WO2016159109A1 - 圧縮空気乾燥装置 - Google Patents

圧縮空気乾燥装置 Download PDF

Info

Publication number
WO2016159109A1
WO2016159109A1 PCT/JP2016/060442 JP2016060442W WO2016159109A1 WO 2016159109 A1 WO2016159109 A1 WO 2016159109A1 JP 2016060442 W JP2016060442 W JP 2016060442W WO 2016159109 A1 WO2016159109 A1 WO 2016159109A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
glass fiber
oil
filter
desiccant
Prior art date
Application number
PCT/JP2016/060442
Other languages
English (en)
French (fr)
Inventor
卓也 杉尾
伸成 松家
太田 祐介
Original Assignee
ナブテスコオートモーティブ 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015071918A external-priority patent/JP2016190207A/ja
Application filed by ナブテスコオートモーティブ 株式会社 filed Critical ナブテスコオートモーティブ 株式会社
Priority to CN201680019099.7A priority Critical patent/CN107708841B/zh
Publication of WO2016159109A1 publication Critical patent/WO2016159109A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation

Definitions

  • the present invention relates to a compressed air drying apparatus for drying compressed air supplied from a compressor.
  • Vehicles such as trucks, buses and construction machinery control systems such as brakes and suspensions using compressed air sent from a compressor directly connected to an internal combustion engine (hereinafter referred to as an engine).
  • the compressed air contains moisture contained in the atmosphere and oil that lubricates the inside of the compressor.
  • rust is generated and a rubber member (O-ring or the like) is swollen, which causes a malfunction.
  • moisture content and oil from compressed air is provided downstream of the compressor of an air system (for example, refer patent document 1).
  • the compressed air drying device includes a support base, a drying container filled with a desiccant, and an outer case attached to the support base while covering the drying container.
  • the support base is provided with an inlet through which compressed air supplied from the compressor flows and an outlet through which dry compressed air is discharged.
  • a filter element for removing oil contained in the compressed air is provided in addition to the drying container.
  • the filter element is made of, for example, a nonwoven fabric.
  • Dry compressed air contains oil particles with different particle diameters as oil, but conventional filter elements can only capture oil particles with a relatively large particle diameter. Not a little oil remains in the compressed air that has passed. For this reason, improvement of the removal rate of the oil contained in compressed air is desired.
  • An object of the present invention is to provide a compressed air drying apparatus capable of improving the removal rate of oil contained in compressed air.
  • a compressed air drying apparatus that solves the above-described problems is a support base having an inlet through which compressed air flows in and an outlet through which dry compressed air is discharged, and can be filled with a desiccant and is attached to the support base.
  • a drying container configured to be disposed between the drying container and the inlet and at least one of the drying container and the outlet in the flow path of the compressed air from the inlet to the outlet.
  • a glass fiber filter configured to be disposed between the drying container and the inlet and at least one of the drying container and the outlet in the flow path of the compressed air from the inlet to the outlet.
  • a glass fiber filter The average diameter of the glass fiber provided in the glass fiber filter is 10 ⁇ m or less.
  • Sectional drawing of the drying container accommodated in the compressed air drying apparatus of FIG. The front view of the compressed air drying apparatus of 2nd Embodiment.
  • FIG. 14 is a cross-sectional view of the filter cartridge of FIG. 8, taken along line 9-9 in FIG.
  • FIG. 9 is an enlarged perspective view of the filter cartridge of FIG. 8.
  • FIG. 9 is an enlarged perspective view of the filter cartridge of FIG. 8.
  • the front view of the filter cartridge of FIG. The top view of the filter cartridge of FIG.
  • the bottom view of the filter cartridge of FIG. FIG. 9 is a right side view of the filter cartridge of FIG. 8.
  • Sectional drawing of the drying container provided in the compressed air drying apparatus of the modification Sectional drawing of the drying container provided in the compressed air drying apparatus of the modification. Sectional drawing of the drying container provided in the compressed air drying apparatus of the modification. Sectional drawing of the drying container provided in the compressed air drying apparatus of the modification.
  • the compressed air drying apparatus is attached to a support base 11, a bottomed cylindrical drying container 13 filled with a desiccant 12, and the support base 11 while covering the drying container 13. And a bottomed cylindrical purge tank 14 having an opening that opens toward the base 11.
  • an inlet 15 through which compressed air sent from a compressor (not shown) flows, and the dry compressed air is discharged to an air tank (not shown) connected to the compressed air drying device.
  • an outlet 20 for the purpose.
  • the inlet 15 is provided on the front surface of the support base 11, and the outlet 20 is provided on the back surface of the support base 11.
  • a cylindrical housing portion 21 having an opening at the bottom is formed inside the support base 11.
  • a drain discharge device 25 is provided on the upper portion of the accommodating portion 21.
  • a cylindrical exhaust pipe 17 is attached to the lower part of the drain discharge device 25 of the housing part 21.
  • a drain outlet 19 that is an outlet of the exhaust pipe 17 is open to the atmosphere.
  • the drain discharge device 25 includes a drain valve 26 and a piston 27 for discharging the drain.
  • the drain valve 26 also serves as an open valve that discharges drain, which is a liquid containing moisture and oil, to the outside air during unload operation.
  • the drain valve 26 is closed during a load operation for removing moisture from the compressed air.
  • air is supplied from the governor 28 provided in the support base 11 to the control chamber 29 which is a space in the support base 11, whereby the piston 27 is lowered and the drain is discharged.
  • Valve 26 opens. When the drain valve 26 is opened, the drain is vigorously discharged together with the compressed air.
  • the exhaust pipe 17 is provided with a filter 31.
  • the filter 31 is a metal material having a large number of holes through which air passes, such as crushed aluminum, and functions as a silencer that reduces noise associated with drainage.
  • the support base 11 is provided with a governor exhaust passage 37 that allows the exhaust of the governor 28 to pass through the governor exhaust passage 36.
  • the governor exhaust passage 37 is a space formed by the inner wall of the accommodating portion 21 and the outer wall of the exhaust pipe 17, and a plurality of governor exhaust passages 37 are provided.
  • a governor exhaust port 38 that is an opening of the governor exhaust port passage 37 is open to the atmosphere.
  • the purge tank 14 covers the drying container 13 and is attached to the upper end of the support base 11 with bolts 24.
  • a space formed by the inner wall of the purge tank 14 and the outer wall of the drying container 13 functions as a tank 16 for storing dehumidified dry compressed air.
  • the granular desiccant 12 is filled in the drying container 13 while being sandwiched between the lower plate 45 and the upper plate 46 in the vertical direction.
  • An oil separate filter 44 as a collision material is provided at the lower part of the drying container 13.
  • the oil separate filter 44 is a metal material having a large number of holes through which air passes, such as crushed aluminum.
  • the oil separate filter 44 is configured to finely change the flow of compressed air inside, thereby causing oil particles on the flow of compressed air to collide with the aluminum surface due to inertial force and be captured.
  • a plurality of through holes are formed in the lower plate 45 and the upper plate 46.
  • a first glass fiber filter 51 is provided on the upper surface of the lower plate 45.
  • a second glass fiber filter 52 for holding the desiccant 12 is provided on the lower surface of the upper plate 46.
  • These glass fiber filters 51 and 52 are formed by forming glass fibers in a substantially disk shape, and have substantially the same diameter as the inner diameter of the drying container 13.
  • the glass fiber filters 51 and 52 have functions of holding the desiccant 12 and removing oil in the compressed air. In the present embodiment, these glass fiber filters 51 and 52 have the same thickness.
  • oil particles having a particle size of 1 ⁇ m or more and a relatively large particle size are efficiently captured by collision with the oil separate filter 44.
  • the number of fine oil particles contained in the compressed air is larger than that of large diameter oil particles.
  • the minute oil particles collide with gas molecules in the compressed air, thereby causing an irregular motion (Brownian motion) unrelated to the flow of the compressed air.
  • the particle size of the oil particles that move irregularly is less than 1 ⁇ m.
  • the coarse oil separation filter 44 hardly captures oil particles having this particle diameter, but the glass fiber filters 51 and 52 easily capture oil particles having this particle diameter.
  • the glass fiber diameters (fiber diameters) provided in the glass fiber filters 51 and 52 are 0.1 ⁇ m or more and 10 ⁇ m or less, and the distance between the glass fibers is 1 ⁇ m. It is 100 ⁇ m or less.
  • the distance between glass fibers is a distance in case glass fibers are not contacting. That is, the distance between glass fibers is the distance between the surfaces of glass fibers.
  • the fiber diameter is measured, for example, by measuring the diameter of the glass fiber based on an image obtained by observation with a scanning electron microscope or a transmission electron microscope, or by performing image analysis processing with a laser scanning microscope. However, it can also be measured by a method according to JIS-R3420.
  • the distance between the fibers for example, based on an image obtained by observation with a scanning electron microscope or a transmission electron microscope, to visually measure the maximum value and the minimum value of the distance between adjacent fibers, The maximum value and the minimum value can be measured by image analysis processing with a laser scanning microscope.
  • the distance between fibers determines the particle size of the oil particle which the glass fiber filters 51 and 52 capture
  • the glass fiber filters 51 and 52 can capture oil particles having a particle diameter of 1 ⁇ m or more, although the efficiency is reduced.
  • the oil separate filter 44 can also capture oil particles having a particle size of less than 1 ⁇ m, although the efficiency is reduced.
  • a coil spring 42 is installed between the upper plate 46 and the lid member 41.
  • the coil spring 42 generates an urging force when the lid member 41 is fixed to the drying container 13 and presses the upper plate 46 downward.
  • the glass fiber filters 51 and 52, the desiccant 12, and the oil separate filter 44 are in a state of being urged by the coil spring 42.
  • the lid member 41 is provided with a first through hole 47 and a second through hole 48.
  • the first through hole 47 is provided with a check valve 39 that allows only air flow from the inside of the drying container 13 to the outside.
  • the compressed air that has passed through the oil separation filter 44 passes through the hole 13 a formed in the bottom of the drying container 13 and the through hole of the lower plate 45, and passes through the first glass fiber filter 51. pass.
  • the small-diameter oil particles are, for example, oil particles having a particle size of less than 1 ⁇ m.
  • the compressed air whose oil content has been reduced in this way passes through the desiccant 12 to remove moisture. At this time, since the oil is captured by the oil separate filter 44 and the glass fiber filter 51 before passing through the desiccant 12, clogging of the desiccant 12 is suppressed.
  • the dry compressed air that has been dried by passing through the desiccant 12 passes through the second glass fiber filter 52, oil particles remaining in the dry compressed air are removed. Further, the dry compressed air passes through the through hole of the upper plate 46 and the first through hole 47 formed in the lid member 41 and is temporarily stored in the tank 16 in the purge tank 14. The dry compressed air introduced into the tank 16 passes through the outlet 20 leaving a part and is stored in an external air tank. The compressed air in the air tank is used for the operation of each device of the air brake system, for example.
  • the compressed air drying device shifts to an unload operation in which the desiccant is regenerated by the action of the governor 28 at the timing when the air pressure in the air tank reaches the upper limit.
  • the governor 28 supplies air to the control chamber 29 that drives the drain valve 26 and moves the piston 27 to open the drain valve 26.
  • the drain valve 26 of the drain discharge device 25 is opened, the dry compressed air accumulated in the purge tank 14 flows from the upper side to the lower side of the drying container 13 and is compressed air from the drain outlet 19 of the drain discharge passage 18. At the same time, oil and moisture are discharged.
  • the dry compressed air accumulated in the tank 16 flows into the drying container 13 through the second through hole 48 of the lid member 41, the through hole of the upper plate 46 and the second glass fiber filter 52. To do. At this time, at least a part of the oil captured by the second glass fiber filter 52 is also removed.
  • the dry compressed air then regenerates the desiccant 12 by contacting the desiccant 12.
  • the compressed air that has passed through the desiccant 12 and contained moisture or the like passes through the first glass fiber filter 51 and the through hole of the lower plate 45, and then passes through the oil separate filter 44. At this time, at least a part of the oil trapped by the first glass fiber filter 51 is also removed.
  • the compressed air passes through the drain discharge device 25, passes through the filter 31 of the exhaust pipe 17, and is discharged together with the drain.
  • the glass fiber filters 51 and 52 facilitate the capture of oil particles having a small particle diameter (diameter) contained in the compressed air.
  • the diameter of the glass fibers included in the glass fiber filters 51 and 52 is 0.1 ⁇ m or more and 10 ⁇ m or less, and the distance between the glass fibers is 1 ⁇ m or more and 100 ⁇ m or less. Oil particles (for example, oil particles of less than 1 ⁇ m) are easily captured. For this reason, in the compressed air drying device, the oil removal rate of the compressed air can be improved while removing moisture in the compressed air by the desiccant 12.
  • the particle diameter in the compressed air is small due to these. Oil particles can be captured. For this reason, the oil removal rate of compressed air can be improved, removing the moisture in compressed air with the desiccant 12.
  • the filter for holding the desiccant 12 is constituted by the glass fiber filters 51 and 52, a filter having oil trapping performance is provided without newly securing a space for disposing the filter in the flow path of the compressed air. be able to.
  • the compressed air drying apparatus is a cartridge type in which the purge tank including the drying container can be replaced, and is different from the first embodiment in this respect. Also, in the drawings, elements that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and redundant descriptions are omitted.
  • the compressed air drying device includes a bottomed cylindrical outer case 55 and a support base 56 that supports the outer case 55.
  • the outer case 55 is detachable from the support base 56.
  • the outlet 58 is provided with a check valve (not shown). The check valve opens the outlet 58 during load operation and closes the outlet 58 during unload operation.
  • a flange 58 a for attaching the protection valve 60 is provided at the outlet 58.
  • the protection valve 60 is integrally provided with a plurality of pressure protection valves respectively corresponding to air tanks (brake circuits) (not shown), and the system including each air tank is made independent. For this reason, when the pressure of the compressed air in one of the air tanks is reduced (defective), the protection valve 60 has another defect by closing the pressure protection valve (not shown) corresponding to the air tank. Does not function to protect the air tank (brake circuit).
  • the support base 56 is provided with a pressure governor 62.
  • a drain discharge port 61 is provided for discharging drain during unload operation.
  • a cylindrical inner cylindrical portion 65 is formed at the upper center of the support base 56.
  • a male screw 65 a is formed on the upper outer periphery of the inner cylindrical portion 65.
  • a cylindrical outer cylindrical portion 66 is formed on the upper outer edge portion of the support base 56.
  • a space between the inner cylindrical portion 65 and the outer cylindrical portion 66 functions as a first tank 67 that stores the compressed air flowing in from the inlet 57.
  • the drain discharge port 61 is provided with a drain valve device 80 that opens and closes the drain discharge port 61.
  • An exhaust pipe 68 is exposed and attached to the drain outlet 61.
  • a space 71 is formed in the center of the support base 56.
  • the pressure governor 62 can supply compressed air to the space 71 via the communication path 69.
  • the drain valve device 80 includes a valve body 81 for opening and closing the drain discharge port 61 and a piston 82 for moving the valve body 81.
  • the valve body 81 is installed so as to move integrally with the piston 82 and to be seated on the valve seat 83 of the drain valve device 80.
  • the piston 82 is installed in a state where the space 71 formed in the support base 56 is closed, and is biased upward by a biasing spring 84. When compressed air is supplied from the pressure governor 62 to the space 71, the piston 82 is pushed down. When the valve body 81 is pushed down together with the piston 82, the valve body 81 is separated from the valve seat 83 and the drain discharge port 61 is opened.
  • the drain valve device 80 is closed during the load operation.
  • the drain valve device 80 opens the drain discharge port 61 by supplying compressed air from the pressure governor 62 to the space 71.
  • the drain containing oil and moisture is expelled to the outside by the compressed air (purge air) in the outer case 55 from the open drain outlet 61.
  • the pressure in the outer case 55 decreases due to the discharge of the compressed air from the drain discharge port 61 and reaches the minimum predetermined value, the supply of the compressed air to the space 71 is stopped and the piston 82 is not pushed down.
  • the drain outlet 61 is closed by the urging force of the urging spring 84.
  • the outer case 55 includes a bottomed cylindrical outer case 85 having an opening that opens toward the support base 56, and a mounting plate 86 that closes the opening of the outer case 85 and is attached to the support base 56. And a fixing member 87 for fixing the mounting plate 86 to the outer case 85.
  • a cylindrical drying container 90 filled with the desiccant 12 is accommodated inside the outer case 85.
  • a large-diameter portion 90a having an outer diameter substantially equal to the inner diameter of the outer case 85 and a small-diameter portion 90b having an outer diameter that is approximately half the inner diameter of the outer case 85 are connected by a connecting portion 90c.
  • a female screw portion 86a that is screwed into the male screw 65a of the inner cylindrical portion 65 of the support base 56 is provided.
  • the outer case 55 is attached to the support base 56 by screwing the female screw portion 86 a of the mounting plate 86 to the inner cylindrical portion 65.
  • the mounting plate 86 is wound around the fixing member 87 by winding the outer edge of the fixing member 87 around the opening end of the outer case 85, and the hooking piece 87 a of the fixing member 87 is hooked in the hole 86 h of the mounting plate 86. It is fixed.
  • a seal member 88 that is in close contact with the upper end portion of the support base 56 to form a sealed space is attached to the lower portion of the fixing member 87.
  • the granular desiccant 12 filled in the drying container 90 is sandwiched between the upper plate 91 and the lower plate 92 in the vertical direction via the first glass fiber filter 51 and the second glass fiber filter 52. .
  • a biasing spring 93 is installed inside the outer case 85.
  • the urging spring 93 is installed in the spring receiving portion 91 a of the upper plate 91 and urges the upper plate 91 toward the lower plate 92.
  • the upper plate 91 and the lower plate 92 have a plurality of through holes 91h and 92h.
  • the upper plate 91 is formed with a groove extending radially from the spring receiving portion 91a.
  • the glass fiber filters 51 and 52 have the same shape as the first embodiment.
  • an oil adsorbent 95 is accommodated below the lower plate 92 in the internal space of the outer case 85.
  • the oil adsorbent 95 has a substantially annular shape, and is disposed in a space formed between the inner wall surface of the outer case 85 and the connecting portion 90c and the small diameter portion 90b of the drying container 90.
  • the oil adsorbent 95 is made of a sponge having oil resistance, heat resistance, and moisture resistance.
  • the oil adsorbent 95 has a relatively large particle size among small oil particles and large oil particles in addition to the oil particles having a large particle size due to electrostatic force.
  • the particle size of oil particles mainly captured by the oil adsorbent 95 is larger than the oil particles mainly captured by the glass fiber filters 51 and 52.
  • the particle diameter of the oil particles that are easily captured by the oil adsorbent 95 is, for example, 300 nm or more.
  • the oil particle capturing efficiency of less than 300 nm is high.
  • the load operation starts when the pressure in the outer case 55 reaches the minimum predetermined value, and ends when the pressure in the air tank reaches the maximum predetermined value.
  • the inlet 57 see FIG. 3
  • the outlet 58 see FIG. 4
  • the drain outlet 61 is closed.
  • the unload operation starts when the pressure in the air tank reaches a maximum predetermined value, and ends when the pressure in the outer case 55 reaches a minimum predetermined value.
  • the inlet 57 and the outlet 58 are closed, and the drain outlet 61 is opened.
  • the compressed air flowing from the compressor (not shown) through the inlet 57 is introduced into the first tank 67.
  • This compressed air flows into the oil adsorbing material 95 from the hole 86 h formed in the mounting plate 86. Oil particles contained in the compressed air are captured by the oil adsorbent 95. At this time, an electrostatic force is generated between the oil particles and the oil adsorbing material 95, whereby the adsorbing force can be increased.
  • Compressed air that has passed through the oil adsorbent 95 flows into the first glass fiber filter 51 through the through hole 91h of the upper plate 91 via the gap between the outer case 55 and the large diameter portion 90a.
  • oil particles having a smaller particle diameter than the oil particles captured by the oil adsorbent 95 are captured.
  • the glass fiber filter 51 since many of the oil particles having a large diameter (for example, a particle diameter of 300 nm or more) are previously removed by the oil adsorbing material 95, the glass fiber filter 51 has a higher removal rate of the oil particles having a smaller diameter. .
  • the compressed air from which many of the oil particles have been removed is sent to the desiccant 12. When the compressed air comes into contact with the desiccant 12, moisture is removed from the compressed air. The dried compressed air is sent to the small diameter portion 90b of the drying container 90 and discharged from the outlet 58.
  • the unload operation will be explained.
  • the inlet 57 and the outlet 58 are closed and the drain outlet 61 is opened as in the first embodiment.
  • the drain outlet 61 is opened, the drain containing oil and moisture is expelled to the outside by the dry compressed air in the outer case 85.
  • the dry compressed air accumulated in the outer case 85 is sent to the desiccant 12 through the second glass fiber filter 52 through the through hole 92 h of the lower plate 92.
  • the dry compressed air regenerates the desiccant 12 by contacting the desiccant 12.
  • the compressed air that has passed through the desiccant 12 passes through the first glass fiber filter 51 and the through hole 91h of the upper plate 91, passes through a gap between the outer case 55 and the large diameter portion 90a, and then becomes an oil adsorbent. Pass through 95. At this time, not only the moisture of the desiccant 12 but also part of the oil captured by the second glass fiber filter 52, the first glass fiber filter 51, and the oil adsorbent 95 is removed.
  • the compressed air that has passed through the oil adsorbent 95 passes through the drain valve device 80 through the first tank 67, passes through the exhaust pipe 68, and is discharged together with the drain.
  • the discharge of the compressed air and drain stops.
  • the pressure in the outer case 55 reaches the minimum predetermined pressure, the supply of compressed air from the pressure governor 62 is stopped, so that the air is discharged from the space 71, and the drain valve device 80 has the biasing force of the biasing spring 84.
  • the compressed air drying device shifts from the unload operation to the load operation.
  • each glass fiber filter 51, 52 is provided downstream of the oil adsorbent 95 during the load operation, it captures oil particles having a relatively large diameter in advance by electrostatic force generated in the oil adsorbent 95. be able to.
  • compressed air from which many oil particles having a large particle diameter have been removed flows through the glass fiber filters 51 and 52, the amount of oil captured by the glass fiber filters 51 and 52 can reduce its capacity in a short time. None exceed.
  • the first glass fiber filter 51 in the present embodiment is made of the same material as the second glass fiber filter 52, but is thinner than the second glass fiber filter 52.
  • the first glass fiber filter 51 is composed of one filter
  • the second glass fiber filter 52 is formed by stacking two or three same filters as the first glass fiber filter 51. It is configured. For this reason, even if the 1st glass fiber filter 51 absorbs a water
  • the second glass fiber filter 52 is not exposed to moisture discharged from the desiccant 12.
  • the first glass fiber filter 51 is exposed to moisture discharged from the desiccant 12, but it is easy to discharge moisture because it is thin. For this reason, the oil removal performance is unlikely to deteriorate. Therefore, oil can be captured by the first glass fiber filter 51 even after restarting the load operation.
  • the advantages (1) to (3) can be obtained, and the following advantages can be further obtained.
  • the thickness of the glass fiber filter 51 of the upstream side at the time of load operation is thin compared with the thickness of the 2nd glass fiber filter 52 of a downstream, and a water
  • FIGS. 7 to 15 a fourth embodiment of the compressed air drying device will be described with reference to FIGS. 7 to 15 focusing on differences from the first embodiment.
  • the compressed air drying apparatus according to the present embodiment is different from the first embodiment in the configuration of the glass fiber filter.
  • elements that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and redundant descriptions are omitted.
  • a filter cartridge 105 is provided between the desiccant 12 and the oil separate filter 44.
  • the filter cartridge 105 includes a lower plate 110, a first glass fiber filter 51, and a plate 113.
  • the lower plate 110 is formed in a cylindrical shape with one end closed. A plurality of first glass fiber filters 51 are accommodated inside the lower plate 110.
  • the drying container 13 is provided with a valve device 120.
  • the valve device 120 opens when the pressure in the purge tank 14 is higher than a preset upper limit value and the pressure difference from the pressure in the drying container 13 exceeds a predetermined pressure, and the pressure difference is less than the predetermined pressure. Close at some point. As a result, it is possible to prevent the pressure in the purge tank 14 from exceeding the upper limit value, thereby preventing a rapid drop in the pressure in the purge tank 14 during the unloading operation. Noise and rattling caused by a collision can be suppressed.
  • the lower plate 110 has a plurality of through holes 111 formed therein.
  • the lower plate 110 houses a plurality of glass fiber filters 51.
  • eight first glass fiber filters 51 are stacked in the direction in which air flows.
  • Each first glass fiber filter 51 is supported by a plate 113.
  • a plurality of through holes 112 and notches 116 are formed in the plate 113.
  • the lower plate 110 is provided with a stepped portion 114 for supporting the plate 113.
  • the diameter of the through hole 112 formed in the plate 113 is smaller than the through hole 111 of the lower plate 110.
  • the plate 113 supports the first glass fiber filter 51 and suppresses dropping of the glass fibers constituting the first glass fiber filter 51.
  • the dry compressed air accumulated in the purge tank 14 flows through the through hole of the upper plate 46 and the second glass fiber filter 52 to the desiccant 12.
  • the second glass fiber filter 52 is a single layer, the amount of oil retained in the second glass fiber filter 52 on the upstream side of the desiccant 12 during the unloading operation is reduced. Therefore, the amount of oil flowing through the cylinder 12 can be reduced.
  • the dry compressed air that has flowed into the desiccant 12 is brought into contact with the desiccant 12 to regenerate the desiccant 12.
  • the compressed air that has passed through the desiccant 12 and contained moisture or the like passes through the first glass fiber filter 51 and the through hole of the lower plate 45, and then passes through the oil separate filter 44.
  • FIG. 10 is a filter cartridge for a compressed air dryer, and is an enlarged perspective view from the front, the plane, and the right side.
  • the broken lines (ridge lines) appearing in FIG. 10 are for representing the shape of the three-dimensional surface.
  • FIG. 11 is an enlarged perspective view of the filter cartridge for the compressed air dryer from the back, bottom, and left side.
  • FIG. 12 is a front view of a filter cartridge for a compressed air dryer. The rear view appears the same as the front view.
  • FIG. 13 is a plan view of a filter cartridge for a compressed air dryer.
  • FIG. 14 is a bottom view of the filter cartridge for the compressed air dryer.
  • FIG. 15 is a right side view of the filter cartridge for the compressed air dryer. The left side view is the same as the right side view.
  • the advantages (1) to (3) can be obtained, and the following advantages can be further obtained.
  • the filter cartridge 105 is provided with a laminate in which the plurality of first glass fiber filters 51 are laminated, the oil removal rate by the filter cartridge 105 can be increased.
  • each said embodiment can also be implemented with the following forms.
  • the average fiber diameter is preferably 0.1 ⁇ m or more and 30 ⁇ m or less
  • the average fiber density is preferably 5 kg / m 3 or more and 50 kg / m 3 or less
  • the average fiber diameter is 0.1 ⁇ m or more and 10 ⁇ m or less
  • the average fiber density is more preferably 5 kg / m 3 or more and 30 kg / m 3 or less.
  • glass fibers having a larger average fiber diameter and a smaller average fiber density are used.
  • the second glass fiber filter 52 on the downstream side during the load operation with respect to the desiccant 12 glass fibers having a smaller average fiber diameter and a higher average fiber density are used.
  • the particle size of the oil particles captured by the first glass fiber filter 51 is larger than the particle size of the oil particles captured by the second glass fiber filter 52.
  • oil particles having a large particle diameter are captured upstream of the desiccant 12, and oil particles having a small particle diameter are captured downstream of the desiccant 12.
  • clogging of the desiccant 12 due to the oil adhering to the desiccant 12 can be suppressed, and the oil content of the air discharged from the compressed air drying device can be reduced.
  • the drain is discharged by the dry compressed air in the outer case 85 during the unload operation, but the drain is discharged by the dry compressed air stored in the air tank connected to the compressed air drying device. You may make it do.
  • the air tank is a service brake air tank, a parking brake air tank, an accessory air tank, or the like.
  • the outlet 58 is not closed during the unload operation.
  • the maximum predetermined value and the minimum predetermined value are measured downstream of the outlet 58 or downstream of the protection valve 60.
  • the thickness of the glass fiber filters 51 and 52 provided therein may be varied. Also in this case, as in the third embodiment, the thickness of the first glass fiber filter 51 on the upstream side during the load operation is made thinner than the thickness of the second glass fiber filter 52. Also in this case, by increasing the water discharging property of the first glass fiber filter 51, the absorbed water can be easily discharged even if exposed to the water discharged from the desiccant 12 during the unloading operation. it can.
  • the oil adsorbing material 95 in the second embodiment may be provided with a baffle plate 100 instead of the charging sponge.
  • a baffle plate 100 By applying compressed air to the baffle plate 100, oil particles contained in the compressed air can collide with the baffle plate 100 and be captured.
  • the first glass fiber filter 51 disposed on the upstream side with respect to the desiccant 12 is discharged more than the glass fiber filter.
  • a filter made of a synthetic resin fiber may be used.
  • a seal portion 115 may be provided in the stepped portion 13 ⁇ / b> A that contacts the end portion of the lower plate 110.
  • the seal portion 115 is a sheet having an annular shape, and the seal portion 115 seals between the cartridge filter 105 and the stepped portion 13A, so that the upper plate 46 and the drying container 13 shown in FIG. It is possible to suppress the air from flowing to the oil separate filter 44 side through the gap therebetween. Therefore, the backflow of dry compressed air can be suppressed during the load operation, and the air can be prevented from flowing to the oil separate filter 44 side without passing through the desiccant 12 during the unload operation.
  • the seal 115 may be provided in the compressed air drying apparatus according to the first to third embodiments.
  • the seal portion 115 is not limited to a sheet shape, and may have another shape such as a columnar shape or a ring having a circular cross section.
  • the base fabric is made of a material that hardly generates fiber waste, such as a nonwoven fabric.
  • a base fabric is provided on the upstream surface of the first glass fiber filter 51, it is possible to suppress the glass fibers from being mixed into the passage on the compressor side.
  • a base fabric is provided on the downstream surface of the first glass fiber filter 51, it is possible to suppress the glass fibers from being mixed into the desiccant 12.
  • the first glass fiber filter 51 and the second glass fiber filter 52 are made of a material having the same characteristics.
  • the fiber diameter, the hole diameter, and the depth of the first glass fiber filter 51 The direction density may be different from that of the second glass fiber filter 52. For example, if the fiber diameter and the hole diameter are increased, the water discharge performance is enhanced.
  • the first glass fiber filter is a single layer
  • the second glass fiber filter 52 is a stack of two or three single-layer glass fiber filters.
  • the number of laminated glass fiber filters 52 may be plural.
  • the first glass fiber filter 51 is made by stacking a plurality of single-layer filters, and the number of laminated second glass fiber filters 52 is larger than the number of laminated first glass fiber filters 51. Also good.
  • the filter cartridge 105 is provided in the compressed air drying device of the first embodiment, but the filter cartridge 105 may be provided in the compressed air drying device of the second embodiment. In this case, the filter cartridge 105 is provided between the oil adsorbent 95 and the desiccant 12 in the direction in which air flows during the load operation.
  • the filter cartridge 105 has a laminated body in which a plurality of first glass fiber filters 51 are laminated, but has a laminated body in which a plurality of second glass fiber filters 52 are laminated. It may be a thing.
  • the first glass fiber filter 51 and the second glass fiber filter 52 is laminated with a filter made of a material other than glass fiber, such as sponge or non-woven fabric, on the upstream side and downstream side of the desiccant 12
  • the provided filter may have a laminated structure.
  • the glass fiber filters 51 and 52 are formed in a disk shape, but other shapes may be used as long as the glass fiber filters 51 and 52 are provided in the middle of the flow path of the compressed air and allow the compressed air to pass therethrough. For example, it is good also as a shape which changed thickness in the center part and an outer edge part.
  • Glass fiber filters 51 and 52 are formed by molding glass fiber.
  • glass fiber and the like such as those in which glass fiber is supported on equipment or a mixture of other materials and glass fiber, etc.
  • the filter which consists of materials other than may be sufficient.
  • the glass fiber filters 51 and 52 are provided between the drying container and the inlet and between the drying container and the outlet in the flow path of the compressed air from the inlet to the outlet of the compressed air drying device. May be.
  • the configuration of the compression drying apparatus may be a configuration other than the above embodiments as long as glass fiber filters can be mounted on the upstream side and downstream side of the desiccant in the flow path of the compressed air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compressor (AREA)
  • Drying Of Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

 圧縮空気乾燥装置は、圧縮空気が流入するための入口と、乾燥圧縮空気を排出するための出口とを有する支持ベースと、乾燥剤を充填可能であり支持ベースに装着可能である乾燥容器と、ガラス繊維フィルタとを備える。ガラス繊維フィルタは、入口から出口までの圧縮空気の流路において、乾燥容器と入口との間、及び乾燥容器と出口との間の少なくとも一方に設けられる。ガラス繊維フィルタに具備されるガラス繊維の平均直径は、0.1μm以上10μm以下である。

Description

圧縮空気乾燥装置
 本発明は、圧縮機から供給される圧縮空気を乾燥する圧縮空気乾燥装置に関する。
 トラック、バス、建機等の車両は、内燃機関(以下、エンジン)と直結した圧縮機から送られる圧縮空気を利用してブレーキやサスペンション等のシステムを制御している。この圧縮空気には、大気中に含まれる水分や圧縮機内を潤滑するオイルが含まれている。この水分やオイルを含む圧縮空気が各システム内に侵入すると、錆の発生や、ゴム部材(Oリング等)の膨潤を招き作動不良の原因となる。このため、エアシステムの圧縮機の下流には、圧縮空気から水分やオイルを除去するための圧縮空気乾燥装置が設けられている(例えば、特許文献1参照)。
 上記圧縮空気乾燥装置は、支持ベースと、乾燥剤が充填された乾燥容器と、乾燥容器を覆いながら支持ベースに取り付けられる外ケースとを備えている。支持ベースには、圧縮機から供給された圧縮空気が流入するための入口と、乾燥圧縮空気を排出するための出口とが設けられている。
 上記の圧縮空気乾燥装置では、乾燥容器のほかに、圧縮空気に含まれるオイルを除去するためのフィルタエレメントが設けられている。フィルタエレメントは、例えば不織布等から構成されている。
特開2012-106155号公報
 乾燥圧縮空気には、オイルとして粒径の異なるオイル粒子が含まれているが、従来のフィルタエレメントでは、粒径が比較的大きいオイル粒子しか捕捉することができず、乾燥剤とフィルタエレメントとを通過した圧縮空気にはオイルが少なからず残ってしまう。このため、圧縮空気に含まれるオイルの除去率の向上が望まれている。
 本発明の目的は、圧縮空気に含まれるオイルの除去率を向上することができる圧縮空気乾燥装置を提供することにある。
 上記課題を解決する圧縮空気乾燥装置は、圧縮空気が流入するための入口と、乾燥圧縮空気を排出するための出口とを有する支持ベースと、乾燥剤を充填可能であり前記支持ベースに装着されるように構成された乾燥容器と、前記入口から前記出口までの前記圧縮空気の流路において、前記乾燥容器と入口との間、及び前記乾燥容器と前記出口との間の少なくとも一方に設けられたガラス繊維フィルタと、を備える。前記ガラス繊維フィルタに具備されるガラス繊維の平均直径は、10μm以下である。
第1の実施形態の圧縮空気乾燥装置の概略構成を示す半断面図。 図1の圧縮空気乾燥装置に収容された乾燥容器の断面図。 第2の実施形態の圧縮空気乾燥装置の正面図。 図3の圧縮空気乾燥装置の平面図。 図3の圧縮空気乾燥装置の断面図。 第3の実施形態の圧縮空気乾燥装置に設けられた乾燥容器の断面図。 第4の実施形態の圧縮空気乾燥装置の概略構成を示す半断面図。 図7の圧縮空気乾燥装置に設けられたフィルタカートリッジの分解斜視図。 図8のフィルタカートリッジの断面図であって、図13中、9-9線の断面図。 図8のフィルタカートリッジの拡大斜視図。 図8のフィルタカートリッジの拡大斜視図。 図8のフィルタカートリッジの正面図。 図8のフィルタカートリッジの平面図。 図8のフィルタカートリッジの底面図。 図8のフィルタカートリッジの右側面図。 変形例の圧縮空気乾燥装置に設けられた乾燥容器の断面図。 変形例の圧縮空気乾燥装置に設けられた乾燥容器の断面図。 変形例の圧縮空気乾燥装置に設けられた乾燥容器の断面図。 変形例の圧縮空気乾燥装置に設けられた乾燥容器の断面図。
 (第1の実施形態)
 以下、図1及び図2を参照して、圧縮空気乾燥装置の第1の実施形態について説明する。
 図1に示されるように、圧縮空気乾燥装置は、支持ベース11と、乾燥剤12が充填された有底円筒形状の乾燥容器13と、乾燥容器13を覆いながら支持ベース11に取り付けられ、支持ベース11に向かって開口する開口部を有する有底円筒形状のパージタンク14とを備えている。
 支持ベース11の側面には、圧縮機(図示略)から送られた圧縮空気が流入するための入口15と、乾燥圧縮空気を、圧縮空気乾燥装置に接続されたエアタンク(図示略)に排出するための出口20とが設けられている。図1では、入口15は支持ベース11の正面に設けられ、出口20が支持ベース11の背面に設けられている。また、支持ベース11の内部には、下部が開口した円柱形状の収容部21が形成されている。収容部21の上部には、ドレン排出装置25が設けられている。収容部21のドレン排出装置25の下部には、円筒状の排気管17が取り付けられている。排気管17の出口であるドレン排出口19は、大気に開放されている。
 ドレン排出装置25は、ドレンを排出するためのドレン弁26とピストン27とを備えている。ドレン弁26は、水分やオイルを含む液体であるドレンをアンロード運転時に外気へ排出する開放弁を兼ねている。ドレン弁26は、圧縮空気から水分を除去するロード運転時には閉じている。上記エアタンク内の圧力が所定値に達すると、支持ベース11に設けられたガバナ28から、支持ベース11内の空間である制御室29に空気が供給されることによって、ピストン27が下げられてドレン弁26が開く。ドレン弁26が開くと、ドレンは圧縮空気と共に勢いよく外部へ排出される。
 排気管17には、フィルタ31が設けられている。フィルタ31は、例えばクラッシュドアルミなど空気が通過する多数の孔を有する金属材であって、ドレン排出に伴う騒音を低減させるサイレンサとして機能する。
 支持ベース11には、ガバナ28の排気をガバナ排気通路36に通過させるガバナ排気口通路37が設けられている。ガバナ排気口通路37は、収容部21の内壁と排気管17の外壁とによって形成される空間であって、複数設けられている。ガバナ排気口通路37の開口部であるガバナ排気口38は、大気に開放している。
 パージタンク14は、乾燥容器13を覆い、支持ベース11の上端部にボルト24によって取り付けられる。パージタンク14の内壁と乾燥容器13の外壁とによって形成される空間は、除湿した乾燥圧縮空気を溜めるタンク16として機能する。
 乾燥容器13内には、下部プレート45と上部プレート46とに上下方向において挟まれた状態で粒状の乾燥剤12が充填されている。乾燥容器13の下部には、衝突材としてのオイルセパレートフィルタ44が設けられている。オイルセパレートフィルタ44は、例えばクラッシュドアルミなど空気が通過する多数の孔を有する金属材である。オイルセパレートフィルタ44は、内部で圧縮空気の流れを細かく変えることにより、圧縮空気の流れにのったオイル粒子を慣性力によりアルミ表面に衝突させて捕捉するものである。
 図2に示されるように、下部プレート45及び上部プレート46には、複数の貫通孔が形成されている。下部プレート45の上面には、第1のガラス繊維フィルタ51が設けられている。また、上部プレート46の下面には、乾燥剤12を保持するための第2のガラス繊維フィルタ52が設けられている。これらのガラス繊維フィルタ51,52は、ガラス繊維を略円盤状に形成したものであり、乾燥容器13の内径とほぼ同じ直径を有している。またガラス繊維フィルタ51,52は、乾燥剤12を保持するとともに、圧縮空気内のオイルを除去する機能を有する。本実施の形態では、これらのガラス繊維フィルタ51,52は等しい厚さを有している。
 即ち、圧縮空気の速度にもよるが、例えば粒径が1μm以上である比較的粒径が大きいオイル粒子は、オイルセパレートフィルタ44への衝突により効率よく捕捉される。一方、圧縮空気に含有される微小なオイル粒子の個数は、大径のオイル粒子よりも多い。微小なオイル粒子は、圧縮空気中の気体分子と衝突することで、圧縮空気の流れとは関係のない不規則な運動(ブラウン運動)をする。この不規則な運動をするオイル粒子の粒径は1μm未満である。目の粗いオイルセパレートフィルタ44ではこの粒径のオイル粒子を捕捉しにくいが、ガラス繊維フィルタ51,52ではこの粒径のオイル粒子を捕捉しやすい。
 粒子径が1μm未満のオイル粒子を捕捉するため、ガラス繊維フィルタ51,52に具備されるガラス繊維の直径(繊維径)は、0.1μm以上10μm以下であって、ガラス繊維間距離は、1μm以上100μm以下となっている。なお、ガラス繊維間距離は、ガラス繊維どうしが接触していない場合の距離である。すなわち、ガラス繊維間距離はガラス繊維の表面間の距離である。繊維径及び繊維間距離を上記範囲にすることによって、粒径1μm未満の微小なオイル粒子は、ガラス繊維との衝突、接触付着、ブラウン運動に伴うガラス繊維への付着などによって捕捉されやすくなる。このようにガラス繊維フィルタ51,52のオイル粒子の捕捉性能を向上することによって、オイル捕捉量が同じであって繊維径及び繊維間距離が異なる他のガラス繊維フィルタに比べ、ガラス繊維フィルタ51,52を薄くすることが可能である。
 繊維径は、たとえば、走査型電子顕微鏡や透過型電子顕微鏡による観察から得た画像を基にガラス繊維の直径を目視的に採寸することや、レーザー走査型顕微鏡によって画像解析処理すること等で測定することができるが、JIS-R3420に準拠する方法などでも測定することができる。また、繊維間距離は、例えば、走査型電子顕微鏡や透過型電子顕微鏡による観察から得た画像を基に、隣り合う繊維同士の距離の最大値及び最小値を目視的に採寸することや、その最大値及び最小値をレーザー走査型顕微鏡によって画像解析処理することによって測定することができる。なお、繊維間距離は、ガラス繊維フィルタ51,52が捕捉するオイル粒子の粒径を決定する。
 なお、ガラス繊維フィルタ51,52は、効率は低下するものの、粒径1μm以上のオイル粒子も捕捉することは可能である。また、オイルセパレートフィルタ44も、効率は低下するものの、粒径1μm未満のオイル粒子を捕捉することが可能である。
 上部プレート46と蓋材41との間には、コイルばね42が設置されている。コイルばね42は、蓋材41が乾燥容器13に対し固定されることで付勢力が発生して、上部プレート46を下方へ押圧する。これにより、ガラス繊維フィルタ51,52、乾燥剤12、オイルセパレートフィルタ44はコイルばね42によって付勢された状態となっている。
 また蓋材41には、第1の貫通孔47と第2の貫通孔48とが設けられている。第1の貫通孔47には、乾燥容器13の内部から外部へ向かう空気の流れのみを許容する逆止弁39が設けられている。
 次に、図1及び図2を参照して、前述のように構成された圧縮空気乾燥装置の動作について説明する。
 まず図1を参照して、ロード運転時の動作について説明する。上記圧縮機から入口15を介して流入する圧縮空気は、乾燥容器13内に入り、オイルセパレートフィルタ44を通過する。オイルセパレートフィルタ44では、圧縮空気に含有されるダストのほか、大径のオイル粒子が捕捉されやすい。大径のオイル粒子は、例えば、粒径が1μm以上のオイル粒子である。
 図2に示されるように、オイルセパレートフィルタ44を通過した圧縮空気は、乾燥容器13の底部に形成された孔13a及び下部プレート45の貫通孔を通過して、第1のガラス繊維フィルタ51を通過する。第1のガラス繊維フィルタ51では、小径のオイル粒子が捕捉されやすい。小径のオイル粒子とは、例えば、粒径が1μm未満のオイル粒子である。こうしてオイル含有率が低下した圧縮空気は、乾燥剤12の中を通過することで水分が除去される。このとき、乾燥剤12を通過する前にオイルがオイルセパレートフィルタ44及びガラス繊維フィルタ51によって捕捉されているため、乾燥剤12の目詰まりが抑制される。
 乾燥剤12を通過して乾燥された乾燥圧縮空気は、第2のガラス繊維フィルタ52を通過するため、乾燥圧縮空気に残留していたオイル粒子が除去される。さらに、乾燥圧縮空気は、上部プレート46の貫通孔、蓋材41に形成された第1の貫通孔47を通過して、パージタンク14内のタンク16に一旦溜められる。そして、タンク16に導入された乾燥圧縮空気は、一部を残して出口20を通過して外部のエアタンク内に溜められる。エアタンク内の圧縮空気は例えばエアブレーキシステムの各機器の作動に利用される。
 次にアンロード運転時の動作について説明する。
 図1に示されるように、圧縮空気乾燥装置は、上記エアタンクの気圧が上限に達したタイミングで、ガバナ28の作用によって乾燥剤を再生させるアンロード運転に移行する。ガバナ28は、上記エアタンク内の圧力が所定値に達すると、ドレン弁26を駆動する制御室29に空気を供給して、ピストン27を移動させることでドレン弁26を開弁させる。ドレン排出装置25のドレン弁26が開弁されると、パージタンク14内に溜まった乾燥圧縮空気が乾燥容器13を上方から下方へ向かって流れ、ドレン排出通路18のドレン排出口19から圧縮空気とともにオイルや水分が排出される。即ち、タンク16に溜まっていた乾燥圧縮空気は、蓋材41の第2の貫通孔48を介して、上部プレート46の貫通孔及び第2のガラス繊維フィルタ52を通り、乾燥容器13内に流入する。この際、第2のガラス繊維フィルタ52に捕捉されたオイルの少なくとも一部も除去される。そして乾燥圧縮空気は、乾燥剤12と接触することで乾燥剤12を再生させる。乾燥剤12の中を通過し水分等を含んだ圧縮空気は、第1のガラス繊維フィルタ51及び下部プレート45の貫通孔を通過して、オイルセパレートフィルタ44を通過する。この際、第1のガラス繊維フィルタ51に捕捉されたオイルの少なくとも一部も除去される。そして、圧縮空気は、ドレン排出装置25内を通過して、排気管17のフィルタ31を通過して外部にドレンとともに排出される。
 以上説明したように、本実施形態によれば、以下の利点が得られるようになる。
 (1)ガラス繊維フィルタ51,52によって、圧縮空気に含まれる粒径(直径)が小さいオイル粒子が捕捉されやすくなる。特に、前記ガラス繊維フィルタ51,52に具備されるガラス繊維の直径は、0.1μm以上10μm以下であって、ガラス繊維間距離は、1μm以上100μm以下であるため、圧縮空気に含まれる粒径が小さいオイル粒子(例えば1μm未満のオイル粒子)が捕捉されやすくなる。このため、圧縮空気乾燥装置においては、乾燥剤12によって圧縮空気内の水分を除去しつつ、圧縮空気のオイル除去率を向上させることができる。
 (2)乾燥剤12に対してロード運転時における上流側及び下流側に第1のガラス繊維フィルタ51及び第2のガラス繊維フィルタ52が設けられたので、これらによって圧縮空気内の粒径の小さいオイル粒子を捕捉することができる。このため、乾燥剤12によって圧縮空気内の水分を除去しつつ、圧縮空気のオイル除去率を向上させることができる。また乾燥剤12を保持するフィルタを、各ガラス繊維フィルタ51,52から構成したため、圧縮空気の流路内にフィルタを配設するスペースを新たに確保せずに、オイル捕捉性能を有するフィルタを設けることができる。
 (3)各ガラス繊維フィルタ51,52は、オイルセパレートフィルタ44よりも、ロード運転時における下流側に設けたので、オイルセパレートフィルタ44によって比較的大径のオイル粒子を予め捕捉することができる。すなわち、比較的大径のオイル粒子はガラス繊維フィルタ51,52に到達する前にオイルセパレートフィルタ44によって捕捉される。また各ガラス繊維フィルタ51,52には、大きな粒径のオイル粒子の多くが除去された圧縮空気が流れるので、ガラス繊維フィルタによって捕捉されたオイルの量が、フィルタの容量を短時間で超えることがない。
 (第2の実施形態)
 次に、図3~図5を参照して、圧縮空気乾燥装置の第2の実施形態を、第1の実施形態との相違点を中心に説明する。なお、本実施の形態にかかる圧縮空気乾燥装置は、乾燥容器を含めたパージタンクを交換可能なカートリッジタイプであり、この点において第1の実施形態と異なっている。また図面において第1の実施の形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
 図3に示されるように、圧縮空気乾燥装置は、有底円筒形状の外ケース55と、外ケース55を支持する支持ベース56とを備えている。外ケース55は、支持ベース56に対して着脱可能である。
 図4に示されるように、支持ベース56の側部には、図示しない圧縮機から供給された圧縮空気が流入するための入口57と、乾燥圧縮空気を図示しないエアタンクに供給するための出口58とが同方向に指向して設けられている。出口58には、図示しない逆止弁が設けられている。逆止弁は、ロード運転時には出口58を開いて、アンロード運転時には出口58を閉じる。出口58には、プロテクションバルブ60を取り付けるためのフランジ58aが設けられている。
 プロテクションバルブ60は、図示しない各エアタンク(ブレーキ回路)にそれぞれ対応する複数の圧力保護弁を一体に備え、各エアタンクを含むシステムを独立させている。このため、プロテクションバルブ60は、いずれかのエアタンク内の圧縮空気の圧力が低下(欠陥)した場合には、当該エアタンクに対応する圧力保護弁(図示略)を閉じることにより、他の欠陥していないエアタンク(ブレーキ回路)を保護するように機能する。
 また図3に示されるように、支持ベース56には、プレッシャガバナ62が設けられている。支持ベース56の底部の中央には、アンロード運転時にドレンを排出するためのドレン排出口61が設けられている。
 図5に示されるように、支持ベース56の上側中央には、円筒形状の内側円筒部65が形成されている。内側円筒部65の上側外周には、雄螺子65aが形成されている。支持ベース56の上側外縁部には、円筒形状の外側円筒部66が形成されている。内側円筒部65と外側円筒部66との間の空間は、入口57から流入した圧縮空気を溜める第1タンク67として機能する。ドレン排出口61には、ドレン排出口61を開閉するドレンバルブ装置80が設けられている。ドレン排出口61には、排気管68が露出して取り付けられている。支持ベース56の中央には、空間71が形成されている。プレッシャガバナ62は、連通路69を介して空間71に圧縮空気を供給することが可能となっている。
 ドレンバルブ装置80は、ドレン排出口61を開閉するための弁体81と、弁体81を移動させるピストン82とを備えている。弁体81は、ピストン82と一体に移動するとともに、ドレンバルブ装置80の弁座83に着座するように設置されている。ピストン82は、支持ベース56に形成された空間71を閉蓋する状態で設置されるとともに、付勢ばね84によって上方に付勢されている。プレッシャガバナ62から空間71に圧縮空気が供給されると、ピストン82が押し下げられる。ピストン82とともに弁体81が押し下げられると、弁体81が弁座83から離間してドレン排出口61が開く。一方、空間71から空気が排出されると、ピストン82が付勢ばね84によって押し上げられる。ピストン82とともに弁体81が押し上げられると、弁体81が弁座83に着座し、これによってドレン排出口61が閉じられる。
 ドレンバルブ装置80は、ロード運転時には閉じている。上記エアタンク内の圧力が上昇して最大所定値に達すると、ドレンバルブ装置80は、プレッシャガバナ62から空間71に圧縮空気が供給されることによってドレン排出口61を開く。その結果、開かれたドレン排出口61からオイルや水分を含むドレンが外ケース55内の圧縮空気(パージエア)によって勢いよく外部へ排出される。そして、ドレン排出口61からの圧縮空気の排出によって外ケース55内の圧力が低下して最小所定値に達すると、空間71への圧縮空気の供給が停止されてピストン82の押し下げがなくなり、付勢ばね84の付勢力によってドレン排出口61が閉じられる。
 外ケース55は、支持ベース56に向かって開口する開口部を有する有底円筒形状の外側ケース85と、外側ケース85の開口部を閉蓋するとともに、支持ベース56に装着される取付板86と、外側ケース85に取付板86を固定する固定部材87と、を備えている。外側ケース85の内部には、乾燥剤12が充填された円筒形状の乾燥容器90が収納されている。乾燥容器90は、外側ケース85の内径にほぼ等しい外径を有する大径部90aと、外側ケース85の内径の半分ほどの外径を有する小径部90bとが連結部90cによって連接されている。
 取付板86の中央には、支持ベース56の内側円筒部65の雄螺子65aに螺合する雌螺子部86aが設けられている。取付板86の雌螺子部86aが内側円筒部65に螺着されることによって、外ケース55は支持ベース56に装着される。取付板86は、固定部材87の外縁部が外側ケース85の開口端に巻回され、固定部材87の掛止片87aが取付板86の孔86hに掛止されることによって、固定部材87に固定されている。固定部材87の下部には、支持ベース56の上端部と密着して密閉空間を作るシール部材88が取り付けられている。
 乾燥容器90内に充填された粒状の乾燥剤12は、第1のガラス繊維フィルタ51及び第2のガラス繊維フィルタ52を介して、上部プレート91と下部プレート92とに上下方向において挟まれている。外側ケース85の内部には、付勢ばね93が設置されている。付勢ばね93は、上部プレート91のばね受部91aに設置され、上部プレート91を下部プレート92へ向けて付勢している。上部プレート91及び下部プレート92には、複数の貫通孔91h、92hが形成されている。また上部プレート91には、ばね受部91aから放射状に延びる溝部が形成されている。またガラス繊維フィルタ51,52は、第1実施形態と同じ形状を有する。
 また外側ケース85の内部空間のうち下部プレート92の下方には、オイル吸着材95が収容されている。オイル吸着材95は、略円環状をなし、外側ケース85の内壁面と乾燥容器90の連結部90c及び小径部90bとの間に形成された空間に配置されている。オイル吸着材95は、耐オイル性、耐熱性、及び耐湿性を有するスポンジからなる。このオイル吸着材95は、静電気力によって、小径のオイル粒子の中でも比較的大きめの粒径のもの、及びその粒径のオイル粒子に加え大径のオイル粒子が捕捉されやすい。オイル吸着材95によって主に捕捉されるオイル粒子の粒径は、ガラス繊維フィルタ51,52によって主に捕捉されるオイル粒子に比べ大きい。オイル吸着材95によって捕捉されやすいオイル粒子の粒径は、例えば300nm以上である。一方、ガラス繊維フィルタ51,52では、例えば300nm未満のオイル粒子の捕捉効率も高い。
 次に図5を参照して、圧縮空気乾燥装置の動作について説明する。
 ロード運転は、外ケース55内の圧力が最小所定値となった際に開始して、上記エアタンク内の圧力が最大所定値となった際に終了する。ロード運転時には、入口57(図3参照)と出口58(図4参照)とが開かれるとともに、ドレン排出口61が閉じられる。また、アンロード運転は、上記エアタンク内の圧力が最大所定値となった際に開始して、外ケース55内の圧力が最小所定値となった際に終了する。アンロード運転時には、入口57と出口58とが閉じられるとともに、ドレン排出口61が開かれる。
 ロード運転時には、圧縮機(図示せず)から入口57を介して流入した圧縮空気は、第1タンク67内に導入される。この圧縮空気は、取付板86に形成された孔86hから、オイル吸着材95に流入する。圧縮空気に含まれるオイル粒子は、オイル吸着材95に捕捉される。このときオイル粒子及びオイル吸着材95との間に静電気力が発生することによって、吸着力を高めることができる。
 オイル吸着材95を通過した圧縮空気は、外ケース55と大径部90aとの間の隙間を経由し、上部プレート91の貫通孔91hを通じて、第1のガラス繊維フィルタ51に流入する。このガラス繊維フィルタ51では、オイル吸着材95によって捕捉されたオイル粒子よりも、さらに粒径が小さいオイル粒子が捕捉される。この際、オイル吸着材95によって大径のオイル粒子(例えば300nm以上の粒径)の多くが予め除去されているため、ガラス繊維フィルタ51では、それよりも小径のオイル粒子の除去率が高められる。オイル粒子の多くが取り除かれた圧縮空気は、乾燥剤12に送られる。圧縮空気が乾燥剤12と接触することにより、圧縮空気から水分が除去される。乾燥された圧縮空気は、乾燥容器90の小径部90bに送られるとともに、出口58から排出される。
 次にアンロード運転について説明する。アンロード運転時には、第1の実施形態と同様に、入口57及び出口58が閉じられ、ドレン排出口61が開かれる。ドレン排出口61が開かれると、外側ケース85内の乾燥圧縮空気によって、オイルや水分を含むドレンが勢いよく外部へ放出される。
 即ち外側ケース85に溜まっていた乾燥圧縮空気は、下部プレート92の貫通孔92hを介して第2のガラス繊維フィルタ52を通り、乾燥剤12に送られる。乾燥圧縮空気は、乾燥剤12と接触することで乾燥剤12を再生させる。乾燥剤12を通過した圧縮空気は、第1のガラス繊維フィルタ51及び上部プレート91の貫通孔91hを通過し、外ケース55と大径部90aとの間の隙間を経由して、オイル吸着材95を通過する。このとき、乾燥剤12の水分だけでなく、第2のガラス繊維フィルタ52、第1のガラス繊維フィルタ51、及びオイル吸着材95により捕捉されたオイルの一部も除去される。
 オイル吸着材95を通過した圧縮空気は、第1タンク67内を介して、ドレンバルブ装置80内を通過し、排気管68を通過して外部にドレンとともに排出される。
 ドレン排出口61から圧縮空気とドレンとが排出され、外ケース55内の圧力が大気圧に近くなると、圧縮空気とドレンとの排出が止まる。外ケース55内の圧力が最小所定圧力に達すると、プレッシャガバナ62からの圧縮空気の供給が停止されることで空間71から空気が排出され、ドレンバルブ装置80は、付勢ばね84の付勢力によってドレン排出口61を閉じる。そして圧縮空気乾燥装置は、アンロード運転からロード運転に移行する。
 以上説明したように、本実施形態によれば、上記(1)及び(2)の利点が得られるとともに、さらに以下の利点が得られるようになる。
 (4)各ガラス繊維フィルタ51,52は、オイル吸着材95よりもロード運転時の下流側に設けられるので、オイル吸着材95で発生する静電気力によって比較的大径のオイル粒子を予め捕捉することができる。また各ガラス繊維フィルタ51,52には、大きな粒径のオイル粒子の多くが除去された圧縮空気が流れるので、ガラス繊維フィルタ51,52によって捕捉されたオイルの量が、その容量を短時間で超えることがない。
 (第3の実施形態)
 次に、図6を参照して、圧縮空気乾燥装置の第3の実施形態を、第1の実施形態との相違点を中心に説明する。なお、本実施の形態にかかる圧縮空気乾燥装置は、ガラス繊維フィルタの構成において第1の実施形態と異なっている。また図面において第1の実施の形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
 図6に示されるように、本実施の形態における第1のガラス繊維フィルタ51は、第2のガラス繊維フィルタ52と同じ材料からなるが、第2のガラス繊維フィルタ52よりも薄い。本実施の形態では、第1のガラス繊維フィルタ51は1枚のフィルタからなり、第2のガラス繊維フィルタ52は、第1のガラス繊維フィルタ51と同じフィルタを2枚、又は3枚重ねることによって構成されている。このため、第1のガラス繊維フィルタ51は、水分を吸収しても、その水分を排出しやすい。
 アンロード運転時には、第2のガラス繊維フィルタ52は、乾燥剤12から排出された水分に曝されない。一方、第1のガラス繊維フィルタ51は、乾燥剤12から排出された水分に曝されるが、薄いために水分を排出しやすい。このため、オイル除去性能が低下しにくい。従って、ロード運転を再開した後も、第1のガラス繊維フィルタ51によってオイルを捕捉することが可能である。
 以上説明したように、本実施形態によれば、上記(1)~(3)の利点が得られるとともに、さらに以下の利点が得られるようになる。
 (5)アンロード運転時に圧縮空気とともに乾燥剤から排出された水は、ロード運転時における上流側のガラス繊維フィルタ51を通過する際に、当該ガラス繊維フィルタ51に吸収される。上記構成によれば、ロード運転時における上流側のガラス繊維フィルタ51の厚さは、下流側の第2のガラス繊維フィルタ52の厚さに比べ薄く、水分が排出されやすい。このため、アンロード運転が繰り返されることによる、ガラス繊維フィルタ51のオイル捕捉性能の低下を抑制することができる。
 (第4の実施形態)
 次に、図7~図15を参照して、圧縮空気乾燥装置の第4の実施形態を、第1の実施形態との相違点を中心に説明する。なお、本実施の形態にかかる圧縮空気乾燥装置は、ガラス繊維フィルタの構成が第1の実施形態と異なっている。また図面において第1の実施の形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
 図7に示すように、乾燥剤12とオイルセパレートフィルタ44との間には、フィルタカートリッジ105が設けられている。フィルタカートリッジ105は、下部プレート110、第1のガラス繊維フィルタ51、及びプレート113を有している。下部プレート110は、一方の端部が閉じられた筒状に形成されている。下部プレート110の内側には、複数枚の第1のガラス繊維フィルタ51が収容されている。
 また、乾燥容器13には、弁装置120が設けられている。弁装置120は、パージタンク14の圧力が予め設定された上限値よりも高く、且つ乾燥容器13内の圧力との差圧が所定圧以上となったときに開き、差圧が所定圧未満であるときに閉じる。これにより、パージタンク14内の圧力が上限値を超えることを防ぐことができるので、アンロード運転時におけるパージタンク14内の圧力の急激な低下を防止し、パージタンク14と乾燥容器13との衝突による騒音やがたつきを抑制することができる。
 図8に示すように、下部プレート110には、複数の貫通孔111が形成されている。また、下部プレート110には、複数のガラス繊維フィルタ51が収容されている。本実施形態では、8枚の第1のガラス繊維フィルタ51が、空気が流れる方向に重ねられている。また、各第1のガラス繊維フィルタ51はプレート113によって支持されている。プレート113には、複数の貫通孔112と、切欠き116とが形成されている。
 図9に示すように、下部プレート110には、プレート113を支持するための段差部114が設けられている。プレート113に形成された貫通孔112の直径は、下部プレート110の貫通孔111よりも小さくなっている。プレート113は、第1のガラス繊維フィルタ51を支持するとともに、第1のガラス繊維フィルタ51を構成するガラス繊維の脱落を抑制する。
 次に図7を参照して、フィルタカートリッジ105の作用について説明する。ロード運転の際は、フィルタカートリッジ105に収容された複数の第1のガラス繊維フィルタ51によって、乾燥剤12の上流側で大径のオイル粒子を捕捉する。複数の第1のガラス繊維フィルタ51で乾燥剤12の上流側で多くのオイル粒子を捕捉することにより、乾燥剤12に流れるオイル量を極力低減することができる。乾燥剤12を通過して乾燥された圧縮空気は、第2のガラス繊維フィルタ52を通過する。これにより、乾燥剤12を通過した小径のオイル粒子が捕捉される。
 アンロード運転の際には、パージタンク14に溜まっていた乾燥圧縮空気が、上部プレート46の貫通孔及び第2のガラス繊維フィルタ52を通り、乾燥剤12に流れる。この際、第2のガラス繊維フィルタ52を単層とすることで、アンロード運転時に乾燥剤12の上流側となる第2のガラス繊維フィルタ52に保持されるオイル量が少なくなるため、乾燥剤12に流れるオイル量を低減することができる。そして乾燥剤12に流入した乾燥圧縮空気は、乾燥剤12と接触することで乾燥剤12を再生させる。乾燥剤12の中を通過し水分等を含んだ圧縮空気は、第1のガラス繊維フィルタ51及び下部プレート45の貫通孔を通過して、オイルセパレートフィルタ44を通過する。
 図10は、圧縮空気乾燥器用フィルタカートリッジであって、正面・平面・右側面側からの拡大斜視図である。図10において表れる途切れた線(稜線)は立体表面の形状を表す為のものである。
 図11は、背面・底面・左側面側からの圧縮空気乾燥器用フィルタカートリッジの拡大斜視図である。
 図12は、圧縮空気乾燥器用フィルタカートリッジの正面図である。なお、背面図は正面図と同一に表れる。
 図13は、圧縮空気乾燥器用フィルタカートリッジの平面図である。
 図14は、圧縮空気乾燥器用フィルタカートリッジの底面図である。
 図15は、圧縮空気乾燥器用フィルタカートリッジの右側面図である。なお、左側面図は、右側面図と同一に表れる。
 以上説明したように、本実施形態によれば、上記(1)~(3)の利点が得られるとともに、さらに以下の利点が得られるようになる。
 (5)フィルタカートリッジ105には、複数の第1のガラス繊維フィルタ51が積層された積層体が設けられるため、フィルタカートリッジ105によるオイル除去率を高めることができる。
 (他の実施の形態)
 なお、上記各実施の形態は、以下のような形態をもって実施することもできる。
 ・上記各実施の形態では、平均繊維径は0.1μm以上30μm以下、平均繊維密度は5kg/m以上50kg/m以下であることが好ましく、平均繊維径は0.1μm以上10μm以下、平均繊維密度は5kg/m以上30kg/m以下であることがより好ましい。乾燥剤12に対してロード運転時における上流側の第1のガラス繊維フィルタ51には、平均繊維径がより大きく、かつ平均繊維密度がより小さくなるようなガラス繊維を用いる。乾燥剤12に対してロード運転時における下流側の第2のガラス繊維フィルタ52には、平均繊維径がより小さく、かつ平均繊維密度がより大きくなるようなガラス繊維を用いる。第1のガラス繊維フィルタ51によって捕捉されるオイル粒子の粒径は、第2のガラス繊維フィルタ52によって捕捉されるオイル粒子の粒径よりも大きい。これにより、乾燥剤12に対して上流側で粒子径の大きなオイル粒子が捕捉され、乾燥剤12に対して下流側で粒子径の小さなオイル粒子が捕捉される。その結果、乾燥剤12にオイルが付着することによる乾燥剤12の目詰まりを抑制するとともに、圧縮空気乾燥装置から排出される空気のオイル含有率を低下することができる。
 ・第2実施形態では、アンロード運転の際に、外側ケース85内の乾燥圧縮空気によってドレンを排出するとしたが、圧縮空気乾燥装置に接続されたエアタンクに貯留された乾燥圧縮空気によってドレンを排出するようにしてもよい。このエアタンクは、サービスブレーキ用エアタンク、パーキングブレーキ用エアタンク、アクセサリ用エアタンクなどである。また、この場合には、アンロード運転の際、出口58は閉じない。さらに、最大所定値および最小所定値は、出口58の下流側、又はプロテクションバルブ60下流側で測定される。
 ・図16に示すように、第2の実施形態におけるカートリッジタイプの外ケース55を有する圧縮空気乾燥装置において、その内部に設けられるガラス繊維フィルタ51,52の厚さを異ならせてもよい。この場合も、第3の実施形態と同様に、ロード運転時に上流側となる第1のガラス繊維フィルタ51の厚さを、第2のガラス繊維フィルタ52の厚さに比べ薄くする。この場合にも、第1のガラス繊維フィルタ51の水分の排出性を高めることで、アンロード運転時に乾燥剤12から排出された水に曝されても、吸収した水を排出しやすくすることができる。
 ・図17に示すように、第2の実施形態におけるオイル吸着材95は、帯電性スポンジの替りに、邪魔板100を設けるようにしてもよい。この邪魔板100に圧縮空気を当てることによって、圧縮空気に含まれるオイル粒子を邪魔板100に衝突させて捕捉することができる。
 ・図18に示すように、各ガラス繊維フィルタ51,52のうち、乾燥剤12に対してロード運転時に上流側に配置される第1のガラス繊維フィルタ51を、ガラス繊維フィルタよりも水分の排出性が高い他のフィルタ101に変えてもよい。例えば、合成樹脂繊維からなるフィルタ等を用いてもよい。
 ・図19に示すように、第4の実施形態の圧縮空気乾燥装置の乾燥容器13のうち、下部プレート110の端部と接触する段差部13Aに、シール部115を設けてもよい。シール部115は、環状の形状を有するシートであって、このシール部115は、カートリッジフィルタ105と段差部13Aとの間をシールすることによって、図7に示す上部プレート46と乾燥容器13との間の隙間を介して空気がオイルセパレートフィルタ44側に流れるのを抑制することができる。そのため、ロード運転時には、乾燥圧縮空気が逆流するのを抑制し、アンロード運転時には乾燥剤12を通過せずにオイルセパレートフィルタ44側に空気が流れることを抑制することができる。また、第1の実施形態~第3の実施形態の圧縮空気乾燥装置にシール部115を設けてもよい。なお、シール部115は、シート状のものに限定されず、例えば円柱状、断面が円形のリングなど、他の形状であってもよい。
 ・第1のガラス繊維フィルタ51のロード運転時の上流側の面及び下流側の面、第2のガラス繊維フィルタ52のロード運転時の上流側の面及び下流側の面のうち、少なくとも一つの面に、空気を通過させつつガラス繊維の飛散を抑制する基布を設けるようにしてもよい。基布は、例えば不織布など、繊維屑が出にくい材料からなる。例えば、第1のガラス繊維フィルタ51の上流側の面に基布を設けると、コンプレッサ側の通路へガラス繊維が混入することを抑制することができる。また、第1のガラス繊維フィルタ51の下流側の面に基布を設けると、乾燥剤12にガラス繊維が混入することを抑制することができる。第2のガラス繊維フィルタ52の上流側の面に基布を設けると、アンロード運転時などに乾燥剤12にガラス繊維が混入することを抑制することができる。また、第2のガラス繊維フィルタ52の下流側の面に基布を設けると、エアドライヤの下流に設けられた外部のエアタンク側の通路にガラス繊維が混入することを抑制することができる。
 ・上記各実施形態では、第1のガラス繊維フィルタ51と第2のガラス繊維フィルタ52とを同じ特性を有する材料から構成したが、第1のガラス繊維フィルタ51の繊維径、空孔径、及び奥行方向密度を、第2のガラス繊維フィルタ52と異ならせてもよい。例えば、繊維径及び空孔径を大きくすれば、水の排出性が高められる。
 ・第3の実施形態では、第1のガラス繊維フィルタを単層とし、第2のガラス繊維フィルタ52は、1層のガラス繊維フィルタを2枚又は3枚重ねたものとしたが、第2のガラス繊維フィルタ52の積層枚数は複数であればよい。また第1のガラス繊維フィルタ51を、単層のフィルタを複数枚重ねたものとし、第2のガラス繊維フィルタ52の積層枚数を、第1のガラス繊維フィルタ51の積層枚数よりも多い枚数にしてもよい。
 ・第4の実施形態では、第1の実施形態の圧縮空気乾燥装置にフィルタカートリッジ105を設けたが、第2の実施形態の圧縮空気乾燥装置にフィルタカートリッジ105を設けてもよい。この場合、ロード運転時に空気が流れる方向において、オイル吸着材95及び乾燥剤12の間にフィルタカートリッジ105が設けられる。
 ・第4の実施形態では、フィルタカートリッジ105は、複数の第1のガラス繊維フィルタ51を積層した積層体を有するものとしたが、複数の第2のガラス繊維フィルタ52を積層した積層体を有するものとしてもよい。
 ・第1のガラス繊維フィルタ51及び第2のガラス繊維フィルタ52の少なくとも一方に、例えばスポンジや不織布等、ガラス繊維以外の材料からなるフィルタを積層して、乾燥剤12の上流側及び下流側に設けられるフィルタを積層構造にしてもよい。
 ・ガラス繊維フィルタ51,52は、円盤状に形成したが、圧縮空気の流路の途中に設けられ、圧縮空気が通過できる形状であれば、その他の形状でもよい。例えば、その中央部と外縁部とで厚さを変更した形状としてもよい。
 ・ガラス繊維フィルタ51,52は、ガラス繊維を成型したものとしたが、例えば、機材にガラス繊維を担持させたもの、又は、他の材料とガラス繊維とを混合したもの等、ガラス繊維とそれ以外の材料とからなるフィルタであってもよい。
 ・ガラス繊維フィルタ51,52は、圧縮空気乾燥装置の入口から出口までの圧縮空気の流路において、乾燥容器と入口との間、及び乾燥容器と出口との間のいずれか一方に設けられていてもよい。
 ・圧縮乾燥装置の構成は、圧縮空気の流路内において、乾燥剤の上流側及び下流側にガラス繊維フィルタが搭載可能なものであれば、上記各実施形態以外の構成であってもよい。

Claims (3)

  1.  圧縮空気が流入するための入口と、乾燥圧縮空気を排出するための出口とを有する支持ベースと、
     乾燥剤を充填可能であり前記支持ベースに装着されるように構成された乾燥容器と、
     前記入口から前記出口までの前記圧縮空気の流路において、前記乾燥容器と前記入口との間、及び前記乾燥容器と前記出口との間の少なくとも一方に設けられたガラス繊維フィルタと、を備え、
     前記ガラス繊維フィルタに具備されるガラス繊維の平均直径が、0.1μm以上10μm以下である
     圧縮空気乾燥装置。
  2.  前記ガラス繊維フィルタのガラス繊維間距離は、100μm以下である
     請求項1に記載の圧縮空気乾燥装置。
  3.  前記ガラス繊維フィルタの平均ガラス繊維密度は5kg/m以上30kg/m以下である
     請求項1又は2に記載の圧縮空気乾燥装置。
PCT/JP2016/060442 2015-03-31 2016-03-30 圧縮空気乾燥装置 WO2016159109A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680019099.7A CN107708841B (zh) 2015-03-31 2016-03-30 压缩空气干燥装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-071918 2015-03-31
JP2015071918A JP2016190207A (ja) 2015-03-31 2015-03-31 圧縮空気乾燥装置
JP2015024762 2015-11-05
JP2015-024762D 2015-11-05

Publications (1)

Publication Number Publication Date
WO2016159109A1 true WO2016159109A1 (ja) 2016-10-06

Family

ID=57006931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060442 WO2016159109A1 (ja) 2015-03-31 2016-03-30 圧縮空気乾燥装置

Country Status (2)

Country Link
CN (1) CN107708841B (ja)
WO (1) WO2016159109A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870944A (ja) * 1971-12-23 1973-09-26
JPS63264117A (ja) * 1987-04-23 1988-11-01 Hitachi Ltd 油分離器
JPS6412624U (ja) * 1987-07-10 1989-01-23
WO1995007831A1 (en) * 1993-09-14 1995-03-23 Horton Industries, Inc. Device for cleaning and drying compressed gas
JP2008249177A (ja) * 2007-03-29 2008-10-16 Duskin Co Ltd シラン担持型繊維フィルタ
WO2014061582A1 (ja) * 2012-10-15 2014-04-24 ナブテスコオートモーティブ 株式会社 圧縮空気乾燥装置
WO2015105185A1 (ja) * 2014-01-10 2015-07-16 ナブテスコオートモーティブ 株式会社 圧縮空気乾燥装置
WO2015129914A1 (ja) * 2014-02-28 2015-09-03 ナブテスコオートモーティブ 株式会社 オイルセパレータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870944A (ja) * 1971-12-23 1973-09-26
JPS63264117A (ja) * 1987-04-23 1988-11-01 Hitachi Ltd 油分離器
JPS6412624U (ja) * 1987-07-10 1989-01-23
WO1995007831A1 (en) * 1993-09-14 1995-03-23 Horton Industries, Inc. Device for cleaning and drying compressed gas
JP2008249177A (ja) * 2007-03-29 2008-10-16 Duskin Co Ltd シラン担持型繊維フィルタ
WO2014061582A1 (ja) * 2012-10-15 2014-04-24 ナブテスコオートモーティブ 株式会社 圧縮空気乾燥装置
WO2015105185A1 (ja) * 2014-01-10 2015-07-16 ナブテスコオートモーティブ 株式会社 圧縮空気乾燥装置
WO2015129914A1 (ja) * 2014-02-28 2015-09-03 ナブテスコオートモーティブ 株式会社 オイルセパレータ

Also Published As

Publication number Publication date
CN107708841B (zh) 2022-02-22
CN107708841A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6780059B2 (ja) 圧縮空気乾燥装置
JP6373757B2 (ja) 圧縮空気乾燥装置
JP6609545B2 (ja) オイルセパレータ
WO2013168758A1 (ja) オイルセパレータ
US8870991B2 (en) Natural gas production filtration vessel and assembly
US20110265655A1 (en) Combination Filter
JP6957705B2 (ja) 気液分離装置及び圧縮空気供給システム
JPWO2015163451A1 (ja) 圧縮空気乾燥システム及び圧縮空気乾燥システムの再生方法
CN111246924B (zh) 聚结分离器、具体地用于曲轴箱通气系统的聚结分离器、曲轴箱通气系统和聚结分离器的使用
JPH0618572Y2 (ja) 車両用圧縮空気の浄化装置
KR102248425B1 (ko) 공기 건조기 카트리지
US8709121B2 (en) Disk-shaped gas production filter elements
WO2016159109A1 (ja) 圧縮空気乾燥装置
JP2013032089A (ja) エアドライヤ装置用キャッチタンク装置
JP6779962B2 (ja) 圧縮空気乾燥装置
JP2016190207A (ja) 圧縮空気乾燥装置
CN108136324B (zh) 具有改进的干燥和再生的干燥剂筒
JP2016215129A (ja) オイルセパレータ
WO2005051521A1 (en) A cartridge in an air dryer
JP6126393B2 (ja) エアドライヤ装置用排出ミスト捕捉装置
JP2024002396A (ja) 車両用圧縮空気経路の制動装置
WO2018104152A1 (en) An air processing assembly comprising a ptfe based oleophobic membrane and method for drying compressed air for a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772990

Country of ref document: EP

Kind code of ref document: A1