WO2013163948A1 - 透明导电氧化物薄膜的制备方法 - Google Patents

透明导电氧化物薄膜的制备方法 Download PDF

Info

Publication number
WO2013163948A1
WO2013163948A1 PCT/CN2013/074951 CN2013074951W WO2013163948A1 WO 2013163948 A1 WO2013163948 A1 WO 2013163948A1 CN 2013074951 W CN2013074951 W CN 2013074951W WO 2013163948 A1 WO2013163948 A1 WO 2013163948A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
indium
film
zinc
solution
Prior art date
Application number
PCT/CN2013/074951
Other languages
English (en)
French (fr)
Inventor
任昌义
Original Assignee
深圳市科聚新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科聚新材料有限公司 filed Critical 深圳市科聚新材料有限公司
Publication of WO2013163948A1 publication Critical patent/WO2013163948A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Definitions

  • the invention belongs to the field of semiconductor optoelectronic materials, and in particular relates to a method for preparing a transparent conductive oxide film.
  • Transparent conductive oxide film is widely used in transparent electrodes of various displays, transparent heating elements of electric crucibles, and transparent electrodes of solar cells. It is mainly responsible for the collection of photocurrent, and therefore requires high electrical conductivity; The existence of TCO should minimize the absorption of the solar spectrum, so it is required to have a wide energy gap width, less absorption of visible light, and high transmittance.
  • the widely used TCO has a metal doped ZnO thin film and a metal doped In 2 0 3 thin film.
  • the doping metal of the ZnO thin film mainly includes aluminum (Al), gallium (Ga), indium (In), molybdenum (Mo), etc., and is typically aluminum-doped ZnO (AZO).
  • the doping metal of the In 2 0 3 film is mainly tin (Sn), nickel (Ni), molybdenum (Mo), etc., and is typically tin-doped In 2 0 3 (ITO).
  • the high-quality germanium has a transmittance of more than 95% for visible light, and the work function of germanium is about 4.5 to 5.3 eV.
  • the specific values are related to the amount of Sn doping, surface roughness, surface treatment, and the like.
  • AZO is a new type of n-type semiconductor transparent conductive oxide film with wide band gap (3.37eV) and high transmittance and low resistivity in the visible light range. It is easy to produce defects and Easy to dope, and cheap, non-toxic and highly stable, can be widely used in piezoelectric conversion, optoelectronic display and electronic devices.
  • the main methods for preparing TCO films include magnetron sputtering, chemical vapor deposition (CVD), sol-gel (S-G), pulsed laser deposition (PLD), and spray thermal decomposition (SP).
  • the magnetron sputtering technology is the most mature and the process control is good, and it has been widely used in the commercial production of TCO film.
  • the SG method is easy to obtain due to the raw materials used, the film forming process is simple, the reaction process is easy to control, and the raw materials are utilized.
  • the material with high rate and easy distribution of multi-component components can be formed into a large area, and has become a preparation method that has attracted much attention at present.
  • the TCO film prepared by the sol-gel method has a large amount of liquid in the gel, shrinks during drying, and is liable to cause cracking, and often causes voids and -OH or C during firing to make the product black.
  • a method for preparing a transparent conductive oxide film comprising the steps of:
  • Step 1 obtaining a sol solution of a zinc salt or an indium salt and a doped metal salt, wherein the viscosity of the sol solution is 15-20 mPa.s, and the concentration of zinc or indium in the zinc salt or the indium salt is 0.1 ⁇ 1 mol/L.
  • the molar ratio of zinc to doping metal is 0.001 ⁇ 0.03, and the molar ratio of indium to doping metal is 0.05 ⁇ 0.15;
  • Step two immersing the film forming medium into the above sol solution, staying for l ⁇ 30 s, and then The medium is pulled out of the sol liquid at a speed of 1 to 300 cm/min, and then kept at 80 ° C ⁇ 300 ° C for 0.5 ⁇ 30 min, and cooled;
  • Step 3 Repeat step 2 until the film thickness on the film forming medium reaches a desired thickness to obtain a transparent conductive oxide film.
  • a transparent conductive oxide film excellent in performance can be obtained by limiting the viscosity of the sol, the concentration of the doped particles, the pulling speed, and the treatment temperature.
  • the process equipment is single, the process is energy-saving and environmentally friendly, and the film can be prepared on a large-area substrate of different shapes and materials, the film formation is good, the adhesion to the medium material is strong, and the transparency is good.
  • the method is capable of quantitative doping, precise control of doping levels, effective control of film composition and microstructure, and is suitable for industrial production.
  • a method of preparing a transparent conductive oxide film comprising the steps of:
  • Step 1 obtaining a sol solution of a zinc salt or an indium salt and a doped metal salt, wherein the viscosity of the sol solution is 15-20 mPa.s, and the concentration of zinc or indium in the zinc salt or the indium salt is 0.1 ⁇ 1 mol/L.
  • the molar ratio of zinc to doping metal is 0.001 ⁇ 0.03, and the molar ratio of indium to doping metal is 0.05 ⁇ 0.15;
  • Step 2 immersing the film forming medium in the sol solution, staying for 1 ⁇ 30 s, and then pulling the film forming medium out of the sol level at a speed of 1 ⁇ 300 cm/min, followed by 80 ° C ⁇ 300 ° C Keep it for 0.5 ⁇ 30 min, cool down;
  • Step 3 Repeat step 2 until the film thickness on the film forming medium reaches a desired thickness to obtain a transparent conductive oxide film.
  • the doped metal is usually any combination of one or more of aluminum, gallium, indium and molybdenum.
  • the doping metal is usually any combination of one or more of tin, nickel and molybdenum.
  • the zinc salt, the indium salt, and the doped metal salt include alkoxides, acetates, ethyleneacetophenones, nitrates, and chlorides.
  • the sol solution includes an organic solvent and a stabilizer in addition to the above salts.
  • the organic solvent is at least one of isopropyl alcohol, acetylacetone, and ethylene glycol methyl ether
  • the stabilizer is diethanolamine and/or monoethanolamine.
  • the greater the viscosity of the sol the greater the thickness of the subsequent lift-up film.
  • the viscosity of the sol is too small, because the number of particles per unit volume is reduced, the chance of collision between particles is reduced, the polymerization rate is slowed down, the gelation time is prolonged, and the continuous film is not easily formed, but if the viscosity is too large, the distribution of the film surface is caused. Not uniform. More preferably, the viscosity of the sol is from 17 to 18 mPa-s.
  • the doping concentration has a significant effect on the performance of the TCO film.
  • the doping concentration is 0.1 to 3% (molar percentage)
  • the film has the best photoelectric performance.
  • the conduction mechanism of ZnO thin films is mainly through the thermal field emission of grain boundary thermal ions, but at higher purity, mainly ionized impurities are scattered, and crystal incompleteness leads to severe scattering. All these factors lead to high resistivity of pure ZnO thin films, and the conductive mechanism of metal-doped ZnO thin films is to reduce resistivity by oxygen vacancy and doping.
  • the A1 atom tends to solidify in the form of Al 3+ +3e , and the Al 3+ ion occupies the position of Zn 2+ in the crystal lattice, forming a monovalent positive charge center Al-Zn and a redundant electron.
  • This extra valence electron breaks free and becomes a conductive electron. Therefore, the result of incorporation of the A1 atom is an increase in free electrons and carrier density, resulting in a decrease in resistivity.
  • excessive doping causes the A1 atoms to accumulate at the grain boundaries, which in turn becomes a hindrance to the migration of free electrons at the grain boundaries, which reduces the mobility of free electrons.
  • the doping amount of A1 exceeds 3%, with doping As the amount increases, the resistivity of the film increases.
  • the resistivity is lower when the content of the doping metal is 5 to 15%.
  • the carrier concentration is different depending on the content of the doping metal. When the carrier concentration is increased and the plasma oscillation frequency is increased, the resonance wavelength is shortened, so that the infrared high reflection range is expanded to the visible light range.
  • the addition of doped metal atoms can broaden the optical direct transition energy gap of the In 2 0 3 film.
  • the direct transition energy gap of In 2 0 3 is 3.55 eV ⁇ 3.75 eV, and the direct transition energy gap of ITO is generally greater than 3.75 eV, so the addition of Sn atoms can make the visible light absorption edge Expanding in the ultraviolet direction to improve the range of visible light transmittance.
  • the doping amount of the metal is less than 15%, the transmittance of the doped In 2 0 3 film is better (80% or more), but the transmittance of the film is drastically decreased after the doping amount is more than 15%.
  • the preparation method of the sol solution may adopt the following steps:
  • Adding a zinc salt or an indium salt to an organic solvent adding a stabilizer such as a molar ratio to the zinc salt or the indium salt, placing the mixture at a temperature of 60 ° C to 100 ° C, and stirring for 0.5 to 10 h to obtain a zinc salt.
  • a stabilizer such as a molar ratio
  • the prepared zinc salt or indium salt solution is mixed with the doping metal salt solution, stirred at 50 ° C ⁇ 150 ° C for 0.5 h ⁇ 10 h, and then allowed to stand for 24 h ⁇ 48 h to obtain zinc salt or indium salt and A sol solution doped with a metal salt.
  • the film forming medium is immersed in the sol solution for 1 to 30 s in order to achieve adsorption equilibrium.
  • the film forming medium may be glass, ceramic, metal, temperature resistant polymer or a composite material of the above materials.
  • the process of lifting coating is very versatile and more economical for large coated parts.
  • the operation of the pulling medium should be smooth and vibration-free, and a layer of uniform sol film is formed on the surface of the medium due to gravity and viscosity.
  • the speed is maintained at 1 ⁇ 300 cm / min, and the pulling speed can coordinate solvent evaporation and gel speed.
  • the pull will be The film after the film is dried at 80 ° C ⁇ 150 ° C for 0.5 ⁇ 15 min to obtain a gel film, and then the gel film is preheated at 150 ° C ⁇ 300 ° C for 0.5 time. ⁇ 15 min. Drying and preheating the film separately allows the film to remain stable and heat-free without cracking. After drying and pre-heat treatment, immersing again in the sol solution is equivalent to dip coating on the substrate so that no peeling occurs.
  • the required thickness is preferably from 300 nm to 500 nm.
  • the viscosity of the sol solution in step one will affect the number of coatings, the number of coating layers is too small, the film is a discontinuous island-like distribution, and the electrical resistivity is large; the thickness of the film increases, the structure becomes complete, the defects are reduced, but the thickness is too large. , light transmission will be worse.
  • the method for preparing the transparent conductive oxide film further comprises the step of annealing the transparent conductive oxide film, that is, maintaining at 250 ° C to 800 ° C for 10 min to 3 h.
  • Annealing can eliminate organic matter in the film, causing the grains in the TCO film to grow further.
  • the size of the crystal grains in the TCO film has a great influence on its photoelectric properties.
  • the number of crystal defects decreases, and the grain boundaries decrease, thereby reducing the scattering effect on carriers and increasing the carriers.
  • the mobility reduces the resistivity of the film.
  • the oxygen ions in the weakly bound state can be released by the annealing treatment, so that the doping ions are activated. For example, as the heat treatment temperature increases, the probability of Zn 2+ and 0 2 ⁇ decreases, the carrier concentration increases, and the resistivity of the film decreases.
  • the increase in crystal grain size also reduces the scattering effect on photons. Both the electrical conductivity and the light transmittance of the TCO film are improved.
  • the annealing temperature has a great influence on the growth of the film crystal particles. As the annealing temperature increases, the crystal grains in the formed TCO film increase.
  • the transparent conductive oxide film obtained by the above annealing is further subjected to secondary annealing in a reducing gas.
  • the reducing gas is an inert gas or a mixed gas of nitrogen and hydrogen, and the volume ratio of the inert gas or nitrogen to hydrogen is 4:1 to 49:1, the temperature is 250 ° C to 800 ° C, and the time is 0.5 min ⁇ 1 h.
  • the purpose is to eliminate excess oxygen in the film, and the photoelectric properties of the TCO film can be improved by heat treatment in a reducing atmosphere, and the resistivity is reduced by about 2 to 3 orders of magnitude.
  • the TCO film prepared by the method of the invention has a resistivity of less than 5 ⁇ 1 (T 4 ⁇ -cm, and a visible light transmittance of more than 90%.
  • the method has high yield and can prepare a large-area TCO film with high material utilization rate. Suitable for mass production.
  • the specific implementation of the present invention will be described in detail below with reference to specific embodiments.
  • DEA diethanolamine
  • the solution B was dropped into the solution A to control the molar ratio of A1 to Zn to 0.02, and the concentration of zinc acetate added to the isopropanol adjustment solution was 0.5 mol/L. Then, after thoroughly stirring at 70 ° C for 2 h, a transparent homogeneous solution was formed, poured into a clean jar, and allowed to stand for 24 h to obtain a sol solution, which was used.
  • the optical glass is selected and the size of the glass is 25 mm x 80 mm l mm.
  • the cleaned glass piece was vertically inserted into the prepared sol, and the substrate was left in the sol for 10 s to achieve adsorption equilibrium on the substrate, and then pulled up at a speed of 8 cm/min. After each pulling, After drying at 100 ° C for 15 min, a gel film was obtained, which was then heat treated at 240 ° C for 1 min, and the above operation was repeated 20 times after cooling.
  • the coating After the coating has reached the required number of times, it is sent to a tube furnace, annealed in an air atmosphere at 400 ° C for 20 min, and then reduced at 550 ° C (volume flow ratio (N 2 : H 2 ) 96: 4) Annealing again, controlling the gas flow rate of 80 mL/min, annealing treatment for 20 min, to obtain a transparent conductive oxide film.
  • Film thickness 500 nm; resistivity: 5 ⁇ 1 ( ⁇ 4 ⁇ « ⁇ ; visible light transmittance: 91%.
  • Example 2 Example 2:
  • Indium nitrate was dissolved in acetylacetone, and then ethanol methyl ether was added in an equimolar ratio with indium nitrate, placed in a water bath at 90 ° C, and stirred for 1.5 h to form a transparent homogeneous solution A.
  • a Sn 2+ ion doped solution was prepared, and tin nitrate was first dissolved in absolute ethanol to prepare a transparent solution B having a concentration of 0.5 mol/L.
  • the B solution was dropped into the A solution to control the molar ratio of Sn to In to 0.1, and the concentration of indium nitrate added to the isopropanol adjustment solution was 0.5 mol/L.
  • a transparent homogeneous solution was formed, poured into a clean jar, and allowed to stand for 24 h to obtain a sol solution, which was used.
  • Stainless steel foil is selected, which is 80mm x 80 mmx0.5 mm.
  • the cleaned stainless steel foil was vertically inserted into the prepared sol, and the substrate was left in the sol for 15 s to achieve adsorption equilibrium on the substrate, and then pulled up at a speed of 15 cm/min. After each pulling, After drying at 100 ° C for 5 min, a gel film was obtained, which was then heat treated at 300 ° C for 1 min, and the above operation was repeated 10 times after cooling.
  • the coating After the coating has reached the required number of times, it is sent to a rapid heat treatment furnace and annealed at 500 ° C for 20 min in an air atmosphere. Then, it was annealed again at a reducing atmosphere (flow ratio (N 2 : H 2 ) 90: 10) at 550 ° C, a controlled gas flow rate of 40 mL/min, and an annealing treatment for 10 min to obtain a transparent conductive oxide film.
  • Film thickness 300 nm; Resistance: 2.5 ⁇ 1 ( ⁇ 4 ⁇ « ⁇ ; visible light transmittance: 93%.
  • Example 3 Example 3:
  • the Al 3+ ion doped solution was prepared by dissolving aluminum nitrate nonahydrate ( ⁇ 1( ⁇ 0 3 ) 3 ⁇ 9 ⁇ 2 0 , analytically pure) in absolute ethanol to prepare a transparent solution of 0.5 mol/L.
  • the optical glass is selected and the size of the glass is 25 mm x 80 mm l mm.
  • the cleaned glass piece was vertically inserted into the prepared sol, and the substrate was left in the sol for 10 s to achieve adsorption equilibrium on the substrate, and then pulled up at a speed of 8 cm/min. After each pulling, After drying at 100 ° C for 15 min, a gel film was obtained, which was then heat treated at 240 ° C for 1 min, and the above operation was repeated 20 times after cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种透明导电氧化物薄膜的制备方法,其包括如下步骤:步骤一、获得锌盐或铟盐与掺杂金属盐的溶胶溶液,其中,溶胶的粘度为15〜20mPa•s,锌盐或者铟盐中锌或者铟的浓度为0.1〜1mol/L,锌与掺杂金属的摩尔比值为0.001〜0.03,铟与掺杂金属的摩尔比值为0.05〜0.15;步骤二、将介质浸入到溶胶溶液中,停留1〜30s,然后以1〜300cm/min的速度将介质提拉出溶胶液面,随后在80°C〜300°C下保持0.5〜30min,冷却;步骤三、重复步骤二至介质上的膜厚达到所需厚度,获得该透明导电氧化物薄膜。该方法制备的透明导电氧化物薄膜成品率高,可制备大面积薄膜,物料利用率高,适合批量化生产。

Description

透明导电氧化物薄膜的制备方法 技术领域
本发明属于半导体光电材料领域, 具体涉及透明导电氧化物薄膜的 制备方法。
背景技术
透明导电氧化物薄膜 (TCO)广泛应用于各类显示器的透明电极、 电 炊锅的透明发热元件、 太阳能电池的透明电极, 它主要负责光电流的收 集, 因此要求具有高的电导率; 同时, TCO的存在要尽量减少对太阳光 谱的吸收, 因此要求其具有宽能隙宽度, 对可见光的吸收少, 透过率高。 目前应用较广的 TCO有金属掺杂的 ZnO薄膜及金属掺杂的 In203薄膜。 ZnO薄膜的掺杂金属主要有铝 (Al)、 镓 (Ga)、 铟 (In)、 钼 (Mo)等, 代表性 的为铝掺杂 ZnO(AZO)。 In203薄膜的掺杂金属主要有锡 (Sn)、 镍 (Ni)、 钼 (Mo)等, 代表性的为锡掺杂 In203 (ITO)。 优质的 ΙΤΟ对可见光的透过 率达 95%以上, ΙΤΟ的功函约为 4.5 ~ 5.3 eV, 具体数值与 Sn掺杂量、 表面粗糙度、表面处理等相关。 AZO是继 ITO之后新开发出来的一种新 型具有宽禁带 (3.37eV)的、 在可见光范围具有高透射率和低电阻率的 n 型半导体透明导电氧化物薄膜. 因其具有易产生缺陷和易进行掺杂, 并 且价格便宜、 无毒和稳定性高等特点, 可被广泛应用于压电转换、 光电 显示及电子器件等方面。
制备 TCO薄膜的主要方法有磁控溅射法、 化学气相沉积法 (CVD) 、 溶胶-凝胶法 (S-G)、 脉冲激光沉积法 (PLD)和喷射热分解法 (SP)等。 其中 以磁控溅射技术最为成熟, 工艺控制性好, 已被广泛用于 TCO薄膜的商 业化生产; 而 S-G法由于所用原料易得、 制膜工艺筒单、 反应过程易于 控制、 原材料的利用率高、 易得到多组元组分分布均勾的材料、 可大面 积成膜, 而成为目前备受关注的制备方法。 但是, 溶胶-凝胶法制备的 TCO薄膜由于凝胶中液体量大, 干燥时产生收缩, 易产生开裂, 烧制时 经常会残留气孔及 -OH或 C , 使得制品带黑色。
发明内容
依据本发明的实施方式提供一种透明导电氧化物薄膜的制备方法, 其包括如下步骤:
步骤一、 获得锌盐或铟盐与掺杂金属盐的溶胶溶液, 其中, 溶胶溶 液的粘度为 15 ~ 20 mPa.s , 锌盐或者铟盐中锌或者铟的浓度为 0.1 ~ 1 mol/L, 锌与掺杂金属的摩尔比值为 0.001 ~ 0.03 , 铟与掺杂金属的摩尔 比值为 0.05 ~ 0.15 ;
步骤二、 将成膜介质浸入到上述溶胶溶液中, 停留 l ~ 30 s , 然后以 1 ~ 300 cm/min的速度将介质提拉出所述溶胶液面, 随后在 80°C ~ 300°C 下保持 0.5 ~ 30 min, 冷却;
步骤三、 重复步骤二至成膜介质上的膜厚达到所需厚度, 获得透明 导电氧化物薄膜。
依据本发明的透明导电氧化物薄膜的制备方法,通过限定溶胶粘度、 掺杂粒子的浓度、 提拉速度以及处理温度, 能够获得性能优异的透明导 电氧化物薄膜。 其工艺设备筒单, 过程节能环保, 可以不同形状、 不同 材料的大面积基底上制备薄膜,成膜均勾性好,对介质材料的附着力强, 透明度好。 此外, 该方法还能够定量掺杂, 精确控制掺杂水平, 有效地 控制薄膜成分以及微观结构, 适于工业化生产。
具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合具 体实施例, 对本发明作进一步详细说明。 应当理解, 此处所描述的具体 实施例仅仅用以解释本发明, 并不用于限定本发明。
依据本发明的一种实施例提供透明导电氧化物薄膜的制备方法, 其 包括如下步骤:
步骤一、 获得锌盐或铟盐与掺杂金属盐的溶胶溶液, 其中, 溶胶溶 液的粘度为 15 ~ 20 mPa.s , 锌盐或者铟盐中锌或者铟的浓度为 0.1 ~ 1 mol/L, 锌与掺杂金属的摩尔比值为 0.001 ~ 0.03 , 铟与掺杂金属的摩尔 比值为 0.05 ~ 0.15 ;
步骤二、 将成膜介质浸入到上述溶胶溶液中, 停留 l ~ 30 s , 然后以 1 ~ 300 cm/min的速度将成膜介质提拉出溶胶液面, 随后在 80°C ~ 300°C 下保持 0.5 ~ 30 min, 冷却;
步骤三、 重复步骤二至成膜介质上的膜厚达到所需厚度, 获得透明 导电氧化物薄膜。
具体地, 步骤一中, 当锌盐与掺杂金属盐混合配制溶胶溶液时, 掺 杂金属通常为铝、 镓、 铟和钼中的一种或多种的任意组合。 当铟盐与掺 杂金属盐混合配制溶胶溶液时, 掺杂金属通常为锡、 镍和钼中的一种或 多种的任意组合。 锌盐、 铟盐以及掺杂金属盐包括其醇盐、 醋酸盐、 乙 烯丙酮盐、 硝酸盐、 氯化盐。 优选地, 溶胶溶液除包括上述盐外还包括 有机溶剂和稳定剂。 具体地, 有机溶剂为异丙醇、 乙酰丙酮、 乙二醇甲 醚中的至少一种, 稳定剂为二乙醇胺和 /或单乙醇胺。 溶胶粘度越大, 其 后续提拉成膜的厚度也越大。 溶胶粘度过小, 由于单位体积内粒子数目 减少, 粒子间碰撞机会减少, 导致聚合速率减慢, 从而延长凝胶时间, 而且不容易形成连续薄膜, 但是如果粘度过大, 会导致膜面的分布不均 匀。 更优选地, 溶胶粘度为 17 ~ 18 mPa-s。
掺杂浓度对 TCO薄膜性能影响显著。 对 ZnO薄膜而言, 当在金属 掺杂浓度为 0.1 ~ 3% (摩尔百分数)时, 薄膜的光电性能最好。 ZnO 薄膜 的导电机制主要是通过晶界热离子的热场发射, 但在较高纯度下, 主要 是电离杂质散射, 并且晶体的不完整性会导致严重的散射。 所有这些因 素, 导致纯 ZnO薄膜电阻率很高, 而金属掺杂 ZnO薄膜的导电机制是 通过氧缺位和掺杂来降低电阻率。 以 A1为例, A1原子趋向于以 Al3++3e 的方式发生固溶, Al3+离子占据晶格中 Zn2+的位置, 形成一个一价正电 荷中心 Al-Zn和一个多余的电子, 这个多余的价电子挣脱束縛而成为导 电电子。 因此掺入 A1原子的结果是增加了自由电子和载流子密度,使电 阻率降低。但过多的掺杂使 A1原子聚集在晶界,反而成为自由电子在晶 界处迁移的阻碍, 使自由电子的迁移率降低, 所以当 A1 的掺杂量超过 3%时, 随着掺杂量的增加, 薄膜的电阻率有增加的趋势。 对于金属掺杂 In203而言, 当掺杂金属的含量为 5 ~ 15% 时具有较低电阻率。 随着掺杂 金属的含量不同, 其载流子浓度也不一样。 当载流子浓度增加, 等离子 体振荡频率增高, 所以共振波长变短, 从而使红外高反射范围向可见光 范围扩展。 另外, 掺杂金属原子的加入可以加宽 In203薄膜的光学直接 跃迁能隙。以掺 Sn的 In203为例, In203的直接跃迁能隙为 3.55 eV ~ 3.75 eV, 而 ITO的直接跃迁能隙一般都大于 3.75 eV, 所以 Sn原子的加入可 以使可见光吸收边缘向紫外方向扩展, 从而改善可见光透过率的范围。 当金属掺杂量小于 15%时, 掺杂 In203薄膜的透射率较好 (80%以上), 但 掺杂量大于 15%后薄膜的透射率急剧下降。
优选地, 溶胶溶液的配制方法可选用下述步骤:
将锌盐或铟盐加入到有机溶剂中, 再加入与该锌盐或铟盐等摩尔比 的稳定剂, 置于 60°C ~ 100°C的温度下, 搅拌 0.5 ~ 10 h, 获得锌盐或铟 盐溶液;
将掺杂金属盐溶于有机溶剂中, 获得掺杂金属盐溶液;
将制得的锌盐或铟盐溶液与掺杂金属盐溶液混合, 在 50°C ~ 150°C 下搅拌 0.5 h ~ 10 h后, 静置 24 h ~ 48 h, 获得锌盐或铟盐与掺杂金属盐 的溶胶溶液。
步骤二中, 成膜介质浸入到溶胶溶液中, 停留 1 ~ 30 s是为了使其 达到吸附平衡。 该成膜介质可以为玻璃、 陶瓷、 金属、 耐温高分子或上 述材料的复合材料。 在成膜之前, 优选对成膜介质用乙醇、 去离子水、 与介质不发生剧烈反应的酸或以上的混合物进行清洗。
提拉涂覆的工艺应用非常广泛, 对于大型涂件来说更为经济。 提拉 介质的操作过程应保持平稳且无震动, 由于重力和粘度的作用在介质表 面形成一层均勾的溶胶膜。 其速度保持在 1 ~ 300 cm/min, 提拉速度可 以协调溶剂蒸发和凝胶速度。
介质浸渍后在 80°C ~ 300°C下保持 0.5 ~ 30 min。 优选地, 将提拉成 膜后的介质置于 80°C ~ 150°C下干燥, 时间为 0.5 ~ 15 min, 获得凝胶薄 膜, 再将凝胶薄膜置于 150°C ~ 300°C下预热处理, 时间为 0.5 ~ 15 min。 对膜层分别进行干燥和预热处理, 能够让薄膜保持稳定受热, 不会出现 裂纹。 经过干燥和预热处理后, 再次浸入到溶胶溶液中就相当于在衬底 上浸涂, 从而不会出现剥落的现象。
步骤三中, 所需厚度优选为 300 nm ~ 500 nm。 步骤一中的溶胶溶液 的粘度会影响镀膜次数, 镀膜层数太少, 薄膜为不连续的岛状分布, 电 阻率很大; 薄膜厚度增加, 结构会变得完成, 缺陷减少, 但是厚度太大, 透光性会变差。
进一步, 优选地, 上述透明导电氧化物薄膜的制备方法还包括对透 明导电氧化物薄膜退火的步骤, 即在 250°C ~ 800°C下保持 10 min ~ 3 h。
退火处理可以消除薄膜中的有机物质,使得 TCO薄膜中的晶粒进一 步长大。 TCO薄膜中晶粒的大小对其光电性能影响巨大, 当 TCO薄膜 中晶粒变大时, 晶体缺陷数目降低, 晶粒边界减少, 从而降低了对载流 子的散射作用, 提高了载流子迁移率, 降低了薄膜的电阻率。 另一方面, 通过退火处理可以释放处于弱束縛状态下的氧离子,使掺杂离子被激活。 例如, 随着热处理温度的升高, Zn2+与 02·复合几率降低, 载流子浓度增 加, 薄膜的电阻率减少; 同时, 晶体粒度的增大也使其对光子的散射作 用降低,使 TCO薄膜的电导率和透光率都提高。退火温度对薄膜晶体粒 子生长影响很大, 随着退火温度的升高,所生成的 TCO薄膜中的晶粒增 大。
更优选地, 对上述退火获得的透明导电氧化物薄膜再置于还原气体 中进行二次退火。 优选地, 还原气体为惰性气体或者氮气与氢气的混合 气体, 惰性气体或氮气与氢气的体积比为 4: 1 ~ 49: 1 , 温度为 250°C ~ 800°C, 时间为 0.5 min ~ 1 h。 其目的是为了消除薄膜中过量的氧, 通过 在还原气氛中的热处理可提高 TCO 薄膜的光电性能, 使电阻率下降约 2 ~ 3个数量级。
依据本发明的方法所制备的 TCO薄膜, 电阻率小于 5x l(T4 Ω-cm, 可见光透过率超过 90%。 该方法制备成品率高, 可制备大面积 TCO薄 膜, 物料利用率高, 适合批量化生产。 以下结合具体实施例对本发明的具体实现进行详细描述。 实施例 1 :
将二水醋酸锌 (Zn(AC)2.2¾0)溶于异丙醇中, 再加入与二水醋酸锌 等摩尔比的二乙醇胺 (DEA), 置于 70°C水浴下, 搅拌 1 h, 形成透明均 质的溶液 A。制备 Al3+离子掺杂的溶液,先将九水硝酸铝 (Α1(Ν03)3·9Η20, 分析纯)溶于无水乙醇中制成浓度为 0.2 mol/L的透明溶液 B。 将 B溶液 滴入 A溶液中, 控制 A1和 Zn的摩尔比为 0.02 , 加入异丙醇调节溶液 的醋酸锌浓度为 0.5 mol/L。 然后在 70°C下充分搅拌 2 h后, 形成透明均 质的溶液, 倒入洁净的广口瓶中, 静置 24 h, 获得溶胶溶液, 备用。
选取光学玻璃片, 玻璃片的规格为 25 mm x80 mm l mm。 将清洗 好的玻璃片垂直插入制备好的溶胶中, 基片在溶胶中停留 10 S , 使其在 基片上达到吸附平衡, 然后以 8 cm/min的速度提拉上来. 每次提拉后, 在 100°C下干燥 15 min, 得到凝胶薄膜, 然后在 240°C下热处理 1 min, 冷却后重复以上操作 20次。
镀膜达到所需次数后, 送入管式炉, 在 400°C下, 空气气氛中退火 处理 20 min, 然后在 550°C还原气氛 (体积流量比 (N2:H2) 96:4)下再次退 火, 控制气体流量 80 mL/min, 退火处理 20 min, 获得透明导电氧化物 薄膜。 薄膜厚度: 500 nm; 电阻率: 5χ 1(Τ4 Ω·«η; 可见光透过率: 91%。 实施例 2:
将硝酸铟溶于乙酰丙酮中, 再加入与硝酸铟等摩尔比的乙醇甲醚, 置于 90°C水浴下, 搅拌 1.5 h, 形成透明均质的溶液 A。 制备 Sn2+离子 掺杂的溶液,先将硝酸锡溶于无水乙醇中制成浓度为 0.5 mol/L的透明溶 液 B。 将 B溶液滴入 A溶液中, 控制 Sn和 In的摩尔比为 0.1 , 加入异 丙醇调节溶液的硝酸铟浓度为 0.5 mol/L。 然后在 90°C下充分搅拌 2 h 后, 形成透明均质的溶液, 倒入洁净的广口瓶中, 静置 24 h, 获得溶胶 溶液, 备用。
选取不銹钢箔, 不銹钢箔的规格为 80mm x80 mmx0.5 mm。 将清洗 好的不锈钢箔垂直插入制备好的溶胶中, 基片在溶胶中停留 15 S , 使其 在基片上达到吸附平衡, 然后以 15 cm/min的速度提拉上来. 每次提拉 后,在 100°C下干燥 5 min,得到凝胶薄膜,然后在 300°C下热处理 1 min, 冷却后重复以上操作 10次。
镀膜达到所需次数后, 送入快速热处理炉, 在 500°C、 空气气氛进 行退火处理 20 min。然后在 550°C还原气氛(流量比 (N2:H2) 90: 10)下再次 退火, 控制气体流量 40 mL/min, 退火处理 10 min, 获得透明导电氧化 物薄膜。 薄膜厚度: 300 nm; 电阻: 2.5χ 1(Τ4 Ω·«η; 可见光透过率: 93%。 实施例 3 :
将二水醋酸锌 (Zn(AC)2.2¾0)溶于异丙醇中, 再加入与二水醋酸锌 等摩尔比的二乙醇胺 (DEA) , 置于 70°C水浴下, 搅拌 2 h, 形成透明均 质的溶液 A。制备 Al3+离子掺杂的溶液,先将九水硝酸铝 (Α1(Ν03)3·9Η20 , 分析纯)溶于无水乙醇中制成浓度为 0.5 mol/L的透明溶液 Β。 将 Β溶液 滴入 A溶液中, 控制 A1和 Zn的摩尔比为 0.01 , 加入异丙醇调节溶液 的醋酸锌浓度为 0.8 mol/L。 然后在 100°C下充分搅拌 3 h后, 形成透明 均质的溶液, 倒入洁净的广口瓶中, 静置 48 h, 获得溶胶溶液, 备用。
选取光学玻璃片, 玻璃片的规格为 25 mm x80 mm l mm。 将清洗 好的玻璃片垂直插入制备好的溶胶中, 基片在溶胶中停留 10 S , 使其在 基片上达到吸附平衡, 然后以 8 cm/min的速度提拉上来. 每次提拉后, 在 100°C下干燥 15 min, 得到凝胶薄膜, 然后在 240°C下热处理 1 min, 冷却后重复以上操作 20次。
镀膜达到所需次数后, 送入管式炉, 在 400°C、 空气气氛进行退火 处理 20 min。 然后在 550°C还原气氛 (流量比 (N2:H2) 96:4)下再次退火, 控制气体流量 80 mL/min, 退火处理 20 min。 获得透明导电氧化物薄膜。 薄膜厚度: 400 nm; 电阻率: 7 < 1(Τ4 Ω·(πη; 可见光透过率: 90%。 以上所述仅为本发明的较佳实施例而已, 对于本领域的一般技术人 员, 依据本发明的思想, 可以对上述具体实施方式进行变化。

Claims

权 利 要 求
1. 一种透明导电氧化物薄膜的制备方法, 其特征在于, 包括如下步 骤:
步骤一、 获得锌盐或铟盐与掺杂金属盐的溶胶溶液, 其中, 溶胶溶 液的粘度为 15 ~ 20 mPa.s,所述锌盐或者铟盐中锌或者铟的浓度为 0.1 ~ 1 mol/L, 锌与掺杂金属的摩尔比值为 0.001 ~ 0.03, 铟与掺杂金属的摩 尔比值为 0.05 ~ 0.15;
步骤二、 将成膜介质浸入到所述溶胶溶液中, 停留 l ~30s, 然后以 1 ~ 300 cm/min的速度将所述介质提拉出所述溶胶液面, 随后在 80°C ~ 300°C下保持 0.5 ~ 30 min, 冷却;
步骤三、 重复步骤二至所述成膜介质上的膜厚达到所需厚度, 获得 所述透明导电氧化物薄膜。
2. 如权利要求 1所述的制备方法, 其特征在于, 所述溶胶溶液的配 制步骤为:
将锌盐或铟盐加入到有机溶剂中, 再加入与该锌盐或铟盐等摩尔比 的稳定剂, 置于 60°C~ 100°C的温度下, 搅拌 0.5 h~ 10h, 获得锌盐或 铟盐溶液;
将掺杂金属盐溶于有机溶剂中, 获得掺杂金属盐溶液;
将所述锌盐或铟盐溶液与掺杂金属盐溶液混合, 在 50°C ~ 150°C下 搅拌 0.5h~ 10h后, 静置 24h~48h, 获得锌盐或铟盐与掺杂金属盐的 溶胶溶液。
3. 如权利要求 2所述的制备方法, 其特征在于, 所述有机溶剂为异 丙醇、 乙酰丙酮、 乙二醇甲醚中的至少一种, 所述稳定剂为二乙醇胺和 / 或单乙醇胺。
4. 如权利要求 1所述的制备方法, 其特征在于, 在锌盐与掺杂金属 盐的溶胶溶液中, 掺杂金属盐为铝盐、 镓盐、铟盐和钼盐中的至少一种; 在铟盐与掺杂金属盐的溶胶溶液中, 掺杂金属盐为锡盐、 镍盐和钼盐中 至少一种。
5. 如权利要求 1 所述的制备方法, 其特征在于, 所需厚度为 300 nm ~ 500 nm。
6. 如权利要求 1所述的制备方法, 其特征在于, 所述锌盐、 铟盐和 掺杂金属盐为其相应的醇盐、 醋酸盐、 乙烯丙酮盐、 硝酸盐、 氯化盐中 的至少一种。
7. 如权利要求 1所述的制备方法, 其特征在于, 所述溶胶溶液的粘 度为 17 ~ 18 mPa-So
8. 如权利要求 1所述的制备方法,其特征在于,所述在 80°C~ 300°C 下保持 0.5 ~ 30 min的过程分为干燥和热处理两步依次进行, 将提拉成 膜后的介质置于 80°C~ 150°C下干燥, 时间为 0.5 min~ 15 min, 获得凝 胶薄膜,再将凝胶薄膜置于 150°C~ 300°C下预热处理,时间为 0.5 min~ 15 min。
9. 如权利要求 1所述的制备方法, 其特征在于, 还包括对所述透明 导电氧化物薄膜进行退火的步骤, 所述退火的温度为 250°C~ 800°C, 时 间为 10 min ~ 3 h。
10. 如权利要求 9所述的制备方法, 其特征在于, 还包括对所述透 明导电氧化物薄膜在还原气氛中进行二次退火处理的步骤, 所述二次退 火处理的温度为 250°C ~ 800°C, 时间为 0.5 min ~ 1 h。
PCT/CN2013/074951 2012-05-04 2013-04-28 透明导电氧化物薄膜的制备方法 WO2013163948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210136712.7 2012-05-04
CN201210136712.7A CN102646759B (zh) 2012-05-04 2012-05-04 一种透明导电氧化物薄膜的制备方法

Publications (1)

Publication Number Publication Date
WO2013163948A1 true WO2013163948A1 (zh) 2013-11-07

Family

ID=46659460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074951 WO2013163948A1 (zh) 2012-05-04 2013-04-28 透明导电氧化物薄膜的制备方法

Country Status (2)

Country Link
CN (1) CN102646759B (zh)
WO (1) WO2013163948A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646759B (zh) * 2012-05-04 2015-05-27 深圳市科聚新材料有限公司 一种透明导电氧化物薄膜的制备方法
CN103011902B (zh) * 2012-12-17 2014-06-25 江苏大学 透明氧化铝陶瓷用氧化锌增透膜的制备方法
CN102992739A (zh) * 2012-12-17 2013-03-27 江苏大学 一种多功能透明氧化铝陶瓷的制备方法
CN103325859B (zh) * 2013-06-26 2016-08-10 徐东 一种ito薄膜的制备方法
CN103451618B (zh) * 2013-08-15 2016-06-15 京东方科技集团股份有限公司 一种透明导电氧化物膜层的制备方法
CN104376895B (zh) * 2014-11-13 2016-12-07 南通华盛高聚物科技股份有限公司 透明导电薄膜及其制备方法和应用
CN105036564B (zh) * 2015-06-25 2018-02-27 西安理工大学 一种纳米晶增强氧化钨电致变色薄膜及其制备方法
CN105013545A (zh) * 2015-06-30 2015-11-04 苏州东辰林达检测技术有限公司 一种纸质微流控芯片的制备方法
CN106128941A (zh) * 2016-09-14 2016-11-16 齐鲁工业大学 一种低温制备铟镓锌氧透明半导体薄膜的液相方法
CN107723688A (zh) * 2017-10-24 2018-02-23 河南理工大学 一种制备(002)取向的azo透明导电薄膜的方法
CN107935405B (zh) * 2017-11-23 2020-09-25 西安理工大学 一种锑掺杂氧化锡电致变色薄膜的制备方法
CN107935408B (zh) * 2017-12-16 2020-08-18 西安理工大学 一种复层电致变色薄膜及其制备方法
US10907050B2 (en) 2018-11-21 2021-02-02 Hee Solar, L.L.C. Nickel oxide sol-gel ink
CN114437392A (zh) * 2020-11-06 2022-05-06 湖南七点钟文化科技有限公司 锡基大电阻薄膜镀膜液、其制备方法与锡基大电阻薄膜的制备方法
CN114437394A (zh) * 2020-11-06 2022-05-06 湖南七点钟文化科技有限公司 锌基大电阻薄膜镀膜液、其制备方法与锌基大电阻薄膜的制备方法
CN113816615B (zh) * 2021-08-31 2023-06-16 西安理工大学 一种超高透明导电性ito薄膜及其制备方法
CN114023911A (zh) * 2021-11-05 2022-02-08 合肥福纳科技有限公司 一种ito阳极及其制备方法、qled器件及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129110B2 (ja) * 1994-09-30 2001-01-29 三菱マテリアル株式会社 透明導電膜およびその形成方法
CN1868948A (zh) * 2005-05-27 2006-11-29 北京化工大学 铟锡氧化物前驱物浆料制备和ito薄膜制备方法
CN102412018A (zh) * 2011-10-27 2012-04-11 西北工业大学 一种铝掺杂氧化锌透明导电薄膜电阻率调控的制备方法
CN102646759A (zh) * 2012-05-04 2012-08-22 深圳市科聚新材料有限公司 一种透明导电氧化物薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129110B2 (ja) * 1994-09-30 2001-01-29 三菱マテリアル株式会社 透明導電膜およびその形成方法
CN1868948A (zh) * 2005-05-27 2006-11-29 北京化工大学 铟锡氧化物前驱物浆料制备和ito薄膜制备方法
CN102412018A (zh) * 2011-10-27 2012-04-11 西北工业大学 一种铝掺杂氧化锌透明导电薄膜电阻率调控的制备方法
CN102646759A (zh) * 2012-05-04 2012-08-22 深圳市科聚新材料有限公司 一种透明导电氧化物薄膜的制备方法

Also Published As

Publication number Publication date
CN102646759A (zh) 2012-08-22
CN102646759B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2013163948A1 (zh) 透明导电氧化物薄膜的制备方法
Crossay et al. Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells
Wang et al. Growth of ZnO: Al films by RF sputtering at room temperature for solar cell applications
CN101560059B (zh) 掺铝氧化锌涂膜和纳米棒阵列材料及其制备方法
Lin et al. Parametric study on preparation and characterization of ZnO: Al films by sol–gel method for solar cells
US8932495B1 (en) Transparent conductor materials and processes for forming such materials
Nam et al. F-doped ZnO by sol-gel spin-coating as a transparent conducting thin film
CN101994103B (zh) 钇掺杂氧化锌透明导电薄膜的光助溶胶-凝胶的制备方法
US20140209174A1 (en) Ink for forming compound semiconductor thin film and production method thereof
JP6110492B2 (ja) 透明導電性薄膜形成用コア―シェルナノ粒子、及びこれを使用した透明導電性薄膜の製造方法
Li et al. Structure and physical properties evolution of ITO film during amorphous-crystalline transition using a highly effective annealing technique
Yang et al. Ultrasonic spray pyrolysis-induced growth of highly transparent and conductive F, Cl, Al, and Ga co-doped ZnO films
CN102503162A (zh) 一种Ag-Al共掺杂p型ZnO薄膜的制备方法
Wu et al. Aluminum-Doped Zinc Oxide Thin Films Prepared by Sol-Gel and~ RF Magnetron Sputtering
Salari et al. Sol-Gel processed GZO thin film from low concentration solution and investigating GZO/Cs 2 CO 3 bilayer
TW201234625A (en) Compound semiconductor thin-film solar cell and method for producing thereof
Chang et al. Enhancement of the light-scattering ability of Ga-doped ZnO thin films using SiOx nano-films prepared by atmospheric pressure plasma deposition system
Guo et al. Effect of ITO film deposition conditions on ITO and CdS films of semiconductor solar cells
Yusof et al. Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique
CN110676351B (zh) 一种化合物薄膜及其制备方法、化合物薄膜太阳电池
EP2690192B1 (en) Multi-elements-doped zinc oxide film, manufacturing method and application thereof
CN102251236A (zh) 一种钇-铝共掺杂氧化锌薄膜及其制备方法
CN103400893A (zh) 一种制备铜锌锡硫光电薄膜的方法
CN105576053B (zh) 铜锌锡硫薄膜太阳能电池及其制备方法
Hua et al. Influence of target substrate distance on the properties of transparent conductive Si doped ZnO thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784391

Country of ref document: EP

Kind code of ref document: A1