WO2013159554A1 - 一种提高通信速率的方法和装置 - Google Patents

一种提高通信速率的方法和装置 Download PDF

Info

Publication number
WO2013159554A1
WO2013159554A1 PCT/CN2012/087959 CN2012087959W WO2013159554A1 WO 2013159554 A1 WO2013159554 A1 WO 2013159554A1 CN 2012087959 W CN2012087959 W CN 2012087959W WO 2013159554 A1 WO2013159554 A1 WO 2013159554A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
path
intensity
rate
strength
Prior art date
Application number
PCT/CN2012/087959
Other languages
English (en)
French (fr)
Inventor
张和平
李正浩
隆仲莹
王定杰
杨兆良
屠东兴
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to JP2014520528A priority Critical patent/JP5745177B2/ja
Priority to EP12875120.3A priority patent/EP2765715B1/en
Priority to ES12875120.3T priority patent/ES2578060T3/es
Publication of WO2013159554A1 publication Critical patent/WO2013159554A1/zh
Priority to US14/145,331 priority patent/US8964915B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0865Independent weighting, i.e. weights based on own antenna reception parameters

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and apparatus for increasing communication rate. Background technique
  • MIMO Multiple-Input Multiple-Out-put
  • 802.11 ⁇ is the new wireless LAN technology of the Institute of Electrical and Electronics Engineers (IEEE) following 802.11b ⁇ a ⁇ g.
  • IEEE Institute of Electrical and Electronics Engineers
  • proprietary MIMO technology can improve the performance of existing 802.11a/b/g networks.
  • MIMO technology is also currently used in Long Term Evolution (LTE) technology.
  • the problem of the peak rate of the terminal device is simply considered from the perspective of the efficiency of the antenna, but this means is limited, and the adjustment is very difficult.
  • the rate is increased; however, the debugging of the antenna is difficult, and the operable space for the terminal product is limited; when the performance of the first antenna is adjusted, the other frequency bands of the first antenna are That is, it is not the signal transmission band when the antenna performance is currently adjusted.)
  • a technical problem to be solved by embodiments of the present invention is to provide a method and apparatus for increasing the communication rate.
  • An automatic boost to increase the communication rate can be achieved.
  • the embodiment of the present invention provides a method for improving a communication rate, which is used in a terminal that operates in a multiple input and multiple MIMO state, and the method includes:
  • the method further includes:
  • the first path or/and the second path are adjusted to reduce the imbalance of the first path and the second path depending on a rate of the first signal, a rate of the second signal, or a change in a signal down rate.
  • the adjusting the first path or the second path according to the difference between the strength of the first signal and the strength of the second signal includes:
  • the adjusting the attenuation of the first path to the attenuator of the first path or/and the diversity of the second path to the low noise amplifier according to the difference between the intensity of the first signal and the intensity of the second signal includes:
  • the low noise amplifier that starts the diversity in the second path is activated.
  • the first path is activated Attenuator in the middle to increase the signal attenuation of the first path; or,
  • the embodiment of the present invention further provides an apparatus for improving a communication rate, which is used in a terminal operating in a multiple-input multiple-output MIMO state, and the apparatus includes:
  • an obtaining module configured to obtain an intensity of the first signal received in the first path connecting the first antenna, and an intensity of the second signal received in the second path connecting the second antenna;
  • an adjustment module configured to adjust the first path or/and the second path according to the difference between the strength of the first signal and the strength of the second signal to reduce the imbalance of the first path and the second path Degree, thereby increasing the communication rate.
  • the acquiring module is further configured to obtain the first letter received in the first path The rate of the number, the rate of the second signal received in the second path, or the downlink rate of the signal; the adjusting module is further configured to perform downlink according to the rate of the first signal, the rate of the second signal, or the signal The change in rate adjusts the first path or/and the second path to reduce the imbalance of the first path and the second path.
  • the adjustment module includes:
  • a determining submodule configured to determine whether a difference between the strength of the first signal and the strength of the second signal exceeds a predetermined value
  • a balance adjustment submodule configured to: when the judgment result of the submodule is YES, the diversity of the attenuator or/and the second path of the first path according to the difference degree between the strength of the first signal and the strength of the second signal The low noise amplifier is adjusted.
  • the balance adjustment submodule includes:
  • a second path adjusting unit configured to: when the intensity of the first signal is higher than a sum of an intensity of the second signal and a preset threshold, and the first signal is a small signal, start the second a low noise amplifier with diversity in the path;
  • a first path adjusting unit configured to: when an intensity of the first signal is higher than a sum of an intensity of the second signal and a preset threshold, and all low noise amplifiers in the second path are activated Activating the attenuator in the first path to increase signal attenuation of the first path; or, when the intensity of the first signal is higher than a sum of the intensity of the second signal and a preset threshold, and When the first signal is a large signal, the attenuator in the first path is activated to increase signal attenuation of the first path.
  • an embodiment of the present invention further provides a terminal device, where the terminal device works in
  • the terminal device includes a first antenna, a second antenna, a first path connecting the first antenna, and a second path connecting the second antenna, and is connected to the first path and the second path.
  • Baseband control chip
  • the baseband control chip includes:
  • an obtaining module configured to obtain an intensity of the first signal received in the first path connecting the first antenna, and an intensity of the second signal received in the second path connecting the second antenna;
  • an adjustment module configured to adjust the first path or/and the second path according to the difference between the strength of the first signal and the strength of the second signal to reduce the imbalance of the first path and the second path Degree, thereby increasing the communication rate.
  • the acquiring module is further configured to obtain a rate of the first signal received in the first path, a rate of the second signal received in the second path, or a downlink rate of a signal;
  • the adjusting module is further configured to adjust the first path or/and the second path to reduce the first path and the second according to a change of a rate of the first signal, a rate of the second signal, or a change in a downlink rate of the signal The imbalance of the pathway.
  • the adjustment module includes:
  • a determining submodule configured to determine whether a difference between the strength of the first signal and the strength of the second signal exceeds a predetermined value
  • a balance adjustment submodule configured to: when the judgment result of the submodule is YES, the diversity of the attenuator or/and the second path of the first path according to the difference degree between the strength of the first signal and the strength of the second signal The low noise amplifier is adjusted.
  • the balance adjustment submodule includes:
  • a second path adjusting unit configured to: when the intensity of the first signal is higher than a sum of an intensity of the second signal and a preset threshold, and the first signal is a small signal, start the second a low noise amplifier with diversity in the path;
  • a first path adjusting unit configured to: when an intensity of the first signal is higher than a sum of an intensity of the second signal and a preset threshold, and all low noise amplifiers in the second path are activated Activating the attenuator in the first path to increase signal attenuation of the first path; or, when the intensity of the first signal is higher than a sum of the intensity of the second signal and a preset threshold, and When the first signal is a large signal, the attenuator in the first path is activated to increase signal attenuation of the first path.
  • the implementation of the embodiments of the present invention has the following beneficial effects:
  • the inventors have found through a large number of experimental studies that the channel imbalance will affect the throughput rate of the channel to a large extent, thereby affecting the overall rate of the antenna;
  • the signal strength of the paths is used to adjust the imbalance of the paths to improve the communication rate. It is not necessary to debug the antenna, and the automatic improvement of the communication rate can be realized.
  • FIG. 1 is a schematic diagram of a MIMO model of an antenna portion of a terminal device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a relationship between an imbalance degree of a path and a path capacity according to the formula (1) in the embodiment of the present invention
  • FIG. 3 is a schematic diagram of a channel model simulation showing the relationship between the imbalance of the path and the percentage decrease in throughput in the embodiment of the present invention
  • FIG. 4 is a schematic diagram of a specific process of the method for improving the communication rate in the embodiment of the present invention
  • FIG. 5 is a schematic diagram of a specific composition of the device for improving the communication rate in the embodiment of the invention
  • FIG. 6 is a schematic diagram of an adjustment module in the embodiment of the invention. Specific composition diagram
  • FIG. 7 is a schematic diagram of a specific composition of a terminal device in an embodiment of the invention.
  • FIG. 8 is a schematic diagram of another specific composition of a terminal device in an embodiment of the invention.
  • FIG. 9 is another schematic flowchart of a method for increasing a communication rate in an embodiment of the present invention. detailed description
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 1 it is a simple model of the antenna portion of the terminal device in the embodiment of the present invention.
  • the attenuator (ATT) 1/ATTO can realize the function of antenna gain and path attenuation.
  • the attenuator in the embodiment of the present invention may refer to the portion of the analog antenna gain and the analog path attenuation in the multi-path (e.g., the first path, the second path, etc.).
  • G is the imbalance of the path
  • H is the channel transfer function
  • W is the precoding matrix
  • X is the incoming signal
  • n is the thermal noise
  • R is the final received signal.
  • the imbalance of the pathway It can be expressed in terms of the difference in signal strength between the different paths, in dB (Decibel, decibel), ie, the imbalance of the two paths is 10 times the common logarithm of the signal strength ratio between the two paths.
  • the numerical result according to equation (1) is as shown in Fig. 2.
  • the abscissa is G, that is, the imbalance of the channel, the unit is dB; the ordinate represents the channel capacity, and the unit is bit/s/Hz.
  • the higher the path imbalance the smaller the path capacity.
  • the inventors have found that the channel imbalance affects the throughput rate of the channel to a large extent, and thus affects the communication rate. According to the above results, it is necessary to obtain good throughput rates under various signal-to-noise ratios.
  • the balance can be less than 3dB.
  • the present invention proposes a method of increasing the communication rate, which improves the communication rate by reducing the imbalance between the paths.
  • FIG. 4 it is a specific flow diagram of a method for increasing the communication rate in the embodiment of the present invention.
  • the method is used in a terminal operating in a MIMO state, which includes the following steps.
  • the first antenna may be a primary antenna
  • the second antenna may be a diversity antenna. The opposite is also possible.
  • the criterion for starting the adjustment may be that when the calculated power difference is higher than the threshold, the threshold may be set to a value less than or equal to 3 dB.
  • a threshold for starting the adjustment may be set, that is, the step is divided into two processes: a. determining whether the difference between the intensity of the first signal and the intensity of the second signal exceeds a predetermined value. b. If the determination result is yes, adjust the attenuation of the first path or/and the diversity of the second path according to the difference between the intensity of the first signal and the intensity of the second signal to The imbalance of the first passage and the second passage is reduced.
  • the foregoing step b may be adjusted as follows: when the strength of the first signal is higher than the sum of the strength of the second signal and a preset threshold, and the When a signal is a small signal, the low noise amplifier of the diversity in the second path is activated. That is, when the signal strength of the first path is small, the imbalance of the two paths is reduced by increasing the signal strength of the second path (e.g., amplifying the signal of the second path by a low noise amplifier on the second path).
  • the first path is activated
  • the attenuator is configured to increase the signal attenuation of the first path; or, when the intensity of the first signal is higher than the sum of the intensity of the second signal and a preset threshold, and the first signal is a large signal
  • the attenuator in the first path is activated to increase the signal attenuation of the first path.
  • the imbalance of the two paths can be reduced by appropriately attenuating the signal of the first path.
  • the criterion that "the intensity of the first signal is higher than the sum of the intensity of the second signal and the preset threshold" may be determined according to actual conditions and experience, for example, the preset width
  • the value can be 3dB, that is, the difference between the intensity of the first signal and the intensity of the second signal exceeds the preset threshold
  • the small signal can mean the signal strength is -95dBm (dBm is the unit of signal strength, indicating decibel millivolts - a signal below when the intensity of the signal is used to represent the intensity, or decibel milliwatts - when the intensity of the signal is used to represent the intensity
  • a large signal may refer to a signal having a signal strength above -70 dBm.
  • only one of the attenuator and the low noise amplifier may be adjusted, or both may be adjusted.
  • the process of adjusting the path balance according to the rate may further be included, that is, the step 103 is performed, the current downlink signal rate is obtained, and the path balance degree is adjusted according to the downlink signal rate.
  • the rate of the first signal received in the first path, the rate of the second signal received in the second path, or the downlink rate of the signal may be obtained according to the first signal.
  • the rate, the rate of the second signal, or the change in the signal down rate adjusts the first path or/and the second path to reduce the imbalance of the first path and the second path.
  • This step is an optional step Step.
  • the downlink rate of the signal refers to the combined rate of the signals passing through the two channels, reflecting the overall downlink rate under the two antennas.
  • the rate of the first signal and the rate of the second signal can be obtained from the outputs of the first path and the second path, and the signal downlink rate can be obtained from the subsequently connected network card device. In a specific embodiment, any one of the above rates may be acquired. Theoretically, the rate of the first signal and the rate of the second signal are the same, but due to the fact that the components on the first path and the second path are different, it may cause some differences.
  • the two-channel low-noise amplifier or/and the adjustable attenuator can be adjusted.
  • the adjustment mode is correct and can be further adjusted.
  • the rate when the rate is relatively poor (for example, lower than the optimal rate value corresponding to the current signal strength, as shown in Table 1 for the Avr-Throughout value of 71) or the rate is decreased, it is also started as the signal strength detection.
  • Balance adjustment of the main set diversity path The method for adjusting the balance of the two paths may refer to the foregoing method for adjusting the path according to the signal strength (that is, adjusting the low noise amplifier or/and the adjustable attenuator, but the adjustment mode is determined according to the change of the rate before and after the adjustment, and the specific reference may be made. Description of the previous paragraph).
  • the channel balance adjustment can be started.
  • the rate conditions for the start channel balance adjustment may be different under different network conditions, and the corresponding settings may be made according to specific needs.
  • the rate condition is another trigger condition for initiating the balance of the primary diversity path, and this adjustment serves as a supplement to the signal strength detection initiation balance adjustment.
  • the foregoing embodiment can be further extended to the case of having more than two antennas and corresponding multiple paths, but only one or at least two parameters are added when adjusting, just select an appropriate algorithm, and
  • the method of increasing the communication rate in the above embodiments of the present invention is extended for every two or two paths, and the adjustment of the multi-path can be realized, which is not repeated here.
  • the embodiment of the present invention further provides an apparatus for improving a communication rate, which is used in a terminal operating in a multiple input multiple output MIMO state.
  • the apparatus 7 includes: an acquiring module. 70. The strength of the first signal received in the first path connecting the first antenna, and the strength of the second signal received in the second path connecting the second antenna; and an adjustment module 72, configured to The first path or/and the second path are adjusted according to the difference between the intensity of the first signal and the intensity of the second signal to reduce the imbalance of the first path and the second path, thereby increasing the communication rate.
  • the obtaining module 70 is further configured to obtain a rate of the first signal received in the first path, a rate of the second signal received in the second path, or a downlink rate of the signal;
  • the adjusting module 72 is further configured to adjust the first path or/and the second path to reduce the first path and the second according to the rate of the first signal, the rate of the second signal, or the change of the signal downlink rate The imbalance of the pathway.
  • the adjustment module 72 may include: a determining sub-module 720, configured to determine whether a difference between the strength of the first signal and the strength of the second signal exceeds a predetermined value; the balance adjustment sub-module 722, configured to When the judgment result of the sub-module is YES, the attenuation of the first path or/and the diversity of the second path are adjusted according to the degree of difference between the intensity of the first signal and the intensity of the second signal.
  • the balance adjustment sub-module 722 may include: a second path adjustment unit, configured to: when the strength of the first signal is higher than a sum of an intensity of the second signal and a preset threshold, and the a low noise amplifier that activates diversity in the second path when a signal is a small signal; a first path adjusting unit configured to: when an intensity of the first signal is higher than an intensity of the second signal and a preset a sum of thresholds, and all of the low noise amplifiers in the second path have been activated, activating the attenuator in the first path to increase signal attenuation of the first path; or, when the first signal The intensity of the second signal is higher than the sum of the preset thresholds, and when the first signal is a large signal, the attenuator in the first path is activated to increase the signal attenuation of the first path.
  • the terminal device may include: a first antenna 1, a second antenna 2, a first path 3 connecting the first antenna 1, a second path 4 connecting the second antenna 2, and the first path 3 A baseband control chip 5 connected to the second path 4.
  • the baseband control chip 5 may include the aforementioned means for increasing the communication rate, and all functions of the means 7 for increasing the communication rate are performed by the baseband control chip 5.
  • the baseband control chip 5 may include: an obtaining module, configured to obtain an intensity of the first signal received in the first path connecting the first antenna, and a received in the second path connecting the second antenna An intensity of the second signal; an adjustment module, configured to adjust the first path or/and the second path according to the difference between the strength of the first signal and the strength of the second signal to reduce the first path and the second The imbalance of the path, thereby increasing the communication rate.
  • the acquiring module is further configured to obtain a rate of the first signal received in the first path, a rate of the second signal received in the second path, or a downlink rate of the signal;
  • the adjusting module is further configured to adjust the first path or/and the second path according to the rate of the first signal, the rate of the second signal, or the change of the signal downlink rate to reduce the first path and the second path Unbalanced.
  • the adjustment module may include: a determining submodule, configured to determine whether a difference between the strength of the first signal and the strength of the second signal exceeds a predetermined value; and a balance adjustment submodule, configured to determine that the judgment result of the submodule is And adjusting the diversity of the attenuator of the first path or/and the diversity of the second path according to the difference between the intensity of the first signal and the intensity of the second signal.
  • the balance adjustment sub-module may include: a second path adjustment unit, configured to: when an intensity of the first signal is higher than a sum of an intensity of the second signal and a preset threshold, and the first signal is a small signal, a low noise amplifier that starts diversity in the second path; a first path adjusting unit, configured to: when an intensity of the first signal is higher than a strength of the second signal and a preset threshold And, and all of the low noise amplifiers in the second path have been activated, activating the attenuator in the first path to increase signal attenuation of the first path; or, when the intensity of the first signal is high And a sum of the intensity of the second signal and the preset threshold, and the first signal is a large signal, the attenuator in the first path is activated to increase the signal attenuation of the first path.
  • a second path adjustment unit configured to: when an intensity of the first signal is higher than a sum of an intensity of the second signal and a preset threshold, and the first signal is a
  • FIG. 8 is a schematic diagram of another specific composition of the terminal device in the embodiment of the present invention.
  • the first path 3 includes: a first antenna switch, a duplexer, an adjustable attenuator, and a matching circuit
  • the second path 4 includes: a second antenna switch, a filter, and a low noise amplifier (Low-noise amplifier) , LNA); one end of the first path 3 and the second path 4 are respectively connected to two antennas (the main antenna 1, the diversity antenna 2 or the sub-antenna 2), and the other end is connected to the radio frequency modulation and demodulation chip 6;
  • the demodulation chip 6 obtains the signal from the path, performs radio frequency modulation and demodulation and notifies the baseband control chip 5 of the signal strength; the baseband control chip 5 respectively adjusts the attenuator on the two paths according to the signal strength of the two paths. And / or LNA adjustments to achieve a balance between the two paths.
  • the baseband control chip can detect the RF signal strength of the first and second paths of the current terminal in real time, and dynamically adjust the LNA or the main antenna path of the diversity antenna path according to the difference between the signal strengths of the two paths and the current download rate.
  • the adjustable attenuator achieves the first and second path balance and the communication rate optimum performance.
  • the embodiment of the present invention further provides a method for improving the communication rate. As shown in FIG. 9, the method includes:
  • the baseband control chip detects the received signal strength in the first and second paths in real time, and determines the difference in imbalance between the two signal strengths.
  • the baseband control chip activates the balance adjustment circuit included to adjust the LNA and/or the attenuator on the two paths.
  • the predetermined threshold may be a value preset according to experimental simulation results or experience (eg, a predetermined threshold is set to a difference of 3 dB between two channels of received signals, and the value is set in the baseband control chip), It can be adjusted according to the actual situation during the debugging process.
  • the balance adjustment circuit may be a circuit having the functions of the acquisition module and the adjustment module in the foregoing device embodiment.
  • the balance adjustment circuit in the baseband control chip performs balance adjustment according to the signal condition, specifically: when the signal strength of the first path is significantly higher than the second path, and the first path signal is a small signal, the diversity antenna path can be started ( That is, the LNA on the second path), and according to the actual situation, determine the gain and other parameters related to the amplification function of the LNA, so as to appropriately amplify the signal of the second path, and reduce the imbalance of the two paths;
  • the signal strength is significantly higher than the second path and all LNAs have been operated, or when the signal strength of the first path is significantly higher than the second path and the signal of the first path is a large signal, the first path can be adjusted.
  • Adjust the attenuator to increase the attenuation of the first path and reduce the imbalance of the two paths, such as less than 3dB.
  • the above-mentioned "significantly higher" criterion may be that the difference between the signal strength of the first path and the signal strength of the second path exceeds a predetermined threshold, the predetermined The threshold can be 3dB.
  • the specific value of the downlink rate of the signal can be obtained in real time from the subsequently connected network card.
  • the balance of the path may be further adjusted according to the signal rate of each path or the downlink rate of the signal, thereby improving the MIMO performance of the entire terminal device. For example, when the rate drops or is below the optimal rate of the current signal strength, the low noise amplifier or / and the adjustable attenuator on both paths are dynamically adjusted.
  • the signal strengths of the first and second paths are detected in real time, and comparisons are made, and the rate can be further adjusted according to the rate of the two channels.
  • the first The LNA of the second path and the attenuator to achieve the balance of the first and second paths; of course, in other embodiments of the invention, the LNA or the attenuator can also be used alone to improve the balance of the first and second paths.
  • the unbalance degree can be further adjusted according to the current signal rate of the two paths or the change of the signal downlink rate, thereby improving the communication rate.
  • the results of experiments conducted after the examples of the present invention were used.
  • the receiving performance of the main set is reduced, and the difference of the reporting level of the main and sub-antennas is within 3 dB (the main antenna wired sensitivity is reduced from -97 dBm to -94 dBm), so that the antenna is at In the MIMO operating state, the chip uses MIMO algorithm to increase the throughput rate, achieving a theoretical peak rate of 71 Mbps (megabits per second) under strong signals.
  • the unbalanced degree adjustment is performed in a small network (a wireless communication network environment similar to that in a daily life use scenario built in a laboratory environment, that is, a small Under the wireless network environment, the rate at the strong and medium weak signals at four angles of the horizontal plane can be found, and the result is consistent with the above theoretical situation.
  • Table 1 is the pre-adjustment rate situation, in which RSRP-0 is the reported signal strength of the first path; RSRP-1 is the reported signal strength of the second path; Avr-Throughout refers to the signal strength Wireless download rate.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本发明实施例公开了一种提高通信速率的方法和装置,用于工作在多入多出 MIMO状态下的终端中,该方法包括:获得连接第一天线的第一通路内接收到的第一信号的强度,以及连接第二天线的第二通路内接收到的第二信号的强度;根据所述第一信号的强度和第二信号的强度的差异对第一通路或/和第二通路进行调整以降低所述第一通路和第二通路的不平衡度,从而提升通信速率。采用本发明,可以通过调节第一、第二通路的平衡实现提高天线的速率。

Description

一种提高通信速率的方法和装置
技术领域
本发明涉及无线通讯领域, 尤其涉及一种提高通信速率的方法和装置。 背景技术
随着无线技术曰益广泛的应用, 多入多出 ( Multiple-Input Multiple-Out-put , MIMO )技术逐渐得到发展。 MIMO 系统是一项运用于 802.11η 的核心技术。 802.11η 是美国电气和电子工程师协会 ( Institute of Electrical and Electronics Engineers, IEEE )继 802.11b\a\g后全新的无线局域网技术。 同时, 专有 MIMO 技术可改进已有 802.11a/b/g网络的性能。长期演进( Long Term Evolution, LTE ) 技术中目前也使用了 MIMO技术。
LTE 的移动终端产品的速率如何达到最大化, 一直是终端设备厂商和运营 商都非常关注的一个重要指标。 往往运营商在做性能比较的时候, 往往关注的 是终端设备的峰值速率。
在现有技术中, 都单纯从天线的效率的角度来考虑、 解决终端设备的 峰值速率问题, 但这个手段有限, 而且调整的难度非常大。 比如, 通过优 化第一、 第二天线的效率, 提高速率; 但是天线的调试工作难度大, 对于 终端产品的可操作空间有限; 当调整第一天线的性能时, 对第一天线的其 他频段 (即, 不是当前进行天线性能调整时的信号传输频段) 同样存在较 大的影响, 很难在各个频段都达到平衡。
发明内容
本发明实施例所要解决的技术问题在于, 提供一种提高通信速率的方法和 装置。 可实现提高通信速率的自动提升。
为此, 一方面, 本发明实施例提供了一种提高通信速率的方法, 用于工作 在多入多出 MIMO状态下的终端中, 该方法包括:
获得连接第一天线的第一通路内接收到的第一信号的强度, 以及连接第二 天线的第二通路内接收到的第二信号的强度;
根据所述第一信号的强度和第二信号的强度的差异对第一通路或 /和第二通 路进行调整, 以降低所述第一通路和所述第二通路的不平衡度, 从而提升通信 速率。
进一步的, 所述方法还包括:
获得所述第一通路内接收到的所述第一信号的速率、 所述第二通路内接收 到的所述第二信号的速率或信号下行速率;
根据所述第一信号的速率、 第二信号的速率或信号下行速率的变化对第一 通路或 /和第二通路进行调整以降低所述第一通路和第二通路的不平衡度。
其中, 所述根据所述第一信号的强度和第二信号的强度的差异对第一通路 或 /和第二通路进行调整包括:
判断所述第一信号的强度和第二信号的强度的差异是否超过预定值; 若判断结果为是, 则根据所述第一信号的强度和第二信号的强度的差异程 度对第一通路的衰减器或 /和第二通路的分集的低噪声放大器进行调整。
其中, 所述根据所述第一信号的强度和第二信号的强度的差异程度对第一 通路的衰减器或 /和第二通路的分集的低噪声放大器进行调整包括:
当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第一信号为小信号时, 启动所述第二通路中的分集的低噪声放大器;
当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第二通路中的所有的低噪音放大器都已经启动, 则启动所述第一通路中的衰 减器以增加第一通路的信号衰减; 或,
当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第一信号为大信号时, 则启动所述第一通路中的衰减器以增加第一通路的信 号衰减。
另一方面, 本发明实施例还提供了一种提高通信速率的装置, 用于工作在 多入多出 MIMO状态下的终端中, 该装置包括:
获取模块 , 用于获得连接第一天线的第一通路内接收到的第一信号的强度, 以及连接第二天线的第二通路内接收到的第二信号的强度;
调整模块, 用于根据所述第一信号的强度和第二信号的强度的差异对第一 通路或 /和第二通路进行调整,以降低所述第一通路和所述第二通路的不平衡度, 从而提升通信速率。
进一步的, 所述获取模块还用于获得所述第一通路内接收到的所述第一信 号的速率、 所述第二通路内接收到的所述第二信号的速率或信号下行速率; 所述调整模块, 还用于根据所述第一信号的速率、 第二信号的速率或信号 下行速率的变化对第一通路或 /和第二通路进行调整以降低所述第一通路和第二 通路的不平衡度。
其中, 所述调整模块包括:
判断子模块, 用于判断所述第一信号的强度和第二信号的强度的差异是否 超过预定值;
平衡调整子模块, 用于当判断子模块的判断结果为是时, 根据所述第一信 号的强度和第二信号的强度的差异程度对第一通路的衰减器或 /和第二通路的分 集的低噪声放大器进行调整。
其中, 所述平衡调整子模块包括:
第二通路调整单元, 用于当所述第一信号的强度高于所述第二信号的强度 与预设的阔值之和, 且所述第一信号为小信号时, 启动所述第二通路中的分集 的低噪声放大器;
第一通路调整单元, 用于当所述第一信号的强度高于所述第二信号的强度 与预设的阔值之和, 且所述第二通路中的所有的低噪音放大器都已经启动, 则 启动所述第一通路中的衰减器以增加第一通路的信号衰减; 或, 当所述第一信 号的强度高于所述第二信号的强度与预设的阔值之和, 且所述第一信号为大信 号时, 则启动所述第一通路中的衰减器以增加第一通路的信号衰减。
另一方面, 本发明实施例还提供了一种终端设备, 所述终端设备工作在
MIMO状态下, 所述终端设备包括第一天线、 第二天线、 连接所述第一天线的 第一通路、 连接所述第二天线的第二通路, 与所述第一通路和第二通路连接的 基带控制芯片;
所述基带控制芯片包括:
获取模块 , 用于获得连接第一天线的第一通路内接收到的第一信号的强度, 以及连接第二天线的第二通路内接收到的第二信号的强度;
调整模块, 用于根据所述第一信号的强度和第二信号的强度的差异对第一 通路或 /和第二通路进行调整,以降低所述第一通路和所述第二通路的不平衡度, 从而提升通信速率。 其中, 所述获取模块还用于获得所述第一通路内接收到的所述第一信号的 速率、 所述第二通路内接收到的所述第二信号的速率或信号下行速率;
所述调整模块, 还用于根据所述第一信号的速率、 第二信号的速率或信号 下行速率的变化对第一通路或 /和第二通路进行调整以降低所述第一通路和第二 通路的不平衡度。
所述调整模块包括:
判断子模块, 用于判断所述第一信号的强度和第二信号的强度的差异是否 超过预定值;
平衡调整子模块, 用于当判断子模块的判断结果为是时, 根据所述第一信 号的强度和第二信号的强度的差异程度对第一通路的衰减器或 /和第二通路的分 集的低噪声放大器进行调整。
所述平衡调整子模块包括:
第二通路调整单元, 用于当所述第一信号的强度高于所述第二信号的强度 与预设的阔值之和, 且所述第一信号为小信号时, 启动所述第二通路中的分集 的低噪声放大器;
第一通路调整单元, 用于当所述第一信号的强度高于所述第二信号的强度 与预设的阔值之和, 且所述第二通路中的所有的低噪音放大器都已经启动, 则 启动所述第一通路中的衰减器以增加第一通路的信号衰减; 或, 当所述第一信 号的强度高于所述第二信号的强度与预设的阔值之和, 且所述第一信号为大信 号时, 则启动所述第一通路中的衰减器以增加第一通路的信号衰减。
实施本发明实施例, 具有如下有益效果: 本发明人通过大量实验研究发现, 通路不平衡度会较大程度的影响通路的吞吐率, 进而影响天线的整体速率; 鉴 于此, 提出了通过根据两个通路的信号强度来调整通路的不平衡度的方式来提 高通信速率的方案, 既无需调试天线, 又可实现提高通信速率的自动提升。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1是本发明实施例中终端设备的天线部分的一个 MIMO模型示意图; 图 2是本发明实施例中根据式 ( 1 )进行数值化的通路的不平衡度与通路容 量的关系示意图;
图 3 是本发明实施例中通路的不平衡度与吞吐量下降百分比的关系的信道 模型仿真示意图;
图 4是发明实施例中的提高通信速率的方法的一个具体流程示意图; 图 5是发明实施例中的提高通信速率的装置的一个具体组成示意图; 图 6是发明实施例中的调整模块的一个具体组成示意图;
图 7是发明实施例中的终端设备的一个具体组成示意图;
图 8是发明实施例中的终端设备的另一个具体组成示意图;
图 9是发明实施例中的提高通信速率的方法的另一个具体流程示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在描述本发明具体实施例之前, 先对本发明技术方案的理论依据进行说明。 对于 LTE 来说, 本质上是通过 MIMO 算法配合正交频分复用技术 ( Orthogonal Frequency Division Multiplexing, OFDM ) 的调制方式, 利用多径 效应, 来实现良好的多通路, 多码字的不相干传输, 最终实现高速率。 如图 1 所示, 为本发明实施例中终端设备的天线部分的一个简单模型。 其中, 衰减器 ( Attenuator, ATT ) 1/ATTO可实现天线增益和通路衰减的功能。 在本发明实施 例中的衰减器可以是指多通路(如, 第一通路、 第二通路等) 中的模拟天线增 益和模拟通路衰减的部分。
则, 对于图 1展示的 MIMO系统, 根据本发明人研究表明, 可以釆用如下 矩阵来描述其接收信号:
R=G X H X W X X+n ( 1 )
其中, G表示通路的不平衡度, H表示信道传递函数, W表示预编码矩阵, X为来波信号, n为热噪声, R表示最终接收到的信号。 其中, 通路的不平衡度 可以用不同通路之间的信号强度的差异来表示, 单位为 dB ( Decibel, 分贝), 即, 两通路的不平衡度为这两个通路之间的信号强度比值的常用对数的 10倍。
当天线口输入信号的信噪比 SNR大于 10dB时, 根据式 ( 1 )数值化结果如 图 2所示。 其中, 横坐标为 G, 即通路的不平衡度, 单位为 dB; 纵坐标代表通 路容量, 单位为 bit/s/Hz。 从该图中可以看出, 对于各种 SNR情况下, 通路不平 衡度越高, 其通路容量越小。
进一步的, 如图 3 所示, 为进行信道模型仿真的结果。 也可以看出, 通路 的不平衡度越高, 其吞吐量下降百分比越小, 即吞吐量下降得越多。
综上, 本发明人发现, 通路不平衡度会较大程度的影响通路的吞吐率, 进 而影响通信速率; 根据上面的结果, 要获取各种信噪比下的良好吞吐率, 两通 路的不平衡度可小于 3dB。
基于上述研究, 本发明中提出了一种提高通信速率的方法, 通过减少通路 之间的不平衡度来实现通信速率的提高。
如图 4 所示, 为本发明实施例中的提高通信速率的方法的一个具体流程示 意图。 该方法用于工作在 MIMO状态下的终端中, 其包括如下步骤。
101、 获得连接第一天线的第一通路内接收到的第一信号的强度, 以及连接 第二天线的第二通路内接收到的第二信号的强度。 本实施例中信号的强度是指 信号的功率。 其中, 第一天线可以是主天线, 第二天线可以是分集天线。 反之 也可。
102、根据所述第一信号的强度和第二信号的强度的差异对第一通路或 /和第 二通路进行调整, 以降低所述第一通路和第二通路的不平衡度, 从而提升通信 速率。 其中, 在进行调整时, 第一信号的强度和第二信号的强度的差异可用两 信号的功率差值来表示, 如为这两个通路之间的信号功率比值的常用对数的 10 倍, 即, 而启动调整的标准可以是当上述计算的功率差值高于阔值, 该阔值可 设定为小于或等于 3dB的值。
即, 在进行不平衡度调整时, 可以设置一个开始调整的阔值, 即本步骤分 化为两个过程: a、 判断所述第一信号的强度和第二信号的强度的差异是否超过 预定值; b、 若判断结果为是, 则根据所述第一信号的强度和第二信号的强度的 差异程度对第一通路的衰减器或 /和第二通路的分集的低噪声放大器进行调整以 降低所述第一通路和第二通路的不平衡度。
进一步的, 在具体调整时, 上述步骤 b中可以釆取如下方式进行调整: 当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第一信号为小信号时, 启动所述第二通路中的分集的低噪声放大器。 即, 当 第一通路的信号强度较小时, 则通过增加第二通路的信号强度的方式(如通过 第二通路上的低噪声放大器放大第二通路的信号), 缩小两通路的不平衡度。
当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第二通路中的所有的低噪音放大器都已经启动, 则启动所述第一通路中的衰 减器以增加第一通路的信号衰减; 或, 当所述第一信号的强度高于所述第二信 号的强度与预设的阔值之和, 且所述第一信号为大信号时, 则启动所述第一通 路中的衰减器以增加第一通路的信号衰减。
即, 当第一通路的信号强度较大或者是已经不能通过放大第二通路的信号 的方式缩小两通路的不平衡度(如, 第二通路上的低噪声放大器都已经启动时, 则不能通过第二通路上的元件进一步方法第二通路上的信号大小) 时, 则可以 通过对第一通路的信号进行适当衰减, 来缩小两通路的不平衡度。
其中, 在上述调整中, "所述第一信号的强度高于所述第二信号的强度与预 设的阔值之和" 的标准可以根据实际情况和经验确定, 如, 该预设的阔值可为 3dB, 即第一信号的强度高于第二信号的强度的差值超过该预设的阔值; 小信号 可以是指信号强度在 -95dBm ( dBm为信号强度单位,表示分贝毫伏 -当用信号的 电压幅值表示强度时,或者分贝毫瓦-当用信号的功率表示强度时)以下的信号; 大信号可以是指信号强度在 -70dBm以上的信号。
当然, 在具体情况中, 可能会只对衰减器和低噪声放大器中的一个进行调 整, 也可能会是对两者都进行调整。
为了获得更好的调整效果, 还可以进一步包括根据速率进行通路平衡调整 的过程, 即包括步骤 103、 获得当前下行信号速率, 根据下行信号速率进行通路 平衡度的调整。 具体可以是: 获得所述第一通路内接收到的所述第一信号的速 率、 所述第二通路内接收到的所述第二信号的速率或信号下行速率; 根据所述 第一信号的速率、 第二信号的速率或信号下行速率的变化对第一通路或 /和第二 通路进行调整, 以降低所述第一通路和第二通路的不平衡度。 本步骤为可选步 骤。
其中, 信号下行速率是指通过两通道后的信号的合并速率, 反映两天线下 的整体下行速率。 第一信号的速率和第二信号的速率可以从第一通路和第二通 路的输出端获取, 信号下行速率则可以从后续连接的网卡设备上获取。 在具体 实施例中, 只要获取上述速率中任意一种即可。 理论上第一信号的速率和第二 信号的速率是相同的, 但是由于实际上第一通路和第二通路上的元件的差异, 可能导致二者有些不同。
如, 当发现速率下降时, 可以对两通路的低噪声放大器或 /和可调衰减器进 行调整, 当调整后发现速率回升时, 则证明调整方式正确, 可以做进一步调整; 当调整后发现速率下降时, 则可以改变调整方式或是停止调整。
即是说, 当速率比较差(如, 低于当前信号强度对应的最优速率值, 如表 1 所示的 Avr-Throughout值为 71的情况)或速率下降时, 也和信号强度检测一样 启动主集分集通路的平衡度调整。 具体两个通路平衡度的调整方法可以参考前 述根据信号强度进行通路调整的方法 (即还是调整低噪声放大器或 /和可调衰减 器,只是调整方式根据调整前后速率的变化来确定,具体可参考上一段的描述)。 如, 当信号强度为 -95dBm, 系统带宽为 10Mb, 最高下行速率为 50Mbps时, 当 检测到当前下行速率为 40Mbps时, 即可启动通路平衡度的调整。 当然, 对于不 同的网络条件下, 其启动通路平衡度调整的速率条件可能有所不同, 可根据具 体需要进行相应的设置。
在本发明实施例中, 速率情况是启动主分集通路平衡度的另外一个触发条 件, 这个调整作为信号强度检测启动平衡度调整的一个补充。
通过上述步骤可以看出, 上述实施例还可以进一步扩展到具有两个以上天 线和相应的多条通路的情况中, 只是调整时, 增加一路或至少两路参数而已, 只要选择适当的算法, 并扩展为每两两通路釆用上述本发明实施例中提高通信 速率的方法, 就可以实现多通路的调整, 此处不再进行——赘述。
相应于上述方法实施例, 本发明实施例还提供了一种提高通信速率的装置, 用于工作在多入多出 MIMO状态下的终端中, 如图 5所示, 该装置 7包括: 获 取模块 70, 用于获得连接第一天线的第一通路内接收到的第一信号的强度, 以 及连接第二天线的第二通路内接收到的第二信号的强度; 调整模块 72, 用于根 据所述第一信号的强度和第二信号的强度的差异对第一通路或 /和第二通路进行 调整, 以降低所述第一通路和第二通路的不平衡度, 从而提升通信速率。
其中, 所述获取模块 70还用于获得所述第一通路内接收到的所述第一信号 的速率、 所述第二通路内接收到的所述第二信号的速率或信号下行速率; 所述 调整模块 72, 还用于根据所述第一信号的速率、 第二信号的速率或信号下行速 率的变化对第一通路或 /和第二通路进行调整以降低所述第一通路和第二通路的 不平衡度。
其中, 如图 6所示, 调整模块 72可包括: 判断子模块 720, 用于判断所述 第一信号的强度和第二信号的强度的差异是否超过预定值; 平衡调整子模块 722, 用于当判断子模块的判断结果为是时, 根据所述第一信号的强度和第二信 号的强度的差异程度对第一通路的衰减器或 /和第二通路的分集的低噪声放大器 进行调整。
其中, 所述平衡调整子模块 722可包括: 第二通路调整单元, 用于当所述 第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所述第一信号 为小信号时, 启动所述第二通路中的分集的低噪声放大器; 第一通路调整单元, 用于当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第二通路中的所有的低噪音放大器都已经启动, 则启动所述第一通路中的衰 减器以增加第一通路的信号衰减; 或, 当所述第一信号的强度高于所述第二信 号的强度与预设的阔值之和, 且所述第一信号为大信号时, 则启动所述第一通 路中的衰减器以增加第一通路的信号衰减。
如图 7所示, 则是包括上述装置的终端设备, 该终端设备工作在 MIMO状 态下, 其具体可以是 CDMA的多载波、 WCDMA的多载波或 LTE制式的数据 卡或其他类型移动终端, 或是其他支持 MIMO功能的终端设备中。 上述的终端 设备可包括: 第一天线 1、 第二天线 2、 连接所述第一天线 1的第一通路 3、 连 接所述第二天线 2的第二通路 4,与所述第一通路 3和第二通路 4连接的基带控 制芯片 5。 该基带控制芯片 5可包括前述的提高通信速率的装置 7, 提高通信速 率的装置 7的所有功能都由基带控制芯片 5来完成。
相应的, 基带控制芯片 5 可包括: 获取模块, 用于获得连接第一天线的第 一通路内接收到的第一信号的强度, 以及连接第二天线的第二通路内接收到的 第二信号的强度; 调整模块, 用于根据所述第一信号的强度和第二信号的强度 的差异对第一通路或 /和第二通路进行调整, 以降低所述第一通路和第二通路的 不平衡度, 从而提升通信速率。
其中, 所述获取模块还用于获得所述第一通路内接收到的所述第一信号的 速率、 所述第二通路内接收到的所述第二信号的速率或信号下行速率; 所述调 整模块, 还用于根据所述第一信号的速率、 第二信号的速率或信号下行速率的 变化对第一通路或 /和第二通路进行调整以降低所述第一通路和第二通路的不平 衡度。
所述调整模块可包括: 判断子模块, 用于判断所述第一信号的强度和第二 信号的强度的差异是否超过预定值; 平衡调整子模块, 用于当判断子模块的判 断结果为是时, 根据所述第一信号的强度和第二信号的强度的差异程度对第一 通路的衰减器或 /和第二通路的分集的低噪声放大器进行调整。
所述平衡调整子模块可包括: 第二通路调整单元, 用于当所述第一信号的 强度高于所述第二信号的强度与预设的阔值之和, 且所述第一信号为小信号时, 启动所述第二通路中的分集的低噪声放大器; 第一通路调整单元, 用于当所述 第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所述第二通路 中的所有的低噪音放大器都已经启动, 则启动所述第一通路中的衰减器以增加 第一通路的信号衰减; 或, 当所述第一信号的强度高于所述第二信号的强度与 预设的阔值之和, 且所述第一信号为大信号时, 则启动所述第一通路中的衰减 器以增加第一通路的信号衰减。
通过上述描述可以理解, 本发明人通过大量实验研究发现, 通路的不平衡 度会较大程度的影响通路的吞吐率, 进而影响通信速率; 鉴于此, 提出了通过 根据两个通路的信号强度来调整通路的不平衡度的方式来提高通信速率的方 度。 在本发明实施例中在提高通信速率的情况下并不需要直接对天线本身进行 调试, 而只要调节通路之间的不平衡度就可以达到提高通信速率的目的。
如图 8 所示, 为本发明实施例中的终端设备的另一个具体组成示意图。 在 本例中, 第一通路 3 包括: 第一天线开关、 双工器、 可调衰减器、 匹配电路; 第二通路 4包括: 第二天线开关、 滤波器、 低噪声放大器(Low-noise amplifier, LNA ); 第一通路 3和第二通路 4的一端分别连接两个天线(主天线 1 , 分集天 线 2或称为副天线 2 ), 另一端则与射频调制、 解调芯片 6连接; 射频调制、 解 调芯片 6获得来自通路的信号后, 进行射频调制解调并将信号强度通知基带控 制芯片 5;基带控制芯片 5则根据两个通路的信号强度分别对两个通路上的可调 衰减器和 /或 LNA进行调节, 以便实现两个通路之间的平衡。
具体的, 基带控制芯片可以实时检测当前终端第一、 第二通路的射频信号 强度, 并根据两个通路信号强度的差异, 以及当前下载速率的变化, 动态调整 分集天线通路的 LNA或主天线通路的可调衰减器, 达到第一、 第二通路平衡、 通信速率最优的性能。
相应于图 8 中所示的终端设备情况, 本发明实施例还提供了一种提高通信 速率的方法, 如图 9所示, 其包括:
201、 基带控制芯片实时检测第一、 第二通路内接收到的信号强度, 并判断 两个信号强度的不平衡的差异。
202、 当第一、 第二通路的信号差异超过预定的阔值时, 基带控制芯片启动 其包括的平衡调节电路对两通路上的 LNA和 /或衰减器进行调节。
其中, 该预定的阔值可为根据实验仿真结果或者经验预设的值(如, 预定 的阔值设置为两通路接收信号的强度差异为 3dB, 将该值设置在基带控制芯片 中), 也可以在调试过程中根据实际情况进行调整。
该平衡调节电路可以是前述装置实施例中的具有获取模块和调整模块两个 模块的功能的电路。
203、基带控制芯片中的平衡调节电路根据信号情况进行平衡调节,具体为: 当第一通路的信号强度明显高于第二通路, 且第一通路信号为小信号时, 可以 启动分集天线通路(即第二通路 )上的 LNA, 并根据实际情况确定 LNA的增益 等与其放大功能有关的参数, 以便对第二通路的信号进行适当的放大, 缩小两 通路的不平衡度; 当第一通路的信号强度明显高于第二通路且所有的 LNA都已 经工作, 或是当第一通路的信号强度明显高于第二通路且第一通路的信号为大 信号时, 可以通过调整第一通路的可调衰减器, 增加第一通路的衰减, 缩小两 通路的不平衡度, 比如到达小于 3dB。 其中, 上述的 "明显高于" 的标准, 可为 第一通路的信号强度与第二通路的信号强度的差值超过预定的阔值, 该预定的 阔值可为 3dB。
205、 实时检测信号下行速率或通路的信号速率, 根据速率进行第一、 第二 通路之间的平衡度调整, 即将速率和主、 分集(即分别对应第一通路和第二通 路) 的平衡调整做关联。 其中, 信号下行速率的具体值可以从后续连接的网卡 中实时获取。
在本步骤中, 可实现进一步根据各通路的信号速率或信号下行速率来调整 通路的平衡度, 进而提升整个终端设备的 MIMO性能。 如, 当速率下降或低于 当前信号强度的最优速率时, 对两通路上的低噪声放大器或 /和可调衰减器进行 动态调整。
在上述实施例中, 实时检测第一、 第二通路的信号强度, 作出比较, 并可 进一步根据速率的情况, 通过调整两个通路的平衡度来提升速率; 具体的, 可 通过调整第一、 第二通路的 LNA和衰减器来达到第一、 第二通路的平衡度; 当 然, 在本发明的其他实施例中也可以单独使用 LNA或衰减器来达到提高第一、 第二通路的平衡度。 并且, 也可以根据当前两通路的信号速率或信号下行速率 的变化来进一步进不平衡度的调整, 提高通信速率。
如表 1 所示, 则是釆用了本发明实施例后进行实验的结果。 在本实验中, 通过调整主集接收通路的匹配, 降低主集接收性能, 让主副天线的上报电平差 异在 3dB以内(主天线有线灵敏度从 -97dBm下调到 -94dBm左右 ), 使得天线处 于 MIMO的工作状态, 芯片釆用 MIMO算法提升吞吐速率, 使得在强信号下达 到理论的峰值速率 71Mbps ( Megabits per second, 兆字节 /秒)水平。
如表 1和表 2所示, 为根据本发明实施例的方法进行不平衡度调整前后在 小网 (在实验室环境下搭建的类似在日常生活使用场景下的无线通信网络环境, 即小型的无线网络环境) 下, 水平面四个角度上的强中弱信号下的速率情况, 可以发现, 该结果与前述的理论情况相符。 其中, 表 1 为调整前的速率情况, 中, RSRP-0是第一通路的上报信号强度情况; RSRP-1 是第二通路的上报信号 强度情况; Avr-Throughout指的是在该信号强度下的无线下载速率。 方向 (下 信号强 Avr-Througho
RSRP-0 RSRP-1
行) 度 ut
强 -73 -81 71
中 -94 -100 54
3点
弱 -104 -110 20
极弱 -110 -118 11
强 -74 -80 71
中 -94 -101 45
6点
弱 -105 -110 20
极弱 -109 -115 11
强 -75 -82 71
中 -95 -100 51
9点
弱 -105 -102 24
极弱 -110 -116 14
强 -74 -79 71
中 -94 -99 55
12点
弱 -104 -110 22
极弱 -110 -117 10 表 2:
方向 (下 信号强 Avr-Througho
RSRP-0 RSRP-1
行) 度 ut
强 -73 -75 71
中 -94 -95 60
3点
弱 -104 -105 30
极弱 -110 -112 18
强 -74 -75 71
6点 中 -94 -95 53
弱 -105 -106 26 极弱 -109 -110 19
强 -75 -75 71
中 -95 -96 61
9点
弱 -105 -105 31
极弱 -110 -110 21
强 -74 -76 71
中 -94 -96 61
12点
弱 -104 -107 29
极弱 -110 -112 15
通过表 1和表 2中数据可以发现, 在信号强度为中 /弱情况下, 表 1中的无 线下载速率均低于表 2 中的对应速率。 即, 当釆取本发明实施例中的方案使得 第一通路和第二通路达到信号平衡时, 对中弱信号的速率提升有明显帮助。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权 利 要 求
1、一种提高通信速率的方法,用于工作在多入多出 MIMO状态下的终端中, 其特征在于, 所述方法包括:
获得连接第一天线的第一通路内接收到的第一信号的强度, 以及连接第二 天线的第二通路内接收到的第二信号的强度;
根据所述第一信号的强度和第二信号的强度的差异对第一通路或 /和第二通 路进行调整, 以降低所述第一通路和所述第二通路的不平衡度, 从而提升通信 速率。
2、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括:
获得所述第一通路内接收到的所述第一信号的速率、 所述第二通路内接收 到的所述第二信号的速率或信号下行速率;
根据所述第一信号的速率、 第二信号的速率或信号下行速率的变化对第一 通路或 /和第二通路进行调整以降低所述第一通路和第二通路的不平衡度。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述根据所述第一信号的 强度和第二信号的强度的差异对第一通路或 /和第二通路进行调整包括:
判断所述第一信号的强度和第二信号的强度的差异是否超过预定值; 若判断结果为是, 则根据所述第一信号的强度和第二信号的强度的差异程 度对第一通路的衰减器或 /和第二通路的分集的低噪声放大器进行调整。
4、 如权利要求 3所述的方法, 其特征在于, 所述根据所述第一信号的强度 和第二信号的强度的差异程度对第一通路的衰减器或 /和第二通路的分集的低噪 声放大器进行调整包括:
当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第一信号为小信号时, 启动所述第二通路中的分集的低噪声放大器;
当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第二通路中的所有的低噪音放大器都已经启动, 则启动所述第一通路中的衰 减器以增加第一通路的信号衰减; 或,
当所述第一信号的强度高于所述第二信号的强度与预设的阔值之和, 且所 述第一信号为大信号时, 则启动所述第一通路中的衰减器以增加第一通路的信 号衰减。
5、一种提高通信速率的装置,用于工作在多入多出 MIMO状态下的终端中, 其特征在于, 所述装置包括:
获取模块 , 用于获得连接第一天线的第一通路内接收到的第一信号的强度, 以及连接第二天线的第二通路内接收到的第二信号的强度;
调整模块, 用于根据所述第一信号的强度和第二信号的强度的差异对第一 通路或 /和第二通路进行调整,以降低所述第一通路和所述第二通路的不平衡度, 从而提升通信速率。
6、 如权利要求 5所述的装置, 其特征在于, 所述获取模块还用于获得所述 第一通路内接收到的所述第一信号的速率、 所述第二通路内接收到的所述第二 信号的速率或信号下行速率;
所述调整模块, 还用于根据所述第一信号的速率、 第二信号的速率或信号 下行速率的变化对第一通路或 /和第二通路进行调整以降低所述第一通路和第二 通路的不平衡度。
7、 如权利要求 5或 6所述的装置, 其特征在于, 所述调整模块包括: 判断子模块, 用于判断所述第一信号的强度和第二信号的强度的差异是否 超过预定值;
平衡调整子模块, 用于当判断子模块的判断结果为是时, 根据所述第一信 号的强度和第二信号的强度的差异程度对第一通路的衰减器或 /和第二通路的分 集的低噪声放大器进行调整。
8、 如权利要求 7所述的装置, 其特征在于, 所述平衡调整子模块包括: 第二通路调整单元, 用于当所述所述第一信号的强度高于所述第二信号的 强度与预设的阔值之和, 且所述第一信号为小信号时, 启动所述第二通路中的 分集的低噪声放大器;
第一通路调整单元, 用于当所述所述第一信号的强度高于所述第二信号的 强度与预设的阔值之和, 且所述第二通路中的所有的低噪音放大器都已经启动, 则启动所述第一通路中的衰减器以增加第一通路的信号衰减; 或, 当所述第一 信号的强度高于所述第二信号的强度与预设的阔值之和, 且所述第一信号为大 信号时, 则启动所述第一通路中的衰减器以增加第一通路的信号衰减。
9、一种终端设备, 所述终端设备工作在 MIMO状态下, 所述终端设备包括 第一天线、 第二天线、 连接所述第一天线的第一通路、 连接所述第二天线的第 二通路, 与所述第一通路和第二通路连接的基带控制芯片, 其特征在于,
所述基带控制芯片包括:
获取模块 , 用于获得连接第一天线的第一通路内接收到的第一信号的强度, 以及连接第二天线的第二通路内接收到的第二信号的强度;
调整模块, 用于根据所述第一信号的强度和第二信号的强度的差异对第一 通路或 /和第二通路进行调整,以降低所述第一通路和所述第二通路的不平衡度, 从而提升通信速率。
10、 如权利要 9 所述的终端设备, 其特征在于, 所述获取模块还用于获得 所述第一通路内接收到的所述第一信号的速率、 所述第二通路内接收到的所述 第二信号的速率或信号下行速率;
所述调整模块, 还用于根据所述第一信号的速率、 第二信号的速率或信号 下行速率的变化对第一通路或 /和第二通路进行调整以降低所述第一通路和第二 通路的不平衡度。
11、如权利要求 9或 10所述的终端设备, 其特征在于, 所述调整模块包括: 判断子模块, 用于判断所述第一信号的强度和第二信号的强度的差异是否 超过预定值;
平衡调整子模块, 用于当判断子模块的判断结果为是时, 根据所述第一信 号的强度和第二信号的强度的差异程度对第一通路的衰减器或 /和第二通路的分 集的低噪声放大器进行调整。
12、 如权利要求 11所述的终端设备, 其特征在于, 所述平衡调整子模块包 括:
第二通路调整单元, 用于当所述第一信号的强度高于所述第二信号的强度 与预设的阔值之和, 且所述第一信号为小信号时, 启动所述第二通路中的分集 的低噪声放大器;
第一通路调整单元, 用于当所述第一信号的强度高于所述第二信号的强度 与预设的阔值之和, 且所述第二通路中的所有的低噪音放大器都已经启动, 则 启动所述第一通路中的衰减器以增加第一通路的信号衰减; 或, 当所述第一信 号的强度高于所述第二信号的强度与预设的阔值之和, 且所述第一信号为大信 号时, 则启动所述第一通路中的衰减器以增加第一通路的信号衰减。
PCT/CN2012/087959 2012-04-28 2012-12-31 一种提高通信速率的方法和装置 WO2013159554A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014520528A JP5745177B2 (ja) 2012-04-28 2012-12-31 通信速度を改善するための方法およびデバイス
EP12875120.3A EP2765715B1 (en) 2012-04-28 2012-12-31 Method and device for improving communication rate
ES12875120.3T ES2578060T3 (es) 2012-04-28 2012-12-31 Procedimiento y dispositivo para mejorar una tasa de transmisión de comunicación
US14/145,331 US8964915B2 (en) 2012-04-28 2013-12-31 Method and apparatus for improving communication rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210131952.8A CN103379553B (zh) 2012-04-28 2012-04-28 一种提高通信速率的方法和装置
CN201210131952.8 2012-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/145,331 Continuation US8964915B2 (en) 2012-04-28 2013-12-31 Method and apparatus for improving communication rate

Publications (1)

Publication Number Publication Date
WO2013159554A1 true WO2013159554A1 (zh) 2013-10-31

Family

ID=49463995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087959 WO2013159554A1 (zh) 2012-04-28 2012-12-31 一种提高通信速率的方法和装置

Country Status (6)

Country Link
US (1) US8964915B2 (zh)
EP (1) EP2765715B1 (zh)
JP (1) JP5745177B2 (zh)
CN (1) CN103379553B (zh)
ES (1) ES2578060T3 (zh)
WO (1) WO2013159554A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397935B1 (en) * 2013-07-25 2016-07-19 Sprint Communications Company L.P. Staged signal modification
CN106374220B (zh) * 2015-07-22 2019-11-05 南京中兴软件有限责任公司 终端lte天线系统的接收信号调节方法及装置
US10045244B2 (en) * 2015-09-03 2018-08-07 Qualcomm Incorporated Enhanced connection performance in UL/DL imbalance scenarios
KR102375636B1 (ko) * 2015-09-21 2022-03-17 삼성전자주식회사 통신 디바이스 및 그 제어 방법
TWI659622B (zh) * 2017-05-17 2019-05-11 啟碁科技股份有限公司 接收信號品質改善的系統
CN109413719A (zh) * 2017-08-15 2019-03-01 中兴通讯股份有限公司 一种功耗控制方法、设备及计算机可读存储介质
CN108234048A (zh) * 2017-12-26 2018-06-29 广东欧珀移动通信有限公司 信号传输控制方法及装置
CN109982424B (zh) * 2017-12-27 2021-10-15 中国移动通信集团北京有限公司 一种无线信号的放大方法及装置
WO2020145420A1 (ko) * 2019-01-08 2020-07-16 엘지전자 주식회사 수신 증폭부를 구비하는 전자 기기
CN114745009A (zh) * 2022-04-01 2022-07-12 Oppo广东移动通信有限公司 信号接收方法、装置、终端、芯片、存储介质及程序产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1520064A (zh) * 2003-01-07 2004-08-11 Lg电子株式会社 相位混频分集接收装置与方法
JP2007158423A (ja) * 2005-11-30 2007-06-21 Sanyo Electric Co Ltd ダイバーシチ受信方法およびそれを利用した受信装置
CN101778444A (zh) * 2009-01-12 2010-07-14 瑞昱半导体股份有限公司 无线网络中传输路径选择装置与方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220346A (ja) 1998-02-02 1999-08-10 Fujitsu Ltd 自動利得制御回路
US6125109A (en) 1998-02-24 2000-09-26 Repeater Technologies Delay combiner system for CDMA repeaters and low noise amplifiers
JP3745153B2 (ja) * 1999-03-11 2006-02-15 キヤノン株式会社 無線通信装置
JP2003298674A (ja) * 2002-04-03 2003-10-17 Toshiba Corp マルチレート受信装置
US7929921B2 (en) * 2003-06-10 2011-04-19 Motorola Mobility, Inc. Diversity control in wireless communications devices and methods
JP2005006205A (ja) * 2003-06-13 2005-01-06 Fujitsu Ltd 携帯端末
US7356322B2 (en) 2004-05-17 2008-04-08 Agere Systems Inc. Multiple-branch wireless receiver
US9685997B2 (en) * 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
JP5013743B2 (ja) * 2005-05-10 2012-08-29 日本放送協会 Mimo受信装置
JP2006352576A (ja) * 2005-06-16 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム及びその受信局
US20070092392A1 (en) 2005-10-20 2007-04-26 Aisin Seiki Kabushiki Kaisha Internal gear pump
FR2904165B1 (fr) * 2006-07-18 2008-11-28 Excem Soc Par Actions Simplifiee Procede et dispositif pour la reception radioelectrique utilisant une pluralite d'antennes
US9060311B2 (en) * 2009-05-22 2015-06-16 Broadcom Corporation Enterprise level management in a multi-femtocell network
US8929331B2 (en) * 2009-05-22 2015-01-06 Broadcom Corporation Traffic management in a hybrid femtocell/WLAN wireless enterprise network
US20110250926A1 (en) * 2009-12-21 2011-10-13 Qualcomm Incorporated Dynamic antenna selection in a wireless device
US20110249760A1 (en) * 2009-12-21 2011-10-13 Qualcomm Incorporated Antenna selection based on measurements in a wireless device
CN102104193B (zh) * 2010-12-01 2015-04-01 中兴通讯股份有限公司 一种多输入多输出天线系统
US8676144B2 (en) * 2011-04-14 2014-03-18 Cisco Technology, Inc. Adaptive interference nulling for MIMO receiver based on interference characteristics
US20130215992A1 (en) * 2012-02-21 2013-08-22 Muhammad Kazmi Receiver adaptation based on acquired precoder knowledge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1520064A (zh) * 2003-01-07 2004-08-11 Lg电子株式会社 相位混频分集接收装置与方法
JP2007158423A (ja) * 2005-11-30 2007-06-21 Sanyo Electric Co Ltd ダイバーシチ受信方法およびそれを利用した受信装置
CN101778444A (zh) * 2009-01-12 2010-07-14 瑞昱半导体股份有限公司 无线网络中传输路径选择装置与方法

Also Published As

Publication number Publication date
EP2765715A1 (en) 2014-08-13
JP2014521271A (ja) 2014-08-25
US8964915B2 (en) 2015-02-24
US20140112422A1 (en) 2014-04-24
ES2578060T3 (es) 2016-07-20
EP2765715A4 (en) 2014-11-05
EP2765715B1 (en) 2016-03-30
JP5745177B2 (ja) 2015-07-08
CN103379553A (zh) 2013-10-30
CN103379553B (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2013159554A1 (zh) 一种提高通信速率的方法和装置
US9883458B2 (en) Dynamic RxDiv for idle mode in a user equipment
US9307501B2 (en) User equipment and method for performing downlink and/or uplink power control
EP2311206B1 (en) Synchronization detection using bandwidth and antenna configuration
AU2013244933B2 (en) MIMO configuration methods and apparatus
CA2558543A1 (en) Multi-antenna receive diversity control in wireless communications
JP2002026796A (ja) 無線通信装置及び無線通信システム
WO2020073807A1 (zh) 天线调谐方法、装置、移动终端及计算机可读存储介质
CN111106884B (zh) 控制终端上行控制信道发射方式的方法、发射方法及设备
EP2081292B1 (en) Method and system for an adaptive AGC reference for HSDPA and WCDMA
TWI586119B (zh) 自主式無線電控制方法及其系統
US11483779B2 (en) User equipment and communication method
EP1841091B1 (en) Mobile communication terminal and reception diversity interrupting method
JP4735472B2 (ja) 移動通信システム、携帯電話端末及びそれらに用いるローノイズアンプ切替え閾値制御方法
WO2023098112A1 (zh) 信号补偿方法、电子设备和计算机可读存储介质
CN103368588A (zh) 一种处理基站上行外部干扰的方法、装置及系统
CN213522375U (zh) 一种提升LoRa私有协议网关接收灵敏度的装置
KR100694342B1 (ko) 송신 다이버시티를 선택적으로 지원하는 데이터 송신 장치및 그 송신 장치를 갖는 이동통신단말기
US9629107B2 (en) Gain control method and device for TD-HSPA+terminal device
KR20140086328A (ko) 상향링크 이득 제어 방법 및 장치
CN111934709A (zh) 无线通信装置与其动态抗干扰方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012875120

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014520528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE