WO2013168500A1 - X線撮影装置、医用画像処理装置、x線撮影方法及び医用画像処理方法 - Google Patents

X線撮影装置、医用画像処理装置、x線撮影方法及び医用画像処理方法 Download PDF

Info

Publication number
WO2013168500A1
WO2013168500A1 PCT/JP2013/060706 JP2013060706W WO2013168500A1 WO 2013168500 A1 WO2013168500 A1 WO 2013168500A1 JP 2013060706 W JP2013060706 W JP 2013060706W WO 2013168500 A1 WO2013168500 A1 WO 2013168500A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
ray
ray image
imaging system
collected
Prior art date
Application number
PCT/JP2013/060706
Other languages
English (en)
French (fr)
Inventor
坂口 卓弥
久人 竹元
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201380000747.0A priority Critical patent/CN103517672B/zh
Publication of WO2013168500A1 publication Critical patent/WO2013168500A1/ja
Priority to US14/218,436 priority patent/US9949698B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data

Definitions

  • Embodiments described herein relate generally to an X-ray imaging apparatus, a medical image processing apparatus, an X-ray imaging method, and a medical image processing method.
  • an X-ray diagnostic image that allows an imaging target such as a blood vessel to be viewed three-dimensionally using an X-ray imaging apparatus.
  • An image that can be viewed stereoscopically is called a three-dimensional (3D) image.
  • 3D image To display a 3D image, a left-eye image and a right-eye image are individually displayed. It is necessary to make it visible with the left eye and the right eye.
  • two-dimensional (2D) X-ray projection for the left eye is actually performed.
  • a method of collecting an image and a 2D X-ray projection image for the right eye respectively.
  • the left-eye X-ray projection image and right-eye X-ray projection image are collected not only by an X-ray imaging apparatus having a plurality of X-ray imaging systems but also by an X-ray imaging apparatus having a single X-ray imaging system. can do.
  • the X-ray imaging system When an X-ray imaging apparatus provided with a single X-ray imaging system is used, the X-ray imaging system is positioned at the first position by moving the C-type arm of the X-ray imaging apparatus. Then, an X-ray projection image for the left eye corresponding to the first position can be taken with the X-ray imaging system stationary. Next, the C-arm of the X-ray imaging apparatus is moved to position the X-ray imaging system at the second position, and the X-ray projection for the right eye corresponding to the second position with the X-ray imaging system stationary. An image can be taken. Alternatively, the X-ray projection image for the left eye may be acquired after the X-ray projection image for the right eye is acquired.
  • an X-ray projection image for the left eye and an X-ray projection image for the right eye are captured using an X-ray imaging apparatus including two X-ray imaging systems, the two X-ray imaging systems are appropriately positioned.
  • the X-ray projection image for the left eye and the X-ray projection image for the right eye can be collected at substantially the same timing.
  • the X-ray projection image for the left eye and the X-ray projection image for the right eye collected in this way can be used for displaying a 3D image as a two-parallax image.
  • a method of displaying a set of 2 parallax images as a stereoscopically viewable 3D image a method of displaying a left-eye image and a right-eye image alternately and time-divisionally and viewing them with dedicated glasses
  • a two-parallax image is generated by image reconstruction processing, a 3D image that can be stereoscopically viewed from various observation directions can be displayed.
  • the X-ray imaging apparatus provided with a plurality of X-ray imaging systems has a problem that the structure is complicated and expensive.
  • a 3D image that can be viewed stereoscopically is generated by image reconstruction processing, there is a problem that the amount of data processing becomes enormous and the data processing time becomes long.
  • the present invention provides an X-ray imaging apparatus, a medical image processing apparatus, an X-ray imaging method, and an X-ray imaging apparatus capable of displaying an X-ray image useful for diagnosis as a 3D image that can be stereoscopically viewed with a simpler and less expensive configuration.
  • An object of the present invention is to provide a medical image processing method.
  • An X-ray imaging apparatus includes an X-ray image acquisition unit, a control system, and a display processing unit.
  • the X-ray image collection unit collects X-ray image data of the subject using at least one imaging system.
  • the control system controls the imaging system so that a plurality of X-ray image data corresponding to three or more different directions are collected by reciprocating the imaging system.
  • the display processing unit generates image data that can be stereoscopically viewed by arranging the plurality of X-ray image data in a display order different from the collection order of the plurality of X-ray image data according to a moving direction of the imaging system. .
  • the medical image processing apparatus includes an image acquisition unit and a display processing unit.
  • the image acquisition unit acquires a plurality of X-ray image data corresponding to three or more different directions collected by reciprocating one imaging system.
  • the display processing unit generates image data that can be stereoscopically viewed by arranging the plurality of X-ray image data in a display order different from the collection order of the plurality of X-ray image data according to a moving direction of the imaging system. .
  • the X-ray imaging method according to the embodiment of the present invention includes a step of collecting X-ray image data of a subject using at least one imaging system, and three or more different from each other by reciprocating the imaging system.
  • the medical image processing method according to the embodiment of the present invention includes a step of acquiring a plurality of X-ray image data corresponding to three or more different directions collected by reciprocating one imaging system; Generating a plurality of X-ray image data that can be stereoscopically viewed in a display order different from a collection order of the plurality of X-ray image data according to a moving direction of the imaging system.
  • FIG. 1 is a configuration diagram of an X-ray imaging apparatus and a medical image processing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a configuration diagram of an X-ray imaging apparatus and a medical image processing apparatus according to an embodiment of the present invention.
  • the X-ray imaging apparatus 1 includes an imaging system 2, a control system 3, a data processing system 4, an interface unit 5, an input device 6, and a display device 7.
  • the imaging system 2 includes an X-ray irradiation unit 8, an X-ray detector 9, a drive mechanism 10, and a bed 11.
  • the control system 3 includes a high voltage generator 12 and a photographing position controller 13.
  • the X-ray irradiation unit 8 includes an X-ray tube, and is disposed to face the X-ray detector 9 with the subject O set on the bed 11 interposed therebetween.
  • the X-ray irradiation unit 8 and the X-ray detector 9 can change the angle and relative position with respect to the subject O while maintaining the relative position by driving the drive mechanism 10.
  • the X-ray irradiation unit 8 and the X-ray detector 9 are fixed to both ends of a C-shaped arm having a rotation function.
  • the X-ray irradiation unit 8 is configured to irradiate X-rays from a predetermined angle toward the subject O with an X-ray tube, and the X-ray detector 9 can detect X-rays transmitted through the subject O.
  • the inclination and position of the top plate of the bed 11 can be adjusted by the drive mechanism 10. Therefore, not only the angle of the X-ray irradiation unit 8 and the X-ray detector 9 with respect to the subject O but also the angle of the top plate can be adjusted to change the X-ray irradiation direction with respect to the subject O. it can.
  • a contrast agent injection device 14 for injecting a contrast agent into the subject O as necessary is provided.
  • the high voltage generator 12 of the control system 3 is a device that irradiates the subject O with X-rays having desired energy by applying a high voltage to the X-ray tube of the X-ray irradiation unit 8.
  • the photographing position control device 13 is a device that outputs and controls a control signal to the drive mechanism 10. That is, the rotation angle and position of the X-ray irradiation unit 8 and the X-ray detector 9 and the inclination and position of the top plate of the bed 11 are controlled by control signals output from the imaging position control device 13 to the drive mechanism 10.
  • the data processing system 4 includes an A / D (analog-to-digital) converter 15 and a computer 16.
  • the computer 16 functions as the medical image processing apparatus 16 by executing a program. That is, the X-ray imaging apparatus 1 incorporates a medical image processing apparatus 16.
  • an independent medical image processing apparatus having a similar function may be connected to the X-ray imaging apparatus 1 via a network.
  • a circuit may be used to configure the medical image processing apparatus 16 incorporated in the X-ray imaging apparatus 1 or the medical image processing apparatus connected to the X-ray imaging apparatus 1 via a network.
  • the computer 16 may function as the interface unit 5.
  • the medical image processing apparatus 16 includes an X-ray image generation unit 17, an X-ray image acquisition unit 18, and a display processing unit 19.
  • the X-ray image generation unit 17 has a function of taking X-ray detection data digitized from the X-ray detector 9 through the A / D converter 15 and performing data processing to generate X-ray image data.
  • the X-ray imaging apparatus 1 uses the imaging system 2 to collect X-ray image data of the subject O.
  • a function as a collecting unit is provided.
  • the X-ray image acquisition unit 18 has a function of acquiring the X-ray image data generated by the X-ray image generation unit 17 and giving it to the display processing unit 19.
  • the X-ray image generation unit 17 can be omitted.
  • the X-ray image acquisition unit 18 has a function of acquiring X-ray image data from the X-ray image generation unit 17 provided in the X-ray imaging apparatus 1 via the network.
  • the display processing unit 19 acquires a plurality of X-ray image data including X-ray image data for the left eye and X-ray image data for the right eye from the X-ray image acquisition unit 18, and the acquired plurality of X-ray image data 3D has a function of generating image data that can be stereoscopically viewed as 3D image data and a function of causing the display device 7 to display the generated 3D image data.
  • Any known method can be used as a method of displaying a 3D image that can be stereoscopically viewed based on the X-ray image data for the left eye and the X-ray image data for the right eye.
  • a method using a normal display and dedicated glasses and a method using a dedicated display are known.
  • a method of time-division displaying a left-eye image and a right-eye image as images of different wavelength bands is also known.
  • the image for the left eye and the image for the right eye that have passed through the filter and become light in different wavelength bands are visually recognized by the left and right eyes individually through the wavelength selection glasses.
  • left-eye images and right-eye images are displayed alternately in time-sharing, and the left-eye and right-eye images are opened and closed in synchronization with time-sharing.
  • a method for visually recognizing an image is also known.
  • a phase difference plate having a phase difference is superimposed on the surface of the display, or a film in which irregularities are arranged with a screen line number different from the resolution of the display is superimposed on the surface of the display.
  • the method is known. These methods are also called space division methods, and the left eye image and the right eye image are visually recognized by the left eye and the right eye individually by a phase difference plate or film.
  • the X-ray imaging apparatus 1 is provided with components corresponding to the 3D image display method.
  • the dedicated glasses 20 are connected to the computer 16.
  • a display for 3D display is connected to the computer 16 as the display device 7.
  • the display processing unit 19 is configured to input / output information necessary for 3D display to one or both of the display device 7 and the glasses 20.
  • control system 3 has a function of controlling a single imaging system 2 in order to collect left-eye X-ray image data and right-eye X-ray image data necessary for stereoscopic viewing. Specifically, the control system 3 has a function of controlling the imaging system 2 so that a plurality of X-ray image data corresponding to different directions are collected by reciprocating the imaging system 2 like a pendulum. is doing.
  • the control system 3 is configured such that the moving range of the imaging system 2 and the X-ray irradiation timing or irradiation position can be variably controlled.
  • the display processing unit 19 performs display processing according to the collection positions of a plurality of X-ray image data having two or more parallaxes acquired by moving one imaging system 2 and performing X-rays for 3D display. It is configured to generate image data. Specifically, if two frames of X-ray image data corresponding to two different directions are used as two-parallax image data, one frame of image data that can be stereoscopically viewed from one direction is generated. Can do. Also, based on X-ray image data for a plurality of frames corresponding to three or more different directions, image data that can be stereoscopically viewed from a plurality of different directions, that is, a stereoscopic image that changes in appearance depending on the viewing direction Data can be generated.
  • FIG. 2 is a diagram showing a control method of the photographing system 2 by the control system 3 shown in FIG.
  • the X-ray tube 8A and the X-ray detector 9 of the X-ray irradiation unit 8 are reciprocated like a pendulum, and a plurality of X-rays corresponding to three or more different directions in each of the forward path and the return path.
  • Image data can be collected.
  • at least one of the plurality of X-ray image data is collected while the imaging system 2 is moving.
  • X-ray image data corresponding to the same direction is collected by the number of frames corresponding to the number of reciprocations of the X-ray tube 8A and the X-ray detector 9. For example, if the X-ray tube 8A and the X-ray detector 9 are folded twice as shown in FIG. 2 and data is collected at five locations, 13 frames of X-ray image data D1, D2, D3, ..., D13 are obtained. Collected sequentially. Accordingly, X-ray image data corresponding to both ends of the moving range of the imaging system 2 is 2 frames, and X-ray image data corresponding to other positions of the imaging system 2 is 3 frames.
  • X-ray image data may not be collected at both ends of the moving range of the imaging system 2. In that case, all the X-ray image data is collected by the same number of frames while the imaging system 2 is moving.
  • the imaging system 2 is controlled by the control system 3 as shown in FIG. 2, a plurality of X-ray image data corresponding to three or more different directions collected by reciprocating the imaging system 2 are obtained. Obtained by the obtaining unit 18. Therefore, the display processing unit 19 can generate 3D image data that can be stereoscopically viewed based on a plurality of X-ray image data corresponding to three or more different directions.
  • FIG. 3 is a diagram for explaining a display processing method in the display processing unit 19 shown in FIG.
  • the horizontal axis indicates time.
  • the positions of the X-ray tube 8A and the X-ray detector 9 shown in FIG. 3 indicate the collection positions of a plurality of X-ray image data displayed as a stereoscopic image for one frame.
  • Image data for a plurality of frames that can be stereoscopically viewed can be generated. That is, the imaging system 2 can be continuously reciprocated, and the newly collected image and the previously collected image can be sequentially updated and displayed as a pair of two parallax images.
  • the stereoscopic image is a moving image whose viewpoint changes sequentially. For this reason, the photographing target appears to rotate.
  • the display processing unit 19 can stereoscopically display a plurality of X-ray image data in a display order different from the collection order of the plurality of X-ray image data according to the moving direction and the rotation direction of the imaging system 2. Configured to generate data.
  • FIG. 4 is a diagram for explaining a method of rearranging the display order of the X-ray images in the display processing unit 19 shown in FIG.
  • the horizontal axis indicates time.
  • X-ray image data D1, D2, D3, ..., D13 are sequentially collected at times T1, T2, T3, ..., T13. More specifically, at time T1, X-rays are emitted from the right front oblique (RAO) direction while the imaging system 2 is stationary. Thereby, X-ray image data D1 is collected.
  • RAO right front oblique
  • the imaging system 2 moves from the RAO direction toward the left front oblique (LAO: left anterior oblique) direction, and the X-ray image data D2, D3 corresponding to times T2, T3, T4 while the imaging system 2 is moving. D4 is collected sequentially. At time T5, X-rays are emitted from the LAO direction while the imaging system 2 is stationary. Thereby, X-ray image data D5 is collected.
  • LAO left anterior oblique
  • the imaging system 2 turns back and moves from the LAO direction toward the RAO direction. Then, X-ray image data D6, D7, D8 corresponding to times T6, T7, T8 are sequentially collected while the imaging system 2 is moving. At time T9, X-rays are emitted from the RAO direction while the imaging system 2 is stationary. Thereby, X-ray image data D9 is collected.
  • the imaging system 2 turns back again and moves from the RAO direction to the LAO direction. Then, X-ray image data D10, D11, D12 corresponding to times T10, T11, T12 are sequentially collected while the imaging system 2 is moving. Furthermore, at the final time T13, X-rays are emitted from the LAO direction while the imaging system 2 is stationary. Thereby, X-ray image data D13 is collected.
  • Time series X-ray image data D1, D2, D3, ..., D13 can be acquired by reciprocating the imaging system 2 in this way.
  • the positions of the X-ray image data D1, D2, D3, ..., D13 are turned back. Therefore, when the X-ray image data D1, D2, D3, ..., D13 is displayed as a stereoscopic image in the order of acquisition, the positional relationship in the depth direction changes.
  • the X-ray image data D1, D2, D3, ..., D13 collected in time series are rearranged according to the moving direction of the imaging system 2.
  • X-ray image data of the latest frame collected while the imaging system 2 moves from the RAO direction to the LAO direction is used as image data for the right eye, while it is collected while moving from the LAO direction to the RAO direction.
  • the display processing unit 19 performs an image data rearrangement process of using the latest X-ray image data of the latest frame as image data for the left eye. That is, when the X-ray image data of the latest frame is collected while the imaging system 2 moves from the RAO direction to the LAO direction, the latest frame X-ray image data can be used as image data for the right eye. .
  • the X-ray image data of the latest frame when the X-ray image data of the latest frame is collected while the imaging system 2 moves from the LAO direction to the RAO direction, the X-ray image data of the latest frame can be used as image data for the left eye.
  • the X-ray image data of the past frame collected while moving from the RAO direction to the LAO direction is inevitably used as image data for the left eye, while being collected while moving from the LAO direction to the RAO direction.
  • X-ray image data of the past frame is used as image data for the right eye.
  • the display order of the X-ray images can be changed in synchronization with the reversal of the moving direction of the imaging system 2 by such display control. Then, the X-ray image data after the rearrangement process is sequentially displayed on the display device 7 as display image data for the left eye and display image data for the right eye, so that a stereoscopically viewable 3D image can be displayed.
  • adjacent images are used as a pair of two parallax images, but non-adjacent images may be used as a pair of two parallax images. It is effective to set the angle difference in the irradiation direction of the X-rays irradiated to collect two images used as a pair of two parallax images in the range of 1 to 3 degrees empirically. It is suitable from the viewpoint of enabling. Therefore, it is most effective to set the angle difference in the X-ray irradiation direction corresponding to a pair of two parallax images to 2 degrees.
  • two frames of X-ray image data in which the rotation angle difference or movement interval of the corresponding imaging system 2 has a predetermined value can be used as the image data for the right eye and the image data for the left eye.
  • the X-ray image data paired with the X-ray image data of the latest frame is not limited to the adjacent X-ray image data, and X-rays collected at a predetermined rotation angle difference or movement interval of the imaging system 2 It becomes image data. Thereby, it is possible to always display two frames of X-ray image data having a predetermined rotation angle difference of 2 degrees or the like for stereoscopic viewing.
  • the speed of the photographing system 2 is not constant because the speed becomes zero at the turning point. That is, the imaging system 2 repeats acceleration and deceleration.
  • the imaging system 2 cannot be reciprocated at a constant speed due to the mechanical characteristics and control characteristics of the C-arm constituting the drive mechanism 10. For this reason, when the control system 3 controls the imaging system 2 so that a plurality of X-ray image data is collected at a constant time interval, X-rays are intermittently emitted at equal intervals in time. X-ray image data is collected at unequal intervals with respect to position and rotation angle.
  • the number of frames of X-ray image data that can be collected per second is about 30 frames. If X-ray image data is collected at 30 frames / second, a plurality of X-ray image data are sequentially collected with an angle difference of about 0.1 to 1 degree. Each collected X-ray image data is accompanied by an X-ray irradiation angle as supplementary information. Therefore, the display processing unit 19 can extract two frames of X-ray image data having a constant angle difference of 2 degrees or the like as stereoscopic image data.
  • the imaging system 2 can also be controlled by the control system 3 so that a plurality of X-ray image data are collected at a constant rotation angle difference or movement interval of the imaging system 2.
  • the control system 3 detects the angles of the imaging system 2 and the C-shaped arm in real time, and controls the imaging system 2 that emits X-rays when a predetermined rotation angle difference such as every 2 degrees is reached. This can be done in the control system 3.
  • Such control of the imaging system 2 makes it possible to acquire X-ray image data necessary for stereoscopic viewing regardless of acceleration and deceleration of the imaging system 2. Further, since X-ray irradiation unnecessary for stereoscopic vision is not performed, the exposure of the subject O can be reduced. In addition, the extraction processing based on the incidental information of the X-ray image data in the display processing unit 19 can be omitted.
  • the control method of the photographing system 2 and the stereoscopic image display method as described above can be set through the interface unit 5 shown in FIG. That is, the user can input designation information on the control method of the photographing system 2 and the display method of the stereoscopic image to the interface unit 5 by operating the input device 6.
  • the interface unit 5 is configured to output the control information of the photographing system 2 to the control system 3 and the display processing condition of the stereoscopic image to the display processing unit 19 according to the input designation information.
  • the interface unit 5 causes the display device 7 to display an imaging condition setting screen. For this reason, the user operates the input device 6 to set imaging conditions necessary for capturing a stereoscopic image of the imaging region of the subject O through the imaging condition setting screen. At this time, the operation conditions of the imaging system 2 such as whether to collect data at equal time intervals or equal angle intervals, and display conditions for stereoscopic images such as the difference in rotation angle between two parallax images are set.
  • the subject O is set on the top plate of the bed 11. Further, a contrast agent is injected into the subject O from the contrast agent injection device 14 as necessary.
  • the interface unit 5 When the interface unit 5 is instructed to start imaging by operating the input device 6, the interface unit 5 outputs the control information of the imaging system 2 to the control system 3 in accordance with the operating conditions of the imaging system 2. On the other hand, the interface unit 5 notifies the display processing unit 19 of the display condition of the stereoscopic image.
  • a control signal is output from the imaging position control device 13 of the control system 3, and the drive mechanism 7 is driven. Thereby, the X-ray irradiation part 8 and the X-ray detector 9 reciprocate.
  • a high voltage is applied from the high voltage generator 12 of the control system 3 to the X-ray tube 8 ⁇ / b> A of the X-ray irradiation unit 8. As a result, X-rays are exposed from the X-ray tube 8A to the imaging region of the subject O. Then, X-rays that have passed through the subject O are detected by the X-ray detector 9.
  • an X-ray detection signal is output from the X-ray detector 9 to the medical image processing apparatus 16 via the A / D converter 15.
  • the X-ray image generation unit 17 acquires digitized X-ray detection data.
  • the X-ray image generation unit 17 generates X-ray image data by performing known data processing on the X-ray detection data.
  • the X-ray image data generated in the X-ray image generation unit 17 is given to the X-ray image acquisition unit 18.
  • a plurality of X-ray image data corresponding to at least three X-ray irradiation directions are sequentially acquired by the X-ray image acquisition unit 18 in the same flow.
  • the X-ray image acquisition unit 18 sequentially provides a plurality of X-ray image data to the display processing unit 19.
  • the display processing unit 19 refers to the display condition of the stereoscopic image acquired from the interface unit 5 and uses it for displaying the stereoscopic image when the X-ray image data is collected at a constant time interval.
  • X-ray image data of the latest frame and the past frame corresponding to a predetermined angle difference is specified.
  • the X-ray image data of the latest frame and the X-ray image data having a predetermined angle difference from the X-ray image data of the latest frame are specified. .
  • the display processing unit 19 causes the display device 7 to sequentially display two frames of X-ray image data as left-eye display image data and right-eye display image data. At this time, the display processing unit 19 performs processing for rearranging the display order of the X-ray image data of two frames according to the moving direction of the imaging system 2. That is. If X-ray image data of the latest frame collected while the imaging system 2 moves from the RAO direction to the LAO direction, it will be displayed later as image data for the right eye, while it is collected while moving from the LAO direction to the RAO direction. If the X-ray image data is the latest frame, the image data rearrangement process is performed such that the image data is first displayed as the left-eye image data.
  • the display processing unit 19 time-divides the left-eye image data and the right-eye image data and sequentially outputs them to the display device 7. For this reason, the user can perform a stereoscopic view of the X-ray image displayed on the display device 7 via the dedicated glasses 20. Specifically, a stereoscopic image can be observed as a moving image whose observation direction changes with time.
  • the X-ray imaging apparatus 1 reciprocates one imaging system 2 like a pendulum, and appropriately rearranges X-ray image data collected at three or more rotation angles to display for stereoscopic viewing. It is what you do.
  • the X-ray imaging apparatus 1 it is possible to avoid reversal of the feeling of depth due to folding of the imaging system 2 and to always display a stereoscopic image having the same positional relationship in the depth direction.
  • an image having two parallaxes appears to rotate, it is easy to grasp a stereoscopic sense. That is, it is possible to display a stereoscopic image in which the viewpoint direction changes and to perform stereoscopic viewing from a plurality of different directions.
  • X-ray image data is collected sequentially while the imaging system 2 is moving. For this reason, the number of frames of X-ray image data collected per unit time can be increased compared to the case where X-ray image data is collected with the imaging system 2 stationary. As a result, real-time display is possible.
  • a contrast agent when a contrast agent is administered, more X-ray contrast images can be collected. That is, the contrast period can be effectively used for collecting X-ray image data.
  • a stereoscopic image can be generated and displayed using a single imaging system 2.
  • the X-ray imaging apparatus 1 does not require complicated image reconstruction processing for generating and displaying a stereoscopic image. For this reason, a stereoscopic image can be generated and displayed with a very inexpensive and simple configuration and data processing.
  • an X-ray imaging apparatus 1 having a single imaging system 2 is generated in an X-ray imaging apparatus having a plurality of imaging systems or an X-ray imaging apparatus that performs advanced image reconstruction processing. It is possible to generate and display a stereoscopic image that is not inferior to a stereoscopic image that can be performed.
  • two-parallax images for 3D images that can be stereoscopically viewed are collected using an X-ray imaging apparatus including a single imaging system.
  • similar two-parallax images can be collected using one of a plurality of imaging systems. That is, it is possible to collect 2 parallax images for 3D images using an X-ray imaging apparatus that collects X-ray image data of a subject using at least one imaging system.
  • the X-ray imaging apparatus is for a circulatory organ.
  • other X-ray imaging apparatuses can also capture and display stereoscopic images with similar display order rearrangements. It is.
  • the coordinate system commonly used for specifying the X-ray irradiation direction and the X-ray irradiation direction differs for each application.
  • FIG. 5 is a diagram showing a coordinate system used for specifying an X-ray irradiation direction in an X-ray imaging apparatus for a circulatory organ.
  • FIG. 1 shows the configuration of a general X-ray imaging apparatus 1.
  • the X-ray tube 8A is used in a normal state. Is located below the subject O, while the X-ray detector 9 is located above the subject O. Therefore, the X-ray irradiation direction is not limited to the first angle ⁇ between the LAO direction and the RAO direction of the subject O shown in FIG. 5A, but also the head of the subject O shown in FIG.
  • CRA Defined by the second angle ⁇ between the cranial direction and the tail (CAU: caudal) direction, as described above, when the imaging system 2 is moved from the RAO direction to the LAO direction,
  • the X-ray image of the latest frame is the image for the right eye.
  • FIG. 6 is a diagram showing a coordinate system used for specifying an X-ray irradiation direction in an X-ray imaging apparatus for breasts.
  • an imaging angle is defined by a plus direction and a minus direction with reference to the center position on the rotation plane of the imaging system 2 as shown in FIG.
  • FIG. 7 is a diagram showing an example of the direction of the X-ray image collected by the X-ray imaging apparatus for breasts and the display direction of the stereoscopic X-ray image.
  • X-ray image data in which the right breast of the subject O is depicted and X-ray image data in which the breast on the left side of the subject O is depicted Collected repeatedly.
  • each of the collected X-ray images is not stereoscopically viewed, it is generally displayed on the display device in such an orientation that the inside of the breast is downward and the outside is upward as shown in FIG. Is done.
  • a two-frame X-ray image having two parallaxes for the left eye and right eye in which the right breast is depicted is displayed, or It is necessary to display a two-frame X-ray image having two parallaxes for the left eye and the right eye in which the left breast is depicted.
  • the display processing unit 19 extracts X-ray image data for two frames in which the left breast of the subject O is depicted or X-ray image data for two frames in which the right breast of the subject O is depicted. Can be done. Then, the display processing unit 19 performs a rotation process along the imaging direction of the extracted two-frame X-ray image data, so that the left eye can be oriented in a direction suitable for stereoscopic viewing as shown in FIG. Image data for displaying each X-ray image for the right eye can be generated. In the example shown in FIG. 7B, the left-eye X-ray image and the right-eye X-ray image in which the right breast is depicted are displayed in the same orientation with the inner side on the left side and the outer side on the right side. .
  • FIG. 8 is a diagram showing a coordinate system used for specifying an X-ray irradiation direction in a general X-ray imaging apparatus.
  • the X-ray tube 8A is positioned above the subject O in a normal state, while the X-ray detector 9 is the subject O. Located below. As shown in FIG. 8, the shooting angle is defined by a plus direction and a minus direction with reference to the center position on the rotation plane of the shooting system 2.
  • FIG. 9 is a diagram illustrating an example of the direction of an X-ray image collected by a general X-ray imaging apparatus and the display direction of an X-ray image for stereoscopic viewing.
  • an X-ray image collected by a general X-ray imaging apparatus is such that the head is the upper side of the image, the right hand side is the left side of the image, the left hand side is the right side of the image, and the tail is the lower side of the image. Will be displayed in the orientation. That is, the X-ray image is displayed so that the human body is viewed from the front.
  • the X-ray image data can be rotated and displayed so that the moving direction of the imaging system is the left-right direction. That is, when the imaging system is rotated in the head-to-tail direction of the subject O, the left-eye and right-eye X-ray images are displayed so that the head-to-tail direction is the left-right direction as shown in FIG. It can be rotated. That is, the display processing unit 19 can perform display processing for generating left-eye and right-eye image data by rotating a plurality of X-ray image data so that the head-to-tail direction of the subject O is the left-right direction. . In this case, when the imaging system is moved from the plus side to the minus side, the X-ray image of the latest frame becomes the image for the right eye.
  • the display processing unit 19 uses the X-ray image data of the latest frame collected while the imaging system 2 moves in the first direction as the image data for the right eye, while being in the direction opposite to the first direction.
  • frame collected while moving to a 2nd direction may be used as image data for left eyes. That is, when the X-ray image data of the latest frame is collected while the imaging system 2 moves in the first direction, the X-ray image data of the latest frame can be used as image data for the right eye.
  • the X-ray image data of the latest frame is collected while the imaging system 2 moves in the second direction opposite to the first direction
  • the X-ray image data of the latest frame is used for the left eye.
  • the first direction and the second direction can be determined according to the use of the X-ray imaging apparatus.
  • the display processing unit 19 performs a coordinate conversion process for rotating display or reverse display on the X-ray image data, and the X-ray image data after the coordinate conversion is used for stereoscopic viewing.
  • the control system 3 moves the photographing system 2 along the trajectory of the pendulum on the plane.
  • the trajectory of the pendulum becomes when the trajectory of the photographing system 2 is projected onto the plane.
  • the photographing system 2 may be moved.
  • the imaging system 2 can be moved along an elliptical or 8-shaped trajectory. In this case, since the photographing system 2 is not stationary, high-speed photographing is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 実施形態に係るX線撮影装置は、X線画像収集ユニット、制御系及び表示処理部を備える。X線画像収集ユニットは、少なくとも1つの撮影系を用いて被検体のX線画像データを収集する。制御系は、前記撮影系を往復移動させることによって互いに異なる3つ以上の方向に対応する複数のX線画像データが収集されるように前記撮影系を制御する。表示処理部は、前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成する。

Description

X線撮影装置、医用画像処理装置、X線撮影方法及び医用画像処理方法
 本発明の実施形態は、X線撮影装置、医用画像処理装置、X線撮影方法及び医用画像処理方法に関する。
 従来、X線撮影装置を用いて血管等の撮像対象を立体的に視認することが可能なX線診断画像を表示させる技術が提案されている。撮像対象を立体視することが可能な画像を三次元(3D: three dimensional)画像と呼ぶことにすると、3D画像を表示させるためには、左目用の画像と右目用の画像とをそれぞれ個別に左目と右目で視認できるようにすることが必要となる。
 X線撮影装置を用いて左目用の画像と右目用の画像をそれぞれ取得する方法としては、画像再構成処理を行う方法の他、実際に左目用の2次元(2D: two dimensional)X線投影像と右目用の2DX線投影像とをそれぞれ収集する方法が挙げられる。左目用のX線投影像と右目用のX線投影像は、複数のX線撮影系を備えたX線撮影装置はもちろん、単一のX線撮影系を備えたX線撮影装置によっても収集することができる。
 単一のX線撮影系を備えたX線撮影装置を用いる場合には、X線撮影装置のC型アームを動かすことによってX線撮影系が第1の位置に位置決めされる。そして、X線撮影系を静止させた状態で第1の位置に対応する左目用のX線投影像を撮像することができる。次に、X線撮影装置のC型アームを動かしてX線撮影系を第2の位置に位置決めし、X線撮影系を静止させた状態で第2の位置に対応する右目用のX線投影像を撮像することができる。或いは、右目用のX線投影像を収集した後に、左目用のX線投影像を収集するようにしてもよい。
 一方、2つのX線撮影系を備えたX線撮影装置を用いて左目用のX線投影像と右目用のX線投影像を撮影すれば、2つのX線撮影系を適切に位置決めすることによって、左目用のX線投影像と右目用のX線投影像を略同じタイミングで収集することができる。
 このようにして収集された左目用のX線投影像と右目用のX線投影像は、2視差画像として3D画像の表示に用いることができる。1組の2視差画像を立体視が可能な3D画像として表示させる方法としては、左目用の画像と右目用の画像とを交互に時分割して表示させ、専用のメガネで見るようにする方法やメガネを使用せずに専用のディスプレイで表示させる方法などが知られている。
 特に、2つのX線撮影系を備えたX線撮影装置を用いて左目用のX線投影像と右目用のX線投影像を同じタイミングで収集すれば、被検体の動きの影響が小さく、良好な画質を有する3D画像を表示させることが可能となる。
 更に、画像再構成処理によって2視差画像を生成すれば、様々な観察方向から立体視することが可能な3D画像を表示させることができる。
特開平4-166135号公報
 しかしながら、複数のX線撮影系を備えたX線撮影装置は構造が複雑であり、かつ高価であるという問題がある。また、画像再構成処理によって立体視が可能な3D画像を生成する場合には、データ処理量が膨大となり、データ処理時間も長くなるという問題がある。
 そこで、本発明は、より簡易かつ安価な構成で診断に有用なX線画像を立体視が可能な3D画像として表示させることが可能なX線撮影装置、医用画像処理装置、X線撮影方法及び医用画像処理方法を提供することを目的とする。
 本発明の実施形態に係るX線撮影装置は、X線画像収集ユニット、制御系及び表示処理部を備える。X線画像収集ユニットは、少なくとも1つの撮影系を用いて被検体のX線画像データを収集する。制御系は、前記撮影系を往復移動させることによって互いに異なる3つ以上の方向に対応する複数のX線画像データが収集されるように前記撮影系を制御する。表示処理部は、前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成する。
 また、本発明の実施形態に係る医用画像処理装置は、画像取得部及び表示処理部を備える。画像取得部は、1つの撮影系を往復移動させることによって収集された互いに異なる3つ以上の方向に対応する複数のX線画像データを取得する。表示処理部は、前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成する。
 また、本発明の実施形態に係るX線撮影方法は、少なくとも1つの撮影系を用いて被検体のX線画像データを収集するステップと、前記撮影系を往復移動させることによって互いに異なる3つ以上の方向に対応する複数のX線画像データが収集されるように前記撮影系を制御するステップと、前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成するステップとを有する。
 また、本発明の実施形態に係る医用画像処理方法は、1つの撮影系を往復移動させることによって収集された互いに異なる3つ以上の方向に対応する複数のX線画像データを取得するステップと、前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成するステップとを有する。
本発明の実施形態に係るX線撮影装置及び医用画像処理装置の構成図。 図1に示す制御系による撮影系の制御方法を示す図。 図1に示す表示処理部における表示処理の方法を説明する図。 図1に示す表示処理部におけるX線画像の表示順序の並べ替え処理の方法を説明する図。 循環器用のX線撮影装置においてX線の照射方向を特定するために用いられる座標系を示す図。 乳房用のX線撮影装置におけるX線の照射方向を特定するために用いられる座標系を示す図。 乳房用のX線撮影装置により収集されるX線画像の向き及び立体視用のX線画像の表示方向の一例を示す図。 一般的なX線撮影装置におけるX線の照射方向を特定するために用いられる座標系を示す図。 一般的なX線撮影装置により収集されるX線画像の向き及び立体視用のX線画像の表示方向の一例を示す図。
実施形態
 本発明の実施形態に係るX線撮影装置、医用画像処理装置、X線撮影方法及び医用画像処理方法について添付図面を参照して説明する。
 図1は本発明の実施形態に係るX線撮影装置及び医用画像処理装置の構成図である。
 X線撮影装置1は、撮影系2、制御系3、データ処理系4、インターフェース部5、入力装置6及び表示装置7を備えている。撮影系2は、X線照射部8、X線検出器9、駆動機構10及び寝台11を有する。制御系3は、高電圧発生装置12及び撮影位置制御装置13を有する。
 X線照射部8は、X線管を備え、寝台11にセットされた被検体Oを挟んでX線検出器9と対向配置される。X線照射部8及びX線検出器9は、駆動機構10の駆動によって相対位置を維持しながら被検体Oに対する角度及び相対位置を変えることができる。具体的には、回転機能を備えたC型アームの両端にX線照射部8及びX線検出器9が固定される。そして、X線照射部8は、X線管により被検体Oに向けて所定の角度からX線を照射し、被検体Oを透過したX線をX線検出器9で検出できるように構成される。
 また、寝台11の天板の傾斜及び位置を駆動機構10によって調整することができる。従って、X線照射部8及びX線検出器9の被検体Oに対する角度を調整するのみならず、天板の角度を調整することによっても、被検体Oに対するX線の照射方向を変えることができる。
 更に、寝台11にセットされた被検体Oの近傍には、必要に応じて被検体Oに造影剤を注入するための造影剤注入装置14が設けられる。
 制御系3の高電圧発生装置12は、X線照射部8のX線管に高電圧を印加することによって、所望のエネルギを有するX線を被検体Oに向けて照射させる装置である。撮影位置制御装置13は、駆動機構10に制御信号を出力して制御する装置である。すなわち、X線照射部8及びX線検出器9の回転角度及び位置並びに寝台11の天板の傾斜及び位置は、撮影位置制御装置13から駆動機構10に出力される制御信号によって制御される。
 データ処理系4は、A/D(analog to digital)変換器15及びコンピュータ16を有する。コンピュータ16は、プログラムを実行することにより医用画像処理装置16として機能する。すなわち、X線撮影装置1には、医用画像処理装置16が内蔵される。
 但し、同様な機能を有する独立した医用画像処理装置を、ネットワークを介してX線撮影装置1に接続するようにしても良い。また、X線撮影装置1に内蔵される医用画像処理装置16又はX線撮影装置1とネットワークを介して接続される医用画像処理装置を構成するために回路を用いてもよい。一方、コンピュータ16をインターフェース部5として機能させるようにしてもよい。
 医用画像処理装置16は、X線画像生成部17、X線画像取得部18及び表示処理部19を有する。X線画像生成部17は、X線検出器9からA/D変換器15を通じてデジタル化されたX線検出データを取り込んで、データ処理を行うことによりX線画像データを生成する機能を有する。
 従って、X線画像生成部17が撮影系2及び制御系3と協働することにより、X線撮影装置1には撮影系2を用いて被検体OのX線画像データを収集するX線画像収集ユニットとしての機能が備えられる。
 X線画像取得部18は、X線画像生成部17において生成されたX線画像データを取得して表示処理部19に与える機能を有する。特に、X線撮影装置1にネットワークを介して接続された独立した医用画像処理装置においては、X線画像生成部17を省略することもできる。この場合には、X線撮影装置1に備えられるX線画像生成部17からネットワークを介してX線画像データを取得する機能がX線画像取得部18に備えられる。
 表示処理部19は、X線画像取得部18から左目用のX線画像データと右目用のX線画像データとを含む複数のX線画像データを取得する機能、取得した複数のX線画像データに基づいて立体視することが可能な画像データを3D画像データとして生成する機能及び生成した3D画像データを表示装置7に表示させる機能を有する。
 左目用のX線画像データと右目用のX線画像データとに基づいて立体視することが可能な3D画像を表示させる方法としては、公知の任意の方法を用いることができる。代表的な方法としては、通常のディスプレイと専用のメガネとを用いる方法及び専用のディスプレイを用いる方法が知られている。
 専用のメガネを用いる場合には、左目用の画像と右目用の画像とを一定の時間差で交互に切換表示させる一方、専用のメガネに偏光板としての機能を設ける方法が知られている。この場合には、互いに異なる回転方向の円偏光が左目用の画像と右目用の画像とに付与され、円偏光メガネを用いることによって2視差画像が個別に左右の目で視認される。
 或いは、左目用の画像と右目用の画像とを互いに異なる波長帯域の画像として時分割表示させる方法も知られている。この場合には、フィルタを透過して互いに異なる波長帯の光となった左目用の画像と右目用の画像とが波長選択メガネを介して個別に左右の目で視認される。
 更に別の方法として、左目用の画像と右目用の画像とを交互に時分割表示し、時分割と同期して左目用のシャッターと右目用のシャッターが開閉するメガネで左目用の画像と右目用の画像とを視認する方法も知られている。
 また、逆に専用のメガネから位置情報及び方位情報を出力させ、メガネの位置情報及び方位情報に応じてディスプレイに出力させる画像を切換える方法も知られている。
 一方、専用のメガネを用いない方式としては、ディスプレイの表面に位相差を有する位相差板を重畳する方式やディスプレイの解像度と異なるスクリーン線数で凹凸が配置されたフィルムをディスプレイの表面に重畳する方式などが知られている。これらの方式は、空間分割方式とも呼ばれ、位相差板やフィルムによって左目用の画像と右目用の画像とが個別に左目及び右目により視認される。
 従って、3D画像の表示方式に応じた構成要素がX線撮影装置1に備えられる。例えば、3D表示のために専用のメガネを用いる場合であれば、専用のメガネ20がコンピュータ16と接続される。また、3D表示のために専用のディスプレイを用いる場合には、表示装置7として3D表示用のディスプレイがコンピュータ16と接続される。そして、表示処理部19は、3D表示に必要な情報を表示装置7及びメガネ20の一方又は双方に入出力できるように構成されている。
 一方、制御系3には、立体視に必要な左目用のX線画像データ及び右目用のX線画像データを収集するために、単一の撮影系2を制御する機能が備えられる。具体的には、制御系3は、撮影系2を振り子のように往復移動させることによって互いに異なる方向に対応する複数のX線画像データが収集されるように撮影系2を制御する機能を有している。そして、制御系3は、撮影系2の移動範囲及びX線の照射タイミング又は照射位置を任意に可変制御できるように構成されている。
 そして、表示処理部19は、1つの撮影系2を移動させて収集された2視差以上の視差を有する複数のX線画像データの収集位置に応じた表示処理を行って3D表示用のX線画像データを生成するように構成される。具体的には、2つの互いに異なる方向に対応する2フレーム分のX線画像データを2視差画像データとして用いれば、1方向から立体視することが可能な1フレーム分の画像データを生成することができる。また、3つ以上の異なる方向に対応する複数フレーム分のX線画像データに基づいて、互いに異なる複数の方向から立体視することが可能な画像データ、つまり見る方向によって見え方が変わる立体視画像データを生成することができる。
 図2は、図1に示す制御系3による撮影系2の制御方法を示す図である。
 図2に示すように、X線照射部8のX線管8A及びX線検出器9を振り子のように往復移動させ、往路及び復路それぞれにおいて3つ以上の異なる方向に対応する複数のX線画像データを収集することができる。この場合、複数のX線画像データの少なくとも1つが撮影系2の移動中に収集されることとなる。
 また、同一の方向に対応するX線画像データがX線管8A及びX線検出器9の往復回数に応じたフレーム数だけ収集される。例えば、図2に示すようにX線管8A及びX線検出器9を2回折り返し、5箇所でデータ収集すれば、13フレームのX線画像データD1, D2, D3, ..., D13 が順次収集される。従って、撮影系2の移動範囲の両端に対応するX線画像データは2フレームとなり、撮影系2の他の位置に対応するX線画像データは3フレームとなる。
 但し、撮影系2の移動範囲の両端においてX線画像データを収集しないようにしてもよい。その場合には、全てのX線画像データが撮影系2の移動中に同じフレーム数だけ収集されることとなる。
 制御系3により図2に示すように撮影系2を制御すれば、1つの撮影系2を往復移動させることによって収集された互いに異なる3つ以上の方向に対応する複数のX線画像データが画像取得部18において取得される。このため、表示処理部19において、3つ以上の異なる方向に対応する複数のX線画像データに基づいて、立体視することが可能な3D画像データを生成することができる。
 図3は、図1に示す表示処理部19における表示処理の方法を説明する図である。
 図3において横軸方向は時間を示す。また、図3に示すX線管8A及びX線検出器9の位置は、1フレーム分の立体視画像として表示される複数のX線画像データの収集位置を示す。
 図3に示すように、2つの異なる方向に対応する2フレーム分のX線画像データに基づいて立体視することが可能な1フレーム分の画像データを順次生成することによって、互いに異なる複数の方向から立体視することが可能な複数フレーム分の画像データを生成することができる。すなわち、撮影系2を連続的に往復移動させ、新たに収集された画像と過去に収集された画像を2視差画像のペアとして順次更新表示させることができる。
 図3に示すような立体視画像の表示制御を行うと、新たな画像が収集される度に立体視画像を構成する画像の1つが更新され、2視差画像のペアが変わることとなる。従って、立体視画像は、順次視点が変化する動画となる。このため、撮影対象が回転して見えることになる。
 但し、複数のX線画像データの収集順序でそのまま図3に示すように2フレーム分のX線画像データを順次表示させると、撮影系2の移動方向が反転することから奥行き方向の位置関係が周期的に変わることになる。
 そこで、表示処理部19は、撮影系2の移動方向及び回転方向に応じて複数のX線画像データを複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成するように構成される。
 図4は、図1に示す表示処理部19におけるX線画像の表示順序の並べ替え処理の方法を説明する図である。
 図4において横軸方向は時間を示す。図4に示すように各時刻T1, T2, T3, ..., T13においてX線画像データD1, D2, D3, ..., D13が順次収集される。より具体的には、時刻T1では、撮影系2が静止した状態で右前斜位(RAO: right anterior oblique)方向からX線が照射される。これにより、X線画像データD1が収集される。
 次に、撮影系2がRAO方向から左前斜位(LAO: left anterior oblique)方向に向かって移動し、撮影系2の移動中において時刻T2, T3, T4に対応するX線画像データD2, D3, D4が順次収集される。そして、時刻T5では、撮影系2が静止した状態でLAO方向からX線が照射される。これにより、X線画像データD5が収集される。
 次に、撮影系2が折返し、LAO方向からRAO方向に向かって移動する。そして、撮影系2の移動中において時刻T6, T7, T8に対応するX線画像データD6, D7, D8が順次収集される。そして、時刻T9では、撮影系2が静止した状態でRAO方向からX線が照射される。これにより、X線画像データD9が収集される。
 次に、撮影系2が再び折返し、RAO方向からLAO方向に向かって移動する。そして、撮影系2の移動中において時刻T10, T11, T12に対応するX線画像データD10, D11, D12が順次収集される。更に、最後の時刻T13において、撮影系2が静止した状態でLAO方向からX線が照射される。これにより、X線画像データD13が収集される。
 このように撮影系2を往復移動させることによって時系列のX線画像データD1, D2, D3, ..., D13を取得することができる。しかしながら、X線画像データD1, D2, D3, ..., D13を収集順序に並べると、X線画像データD1, D2, D3, ..., D13の位置が折返すことになる。このため、立体視画像として収集順にX線画像データD1, D2, D3, ..., D13を表示させると、奥行き方向の位置関係が変化する結果となる。
 そこで、時系列に収集されたX線画像データD1, D2, D3, ..., D13が、撮影系2の移動方向に合わせて並べ替えられる。
 具体的には、撮影系2がRAO方向からLAO方向に移動する間に収集された最新フレームのX線画像データを右目用の画像データとして用いる一方、LAO方向からRAO方向に移動する間に収集された最新フレームのX線画像データを左目用の画像データとして用いるという画像データの並べ替え処理が表示処理部19において行われる。すなわち、最新フレームのX線画像データが、撮影系2がRAO方向からLAO方向に移動する間に収集された場合には、最新フレームのX線画像データを右目用の画像データとして用いることができる。一方、最新フレームのX線画像データが、撮影系2がLAO方向からRAO方向に移動する間に収集された場合には、最新フレームのX線画像データを左目用の画像データとして用いることができる。この場合、必然的にRAO方向からLAO方向に移動する間に収集された過去のフレームのX線画像データが左目用の画像データとして用いられる一方、LAO方向からRAO方向に移動する間に収集された過去のフレームのX線画像データが右目用の画像データとして用いられる。
 このような表示制御によって撮像系2の移動方向の反転と同期してX線画像の表示順序を変更することができる。そして、並べ替え処理後のX線画像データを左目用の表示画像データ及び右目用の表示画像データとして順次表示装置7に表示させることによって立体視が可能な3D画像を表示させることができる。
 尚、図3及び図4に示す例では、隣接する画像が2視差画像のペアとして用いられているが、隣接しない画像を2視差画像のペアとして用いてもよい。2視差画像のペアとして用いられる2つの画像を収集するために照射されるX線の照射方向の角度差は、経験的には1度から3度の範囲に設定することが効果的な立体視を可能にする観点から好適である。従って、2視差画像のペアに対応するX線の照射方向の角度差を2度とすることが最も効果的である。
 そこで、対応する撮影系2の回転角度差又は移動間隔が所定の値となる2フレームのX線画像データを右目用の画像データ及び左目用の画像データとして用いることができる。特に、撮影系2の2度の回転角度差に対応する2フレームのX線画像データを右目用の画像データ及び左目用の画像データとして用いることが好適である。
 この場合には、最新フレームのX線画像データとペアになるX線画像データが隣接するX線画像データとは限らず、撮影系2の所定の回転角度差又は移動間隔で収集されたX線画像データとなる。これにより、常に2度等の所定の回転角度差を有する2フレームのX線画像データを立体視用に表示させることができる。
 ところで撮影系2は折返し点において速度がゼロとなるため速度が一定とはならない。すなわち、撮影系2は加速及び減速を繰返す。また、駆動機構10を構成するC型アームの機械的特性や制御特性によっても撮影系2を等速で往復移動させることはできない。このため、複数のX線画像データが一定の時間間隔で収集されるように制御系3が撮影系2を制御すると、時間的に等間隔でX線が断続的に照射され、撮影系2の位置及び回転角度については不等間隔でX線画像データが収集される。
 1秒当たりに収集可能なX線画像データのフレーム数は30フレーム程度である。仮に、30フレーム/秒でX線画像データを収集すると、0.1度から1度程度の角度差で複数のX線画像データが順次収集される。収集される各X線画像データには、付帯情報としてX線の照射角度が付帯されている。そこで、表示処理部19において角度差が2度等の一定の値となる2フレームのX線画像データを立体視用の画像データとして抽出することができる。
 これにより、撮影系2の複雑な制御を行うことなく、立体視に必要なX線画像データを取得することが可能となる。
 一方、複数のX線画像データが一定の撮影系2の回転角度差又は移動間隔で収集されるように制御系3により撮影系2を制御することもできる。具体的には、撮影系2及びC型アームの角度を制御系3がリアルタイムに検知し、2度おき等の所定の回転角度差になったときにX線を照射する撮影系2の制御を制御系3において行うことができる。
 このような撮影系2の制御により、撮影系2の加速及び減速によらず立体視に必要なX線画像データを取得することが可能となる。また、立体視に不要なX線の照射が行われないため、被検体Oの被曝を低減させることができる。加えて、表示処理部19におけるX線画像データの付帯情報に基づく抽出処理も省略することができる。
 上述のような撮影系2の制御方法及び立体視画像の表示方法は、図1に示すインターフェース部5を通じて設定することができる。すなわち、ユーザは、入力装置6の操作によってインターフェース部5に撮影系2の制御方法及び立体視画像の表示方法の指定情報を入力することができる。一方、インターフェース部5は、入力された指定情報に従って制御系3に撮影系2の制御情報を、表示処理部19に立体視画像の表示処理条件を、それぞれ出力するように構成されている。
 次にX線撮影装置1の動作および作用について説明する。
 まず、インターフェース部5が表示装置7に撮像条件の設定画面を表示させる。このため、ユーザは、入力装置6を操作し、撮像条件の設定画面を通じて被検体Oの撮像部位等の立体視画像を撮像するために必要な撮像条件を設定する。この際、データ収集を等時間間隔で行うか或いは等角度間隔で行うか等の撮影系2の動作条件及び2視差画像の回転角度差等の立体視画像の表示条件が設定される。
 一方、寝台11の天板に被検体Oがセットされる。また、必要に応じて造影剤注入装置14から被検体Oに造影剤が注入される。そして、入力装置6の操作によってインターフェース部5に撮像の開始が指示されると、インターフェース部5は、撮影系2の動作条件に従って撮影系2の制御情報を制御系3に出力する。一方、インターフェース部5は、立体視画像の表示条件を表示処理部19に通知する。
 そうすると、制御系3の撮影位置制御装置13から制御信号が出力され、駆動機構7が駆動する。これにより、X線照射部8及びX線検出器9が往復移動する。一方、制御系3の高電圧発生装置12からX線照射部8のX線管8Aに高電圧が印加される。これにより、X線管8Aから被検体Oの撮像部位にX線が曝射される。そして、被検体Oを透過したX線がX線検出器9で検出される。
 次にX線検出器9からX線検出信号がA/D変換器15を介して医用画像処理装置16に出力される。これにより、X線画像生成部17において、デジタル化されたX線検出データが取得される。そして、X線画像生成部17は、X線検出データに対する公知のデータ処理を行うことによってX線画像データを生成する。
 X線画像生成部17において生成されたX線画像データは、X線画像取得部18に与えられる。そして、少なくとも3方向以上のX線の照射方向に対応する複数のX線画像データが同様な流れでX線画像取得部18において順次取得される。
 次にX線画像取得部18は、複数のX線画像データを表示処理部19に順次与える。そうすると、表示処理部19は、インターフェース部5から取得した立体視画像の表示条件を参照し、X線画像データが一定の時間間隔で収集されている場合には、立体視画像の表示に使用する所定の角度差に対応する最新フレーム及び過去のフレームのX線画像データを特定する。一方、X線画像データが一定の回転角度差で収集されている場合には、最新フレームのX線画像データ及び最新フレームのX線画像データと所定の角度差を有するX線画像データを特定する。
 そして、表示処理部19は、2フレームのX線画像データを左目用の表示画像データ及び右目用の表示画像データとして表示装置7に順次表示させる。このとき、表示処理部19は、撮影系2の移動方向に応じて2フレームのX線画像データの表示順序の並べ替え処理を行う。すなわち。撮影系2がRAO方向からLAO方向に移動する間に収集された最新フレームのX線画像データであれば右目用の画像データとして後に表示させる一方、LAO方向からRAO方向に移動する間に収集された最新フレームのX線画像データであれば左目用の画像データとして最初に先に表示させるという画像データの並べ替え処理を行う。
 次に、表示処理部19は、左目用の画像データと右目用の画像データとを時分割して表示装置7に順次出力する。このため、ユーザは専用のメガネ20を介して表示装置7に表示されたX線画像の立体視を行うことができる。具体的には、観察方向が時間とともに変わる動画として立体視画像を観察することができる。
 つまり以上のようなX線撮影装置1は、1つの撮影系2を振り子のように往復移動させ、3つ以上の回転角度において収集したX線画像データを適切に並び替えて立体視用に表示するようにしたものである。
 このため、X線撮影装置1によれば、撮影系2の折返しに伴う奥行感の反転を回避し、常に奥行方向の位置関係が同じ立体視画像を表示させることができる。また、2視差を有する画像が回転して見えるため、立体感覚の把握が容易となる。すなわち、視点方向が変化する立体視画像を表示させ、複数の異なる方向からの立体視が可能となる。
 加えて、撮影系2の移動中に順次X線画像データが収集される。このため、単位時間当たりに収集されるX線画像データのフレーム数を、撮影系2を静止させてX線画像データを収集する場合に比べて増加させることができる。この結果、リアルタイム表示が可能となる。また、造影剤を投与する場合には、より多くのX線造影画像を収集することができる。すなわち、造影期間をX線画像データの収集のために有効利用することができる。
 また、X線撮影装置1によれば、単一の撮影系2を用いて立体視画像を生成及び表示させることができる。加えて、X線撮影装置1は、立体視画像の生成及び表示のために複雑な画像再構成処理を必要としない。このため、非常に安価かつ簡易な構成及びデータ処理で立体視画像を生成及び表示させることができる。換言すれば、単一の撮影系2を備えたX線撮影装置1であっても、複数の撮影系を備えたX線撮影装置や高度な画像再構成処理を実行するX線撮影装置において生成することが可能な立体視画像に劣らない立体視画像を生成及び表示させることができる。
 以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。
 例えば、上述の例では、単一の撮影系を備えたX線撮影装置を用いて立体視が可能な3D画像用の2視差画像を収集する場合について説明したが、複数の撮影系を備えたX線撮影装置においても、複数の撮影系のうちの1つを用いて同様な2視差画像の収集を行うことができる。つまり、少なくとも1つの撮影系を用いて被検体のX線画像データを収集するX線撮影装置を用いて3D画像用の2視差画像を収集することができる。
 また、上述の例では、X線撮影装置が循環器用である場合を例に説明したが、他のX線撮影装置においても同様な表示順序の並べ替えを伴う立体視画像の撮影及び表示が可能である。X線撮影装置では、用途毎にX線の照射方向及びX線の照射方向を特定するために慣用される座標系が異なる。
 図5は、循環器用のX線撮影装置においてX線の照射方向を特定するために用いられる座標系を示す図である。
 図1には、一般的なX線撮影装置1の構成が図示されているが、主として血管の撮像を目的とする循環器用のX線撮影装置の場合には、通常の状態においてX線管8Aが被検体Oの下方に位置する一方、X線検出器9が被検体Oの上方に位置している。従って、X線の照射方向は、図5(A)に示す被検体OのLAO方向及びRAO方向の間における第1の角度φの他、図5(B)に示す被検体Oの頭部(CRA: cranial方向及び尾部(CAU: caudal)方向の間における第2の角度θによって定義される。この場合には、上述したように、撮影系2をRAO方向からLAO方向に移動した場合に、最新フレームのX線画像が右目用の画像となる。
 図6は、乳房用のX線撮影装置におけるX線の照射方向を特定するために用いられる座標系を示す図である。
 一方、マンモグラフィ(Mammography)装置として用いられる乳房用のX線撮影装置の場合には、通常の状態においてX線管8Aが被検体Oの上方に位置する一方、X線検出器9が被検体Oの下方に位置している。そして、乳房用のX線撮影装置の場合には、図6に示すように撮影系2の回転面上における中心位置を基準とするプラス方向及びマイナス方向によって撮影角度が定義される。
 図7は、乳房用のX線撮影装置により収集されるX線画像の向き及び立体視用のX線画像の表示方向の一例を示す図である。
 図7(A)に示すように乳房用のX線撮影装置では、被検体Oの右側の乳房が描出されたX線画像データ及び被検体Oの左側の乳房が描出されたX線画像データが繰返し収集される。収集される各X線画像は、立体視を行わない場合には、一般的に図7(A)に示すように、乳房の内側が下方、外側が上方となるような向きで表示装置に表示される。
 従って、立体視画像を表示させる場合には、図7(B)に示すように右側の乳房が描出された左目用と右目用の2視差を有する2フレームのX線画像を表示させるか、或いは、左側の乳房が描出された左目用と右目用の2視差を有する2フレームのX線画像を表示させることが必要である。
 そこで、表示処理部19が被検体Oの左側の乳房が描出された2フレーム分のX線画像データ又は被検体Oの右側の乳房が描出された2フレーム分のX線画像データの抽出処理を行うようにすることができる。そして、表示処理部19が、抽出された2フレームのX線画像データの撮影方向に沿った回転処理を行うことによって、図7(B)に示すように立体視に適した向きで左目用と右目用の各X線画像を表示させるための画像データを生成することができる。尚、図7(B)に示す例では、右側の乳房が描出された左目用のX線画像と右目用のX線画像とが、内側を左側、外側を右側として同じ向きで表示されている。
 図7(B)に示すような表示を行う乳房用のX線撮影装置の場合には、撮影系がマイナス側からプラス側に移動した場合に、最新フレームのX線画像が右目用の画像となる。
 図8は、一般的なX線撮影装置におけるX線の照射方向を特定するために用いられる座標系を示す図である。
 様々な撮影対象を撮影するための一般的なX線撮影装置の場合には、通常の状態においてX線管8Aが被検体Oの上方に位置する一方、X線検出器9が被検体Oの下方に位置している。そして、図8に示すように撮影系2の回転面上における中心位置を基準とするプラス方向及びマイナス方向によって撮影角度が定義される。
 図9は、一般的なX線撮影装置により収集されるX線画像の向き及び立体視用のX線画像の表示方向の一例を示す図である。
 一般的なX線撮影装置により収集されるX線画像は、図9(A)に示すように頭部が画像の上側、右手側が画像の左側、左手側が画像の右側、尾部が画像の下側となる向きで表示される。すなわち、人体が正面から見た向きとなるようにX線画像が表示される。
 そこで、立体視画像を表示させる場合には、X線画像データを、撮影系の移動方向が左右方向となるように回転して表示させることができる。すなわち、撮影系を被検体Oの頭尾方向に回転させる場合には、図9(B)に示すように頭尾方向が左右方向となるように、左目用と右目用の各X線画像を回転表示させることができる。つまり、表示処理部19において、被検体Oの頭尾方向が左右方向となるように複数のX線画像データを回転させて左目用と右目用の画像データを生成する表示処理を行うことができる。この場合には、撮影系をプラス側からマイナス側に移動した場合に、最新フレームのX線画像が右目用の画像となる。
 以上のように、撮影目的に応じて撮影系2を往復させる方向が決定される。従って、表示処理部19が、撮影系2が第1の方向に移動する間に収集された最新フレームのX線画像データを右目用の画像データとして用いる一方、第1の方向と逆方向となる第2の方向に移動する間に収集された最新フレームのX線画像データを左目用の画像データとして用いるように構成すればよい。すなわち、最新フレームのX線画像データが、撮影系2が第1の方向に移動する間に収集された場合には、最新フレームのX線画像データを右目用の画像データとして用いることができる。一方、最新フレームのX線画像データが、撮影系2が第1の方向と逆方向となる第2の方向に移動する間に収集された場合には、最新フレームのX線画像データを左目用の画像データとして用いることができる。そして、第1の方向及び第2の方向は、X線撮影装置の用途に応じて決定することができる。
 また、X線撮影装置の用途によっては、表示処理部19が、X線画像データに対して回転表示や反転表示のための座標変換処理を施し、座標変換後におけるX線画像データを立体視用の画像データとして用いることができる。すなわち、複数のX線画像データに撮影系2の移動方向に応じた座標変換を施すことによって立体視することが可能な画像データを生成することができる。
 更に、上述の例では、制御系3が撮影系2を平面上における振り子の軌跡に沿って移動させる場合について説明したが、撮影系2の軌跡が平面に投影された場合に振り子の軌跡となるように撮影系2を移動させるようにしてもよい。具体例として、撮影系2を楕円状又は8の字状の軌跡に沿って移動させることができる。この場合、撮影系2が静止しないため、高速撮影が可能となる。

Claims (14)

  1.  少なくとも1つの撮影系を用いて被検体のX線画像データを収集するX線画像収集ユニットと、
     前記撮影系を往復移動させることによって互いに異なる3つ以上の方向に対応する複数のX線画像データが収集されるように前記撮影系を制御する制御系と、
     前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成する表示処理部と、
    を備えるX線撮影装置。
  2.  前記表示処理部は、最新フレームのX線画像データが、前記撮影系が第1の方向に移動する間に収集された場合には、前記最新フレームのX線画像データを右目用の画像データとして用いる一方、前記撮影系が前記第1の方向と逆方向となる第2の方向に移動する間に収集された場合には、前記最新フレームのX線画像データを左目用の画像データとして用いるように構成される請求項1記載のX線撮影装置。
  3.  前記表示処理部は、最新フレームのX線画像データが、前記撮影系が右前斜位方向から左前斜位方向に移動する間に収集された場合には、前記最新フレームのX線画像データを右目用の画像データとして用いる一方、前記撮影系が前記左前斜位方向から前記右前斜位方向に移動する間に収集された場合には、前記最新フレームのX線画像データを左目用の画像データとして用いるように構成される請求項1記載のX線撮影装置。
  4.  前記表示処理部は、対応する前記撮影系の回転角度差又は移動間隔が所定の値となる2フレームのX線画像データを右目用の画像データ及び左目用の画像データとして用いるように構成される請求項1記載のX線撮影装置。
  5.  前記制御系は、複数のX線画像データが前記撮影系の前記回転角度差又は前記移動間隔で収集されるように前記撮影系を制御するように構成される請求項4記載のX線撮影装置。
  6.  前記制御系は、複数のX線画像データが一定の時間間隔で収集されるように前記撮影系を制御するように構成される請求項4記載のX線撮影装置。
  7.  前記X線画像収集ユニットは、前記被検体の左前斜位方向及び右前斜位方向の間における第1の角度と、前記被検体の頭部方向及び尾部方向の間における第2の角度によって定義される照射方向にX線を照射することによって前記X線画像データを収集するように構成される請求項3記載のX線撮影装置。
  8.  前記表示処理部は、前記複数のX線画像データに前記撮影系の移動方向に応じた座標変換を施すことによって前記立体視することが可能な前記画像データを生成するように構成される請求項1記載のX線撮影装置。
  9.  前記X線画像収集ユニットは、前記被検体の右側の乳房が描出されたX線画像データ及び前記被検体の左側の乳房が描出されたX線画像データを繰返し収集するように構成され、
     前記表示処理部は、前記被検体の左側の乳房が描出された2フレーム分のX線画像データ又は前記被検体の右側の乳房が描出された2フレーム分のX線画像データを回転させて立体視に適した向きで表示させるための左目用と右目用の画像データを生成するように構成される請求項8記載のX線撮影装置。
  10.  前記X線画像収集ユニットは、前記撮影系を前記被検体の頭尾方向に回転させることによって前記X線画像データを収集するように構成され、
     前記表示処理部は、前記頭尾方向が左右方向となるように前記複数のX線画像データを回転させて左目用と右目用の画像データを生成するように構成される請求項8記載のX線撮影装置。
  11.  前記制御系は、前記撮影系の軌跡が平面に投影された場合に振り子の軌跡となるように、前記撮影系を楕円状又は8の字状の軌跡に沿って移動させるように構成される請求項1記載のX線撮影装置。
  12.  1つの撮影系を往復移動させることによって収集された互いに異なる3つ以上の方向に対応する複数のX線画像データを取得する画像取得部と、
     前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成する表示処理部と、
    を備える医用画像処理装置。
  13.  少なくとも1つの撮影系を用いて被検体のX線画像データを収集するステップと、
     前記撮影系を往復移動させることによって互いに異なる3つ以上の方向に対応する複数のX線画像データが収集されるように前記撮影系を制御するステップと、
     前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成するステップと、
    を有するX線撮影方法。
  14.  1つの撮影系を往復移動させることによって収集された互いに異なる3つ以上の方向に対応する複数のX線画像データを取得するステップと、
     前記撮影系の移動方向に応じて前記複数のX線画像データを前記複数のX線画像データの収集順序と異なる表示順序に並べて立体視することが可能な画像データを生成するステップと、
    を有する医用画像処理方法。
PCT/JP2013/060706 2012-05-09 2013-04-09 X線撮影装置、医用画像処理装置、x線撮影方法及び医用画像処理方法 WO2013168500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380000747.0A CN103517672B (zh) 2012-05-09 2013-04-09 X射线拍摄装置、医用图像处理装置、x射线拍摄方法和医用图像处理方法
US14/218,436 US9949698B2 (en) 2012-05-09 2014-03-18 X-ray imaging apparatus, medical image processing apparatus, X-ray imaging method and medical image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-107934 2012-05-09
JP2012107934A JP6042095B2 (ja) 2012-05-09 2012-05-09 X線撮影装置及び医用画像処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/218,436 Continuation US9949698B2 (en) 2012-05-09 2014-03-18 X-ray imaging apparatus, medical image processing apparatus, X-ray imaging method and medical image processing method

Publications (1)

Publication Number Publication Date
WO2013168500A1 true WO2013168500A1 (ja) 2013-11-14

Family

ID=49550553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060706 WO2013168500A1 (ja) 2012-05-09 2013-04-09 X線撮影装置、医用画像処理装置、x線撮影方法及び医用画像処理方法

Country Status (4)

Country Link
US (1) US9949698B2 (ja)
JP (1) JP6042095B2 (ja)
CN (1) CN103517672B (ja)
WO (1) WO2013168500A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126217A1 (ja) * 2013-02-14 2014-08-21 株式会社 東芝 X線診断装置
JP7188821B1 (ja) 2021-12-17 2022-12-13 バイスリープロジェクツ株式会社 検査システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125154B2 (ja) * 2012-05-09 2017-05-10 東芝メディカルシステムズ株式会社 X線撮影装置及び医用画像処理装置
JP6042096B2 (ja) * 2012-05-09 2016-12-14 東芝メディカルシステムズ株式会社 X線撮影装置及び医用画像処理装置
WO2014126219A1 (ja) * 2013-02-14 2014-08-21 株式会社 東芝 X線診断装置
CN104198506B (zh) * 2014-08-27 2017-11-07 清华大学 小角度自摆式大型多层螺旋ct设备和检查方法
CN105572154B (zh) * 2016-03-03 2018-07-31 北京凌志阳光安全技术有限公司 X射线探测方法以及装置以及系统
JP6711674B2 (ja) 2016-04-06 2020-06-17 キヤノンメディカルシステムズ株式会社 X線診断装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136741A (ja) * 2006-01-16 2006-06-01 Toshiba Corp X線断層撮影装置
JP2009017322A (ja) * 2007-07-06 2009-01-22 Yasuo Kizaki ビデオ映像の立体視化法
JP2011200408A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp 放射線画像撮影表示方法およびシステム
JP2011206206A (ja) * 2010-03-29 2011-10-20 Fujifilm Corp 放射線撮影装置、及び放射線撮影システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781914B2 (ja) * 1988-12-09 1998-07-30 日本アイデント・グラフ株式会社 連続立体撮影観察装置
JPH0669448B2 (ja) * 1989-10-09 1994-09-07 株式会社東芝 ステレオ視観察のためのx線画像取得表示方法及びその装置
JPH04166135A (ja) 1990-10-31 1992-06-12 Toshiba Corp ステレオx線診断システムおよびステレオx線診断方法
US5448610A (en) * 1993-02-09 1995-09-05 Hitachi Medical Corporation Digital X-ray photography device
JPH08186844A (ja) * 1994-12-28 1996-07-16 Sanyo Electric Co Ltd 立体映像発生装置および立体映像発生方法
JP2000504261A (ja) * 1996-12-06 2000-04-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トモグラフィー画像の形成に適した医療用x線装置
JP6125154B2 (ja) * 2012-05-09 2017-05-10 東芝メディカルシステムズ株式会社 X線撮影装置及び医用画像処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136741A (ja) * 2006-01-16 2006-06-01 Toshiba Corp X線断層撮影装置
JP2009017322A (ja) * 2007-07-06 2009-01-22 Yasuo Kizaki ビデオ映像の立体視化法
JP2011200408A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp 放射線画像撮影表示方法およびシステム
JP2011206206A (ja) * 2010-03-29 2011-10-20 Fujifilm Corp 放射線撮影装置、及び放射線撮影システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126217A1 (ja) * 2013-02-14 2014-08-21 株式会社 東芝 X線診断装置
JP2014176639A (ja) * 2013-02-14 2014-09-25 Toshiba Corp X線診断装置
US9895118B2 (en) 2013-02-14 2018-02-20 Toshiba Medical Systems Corporation X-ray diagnostic apparatus
JP7188821B1 (ja) 2021-12-17 2022-12-13 バイスリープロジェクツ株式会社 検査システム
JP2023090473A (ja) * 2021-12-17 2023-06-29 バイスリープロジェクツ株式会社 検査システム

Also Published As

Publication number Publication date
US20140198897A1 (en) 2014-07-17
JP2013233317A (ja) 2013-11-21
CN103517672B (zh) 2016-09-07
JP6042095B2 (ja) 2016-12-14
CN103517672A (zh) 2014-01-15
US9949698B2 (en) 2018-04-24

Similar Documents

Publication Publication Date Title
JP6042095B2 (ja) X線撮影装置及び医用画像処理装置
JP6125154B2 (ja) X線撮影装置及び医用画像処理装置
US9247920B2 (en) System and method for performing bi-plane tomographic acquisitions
US9202301B2 (en) Medical image display apparatus and X-ray diagnosis apparatus
JP5436301B2 (ja) 放射線撮影装置、及び放射線撮影システム
US9895118B2 (en) X-ray diagnostic apparatus
US9576380B2 (en) Image display device, image display method, medical image diagnostic device, medical image diagnostic method, medical image diagnostic system, data preparation device, data preparation method, and non-transitory recording medium
KR20150027881A (ko) 엑스선 영상 장치 및 그 제어방법
US10863960B2 (en) X-ray diagnosis apparatus
JP5815038B2 (ja) 放射線画像表示方法および装置
JP6042096B2 (ja) X線撮影装置及び医用画像処理装置
US10568587B2 (en) X-ray diagnostic apparatus, image processing apparatus, and image processing method
JP5835976B2 (ja) 医用画像診断装置及び医用画像処理方法
JP6096441B2 (ja) 医用画像処理装置、医用画像処理方法及び医用画像処理プログラム
JP6355916B2 (ja) X線診断装置
JP7066477B2 (ja) X線診断装置、画像処理装置、及び画像処理プログラム
JP2017113084A (ja) X線診断装置
JP6711674B2 (ja) X線診断装置
JP6548360B2 (ja) X線診断装置
JP2012157689A (ja) 放射線画像表示装置および方法
WO2012132298A1 (ja) 立体視画像表示装置及び立体視画像表示方法
WO2012132467A1 (ja) 放射線乳房画像撮影方法、放射線乳房画像撮影装置ならびにプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787089

Country of ref document: EP

Kind code of ref document: A1