CN107723688A - 一种制备(002)取向的azo透明导电薄膜的方法 - Google Patents

一种制备(002)取向的azo透明导电薄膜的方法 Download PDF

Info

Publication number
CN107723688A
CN107723688A CN201711001782.0A CN201711001782A CN107723688A CN 107723688 A CN107723688 A CN 107723688A CN 201711001782 A CN201711001782 A CN 201711001782A CN 107723688 A CN107723688 A CN 107723688A
Authority
CN
China
Prior art keywords
azo
films
orientation
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711001782.0A
Other languages
English (en)
Inventor
胡保付
汪舰
杜保立
刘丙国
徐坚
刘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201711001782.0A priority Critical patent/CN107723688A/zh
Publication of CN107723688A publication Critical patent/CN107723688A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明涉及一种制备(002)取向的AZO透明导电薄膜的制备方法。这种薄膜光电性能优异。本发明采用下述技术方案:1)将二水乙酸锌溶解在乙二醇甲醚溶剂中,加入一定量的乙醇胺和九水硝酸铝,反应制得AZO前驱体溶胶;2)将前驱体溶胶旋涂于基片上,得到AZO凝胶薄膜,高温处理后重复旋涂多次;3)将AZO薄膜在空气中500‑550℃预处理30‑60min,然后在95N2/5H2混合气体中,压强1.31×105Pa,500‑550℃烧结30‑60min,降至室温后即可得到(002)取向生长的AZO薄膜。AZO薄膜的电阻率可达1.27×10‑3Ωcm,在可见光范围内平均透光率高于90%。

Description

一种制备(002)取向的AZO透明导电薄膜的方法
技术领域
本发明涉及透明导电薄膜技术领域,具体涉及一种采用溶胶-凝胶工艺制备(002)取向的AZO透明导电薄膜。
背景技术
透明导电氧化物(TCO)薄膜因具有透光率高、导电性好等优点,在太阳能电池、平板显示器、发光二极管、电磁防护屏等光电器件方面具有广泛的应用前景。目前产业化的透明导电薄膜主要是掺锡氧化铟(ITO)薄膜,但是ITO中的铟元素属于稀有金属,其储量有限,价格昂贵且有毒性,不利于环保,大大限制了其大规模使用。近年来掺铝氧化锌(AZO)薄膜的研究引起了高度重视,已经有许多文献报道。AZO薄膜表现出了良好的光电性能,且具有原料丰富,无毒、环保等优点,有望成为ITO薄膜的替代者。目前AZO薄膜的制备方法有多种,主要有磁控溅射法、脉冲激光沉积法、原子层沉积、化学气象沉积、喷雾热解法和溶胶凝胶法等。在众多的制备工艺中,溶胶-凝胶方法制备薄膜具有设备成本低,工艺简单,成膜均匀,便于控制元素掺杂等优点。但是溶胶-凝胶法制备的AZO薄膜电阻率通常偏高一点,还需改进工艺,进一步提高薄膜的电导率。根据文献报道,沿c轴取向生长能够提高薄膜的致密度,减少载流子的晶界散射,大幅降低AZO薄膜的电阻率。但是,目前AZO薄膜的取向生长多采用磁控溅射或脉冲沉积等昂贵的物理方法制备,不宜规模化生产。而采用溶胶-凝胶方法一般不易制备出取向生长的AZO薄膜,通常需要借助衬底基片取向或者晶籽缓冲层诱导来完成取向生长,使得AZO薄膜的制备受到限制。
发明内容
本发明的目的是提供了一种(002)取向的光电性能优异的AZO薄膜制备方法。采用溶胶-凝胶旋涂工艺在石英、玻璃片等基片上沉积凝胶膜,经过后期在N2/H2混合气体中退火处理,获得了电阻率极低,在可见光区透光率很高的(002)取向的AZO透明导电薄膜。本发明的制备方法设备成本低,工艺简单,原料丰富,制备的AZO薄膜光电性能优异。
本发明采用下述技术方案:
1)前驱体胶体制备:
将二水乙酸锌溶解在乙二醇甲醚溶剂中,加入一定量的乙醇胺作为稳定剂,搅拌溶解后,加入适量的九水硝酸铝,50-70℃恒温水浴搅拌3-4h后,然后过滤,将过滤后的溶胶老化60-80h,得到金属离子浓度为0.2-0.6mol/L的AZO前驱体溶胶;
2)AZO薄膜的制备:
将步骤1)制得的前驱体溶胶,采用旋涂方法沉积在清洗过的基片上,得到AZO凝胶薄膜,在空气中400-500℃预处理8-15min,然后降至室温,再重复旋涂,得到一定厚度的AZO薄膜;
3)AZO薄膜在高纯95N2/5H2混合气体中的退火处理:
将步骤2)制备的AZO薄膜放入管式炉中,从室温开始加热,升温速率为3-5℃/min,首先500-550℃预处理30-60min,然后在保持500-550℃情况下抽真空至低于10Pa,接着充入高纯95N2/5H2混合气体,然后再抽真空至低于10Pa,接着再次充入高纯95N2/5H2混合气体,如此反复抽真空3-5次后,充入高纯95N2/5H2混合气体,压强保持在1.31×105Pa,继续在500-550℃烧结30-60min,烧结完毕,在保持压强的情况下,停止加热,自然冷却至室温,停止通气,即可得到(002)取向生长的AZO薄膜。
上述的方法,步骤1)中,所述的Zn2+:乙醇胺按摩尔比为1:1。
上述的方法,步骤1)中,所述的Al3+/(Zn2++Al3+)按摩尔比为0.5-2.5%。
上述的方法,步骤2)中,所述的旋涂工艺参数为3000rpm,旋涂时间20s,重复旋涂次数为15-25次。
以现有的技术相比,本发明的有益效果是:本发明提供的溶胶-凝胶法合成(002)取向的透明导电AZO薄膜制备方法,采用价格低廉的二水乙酸锌和九水硝酸铝为原料,大大降低了制备透明导电薄膜的成本,薄膜制备技术具有操作简单,设备便宜以及容易规模化生产等优点,此外,还便于精确掺杂,成膜均匀性好,有望在石英、玻璃等基片上大面积生长光电性能优异的(002)取向的AZO薄膜。相较于磁控溅射、脉冲沉积等昂贵的物理方法,或者借助衬底基片取向以及利用晶籽缓冲层等诱导法制备取向生长AZO薄膜,本发明的制备取向生长AZO薄膜的技术更为简单实用。本发明制备的(002)取向的AZO薄膜的电阻率可达1.27×10-3Ωcm,在可见光范围内平均透光率高于90%,具有优异的光电性能。
附图说明
图1是实施例1中AZO薄膜在95N2/5H2混合气体退火的XRD图。
图2是实施例1、实施例2、实施例3和实施例4中AZO薄膜的XRD图。
图3是实施例1、实施例2、实施例3和实施例4中AZO薄膜电阻率图。
图4是实施例1中AZO薄膜在可见光区的透射率图。
具体实施方式
为了更好的理解本发明,下面结合附图和具体实施例,对本发明进行详细说明。应当理解,此处所述的具体实例只是用于解释本发明,并不仅仅局限于下面的几个实例。
实施例1
一种制备(002)取向的AZO透明导电薄膜的方法,包括如下步骤:
1)按照化学组成Zn0.9875Al0.0125Ox元素的化学计量比称量二水乙酸锌和九水硝酸铝,先将二水乙酸锌加入到乙二醇甲醚中,室温搅拌溶解后加入乙醇胺,Zn2+:乙醇胺摩尔比为1∶1,室温搅拌20min后,加入九水硝酸铝,然后60℃恒温水浴搅拌3-4h,自然降至室温继续搅拌2h,过滤,得到金属离子(Zn2++Al3+)浓度为0.5mol/L的AZO前驱体溶胶,老化72小时后待用;
2)将石英基片依次用去离子水、丙酮和无水乙醇超声清洗,每次超声10min。清洗后的基片用高纯N2吹干待用;
3)将步骤1)得到的溶胶采用旋涂方法在步骤2)得到的石英基片上旋涂成膜,旋涂工艺参数为3000rpm,旋涂时间20s,把涂有胶体膜基片放入管式炉中,在大气环境下500℃热处理10min,然后自然冷却至室温,再次旋涂、热处理,重复20次,得到理想厚度的AZO薄膜;
4)将步骤3)制备的AZO薄膜放入管式炉中,从室温开始加热,以5℃/min的升温速率升温到530℃,530℃预处理40min;
5)利用机械泵抽真空,将石英管内压强抽至低于10Pa,然后充入高纯95N2/5H2混合气体,压强升至1.31×105Pa,再次启动机械泵抽取真空,如此反复3-5次后充入高纯95N2/5H2混合气体,压强保持在1.31×105Pa,继续在530℃烧结1h,烧结完成后在保持压强1.31×105Pa的情况下,停止加热,自然冷却至室温,,得到AZO薄膜。制备的AZO薄膜为(002)取向的六方纤锌矿结构。薄膜表面平整光滑,无裂纹无空洞。通过霍尔效应测试AZO薄膜的电阻率为1.27×10-3Ωcm,比空气中退火处理薄膜的电阻降低了三个量级,利用光谱仪测试薄膜在可见光范围内的平均透光率高于90%。参见附图1、附图2、附图3和附图4。
实施例2
将实施例1中步骤1)化学组分配比改为Zn0.99Al0.01Ox,按化学计量比称量二水乙酸锌和九水硝酸铝,其余过程同实施例1相同。制备的AZO薄膜为(002)取向的六方纤锌矿结构。通过霍尔效应测试AZO薄膜的电阻率为1.98×10-3Ωcm。参见附图2和附图3。
实施例3
将实施例1中步骤1)化学组分配比改为Zn0.985Al0.015Ox,按化学计量比称量二水乙酸锌和九水硝酸铝,其余过程同实施例1相同。制备的AZO薄膜为(002)取向的六方纤锌矿结构。通过霍尔效应测试AZO薄膜的电阻率为3.25×10-3Ωcm。参见附图2和附图3。
实施例4
将实施例1中步骤1)化学组分配比改为Zn0.993Al0.007Ox,按化学计量比称量二水乙酸锌和九水硝酸铝,其余过程同实施例1相同。制备的AZO薄膜为(002)取向的六方纤锌矿结构。通过霍尔效应测试AZO薄膜的电阻率为2.50×10-3Ωcm。参见附图2和附图3。
作为对比实验,制备了空气中退火处理的AZO薄膜,同实施例1中的1-3)步骤相同,将制备的AZO薄膜放入管式炉中,以5℃/min的升温速率升温到530℃,在大气环境中530℃退火处理100min,得到AZO薄膜,通过霍尔效应测试AZO薄膜的电阻率为1.3Ωcm,利用光谱仪测试在可见光范围内薄膜的平均透光率约为88%。其相结构明显异于实施例1中制备AZO薄膜的相结构,其光电性能和实施例1中制备AZO薄膜的光电性能相比也有明显的差距,尤其是电阻率相差了三个数量级。参见附图1,附图3和附图4。

Claims (5)

1.一种制备(002)取向的AZO透明导电薄膜的方法,其特征在于制备的AZO薄膜为(002)取向生长,且其光电性能优异,主要包括以下步骤:
1)前驱体胶体制备:
将二水乙酸锌溶解在乙二醇甲醚溶剂中,加入一定量的乙醇胺作为稳定剂,搅拌溶解后,加入适量的九水硝酸铝,50-70℃恒温水浴搅拌3-4h后,然后过滤,将过滤后的溶胶老化60-80h,得到金属离子浓度为0.2-0.6mol/L的AZO前驱体溶胶;
2)AZO薄膜的制备:
将步骤1)制得的前驱体溶胶,采用旋涂方法沉积在清洗过的基片上,得到AZO凝胶薄膜,在空气中400-500℃预处理8-15min,然后降至室温,再重复旋涂,得到一定厚度的AZO薄膜;
3)AZO薄膜在高纯95N2/5H2混合气体中的退火处理:
将步骤2)制备的AZO薄膜放入管式炉中,从室温开始加热,升温速率为3-5℃/min,首先500-550℃预处理30-60min,然后在保持500-550℃情况下抽真空至低于10Pa,接着充入高纯95N2/5H2混合气体,然后再抽真空至低于10Pa,接着再次充入高纯95N2/5H2混合气体,如此反复抽真空3-5次后,充入高纯95N2/5H2混合气体,压强保持在1.31×105Pa,继续在500-550℃烧结30-60min,烧结完毕,在保持压强的情况下,停止加热,自然冷却至室温,停止通气,即可得到(002)取向生长的AZO薄膜。
2.按照权利要求1所述的一种制备(002)取向的AZO透明导电薄膜的方法,其特征在于:步骤1)所述的Zn2+:乙醇胺按摩尔比为1:1。
3.按照权利要求1所述的一种制备(002)取向的AZO透明导电薄膜的方法,其特征在于:步骤1)所述的Al3+:(Zn2++Al3+)按摩尔比为0.5%-2.5%。
4.按照权利要求1所述的一种制备(002)取向的AZO透明导电薄膜的方法,其特征在于:步骤2)所述的基片为玻璃片或石英片。
5.按照权利要求1所述的一种制备(002)取向的AZO透明导电薄膜的方法,其特征在于:步骤2)所述的基片清洗过程为将玻璃片或石英基片依次放入去离子水、丙酮和无水乙醇中,超声清洗10min,然后用高纯氮气吹干。
CN201711001782.0A 2017-10-24 2017-10-24 一种制备(002)取向的azo透明导电薄膜的方法 Pending CN107723688A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711001782.0A CN107723688A (zh) 2017-10-24 2017-10-24 一种制备(002)取向的azo透明导电薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711001782.0A CN107723688A (zh) 2017-10-24 2017-10-24 一种制备(002)取向的azo透明导电薄膜的方法

Publications (1)

Publication Number Publication Date
CN107723688A true CN107723688A (zh) 2018-02-23

Family

ID=61213510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711001782.0A Pending CN107723688A (zh) 2017-10-24 2017-10-24 一种制备(002)取向的azo透明导电薄膜的方法

Country Status (1)

Country Link
CN (1) CN107723688A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330075A (zh) * 2011-09-26 2012-01-25 中国地质大学(武汉) 一种ZnO基透明导电薄膜的制备方法
CN102646759A (zh) * 2012-05-04 2012-08-22 深圳市科聚新材料有限公司 一种透明导电氧化物薄膜的制备方法
CN106435533A (zh) * 2016-08-02 2017-02-22 辽宁大学 一种制备高性能azo透明导电薄膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330075A (zh) * 2011-09-26 2012-01-25 中国地质大学(武汉) 一种ZnO基透明导电薄膜的制备方法
CN102646759A (zh) * 2012-05-04 2012-08-22 深圳市科聚新材料有限公司 一种透明导电氧化物薄膜的制备方法
CN106435533A (zh) * 2016-08-02 2017-02-22 辽宁大学 一种制备高性能azo透明导电薄膜的方法

Similar Documents

Publication Publication Date Title
CN101560059B (zh) 掺铝氧化锌涂膜和纳米棒阵列材料及其制备方法
WO2018028244A1 (zh) 一种透明导电薄膜及其制备方法和应用
CN103451637A (zh) 掺铝氧化锌薄膜及其制备方法
CN103199126A (zh) 石墨烯-氧化锌透明导电薄膜及其制备方法
CN103325859A (zh) 一种ito薄膜的制备方法
CN106435533A (zh) 一种制备高性能azo透明导电薄膜的方法
CN102208487B (zh) 铜铟硒纳米晶/硫化镉量子点/氧化锌纳米线阵列纳米结构异质结的制备方法
CN102503162A (zh) 一种Ag-Al共掺杂p型ZnO薄膜的制备方法
CN108091414B (zh) 一种银纳米线复合透明导电薄膜及其制备
CN103078014A (zh) 铁酸铋/钛酸铋钠-钛酸钡异质结构铁电薄膜太阳能电池的制备方法
CN102557476A (zh) 一种溶胶凝胶法制备镓掺杂氧化锌薄膜的方法
CN105420696B (zh) 一种氧化锡基薄膜材料的制备方法
CN102877049B (zh) 共掺杂透明导电薄膜的制备方法
CN108374162B (zh) 一种掺铝氧化锌透明导电薄膜的制备方法
CN101704635B (zh) 一种在光学太阳反射镜上制备掺铝氧化锌薄膜的方法
CN103343335B (zh) 掺硼氧化锌薄膜的制备方法
CN104726851B (zh) 一种溶胶凝胶法制备p型氧化锡薄膜材料的方法
CN103938210A (zh) 一种azo透明导电薄膜的制备方法
CN107723688A (zh) 一种制备(002)取向的azo透明导电薄膜的方法
CN102251236A (zh) 一种钇-铝共掺杂氧化锌薄膜及其制备方法
CN113745410B (zh) 一种基于P型CuNiO2薄膜的钙钛矿太阳能电池的制备方法
CN102903456B (zh) 三掺杂新型透明导电薄膜的制备方法
CN106245007B (zh) 一种取向ito薄膜的制备方法
JP2014514442A (ja) 多元素ドープ酸化亜鉛薄膜、その製作方法及び応用
CN103345977B (zh) 一种银掺杂ito薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180223

WD01 Invention patent application deemed withdrawn after publication