WO2013159433A1 - 一种利用调频的方式改善高频放电等离子体均匀性的方法 - Google Patents

一种利用调频的方式改善高频放电等离子体均匀性的方法 Download PDF

Info

Publication number
WO2013159433A1
WO2013159433A1 PCT/CN2012/076756 CN2012076756W WO2013159433A1 WO 2013159433 A1 WO2013159433 A1 WO 2013159433A1 CN 2012076756 W CN2012076756 W CN 2012076756W WO 2013159433 A1 WO2013159433 A1 WO 2013159433A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
plasma
mhz
electromagnetic field
electrodes
Prior art date
Application number
PCT/CN2012/076756
Other languages
English (en)
French (fr)
Inventor
王波
徐利春
张銘
王如志
宋雪梅
侯育冬
朱满康
刘晶冰
汪浩
严辉
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2013159433A1 publication Critical patent/WO2013159433A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation

Definitions

  • the invention belongs to the technical field of high frequency discharge plasma, and relates to a method for improving the uniformity of a high frequency discharge plasma by means of frequency modulation, which is applied to the fields of VHF (very high frequency) discharge plasma vapor deposition and surface treatment.
  • VHF very high frequency
  • Radio Frequency (RF) Capacitively Coupled Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) technology is widely used in industrial large-scale production of large-area silicon thin film photovoltaic solar cells.
  • RF PECVD Radio Frequency
  • nanocrystalline silicon films in which nanoscale grains are distributed in amorphous silicon are often used.
  • RF PECVD deposits nanocrystalline silicon with low efficiency and poor crystallinity.
  • VHF PECVD is developed. The VHF-PECVD method is advantageous for increasing the deposition rate and quality of the nanocrystalline silicon film.
  • VHF excitation plasma can increase the plasma density, reduce the thickness and voltage of the sheath on the surface of the substrate, thereby reducing the ion energy reaching the substrate, increasing the ion flux delivered to the substrate, and increasing the deposition rate and film crystal.
  • the dual effect of the rate. Therefore, VHF-PECVD has great technical development potential in the industry.
  • the increase of the excitation frequency of the electromagnetic field will lead to the deterioration of the uniformity, especially when the 1/4 of the vacuum wavelength corresponding to the excitation frequency is close to the scale of the electrode.
  • the non-uniformity caused by the standing wave effect in the electrode reaction chamber will be severe. Therefore, the potential standing wave effect is currently considered to be the most important non-uniform source of VHF technology in large-area PECVD applications.
  • the electrode geometry is typically redesigned to improve electric field distribution.
  • the use of multi-point feed, phase control, multi-power source superposition, pulse modulation of the power source, etc. can also improve the plasma uniformity to some extent.
  • An object of the present invention is to provide a method for improving plasma uniformity by continuously changing the frequency of a high frequency electromagnetic field (i.e., frequency modulation) in order to solve the problem of poor uniformity of existing high frequency discharges, particularly VHF discharge plasmas.
  • the present invention differs from other methods in that the uniformity of the plasma is increased by continuously changing the frequency of the high frequency discharge electromagnetic field.
  • the principle adopted by the present invention is that, according to the physical principle of the wave, the standing wave is a special phenomenon formed by superposition of two columns of coherent waves having the same amplitude, frequency and propagation speed in opposite directions.
  • the emission and reflection distance are integer multiples of half wavelength
  • a standing wave is generated, the antinode distance is half wavelength, and the antinode and the node pitch are quarter wavelength. Therefore, if the VHF frequency is continuously cyclically changed, when the speed of the frequency change is appropriate, the wavelengths of the two columns of waves propagating in opposite directions are always different, and the formation of standing waves can be suppressed or eliminated; on the other hand, different
  • the plasma density distribution produced by the frequency range of the high-frequency electromagnetic field also changes.
  • the cation-near range (RF band)
  • the plasma density near the edge of the electrode is relatively high
  • the frequency is near 60 MHz (VHF band)
  • the plasma density near the center of the electrode is relatively high
  • the VHF frequency is around 100 MHz or higher
  • the plasma density near the edge of the electrode becomes relatively high. Therefore, if the frequency of the electromagnetic field is continuously and cyclically changed by the solution of the present invention, even if the speed of the frequency change is insufficient to eliminate the VHF standing wave, the plasma is changed due to the continuous conversion of the position of the plasma density.
  • the density is homogenized over the average density over a period of time that is longer relative to the frequency change cycle.
  • a method for improving the uniformity of a high-frequency discharge plasma by means of frequency modulation In a plasma discharge chamber, a pair of parallel electrodes, a space between parallel electrodes is a plasma discharge space, and a high-frequency power source is fed to the electrodes. A high-frequency electromagnetic field is generated between the parallel electrodes, and the electromagnetic field frequency ranges from 13.56 MHz to 160 MHz.
  • the frequency of the fed high frequency electromagnetic field is automatically tuned Controlled, and its frequency is continuously and continuously cyclically changed during plasma discharge, and the automatic tuning control mode includes, but is not limited to, a tuning signal set internally by the high-frequency power source and a tuning signal externally connected to the power source.
  • Automatic control The range of the frequency variation may be a portion included in the range of 13, 56 MHz to 160 MHz, or may be an entire range of 13.56 MHz to 160 MHz, so that the plasma density on the surface parallel to the electrode in the plasma discharge space is relatively A higher position has a cyclical change.
  • the mode of the frequency cycle change may be constant period or non-constant period.
  • the range of the frequency cycle change period is included in the range of 10 nanoseconds to 24 hours.
  • the electrode shape includes, but is not limited to, a planar electrode, a curved electrode, and a stepped electrode.
  • the parallel electrodes may be one of them grounded, or the pair of electrodes may not be grounded, that is, both may be in a floating state.
  • the high frequency power supply can be a single power source or a multi-power source superimposed.
  • the power source can be either pulse modulated or non-pulsed.
  • the high frequency power supply may be fed through a single point or may be fed to the electrodes via multiple points.
  • the average plasma density on a certain surface between the parallel electrodes can be made uniform over a period of time longer than the electromagnetic field frequency cycle period, that is, in a period of more than one frequency change cycle period,
  • the average plasma density between the parallel electrodes is uniform.
  • 1 is a schematic diagram of the principle of the present invention, wherein one of the electrodes is grounded;
  • FIG. 2 is a schematic diagram of the principle of the present invention, in which two electrodes are not grounded;
  • Example 1 In the plasma discharge chamber 1, a pair of parallel electrodes 2 are mounted, wherein the lower electrode is grounded (see Fig. 1). The discharge gas Ar gas is charged into the plasma discharge chamber 1, and then a high-frequency electromagnetic field is applied between the two parallel electrodes 2 by the high-frequency power source 3 to generate a plasma discharge.
  • the applied high-frequency electromagnetic field is tuned to the frequency by a tuning signal set internally by the high-frequency power source, so that the output frequency is cyclically changed between 13, 56 MHz and 60 MHz, and the cycle of the frequency cycle is 24 hours.
  • the surface of the silicon was etched by using the plasma generated by the discharge of the parameter, and the silicon wafer was placed on the lower electrode for a treatment time of 72 hours. The uniformity is good. The unevenness is 0.5%.
  • a pair of parallel electrodes 2 are mounted, and both electrodes are not grounded (see Fig. 2).
  • a discharge gas silicon germanium gas is charged into the plasma discharge chamber 1, and then a high frequency electromagnetic field is applied between the two parallel electrodes 2 by the high frequency power source 3 to generate a plasma discharge.
  • the applied high-frequency electromagnetic field is tuned to the frequency by a tuning signal set internally by the high-frequency power source, so that the output frequency is cyclically changed between 60 MHz and 160 MHz, and the cycle of the frequency cycle is 10 nanoseconds.
  • This parameter is used to discharge the silane, form a plasma and decompose to produce a deposition effect of silicon.
  • the substrate was placed between the two electrodes for a deposition time of 0, 5 hours.
  • the film thickness of the silicon film on the surface of the sample after deposition was measured, and the unevenness was 0.2%, and the uniformity was good.
  • a pair of parallel electrodes 2 are mounted, wherein the lower electrode is grounded (see Fig. 1).
  • the plasma discharge chamber 1 is filled with a discharge gas oxygen gas, and then a high-frequency electromagnetic field is applied between the two parallel electrodes 2 by the high-frequency power source 3 to generate a plasma discharge.
  • the frequency of the cycle of the frequency cycle is 0. 5 hours.
  • the cycle of the frequency cycle is 0.5 hours.
  • the plasma generated by the discharge of the parameter is subjected to plasma chemical etching treatment on the organic surface. 5 ⁇
  • the substrate was coated with an organic layer of 0. 5 hours. The surface of the etched sample was measured, and the unevenness was 1%, uniformity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种利用调频的方式改善高频放电等离子体均匀性的方法,在等离子体放电室(1)中,一对平行电极(2),采用高频电源(3)馈入到电极上,电磁场频率范围为13.56MHz∼160MHz,充入放电气体,形成等离子体,馈入的高频电磁场的频率是经过自动调谐控制的,在等离子体放电过程中其频率始终持续不断地循环变化着,频率变化的范围是包含在13.56MHz∼160MHz之内的一部分,或是13.56MHz~160MHz的整个范围,使等离子体放电空间中平行于电极的面上等离子体密度相对较高的位置发生循环变化。在一个以上的频率变化循环周期的时间段上,在平行电极间的平均等离子体密度是均匀的。

Description

一种利用调频的方式改善高频敖电等离子体均匀性的方法 技术领域
本发明属于高频放电等离子体技术领域, 涉及一种利用调频的方式改善高 频放电等离子体均匀性的方法, 应用于 VHF (甚高频) 放电等离子体气相沉积和 表面处理领域。
背景技术
射频 (RF ) 电容耦合等离子体增强化学气相沉积 (RF- - PECVD ) 技术被广泛 应用于工业大规模生产大面积的硅薄膜光伏太阳能电池。 为了提高太阳能电池 的转换效率, 多采用在非晶硅中分布纳米尺度晶粒的纳晶硅薄膜。 而 RF PECVD 沉积纳晶硅的效率低、 结晶度差, 人们发展了甚高频电容耦合等离子体增强化 学气相沉积 (VHF PECVD)方法。 VHF- PECVD方法有利于提高纳晶硅薄膜的沉积速 度和质量。 采^ VHF激发等离子体, 能够提高等离子密度、 减小基片表面的鞘层 厚度和电压, 进而降低到达基片的离子能量, 增大输送到衬底的离子流量, 达 到提高沉积速度和薄膜晶化率的双重效果。 因而, VHF- PECVD在工业上具有极大 的技术开发潜质。
在 VHF电磁场激发的等离子体中, 存在一个固有问题: 电磁场激发频率的提 高会导致均匀性变差, 特别是当激发频率所对应真空波长的 1 /4与电极的尺度接 近时, 在电容藕合电极反应室中的驻波效应产生的非均匀性将很严重。 因此, 电势驻波效应目前被认为是 VHF技术在大面积 PECVD中应用产生的最主要非均匀 源。 想要获得均匀的等离子体来实现均匀沉积, 通常是对电极几何形状进行重 新设计以改善电场分布。 此外, 采用多点馈入、 相位控制、 多功率源叠加、 对 功率源脉冲调制等方式也都可在一定程度上改善等离子体的均匀性问题。
发明内容 本发明的目的是为解决现有高频放电, 特别是 VHF放电等离子体均匀性差的 问题, 提供一种通过持续不断地改变高频电磁场频率 (即调频) 的方式提高等 离子体均匀性的方法。 本发明区别于其它方法, 利用不断改变高频放电电磁场 的频率的方式来提高等离子体的均匀性。
为实现上述目的, 本发明采用的原理是, 根据波的物理原理, 驻波是由振 幅、 频率、 传播速度都相同的两列相干波沿相反方向传播时叠加而形成的一种 特殊现象, 其发射与反射距离为半波长的整数倍时产生驻波, 波腹间距为半波 长, 波腹与波节间距为四分之一波长。 因此, 如果将 VHF频率持续不断地循环改 变, 当频率改变的速度适当时, 可使得相反方向传播的两列波的波长始终不同, 就可以抑制或消除驻波的形成; 另一方面, 不同的高频电磁场频率范围所产生 的等离子体密度分布也有所变化, 在 13. 56MHz的频率阳-近范围 (RF频段) , 靠 电极边缘附近的等离子体密度相对较高; 当频率在 60MHz險近时 (VHF频段) , 其电极中心 近的等离子体密度相对较高; 而当 VHF频率在 100MHz附近或更高 时, 又变成电极边缘附近的等离子体密度相对较高。 所以, 如果采用本发明方 案, 持续不断地循环改变电磁场频率, 那么即使在频率改变的速度不足以消除 VHF驻波的情况下, 也会因为等离子体密度较高的位置的不断转换, 使得等离子 体密度在一段相对于频率变化循环周期更长的期间内的各处平均密度实现均匀 化。
一种利用调频的方式改善高频放电等离子体均匀性的方法, 在等离子体放 电室中, 一对平行电极, 平行电极间的空间为等离子体放电空间, 采用高频电 源馈入到电极上, 在平行电极之间产生高频电磁场, 电磁场频率范围为 13. 56 MHz〜 160MHz , 当平行电极之间充入放电气体时, 在高频电磁场作用下发生电 离, 形成等离子体, 其特征在于, 所馈入的高频电磁场的频率是经过自动调谐 控制的, 并且在等离子体放电过程中其频率始终持续不断地循环变化着, 所述 的自动调谐控制方式包括且不限于通过高频电源内部设定的调谐信号以及电源 外部接入的调谐信号进行自动控制。 所述频率变化的范围可以是包含在 13, 56 MHz 〜 160MHz之内的一部分, 也可以是 13. 56 MHz 〜 160MHz的整个范围,使等 离子体放电空间中平行于电极的面上等离子体密度相对较高的位置发生循环变 化。 所述频率循环变化的模式可以是恒定周期的, 也可以是非恒定周期的。 所 述频率循环变化周期的范围是包含于 10纳秒 〜 24小时 的范围。
所述电极形状包括且不仅限于平面电极、 曲面电极以及阶梯式电极。 所述 平行电极可以是其中之一接地, 也可以是这对电极都不接地, 即两者都可以对 地处于悬浮状态。 高频电源可以是单功率源的, 也可以是多功率源叠加的。 所 述功率源可以是脉冲调制的, 也可以是非脉冲的。 所述高频电源可以是经由单 点馈入, 也可以是经由多点馈入到电极上。
按照本发明的方法, 在相比电磁场频率循环周期更长的时间内, 平行电极 间某面上的平均等离子体密度可以获得均匀化, 即在一个以上的频率变化循环 周期的时间段上, 在平行电极间的平均等离子体密度是均匀的。
附图说明
图 1是本发明的原理示意图, 其中电极之一接地;
图 2是本发明的原理示意图, 其中两个电极都不接地;
图中: 1 . 等离子体放电室; 2. 平行电极; 3. 高频电源。
具体实施方式
下面结合实施例对本发明进行说明, 但本发明并不限于以下实施例。
实施例 1 在等离子体放电室 1中,装有一对平行电极 2 , 其中下电极接地(见附图 1 ) 。 向等离子体放电室 1内充入放电气体 Ar气, 然后由高频电源 3在两平行电极 2之间 施加高频电磁场并产生等离子体放电。 所施加的高频电磁场由高频电源内部设 定的调谐信号对频率进行调谐,使输出频率在 13, 56MHz〜 60MHz之间循环变化, 频率循环变化的周期为 24小时。 利用该参数放电产生的等离子体对硅表面进行 刻蚀处理, 将硅片放置于下电极上, 处理时间为 72小时。 对处理后的样品表面 进行测量, 其不均匀度为 0. 5%, 均匀性良好。
实施例 2
在等离子体放电室 1中, 装有一对平行电极 2, 其中两电极都不接地 (见附 图 2 ) 。 向等离子体放电室 1内充入放电气体硅垸气体, 然后由高频电源 3在两平 行电极 2之间施加高频电磁场并产生等离子体放电。 所施加的高频电磁场由高频 电源内部设定的调谐信号对频率进行调谐, 使输出频率在 60MHz 〜 160MHz之间 循环变化, 频率循环变化的周期为 10纳秒。 利用该参数使硅烷放电, 形成等离 子体并分解产生硅的沉积效应。 将基片放置于两电极间, 沉积时间为 0, 5小时。 对沉积后的样品表面的硅薄膜进行膜厚测量, 其不均匀度为 0. 2%, 均匀性良好。 实施例 3
在等离子体放电室 1中,装有一对平行电极 2, 其中下电极接地(见附图 1 ) 。 向等离子体放电室 1内充入放电气体氧气, 然后由高频电源 3在两平行电极 2之间 施加高频电磁场并产生等离子体放电。 所施加的高频电磁场由高频电源内部设 定的调谐信号对频率进行调谐, 使输出频率在 13, 56MHz 〜 160MHz之间循环变 化, 频率循环变化的周期为 0. 5小时。 利用该参数放电产生的等离子体对有机表 面进行等离子体化学刻蚀处理。 将涂有有机光刻胶层的基片放置于下电极上, 处理时间为 0. 5小时。 对刻蚀后的样品表面进行测量, 其不均匀度为 1 %, 均匀性

Claims

权 利 要 求 书
、 一种利用调频的方式改善高频放电等离子体均匀性的方法, 在等离子体放 电室中, 一对平行电极, 平行电极间的空间为等离子体放电空间, 采用高 频电源馈入到电极上, 在平行电极之间产生高频电磁场, 电磁场频率范围 为 13. 56 MHz 〜 160MHz , 当平行电极之间充入放电气体时, 在高频电磁 场作 ffi下发生电离, 形成等离子体, 其特征在于, 所馈入的高频电磁场的 频率是经过自动调谐控制的, 并且在等离子体放电过程中其频率始终持续 不断地循环变化着, 所述频率变化的范围是包含在 13, 56 MHz 〜 160MIfe 之内的一部分, 或者是 13. 56 MHz 〜 160MHz 的整个范围,使等离子体放 电空间内等离子体密度相对较高的位置发生循环变化。
、 按照权利要求 1的方法, 其特征在于, 所述的自动调谐控制方式为通过高 频电源内部设定的调谐信号或电源外部接入的调谐信号进行自动控制。 、 按照权利要求 1的方法, 其特征在于, 所述频率循环变化的模式为恒定周 期的, 或非恒定周期的。
、 按照权利要求 3的方法, 其特征在于, 所述频率循环变化周期范围是包含 *
PCT/CN2012/076756 2012-04-28 2012-06-12 一种利用调频的方式改善高频放电等离子体均匀性的方法 WO2013159433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210133070.5 2012-04-28
CN201210133070.5A CN102693893B (zh) 2012-04-28 2012-04-28 一种利用调频的方式改善高频放电等离子体均匀性的方法

Publications (1)

Publication Number Publication Date
WO2013159433A1 true WO2013159433A1 (zh) 2013-10-31

Family

ID=46859258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076756 WO2013159433A1 (zh) 2012-04-28 2012-06-12 一种利用调频的方式改善高频放电等离子体均匀性的方法

Country Status (3)

Country Link
US (1) US8704445B2 (zh)
CN (1) CN102693893B (zh)
WO (1) WO2013159433A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458599B (zh) * 2013-09-24 2017-02-01 南方科技大学 一种低温等离子体处理装置及方法
CN105636329B (zh) * 2014-10-30 2019-05-17 北京航天长征飞行器研究所 一种用于小空间的等离子体产生装置
US20170127506A1 (en) * 2016-01-23 2017-05-04 Hamid Reza Ghomi Marzdashty Generation of dielectric barrier discharge plasma using a modulated voltage
CN109246919B (zh) * 2018-10-24 2023-09-12 江苏菲沃泰纳米科技股份有限公司 一种可变形电极及其应用设备、使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010021422A1 (en) * 2000-03-13 2001-09-13 Mitsubishi Heavy Industries, Ltd. Discharge plasma generating method, discharge plasma generating apparatus, semiconductor device fabrication method, and semiconductor device fabrication apparatus
US20050009347A1 (en) * 2003-04-24 2005-01-13 Tokyo Electron Limited Method and apparatus for measuring electron density of plasma and plasma processing apparatus
CN1871695A (zh) * 2003-08-22 2006-11-29 兰姆研究有限公司 采用不同频率的rf功率调制的高纵横比蚀刻
US20070246163A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Plasma reactor apparatus with independent capacitive and inductive plasma sources
CN101563757A (zh) * 2006-11-17 2009-10-21 朗姆研究公司 快速气体交换等离子处理装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518195B1 (en) * 1991-06-27 2003-02-11 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
US5230740A (en) * 1991-12-17 1993-07-27 Crystallume Apparatus for controlling plasma size and position in plasma-activated chemical vapor deposition processes comprising rotating dielectric
WO2004083486A1 (ja) * 1993-03-23 2004-09-30 Atsushi Yamagami 超短波を用いたプラズマcvd法及び該プラズマcvd装置
JP3236111B2 (ja) * 1993-03-31 2001-12-10 キヤノン株式会社 プラズマ処理装置及び処理方法
FR2711276B1 (fr) * 1993-10-11 1995-12-01 Neuchatel Universite Cellule photovoltaïque et procédé de fabrication d'une telle cellule.
US5618758A (en) * 1995-02-17 1997-04-08 Sharp Kabushiki Kaisha Method for forming a thin semiconductor film and a plasma CVD apparatus to be used in the method
US6020794A (en) * 1998-02-09 2000-02-01 Eni Technologies, Inc. Ratiometric autotuning algorithm for RF plasma generator
US6642149B2 (en) * 1998-09-16 2003-11-04 Tokyo Electron Limited Plasma processing method
KR100757717B1 (ko) * 2000-04-13 2007-09-11 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 박막 형성 방법, 박막 형성 장치 및 태양전지
US7096819B2 (en) * 2001-03-30 2006-08-29 Lam Research Corporation Inductive plasma processor having coil with plural windings and method of controlling plasma density
US7304438B2 (en) * 2003-09-22 2007-12-04 Mks Instruments, Inc. Method and apparatus for preventing instabilities in radio-frequency plasma processing
US8040068B2 (en) * 2009-02-05 2011-10-18 Mks Instruments, Inc. Radio frequency power control system
US8312839B2 (en) * 2009-03-24 2012-11-20 Applied Materials, Inc. Mixing frequency at multiple feeding points

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010021422A1 (en) * 2000-03-13 2001-09-13 Mitsubishi Heavy Industries, Ltd. Discharge plasma generating method, discharge plasma generating apparatus, semiconductor device fabrication method, and semiconductor device fabrication apparatus
US20050009347A1 (en) * 2003-04-24 2005-01-13 Tokyo Electron Limited Method and apparatus for measuring electron density of plasma and plasma processing apparatus
CN1871695A (zh) * 2003-08-22 2006-11-29 兰姆研究有限公司 采用不同频率的rf功率调制的高纵横比蚀刻
US20070246163A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Plasma reactor apparatus with independent capacitive and inductive plasma sources
CN101563757A (zh) * 2006-11-17 2009-10-21 朗姆研究公司 快速气体交换等离子处理装置

Also Published As

Publication number Publication date
CN102693893B (zh) 2015-01-14
CN102693893A (zh) 2012-09-26
US8704445B2 (en) 2014-04-22
US20130285551A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
EP2407998B1 (en) Plasma processing in a capacitively-coupled reactor with trapezoidal-waveform excitation
EP1505174A1 (en) Manufacturing method of silicon thin film solar cell
US20110272099A1 (en) Plasma processing apparatus and method for the plasma processing of substrates
JP4714166B2 (ja) 基板のプラズマ処理装置及びプラズマ処理方法
US20100245214A1 (en) Mixing frequency at multiple feeding points
US8414985B2 (en) Plasma deposition of a thin film
CN1226450C (zh) 等离子体处理方法和设备
US10531553B2 (en) Scalable multi-role surface-wave plasma generator
JP2004128159A (ja) 高周波プラズマ発生装置および高周波プラズマ発生方法
WO2013159433A1 (zh) 一种利用调频的方式改善高频放电等离子体均匀性的方法
US9355821B2 (en) Large-area plasma generating apparatus
US20210280389A1 (en) Large-area vhf pecvd chamber for low-damage and high-throughput plasma processing
JP2002069653A (ja) 薄膜形成方法、薄膜形成装置及び太陽電池
CN112609168A (zh) 一种快速清洗大面积真空腔室内累积薄膜的方法
JP2008205279A (ja) シリコン系薄膜の成膜方法及びその成膜装置
Murata et al. Inductively coupled radio frequency plasma chemical vapor deposition using a ladder‐shaped antenna
JP2006286705A (ja) プラズマ成膜方法及び成膜構造
JP2011029069A (ja) プラズマ処理装置および半導体膜の製造方法
JP2018019107A (ja) プラズマcvd装置並びに結晶シリコン系太陽電池及びこれを作製するプラズマcvd法
TWI405867B (zh) 薄膜沈積裝置
JP2009141116A (ja) 成膜装置
KR100911327B1 (ko) 플라즈마 발생 장치
JP2011021256A (ja) ナノ結晶シリコン薄膜の成膜方法及びナノ結晶シリコン薄膜、並びに該薄膜を成膜する成膜装置
Zeng et al. Effects of Coil Surface Current Density on Plasma Characteristics in a PECVD Chamber
JP4462461B2 (ja) 薄膜形成方法、薄膜形成装置及び太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875060

Country of ref document: EP

Kind code of ref document: A1