07 オイル劣化抑制装置
JP2012-106261 2012-05-07

Publications (1)

Publication Number Publication Date
WO2013168648A1 true WO2013168648A1 (ja) 2013-11-14

Family

ID=49550690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062663 WO2013168648A1 (ja) 2012-05-07 2013-04-30 オイル劣化抑制装置

Country Status (5)

Country Link
US (1) US20150083655A1 (ja)
EP (1) EP2848780A4 (ja)
JP (1) JP5855526B2 (ja)
CN (1) CN104379888A (ja)
WO (1) WO2013168648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11014022B2 (en) 2018-05-14 2021-05-25 Power Drives, Inc. Diesel dehydrator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839520B2 (ja) * 2016-10-31 2021-03-10 ヤマシンフィルタ株式会社 フィルタ装置
JP6892316B2 (ja) * 2017-04-18 2021-06-23 ヤマシンフィルタ株式会社 タンク装置
US11207618B2 (en) * 2018-08-21 2021-12-28 Rocky Mountain Filtration Solutions, Inc. Portable lubricant filtration tool and methods of use
CN115228169B (zh) * 2022-06-24 2024-03-08 华能国际电力江苏能源开发有限公司 一种多级过滤小车装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221289Y2 (ja) * 1982-11-24 1987-05-29
JPS632090Y2 (ja) * 1981-07-17 1988-01-20
JPH03296408A (ja) 1990-04-17 1991-12-27 Toyo Tokushi Kogyo Kk 内燃機関用バイパスオイルフィルター用濾材
JPH0722655B2 (ja) * 1986-08-08 1995-03-15 日本電装株式会社 内燃機関用の組合せ式オイルフイルタ装置
JP2001038119A (ja) 1999-08-03 2001-02-13 Nitto Kogyo Co Ltd 濾過材及びフィルター
JP2009293494A (ja) * 2008-06-04 2009-12-17 Toyota Motor Corp 内燃機関の硫黄成分除去装置
WO2011093519A1 (ja) * 2010-01-28 2011-08-04 株式会社豊田中央研究所 捕捉対象物質捕捉材、捕捉対象物質捕捉用フィルタ、液状有機化合物収容容器およびエンジンオイル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715037A (en) * 1968-12-16 1973-02-06 Exxon Research Engineering Co Novel lubricating oil system and oil filter for internal combustion engines
KR890000460B1 (ko) * 1984-06-07 1989-03-18 가부시끼가이샤 오리진 여과매체 및 그의 제작법
US5672399A (en) * 1995-11-17 1997-09-30 Donaldson Company, Inc. Filter material construction and method
US6379564B1 (en) * 2000-05-08 2002-04-30 Ronald Paul Rohrbach Multi-stage fluid filter, and methods of making and using same
US8016125B2 (en) * 2005-05-20 2011-09-13 Lutek, Llc Materials, filters, and systems for immobilizing combustion by-products and controlling lubricant viscosity
WO2009105109A1 (en) * 2008-02-22 2009-08-27 Lummus Technology Inc. Method for separation of substances using mesoporous or combined mesoporous/microporous materials
US8088277B2 (en) * 2008-06-11 2012-01-03 General Electric Company Methods and system for removing impurities from heavy fuel
US8197687B2 (en) * 2008-08-19 2012-06-12 Perry Equipment Corporation Contaminant adsorbent fluted filter element
US20100163496A1 (en) * 2008-12-29 2010-07-01 Bilski Gerard W Method and apparatus for removal of soot from lubricating oil
DE112010002027B4 (de) * 2009-05-15 2021-12-09 Cummins Filtration Ip, Inc. Koaleszenzabscheider und Verwendung eines Koaleszenzabscheiders in einem Koaleszenzsystem
DE102010011512A1 (de) * 2010-03-12 2011-09-15 Mann+Hummel Gmbh Filtermedium eines Filterelements, Filterelement und Verfahren zur Herstellung eines Filtermediums

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632090Y2 (ja) * 1981-07-17 1988-01-20
JPS6221289Y2 (ja) * 1982-11-24 1987-05-29
JPH0722655B2 (ja) * 1986-08-08 1995-03-15 日本電装株式会社 内燃機関用の組合せ式オイルフイルタ装置
JPH03296408A (ja) 1990-04-17 1991-12-27 Toyo Tokushi Kogyo Kk 内燃機関用バイパスオイルフィルター用濾材
JP2001038119A (ja) 1999-08-03 2001-02-13 Nitto Kogyo Co Ltd 濾過材及びフィルター
JP2009293494A (ja) * 2008-06-04 2009-12-17 Toyota Motor Corp 内燃機関の硫黄成分除去装置
WO2011093519A1 (ja) * 2010-01-28 2011-08-04 株式会社豊田中央研究所 捕捉対象物質捕捉材、捕捉対象物質捕捉用フィルタ、液状有機化合物収容容器およびエンジンオイル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848780A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11014022B2 (en) 2018-05-14 2021-05-25 Power Drives, Inc. Diesel dehydrator

Also Published As

Publication number Publication date
JP5855526B2 (ja) 2016-02-09
EP2848780A1 (en) 2015-03-18
US20150083655A1 (en) 2015-03-26
CN104379888A (zh) 2015-02-25
EP2848780A4 (en) 2016-03-23
JP2013234581A (ja) 2013-11-21

Similar Documents

Publication Publication Date Title
WO2013168648A1 (ja) オイル劣化抑制装置
JP6057541B2 (ja) オイル劣化抑制装置
US8007671B2 (en) Microfiltration devices
JP5639615B2 (ja) オイル劣化抑制装置
EA012492B1 (ru) Фильтрующий материал и способ его получения, фильтр и способ фильтрования
CN111033026A (zh) 蒸发排放装置和吸附剂
CN108778456B (zh) 包括多层过滤材料的空气过滤器
JPS63123410A (ja) オイルシール式真空ポンプのオイルを浄化するフィルタカートリッジ
US20130045903A1 (en) Process and Apparatus to Remove Oxidation Products from Used Oil
CN108778460B (zh) 燃料过滤器的滤芯和燃料过滤器
US9844743B2 (en) Oil deterioration prevention device
US10293283B2 (en) Multistage filter
US20210252438A1 (en) Filter Element with a Receiving Chamber Containing a Drying Agent, and Fluid Filter
CN110267722A (zh) 具有有机粘土的燃料过滤器、具有有机粘土的清洁筒和应用
JP5127095B2 (ja) セル型フィルターユニット用に段階的に変化する粒子保持力を有するフィルター媒体
JP2020148331A (ja) 通気弁
JP2001038119A (ja) 濾過材及びフィルター
Gutteter-Grudziński et al. Coalescence filtration of ship oil bilge water with an nonwoven fabric
US20160354714A1 (en) Filter, Filter Element, and Filter Housing
US20090065451A1 (en) Manifold and filtration system
JPH11300127A (ja) 濾過材及びフィルター
Tepper et al. High Performance Carbon Filter
Panpanit et al. Anti-fouling effect of bentonite suspension in ultrafiltration of oil/water emulsion
WO2016159109A1 (ja) 圧縮空気乾燥装置
JPH1157350A (ja) オイル処理用濾過材及びオイル処理用フィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787477

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2013787477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013787477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14398306

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE