CN105420696B - 一种氧化锡基薄膜材料的制备方法 - Google Patents

一种氧化锡基薄膜材料的制备方法 Download PDF

Info

Publication number
CN105420696B
CN105420696B CN201510828530.XA CN201510828530A CN105420696B CN 105420696 B CN105420696 B CN 105420696B CN 201510828530 A CN201510828530 A CN 201510828530A CN 105420696 B CN105420696 B CN 105420696B
Authority
CN
China
Prior art keywords
thin film
tin oxide
substrate
film material
oxide base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510828530.XA
Other languages
English (en)
Other versions
CN105420696A (zh
Inventor
孙剑
陈泽群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201510828530.XA priority Critical patent/CN105420696B/zh
Publication of CN105420696A publication Critical patent/CN105420696A/zh
Application granted granted Critical
Publication of CN105420696B publication Critical patent/CN105420696B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Abstract

本发明公开了一种氧化锡基薄膜材料的制备方法。包括以下步骤:将乙二醇甲醚、二水合氯化亚锡、乙醇混合并搅拌,在60~80℃条件下加热15~30min,加热完毕后继续在氩气气氛中陈化1~2天,制得溶胶;在基片上滴加上述溶胶旋凃甩胶得薄膜试样;移至真空管式炉中,抽真空并通入氩气,加热干燥;真空管式炉内形成甲醛气氛,并以1~3℃/分钟速率升温,至退火温度600~650℃保温10~30min,退火完成后自然冷却,p型氧化锡基薄膜材料制备完成。引入甲醛蒸汽作为保护气氛防止Sn2+氧化为Sn4+,引入Sn0来提高薄膜的迁移率,上述方法制备的霍尔迁移率高达8.6cm2V‑1S‑1

Description

一种氧化锡基薄膜材料的制备方法
技术领域
本发明属于半导体薄膜技术领域,具体涉及一种氧化锡基薄膜材料的制备方法。
背景技术
随着信息显示技术的高速发展,氧化物半导体在许多应用领域中都得到了广泛的关注。在过去几十年里,n型氧化物半导体在材料制备以及器件的应用中取得了巨大的成功,但是p型氧化物半导体的发展还非常滞后。
n型氧化物薄膜晶体管与p型氧化物薄膜晶体管相结合组成的双极性薄膜晶体管是实现透明电子器件的基础。此外,p型氧化物薄膜晶体管更有利于驱动有机发光二极管高开口率像素单元。同时,p型氧化物的薄膜晶体管与平板显示技术相结合,将会使屏幕更加清晰。氧化锡及其掺杂体系被认为是应用潜力巨大的p型氧化物。
由于p型氧化锡基薄膜的诸多优点以及其潜在的市场价值,近年来相关报道层出不穷。但是从制备方法上来看,研究人员几乎采用的都是诸如磁控溅射法等物理方法,而且制备环境均为高真空条件,薄膜制备成本高昂。
采用化学法制备p型氧化锡基薄膜材料,制备成本低廉、制备工艺简单、适合于工业化生产。化学法制备性能优良、结构和物理性质稳定的p型SnOx透明导电薄膜在p型氧化物透明导电薄膜领域具有重要的研究价值和市场价值。
发明内容
本发明目的在于提供一种氧化锡基薄膜材料的制备方法,其成本低,性能好,并且制备过程的真空度条件不需太高,缩小了p型氧化物器件与n型氧化物器件的性能差距,适合工业生产。
为达到上述目的,采用技术方案如下:
一种氧化锡基薄膜材料的制备方法,包括以下步骤:
1)将乙二醇甲醚、二水合氯化亚锡、乙醇胺按照(10~11):(0.15~0.2):(0.7~1)的摩尔比混合并搅拌至澄清,移至真空管式炉中抽真空并充入氩气,在60~80℃条件下加热15~30min,加热完毕后继续在氩气气氛中陈化1~2天,制得溶胶;
2)将基片固定在匀胶机上,以2000~2500转/分钟的速度旋转,在基片上滴加上述溶胶旋凃甩胶,旋转时间为20~30秒,制得薄膜试样;
3)将薄膜试样移至真空管式炉中,抽真空并通入氩气,然后对薄膜试样进行加热干燥,干燥结束后自然冷却;
4)向真空管式炉内通入甲醛蒸气形成甲醛气氛,以1~3℃/分钟速率升温,至退火温度600~650℃保温10~30min,退火完成后自然冷却,即制得p型氧化锡基薄膜材料。
按上述方案,所述基片为绝缘SiO2/Si基片,基片的尺寸为10mm×10mm,基片上SiO2层的厚度500nm。
按上述方案,所述基片在使用前依次用丙酮、无水乙醇和去离子水进行超声波清洗。
按上述方案,步骤3)中所述干燥温度为200℃,干燥时间为15-20min。
本发明的有益效果在于:
本发明采用了溶胶凝胶法为制备方法,制备成本低廉、制备工艺简单、适合于工业化生产。
在制备薄膜过程首次引入甲醛蒸汽作为保护气氛防止Sn2+氧化为Sn4+,引入Sn0来提高薄膜的迁移率,p型SnOx薄膜的霍尔迁移率达到8.6cm2V-1S-1
化学法制备性能优良、结构和物理性质稳定的p型SnOx透明导电薄膜在p型氧化物透明导电薄膜领域具有重要的研究价值和市场价值。
附图说明
图1:实施例1中所制备的p型SnOx薄膜材料的霍尔迁移率结果图;
图2:实施例1中所制备的p型SnOx薄膜材料的XRD测试结果图。
具体实施方式
以下实施例进一步阐释本发明的技术方案,但是不作为对本发明保护范围的限制。
本发明所提供的p型SnOx薄膜材料的制备过程如下:
1)将乙二醇甲醚8.5ml、二水合氯化亚锡0.0018mol以及乙醇胺0.5ml,在器皿中混合并搅拌至澄清,然后将溶液移至真空管式炉中,用机械泵将管式炉内部环境抽气,使得真空度达到-0.1MPa后,充入氩气。在60℃条件下对溶液加热0.5小时,加热完毕后将溶液继续在氩气气氛中陈化1天,制得溶胶。由于二价锡的化学性质活泼,所以配置溶胶过程一定要迅速,以免二价锡被氧化。锡的浓度太高,在退火时候离子会发生团聚以及透光率不高,薄膜附着力不够等现象,所以要浓度尽量小,本实验Sn2+所采用的浓度为0.2mol/L。
2)分别用丙酮、无水乙醇、去离子水对基片进行超声波清洗各一次。所述的基片为绝缘SiO2/Si基片,基片的尺寸为10mm×10mm,基片上SiO2层的厚度500nm。
3)取5片基片,将基片固定在匀胶机上,以2000转/分钟的速度进行旋转,在基片上滴加溶胶3滴,进行旋凃甩胶,旋转时间为30秒,制得薄膜试样。
4)甩胶结束后,将薄膜试样移至真空管式炉中,抽真空并通入氩气,然后对薄膜试样进行加热干燥,干燥结束后自然冷却。因为在氧含量极少的环境下进行烧结,试样中的碳元素很难完全燃烧,容易发生碳化,所以在低温干燥阶段尽量延长保温时间,以将碳元素的含量降到最低。本实验在200℃下保温15min来除尽碳元素。
5)真空管式炉内形成甲醛气氛后,将上步骤中所制得的薄膜试样分别进行退火,退火温度为600~650℃,保温时间分别为10、20、30、40、50分钟,升温速度为3℃/分钟,退火完成后自然冷却,即制得所述p型氧化锡薄膜材料。
对所得五组薄膜试样进行电学性能的测试,薄膜材料电学性能如图1所示。从图1中可以看出退火时间在10~30min内时,薄膜的导电特性呈p型,并且迁移率随保温时间的增长而增加。当保温时间超过30min后,薄膜的导电特性呈现为n型。
对所得五组薄膜试样进行XRD测试,结果如图2所示,在保温时间低于30分钟时根据PDF卡片No.24-1342,四个衍射峰分别是斜方SnO的特征峰(101)和(011)。同时根据PDF卡片No.04-0673在44.0°,45.1°和55.5°分别对应着Sn的特征峰(220),(211)和(301)。当保温时间上升到30分钟以后,薄膜中出现了SnO2的组分,对应的衍射峰分别为(110)和(101)。通过XRD检测标定,可以确定我们的p型导电薄膜样品是具有SnO和Sn的混合膜,本发明称为SnOx薄膜,其霍尔迁移率达到8.6cm2V-1S-1
此外,通过XPS检测分析发现,SnOx薄膜中Sn0的含量较高的其p型霍尔迁移率较高。

Claims (3)

1.一种氧化锡基薄膜材料的制备方法,其特征在于包括以下步骤:
1)将乙二醇甲醚、二水合氯化亚锡、乙醇胺按照(10~11):(0.15~0.2):(0.7~1)的摩尔比混合并搅拌至澄清,移至真空管式炉中抽真空并充入氩气,在60~80℃条件下加热15~30min,加热完毕后继续在氩气气氛中陈化1~2天,制得溶胶;
2)将基片固定在匀胶机上,以2000~2500转/分钟的速度旋转,在基片上滴加上述溶胶旋凃甩胶,旋转时间为20~30秒,制得薄膜试样;
3)将薄膜试样移至真空管式炉中,抽真空并通入氩气,然后对薄膜试样进行加热干燥,干燥结束后自然冷却;所述干燥温度为200℃,干燥时间为15-20min;
4)向真空管式炉内通入甲醛蒸气形成甲醛气氛,以1~3℃/分钟速率升温,至退火温度600~650℃保温10~30min,退火完成后自然冷却,即制得p型氧化锡基薄膜材料。
2.如权利要求1所述氧化锡基薄膜材料的制备方法,其特征在于所述基片为绝缘SiO2/Si基片,基片的尺寸为10mm×10mm,基片上SiO2层的厚度500nm。
3.如权利要求1所述氧化锡基薄膜材料的制备方法,其特征在于所述基片在使用前依次用丙酮、无水乙醇和去离子水进行超声波清洗。
CN201510828530.XA 2015-11-25 2015-11-25 一种氧化锡基薄膜材料的制备方法 Expired - Fee Related CN105420696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510828530.XA CN105420696B (zh) 2015-11-25 2015-11-25 一种氧化锡基薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510828530.XA CN105420696B (zh) 2015-11-25 2015-11-25 一种氧化锡基薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN105420696A CN105420696A (zh) 2016-03-23
CN105420696B true CN105420696B (zh) 2016-10-19

Family

ID=55499223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510828530.XA Expired - Fee Related CN105420696B (zh) 2015-11-25 2015-11-25 一种氧化锡基薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN105420696B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784012A (zh) * 2016-11-24 2017-05-31 安徽瑞研新材料技术研究院有限公司 一种高迁移率的氧化锡基薄膜材料
CN106531635B (zh) * 2016-12-23 2019-02-22 中国地质大学(武汉) 一种p型氧化亚锡薄膜材料以及钾掺杂p型氧化亚锡薄膜材料的制备方法
CN111979561B (zh) * 2019-05-21 2022-08-26 南京理工大学 SnOx/BiVO4电极及其制备方法和在光电催化双氧水合成中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT105039A (pt) * 2010-04-06 2011-10-06 Univ Nova De Lisboa Ligas de óxidos tipo p baseados em óxidos de cobre, óxidos estanho, óxidos de ligas de estanho-cobre e respectiva liga metálica, e óxido de níquel, com os respectivos metais embebidos, respectivo processo de fabrico e utilização
CN104451610B (zh) * 2014-11-24 2016-09-07 辽宁大学 氟掺杂二氧化锡透明导电薄膜的制备方法
CN104726851B (zh) * 2015-03-30 2017-06-23 中国地质大学(武汉) 一种溶胶凝胶法制备p型氧化锡薄膜材料的方法

Also Published As

Publication number Publication date
CN105420696A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN102768945A (zh) 一种溶胶凝胶法制氧化铟镓锌半导体薄膜的方法
WO2018028244A1 (zh) 一种透明导电薄膜及其制备方法和应用
CN110176539B (zh) 一种全光谱光稳定的高效钙钛矿太阳能电池的制备方法
CN105420696B (zh) 一种氧化锡基薄膜材料的制备方法
CN102763174A (zh) 透明导电膜的制造方法及透明导电膜、使用该透明导电膜的元件、透明导电基板以及使用该透明导电基板的器件
CN104617219A (zh) 基于CH3NH3PbI2+xCl1-x光活性层的平面钙钛矿太阳能电池及制备方法
CN103451637A (zh) 掺铝氧化锌薄膜及其制备方法
CN102943253A (zh) 一种掺铝氧化锌透明导电薄膜及其制备方法
CN109300805A (zh) 真空控制CsPbIxBr3-x钙钛矿生长的方法和光伏器件
CN103199126A (zh) 石墨烯-氧化锌透明导电薄膜及其制备方法
CN103325859A (zh) 一种ito薄膜的制备方法
CN101337772A (zh) 透明稀土掺杂钛酸铋发光铁电薄膜及其制备方法
CN106435533A (zh) 一种制备高性能azo透明导电薄膜的方法
CN112071993A (zh) 一种利用修饰剂提高钙钛矿太阳能电池光电性能的方法
CN108091414A (zh) 一种银纳米线复合透明导电薄膜及其制备
CN104726851B (zh) 一种溶胶凝胶法制备p型氧化锡薄膜材料的方法
CN111634939B (zh) 一种稀土Sm掺杂的全无机钙钛矿、制备方法及其应用
CN111540831B (zh) 一种钛矿太阳能电池及其制备方法
CN111129310B (zh) 一种引入辣椒素的钙钛矿薄膜制备方法
CN108374162B (zh) 一种掺铝氧化锌透明导电薄膜的制备方法
CN103952678B (zh) 一种高迁移率的掺氟氧化锌基透明导电薄膜的制备方法
US20130334688A1 (en) Multi-elements-doped zinc oxide film, manufacturing method and application thereof
CN102877049A (zh) 共掺杂透明导电薄膜的制备方法
CN103695856B (zh) 柔性F掺杂SnO2透明导电薄膜及制备方法
CN103510086B (zh) 氧化锌锡薄膜及制备方法、薄膜晶体管及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161019

Termination date: 20181125