WO2013157404A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2013157404A1
WO2013157404A1 PCT/JP2013/060367 JP2013060367W WO2013157404A1 WO 2013157404 A1 WO2013157404 A1 WO 2013157404A1 JP 2013060367 W JP2013060367 W JP 2013060367W WO 2013157404 A1 WO2013157404 A1 WO 2013157404A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
expansion valve
temperature
air conditioner
auxiliary heat
Prior art date
Application number
PCT/JP2013/060367
Other languages
English (en)
French (fr)
Inventor
知之 配川
洋一 大沼
知厚 南田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2013250424A priority Critical patent/AU2013250424B2/en
Priority to SG11201406663UA priority patent/SG11201406663UA/en
Priority to BR112014025451-6A priority patent/BR112014025451B1/pt
Priority to CN201380020154.0A priority patent/CN104246388B/zh
Priority to ES13778027T priority patent/ES2705212T3/es
Priority to US14/394,664 priority patent/US9546806B2/en
Priority to EP13778027.6A priority patent/EP2905553B1/en
Publication of WO2013157404A1 publication Critical patent/WO2013157404A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02341Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02343Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0291Control issues related to the pressure of the indoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve

Definitions

  • an auxiliary heat exchanger is arranged on the back side of the main heat exchanger, and the refrigerant is evaporated only by the auxiliary heat exchanger to perform dehumidification locally, so that the load is reduced (compression)
  • the air conditioner in which dehumidification can be performed even when the difference between the room temperature and the set temperature is sufficiently small and the required cooling capacity is small.
  • the detection means for detecting the evaporation temperature is in the indoor unit, if the supply of new refrigerant becomes too small, it will completely evaporate and the evaporating temperature of the refrigerant will not be known. Cannot be detected. Therefore, when the refrigerant circuit is blocked, dehumidification and cooling cannot be performed, and the compressor is overheated.
  • An air conditioner includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected, and the entire indoor heat exchanger is used as an evaporation region.
  • An air conditioner that performs a cooling operation and a dehumidifying operation in which a part of the indoor heat exchanger is an evaporation region, wherein the compressor, the outdoor heat exchanger, and the expansion valve are arranged in an outdoor unit, The heat exchanger is arranged in the indoor unit, and evaporating temperature detecting means for detecting the evaporating temperature is arranged downstream of the expansion valve in the outdoor unit.
  • the evaporating temperature detecting means for detecting the evaporating temperature is arranged on the downstream side of the expansion valve in the outdoor unit, so that the pressure drop (temperature drop) due to the circuit blockage when the expansion valve is fully closed is ensured. Since it can be detected, even at a minute flow rate, the flow rate can be reliably reduced until the expansion valve is almost fully closed, and the dehumidification can be performed by lowering the evaporation temperature.
  • the air conditioner according to the second invention is characterized in that, in the air conditioner according to the first invention, the flow rate of the expansion valve decreases as the opening degree decreases near full closure.
  • the flow rate can be adjusted even before the expansion valve is fully closed, and the evaporation temperature can be controlled even with a minute flow rate.
  • the air conditioner according to a third aspect of the invention is characterized in that, in the air conditioner according to the first or second aspect of the invention, the expansion valve can be in a fully closed state.
  • the evaporation pressure can be lowered sufficiently by using the minute opening just before full closure.
  • An air conditioner according to a fourth invention is the air conditioner according to any one of the first to third inventions, wherein the opening of the expansion valve decreases so as to approach the opening corresponding to full closure.
  • the opening degree of the expansion valve becomes equal to or less than a predetermined opening degree close to full closing, the amount of decrease in the flow rate with respect to the opening degree change is increased.
  • the evaporating temperature detecting means for detecting the evaporating temperature is arranged on the downstream side of the expansion valve in the outdoor unit, the pressure drop (temperature decrease) due to the circuit blockage when the expansion valve is fully closed is ensured. Since it can be detected, even at a minute flow rate, the flow rate can be reliably reduced until the expansion valve is almost fully closed, and the dehumidification can be performed by lowering the evaporation temperature.
  • the flow rate can be adjusted even before the expansion valve is fully closed, and the evaporation temperature can be controlled even with a minute flow rate.
  • the evaporation pressure can be sufficiently reduced using the minute opening immediately before full closure.
  • the change in the fully closed state and the evaporation temperature immediately before full closure increases, and it is possible to recognize that it is immediately before full closure. It becomes easy and it becomes easy to avoid the circuit blockage by full closure.
  • the air conditioner 1 of this embodiment includes an indoor unit 2 installed indoors and an outdoor unit 3 installed outdoor.
  • the air conditioner 1 includes a refrigerant circuit in which a compressor 10, a four-way valve 11, an outdoor heat exchanger 12, an expansion valve 13, and an indoor heat exchanger 14 are connected.
  • an outdoor heat exchanger 12 is connected to the discharge port of the compressor 10 via a four-way valve 11, and an expansion valve 13 is connected to the outdoor heat exchanger 12.
  • One end of the indoor heat exchanger 14 is connected to the expansion valve 13, and the suction port of the compressor 10 is connected to the other end of the indoor heat exchanger 14 via the four-way valve 11.
  • the indoor heat exchanger 14 has an auxiliary heat exchanger 20 and a main heat exchanger 21.
  • the air conditioner 1 can be operated in a cooling operation mode, a predetermined dehumidifying operation mode, and a heating operation mode.
  • the remote controller selects one of the operations by a remote controller and performs an operation start operation, an operation switching operation or an operation. Stop operation can be performed. Further, the remote controller can change the air volume of the indoor unit 2 by setting a set temperature of the indoor temperature or changing the rotation speed of the indoor fan.
  • the refrigerant discharged from the compressor 10 flows from the four-way valve 11 to the outdoor heat exchanger 12, the expansion valve 13, the auxiliary heat exchanger 20, the main heat, as indicated by the solid arrows in the figure.
  • a cooling cycle or a dehumidification cycle is formed in which the refrigerant flows in sequence to the exchanger 21 and the refrigerant that has passed through the main heat exchanger 21 returns to the compressor 10 through the four-way valve 11. That is, the outdoor heat exchanger 12 functions as a condenser, and the indoor heat exchanger 14 (auxiliary heat exchanger 20 and main heat exchanger 21) functions as an evaporator.
  • the refrigerant discharged from the compressor 10 is transferred from the four-way valve 11 to the main heat exchanger 21, the auxiliary heat exchanger 20, and the expansion, as indicated by broken arrows in the figure.
  • a heating cycle is formed in which the refrigerant flows in order to the valve 13 and the outdoor heat exchanger 12, and the refrigerant that has passed through the outdoor heat exchanger 12 returns to the compressor 10 through the four-way valve 11. That is, the indoor heat exchanger 14 (auxiliary heat exchanger 20 and main heat exchanger 21) functions as a condenser, and the outdoor heat exchanger 12 functions as an evaporator.
  • the indoor unit 2 has an air inlet 2a for indoor air on the upper surface, and an air outlet 2b for air conditioning air at the lower front surface.
  • An air flow path is formed in the indoor unit 2 from the suction port 2a toward the blowout port 2b, and an indoor heat exchanger 14 and a cross-flow type indoor fan 16 are disposed in the air flow path. Therefore, when the indoor fan 16 rotates, room air is sucked into the indoor unit 1 from the suction port 2a.
  • the intake air from the intake port 2 a flows to the indoor fan 16 side through the auxiliary heat exchanger 20 and the main heat exchanger 21.
  • the intake air from the intake port 2 a flows through the main heat exchanger 21 to the indoor fan 16 side.
  • the main heat exchanger 21 has a front heat exchanger 21 a disposed on the front side of the indoor unit 2 and a back heat exchanger 21 b disposed on the back side of the indoor unit 2, and this heat exchanger 21 a and 21 b are arranged in an inverted V shape so as to surround the indoor fan 16.
  • the auxiliary heat exchanger 20 is arrange
  • the auxiliary heat exchanger 20 and the main heat exchanger 21 each include a heat exchange pipe and a large number of fins.
  • the liquid refrigerant is supplied from the liquid inlet 17a arranged near the lower end of the auxiliary heat exchanger 20, and the supplied liquid refrigerant is And flows so as to approach the upper end of the auxiliary heat exchanger 20. And it flows out from the exit 17b arrange
  • the refrigerant branched in the branching portion 18a is supplied from the three inlets 17c of the main heat exchanger 21 to the lower and upper parts of the front heat exchanger 21a and the rear heat exchanger 21b, and then from the outlet 17d. It flows out and joins at the junction 18b.
  • the refrigerant flows in the direction opposite to the above.
  • the liquid refrigerant supplied from the liquid inlet 17 a of the auxiliary heat exchanger 20 is evaporated in the middle of the auxiliary heat exchanger 20. To do. Therefore, only a part of the auxiliary heat exchanger 20 near the liquid inlet 17a is an evaporation region where the liquid refrigerant evaporates. Therefore, when operating in the predetermined dehumidifying operation mode, in the indoor heat exchanger 14, only a part of the upstream side of the auxiliary heat exchanger 20 is an evaporation region and is downstream of the evaporation region of the auxiliary heat exchanger 20. Both the range on the side and the main heat exchanger 21 are overheated regions.
  • the refrigerant that has flowed through the superheated region near the upper end of the auxiliary heat exchanger 20 flows through the lower part of the front heat exchanger 21 a disposed on the leeward side of the lower part of the auxiliary heat exchanger 20. Therefore, in the suction air from the suction port 2a, the air cooled in the evaporation region of the auxiliary heat exchanger 20 is heated by the front heat exchanger 21a and then blown out from the blower outlet 2b.
  • the air that has flowed through the superheated area of the auxiliary heat exchanger 20 and the front heat exchanger 21a and the air that has flowed through the back heat exchanger 21b are substantially the same as the room temperature. And it blows out from the blower outlet 2b.
  • an evaporation temperature sensor 30 that detects the evaporation temperature on the downstream side of the expansion valve 13 in the refrigerant circuit is attached to the outdoor unit 3. Then, the indoor unit 2 detects the indoor temperature sensor 31 that detects the indoor temperature (the temperature of the intake air from the suction port 2a of the indoor unit 2), and the auxiliary heat exchanger 20 detects that the evaporation of the liquid refrigerant has ended. An indoor heat exchanger temperature sensor 32 is attached.
  • the indoor heat exchanger temperature sensor 32 is disposed on the leeward side near the upper end of the auxiliary heat exchanger 20, as shown in FIG. And in the superheat zone near the upper end of the auxiliary heat exchanger 20, the suction air from the suction inlet 2a is hardly cooled. Therefore, when the temperature detected by the indoor heat exchanger temperature sensor 32 is substantially the same as the indoor temperature detected by the indoor temperature sensor 31, the evaporation ends in the middle of the auxiliary heat exchanger 20, and the auxiliary heat It can be detected that the range near the upper end of the exchanger 20 is an overheated region.
  • the indoor heat exchanger temperature sensor 32 is disposed in a heat transfer tube in an intermediate portion of the indoor heat exchanger 14. Therefore, the condensation temperature or evaporation temperature in the cooling / heating operation can be detected near the middle portion of the indoor heat exchanger 14.
  • the control unit of the air conditioner 1 includes a compressor 10, a four-way valve 11, an expansion valve 13, a motor 16 a that drives an indoor fan 16, an evaporation temperature sensor 30, and an indoor temperature sensor. 31 and the indoor heat exchanger temperature sensor 32 are connected. Therefore, the control unit controls the command from the remote controller (operation start operation, set temperature of the room temperature, etc.), the evaporation temperature detected by the evaporation temperature sensor 30, the room temperature detected by the room temperature sensor 31 (the temperature of the intake air) ), The operation of the air conditioner 1 is controlled based on the intermediate heat exchange temperature detected by the indoor heat exchange temperature sensor 32.
  • the auxiliary heat exchanger 20 in the predetermined dehumidifying operation mode, has an evaporation region where the liquid refrigerant evaporates and a superheat region downstream of the evaporation region.
  • the compressor 10 and the expansion valve 13 are controlled so as to change according to the above.
  • changing according to the load means changing according to the amount of heat supplied to the evaporation region, and the amount of heat is determined by, for example, the room temperature (the temperature of the intake air) and the room air volume.
  • the load corresponds to the necessary dehumidifying capacity (necessary cooling capacity) and can be detected based on, for example, the difference between the room temperature and the set temperature.
  • the compressor 10 is controlled based on the difference between the room temperature and the set temperature.
  • the frequency of the compressor 10 is increased because the load is large when the difference between the room temperature and the set temperature is large, and the load is small when the difference between the room temperature and the set temperature is small. Controlled to decrease.
  • the expansion valve 13 is controlled based on the evaporation temperature detected by the evaporation temperature sensor 30. As described above, when the frequency of the compressor 10 is controlled, the expansion valve 13 is set so that the evaporation temperature becomes a temperature within a predetermined range (10 ° C.-14 ° C.) near the target evaporation temperature (12 ° C.). Be controlled.
  • the predetermined range of the evaporation temperature is preferably controlled to be constant regardless of the frequency of the compressor 10. However, even if it slightly changes depending on the frequency, there is no problem as long as it is substantially constant.
  • the range of the evaporation region of the auxiliary heat exchanger 20 is changed, and the evaporation temperature is within the predetermined range.
  • the auxiliary heat exchanger 20 and the front heat exchanger 21a each have 12 stages of heat transfer tubes. And when the number of stages used as the evaporation region of the auxiliary heat exchanger 20 in the predetermined dehumidifying operation mode is half or more of the number of stages of the front heat exchanger 21a, the range of the evaporation region of the auxiliary heat exchanger can be sufficiently widened. Sufficiently respond to load fluctuations. This is particularly effective when the load is large.
  • FIG. 5 shows a change in flow rate when the opening degree of the expansion valve 13 is changed.
  • the opening of the expansion valve 13 changes continuously according to the number of input drive pulses. And as the opening degree decreases, the flow rate of the refrigerant flowing through the expansion valve 13 decreases.
  • the expansion valve 13 is in a fully closed state at the opening t0, and between the opening t0 and t1, the flow rate increases according to the first slope as the opening increases, and the opening t1 to t2 In between, the flow rate increases according to the second slope as the opening degree increases.
  • the first slope is larger than the second slope.
  • the opening degree of the expansion valve 13 decreases so as to approach the opening degree t0 corresponding to the fully closed state, it opens when the opening degree of the expansion valve 13 becomes equal to or less than the predetermined opening degree t1 near the fully closed state.
  • the amount of decrease in the flow rate with respect to the degree change increases.
  • step S1 when a dehumidifying operation start operation is performed on the remote controller (step S1), it is determined whether the compressor frequency is lower than the upper limit frequency and the heat exchanger intermediate temperature is higher than the dehumidifying limit temperature. It is determined whether the state is small and cannot be dehumidified (step S2). In step S2, it is determined whether the compressor frequency is lower than the upper limit frequency in the dehumidifying operation mode and the load is small in the cooling operation and cannot be dehumidified, but even if the compressor frequency is lower than the upper limit frequency, the evaporation temperature If the evaporation temperature is lower than the dehumidifying limit temperature, it is not determined that the load is small and cannot be dehumidified in the cooling operation. Therefore, in step S2, when the load is small and the evaporation temperature is higher than the dehumidification limit temperature, it is determined that the dehumidification is not possible in the cooling operation.
  • step S3 When it is determined that the compressor frequency is lower than the upper limit frequency and the heat exchanger intermediate temperature is higher than the dehumidifying limit temperature (step S2: YES), the load is small in the cooling operation and dehumidification cannot be performed. And dehumidifying operation is started (step S3). Then, all of the liquid refrigerant supplied from the liquid inlet 17a of the auxiliary heat exchanger 20 evaporates in the middle of the auxiliary heat exchanger 20, and only a partial range near the liquid inlet 17a of the auxiliary heat exchanger 20 evaporates. The dehumidifying operation is started.
  • Step S4 it is determined whether the evaporation temperature is too low by determining whether the evaporation temperature detected by the evaporation temperature sensor 30 is lower than the lower limit value.
  • the evaporation temperature is lower than the lower limit value (lower limit value for preventing the expansion valve 13 from being blocked)
  • step S5 when the heat exchanger intermediate temperature is equal to or higher than the temperature lower than the room temperature by a correction amount, it is determined that the air temperature on the leeward side near the upper end of the auxiliary heat exchanger 20 is higher than the room temperature. It is determined that the range near the upper end of the heat exchanger 20 is a superheat region, and the auxiliary heat exchanger 20 has completed evaporation.
  • step S5 When the heat exchanger intermediate temperature (the air temperature on the leeward side near the upper end of the auxiliary heat exchanger 20) is lower than the room temperature (step S5: NO), the auxiliary heat exchanger 20 is in a state where evaporation has not ended. However, the valve opening is rapidly opened (step S6). Thereafter, the cooling operation is started in a state where the liquid refrigerant supplied from the liquid inlet 17a of the auxiliary heat exchanger 20 flows into the main heat exchanger 21 (step S7).
  • step S5 when the heat exchanger intermediate temperature (the air temperature on the leeward side near the upper end of the auxiliary heat exchanger 20) is higher than the room temperature (step S5: YES), the auxiliary heat exchanger 20 finishes evaporation, and the auxiliary heat exchanger 20 In a state where the heat exchanger 20 has an evaporation region and a superheat region, the valve opening is greatly opened (step S8). Thereafter, the frequency of the compressor is changed so that the room temperature approaches the room set temperature (step S9). Then, it is determined whether or not the compressor frequency is smaller than the upper limit frequency (step S10).
  • step S7 When the compressor frequency is equal to or higher than the upper limit frequency (step S10: NO), since the dehumidification can be performed in the cooling operation, the cooling operation is started (step S7).
  • step S4 When the compressor frequency is smaller than the upper limit frequency (step S10: YES), step S4 is shifted to the dehumidifying operation state.
  • step S2 If it is determined in step S2 that the compressor frequency is equal to or higher than the upper limit frequency or the heat exchanger intermediate temperature is equal to or lower than the dehumidifying limit temperature (step S2: NO), the cooling operation is started because the dehumidification is possible. (Step S7).
  • step S4 when the evaporation temperature detected by the evaporation temperature sensor 30 is equal to or higher than the lower limit (step S4: NO), the heat exchange intermediate temperature (the air temperature on the leeward side near the upper end of the auxiliary heat exchanger 20) is By determining whether or not the temperature is higher than the room temperature, it is determined whether or not the auxiliary heat exchanger 20 has completed evaporation (step S11).
  • step S11 When the heat exchange intermediate temperature (the air temperature on the leeward side near the upper end of the auxiliary heat exchanger 20) is higher than the room temperature (step S11: YES), the auxiliary heat exchanger 20 finishes evaporation, and auxiliary heat exchange is performed. It is in a state where the vessel 20 has an evaporation region and a superheat region, and it is determined whether or not the evaporation temperature is within a predetermined range near the target evaporation temperature (step S12). Thus, in step S12, it is determined whether or not the valve opening needs to be changed so that the evaporation temperature detected by the evaporation temperature sensor 30 is a temperature within a predetermined range near the target evaporation temperature.
  • step S12 when the evaporation temperature is within a predetermined range near the target evaporation temperature (step S12: YES), there is no need to change the valve opening, and the process proceeds to step S9.
  • step S13 it is determined whether the evaporation temperature is lower than the target evaporation temperature (step S13).
  • the valve opening is slightly opened so that the evaporation temperature approaches the target evaporation temperature (step S14).
  • step S13: NO the valve opening is slightly closed so that the evaporation temperature approaches the target evaporation temperature (step S15). Thereafter, the process proceeds to step S9.
  • step S11 when the heat exchange intermediate temperature (air temperature on the leeward side near the upper end of the auxiliary heat exchanger 20) is equal to or lower than the room temperature (step S11: NO), the evaporation is finished in the auxiliary heat exchanger 20. Therefore, the valve opening is largely closed (step S16). Thereafter, the process proceeds to step S9.
  • step S11 when the heat exchange intermediate temperature (air temperature on the leeward side near the upper end of the auxiliary heat exchanger 20) is equal to or lower than the room temperature (step S11: NO), the evaporation is finished in the auxiliary heat exchanger 20. Therefore, the valve opening is largely closed (step S16). Thereafter, the process proceeds to step S9.
  • control is performed so that the range of the evaporation region of the auxiliary heat exchanger 20 changes in a predetermined dehumidifying operation mode.
  • a predetermined dehumidifying operation mode when the load increases when the range of the evaporation region of the auxiliary heat exchanger 20 is a predetermined area, the frequency of the compressor 10 is increased and the opening degree of the expansion valve 13 is increased. Is greatly changed. Therefore, even if the range of the evaporation area of the auxiliary heat exchanger 20 is larger than a predetermined area and the air volume sucked into the indoor unit 2 is constant, the air volume that actually passes through the evaporation area increases.
  • the frequency of the compressor 10 is decreased and the opening degree of the expansion valve 13 is decreased. Is changed small. Therefore, even if the range of the evaporation area of the auxiliary heat exchanger 20 is smaller than the predetermined area and the air volume sucked into the indoor unit 2 is constant, the air volume that actually passes through the evaporation area decreases.
  • step S101 when the opening degree needs to be largely changed when the opening degree is controlled based on the evaporation temperature, it is determined whether or not the opening degree of the expansion valve is smaller than a predetermined opening degree ta (step S101). ). If it is determined that the valve opening is smaller than the predetermined opening ta (step S101: YES), it is determined whether or not the valve is not fully closed when the valve opening is decreased by one pulse (step S102). Specifically, the compressor frequency at that time is equal to or higher than the fully closed compressor frequency (compressor frequency considered to be fully closed), and the valve opening is more than the fully closed valve opening (valve opening considered to be fully closed). When it is larger than 2 pulses, it is determined that the valve is not fully closed when the valve opening is reduced by 1 pulse.
  • step S101 If it is determined in step S101 that the valve opening is equal to or greater than the predetermined opening ta (step S101: NO), the valve opening is changed to a small value based on the evaporation temperature (step S107).
  • step S102 when it is determined in step S102 that the valve opening is reduced by one pulse (step S102: NO), it is determined in step S105 that the expansion valve is fully closed (step S105: NO). The opening is not changed.
  • the air conditioner 1 when the evaporation temperature decreases by a predetermined temperature difference from before the predetermined time operation, or when the evaporation temperature is equal to or lower than the predetermined temperature after the predetermined time operation, Since the valve is determined to be in the fully closed state, it may be easily determined that the valve is in the fully closed state when the compressor frequency is large and the flow rate is large. Therefore, when the compressor frequency is small, the valve opening degree stored as the fully closed valve opening degree may be changed to be smaller than the valve opening degree. Therefore, in the air conditioner 1, the fully closed compressor frequency in which the compressor frequency is stored is stored. If smaller, it is determined whether the opening can be changed.
  • step S201 it is determined whether or not the opening degree of the expansion valve is smaller than the predetermined opening degree ta (step S201). ). If it is determined that the valve opening is smaller than the predetermined opening ta (step S201: YES), the valve opening is increased by one pulse (step S202).
  • step S201 If it is determined in step S201 that the valve opening is equal to or greater than the predetermined opening ta (step S201: NO), the valve opening is greatly changed based on the evaporation temperature (step S203).
  • the evaporation temperature sensor 30 that detects the evaporation temperature is disposed on the downstream side of the expansion valve 13 in the outdoor unit 3, so that the pressure due to the circuit blockage when the expansion valve 13 is fully closed Since the decrease (temperature decrease) can be detected with certainty, even at a minute flow rate, the flow rate can be reliably reduced until the expansion valve 13 is nearly fully closed, and the evaporation temperature can be lowered to perform dehumidification.
  • the opening degree of the expansion valve 13 when the opening degree of the expansion valve 13 decreases so as to approach the opening degree corresponding to the full closing, the opening degree of the expansion valve 13 is a predetermined opening degree near the full closing. When it becomes t1 or less, the amount of decrease in the flow rate with respect to the opening change increases. Therefore, by increasing the flow rate change with respect to the opening change immediately before full closure, the change in the evaporation temperature immediately before the full closure and the full closure state increases, making it easy to recognize that it is just before full closure. It becomes easy to avoid circuit blockage due to closing.
  • the auxiliary heat exchanger and the main heat exchanger may be configured integrally. Therefore, in this case, the indoor heat exchanger is integrally configured, a portion corresponding to the auxiliary heat exchanger is provided on the uppermost wind side of the indoor heat exchanger, and a portion corresponding to the main heat exchanger is provided on the leeward side thereof. Is provided.
  • a pressure drop (temperature drop) due to circuit blockage when the expansion valve is fully closed can be reliably detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

全閉できる膨張弁を用いた場合に、全閉して冷媒回路が閉塞したことを検知できない場合がある。 本発明の空気調和機1では、室内熱交換器14が、補助熱交換器20と、補助熱交換器20の風下側に配置された主熱交換器21とを有している。所定の除湿運転モードでの運転が行われているとき、補助熱交換器20に供給された液冷媒は、補助熱交換器20の途中で全て蒸発する。したがって、補助熱交換器20の上流側の一部だけが蒸発域であって、補助熱交換器20の蒸発域の下流側の範囲は過熱域である。そして、蒸発温度を検知する蒸発温度センサ30が、室外機3における膨張弁13の下流側に配置される。

Description

空気調和機
 本発明は、除湿運転を行うことができる空気調和機に関するものである。
 従来の空気調和機には、主熱交換器の背面側に補助熱交換器を配置して、補助熱交換器だけで冷媒を蒸発させて局所的に除湿を行うことで、低負荷時(圧縮機の回転数が低いとき)、例えば、室温と設定温度との差が十分に小さく必要な冷却能力が小さいときでも除湿ができるようにした空気調和機がある。
特開平9-14727
 この空気調和機において、能力が小さくなるほど冷媒の循環量が減少し、膨張弁の開度も比例して小さくする必要があるが、一般的に使われる膨張弁の開度-流量特性(流量の下限値があって全閉できない)では、流量の下限値が大きすぎて絞りきれなくなり、蒸発温度を下げられなくなってしまう場合がある。この問題は、全閉できる膨張弁を用いることで解決できるが、逆に全閉して冷媒回路が閉塞してしまうという問題がある。
 そして、蒸発温度を検知する検知手段が室内機にある場合において、新たな冷媒の供給が微小になりすぎると、全て蒸発してしまい冷媒の蒸発温度が分からなくなるため、絞りすぎて閉塞していることを検知できない。したがって、冷媒回路が閉塞した場合、除湿や冷房ができなくなる上に、圧縮機が過熱し過ぎる問題がある。
 そこで、本発明の目的は、全閉できる膨張弁を用いた場合に、全閉して冷媒回路が閉塞したことを検知できる空気調和機を提供することである。
 第1の発明にかかる空気調和機は、圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器とを接続した冷媒回路を備え、前記室内熱交換器の全体を蒸発域とする冷房運転と、前記室内熱交換器の一部分を蒸発域とする除湿運転を行う空気調和機であって、前記圧縮機、前記室外熱交換器及び前記膨張弁が、室外機に配置され、前記室内熱交換器が、室内機に配置されると共に、前記室外機における膨張弁の下流側には、蒸発温度を検知する蒸発温度検知手段が配置されることを特徴とする。
 この空気調和機では、蒸発温度を検知する蒸発温度検知手段が室外機における膨張弁の下流側に配置されるので、膨張弁が全閉した時の回路閉塞による圧力低下(温度低下)を確実に検知できるため、微小流量においても、膨張弁が全閉近くまで確実に流量を絞ることができ、蒸発温度を下げて、除湿ができる。
 第2の発明にかかる空気調和機では、第1の発明にかかる空気調和機において、前記膨張弁が、全閉近くにおいて開度が小さくなるにつれて流量が減少するものであることを特徴とする。
 この空気調和機では、膨張弁が全閉直前でも流量の調整が可能となり、微小流量でも蒸発温度の制御が可能となる。
 第3の発明にかかる空気調和機では、第1または第2の発明にかかる空気調和機において、前記膨張弁が、全閉状態をとり得ることを特徴とする。
 この空気調和機では、全閉直前の微小開度を使って蒸発圧力を十分に下げられる。
 第4の発明にかかる空気調和機は、第1-第3のいずれかの発明にかかる空気調和機において、前記膨張弁の開度が全閉に対応した開度に近付くように減少した場合において、前記膨張弁の開度が全閉近くの所定の開度以下になったときに、開度変化に対する流量の減少量が増加することを特徴とする。
 この空気調和機では、全閉直前での開度変化に対する流量変化を大きくすることで、全閉状態と全閉直前の蒸発温度の変化が大きくなり、全閉直前であることを認識することが容易となり、全閉による回路閉塞を避けやすくなる。
 以上の説明に述べたように、本発明によれば、以下の効果が得られる。
 第1の発明では、蒸発温度を検知する蒸発温度検知手段が室外機における膨張弁の下流側に配置されるので、膨張弁が全閉した時の回路閉塞による圧力低下(温度低下)を確実に検知できるため、微小流量においても、膨張弁が全閉近くまで確実に流量を絞ることができ、蒸発温度を下げて、除湿ができる。
 第2の発明では、膨張弁が全閉直前でも流量の調整が可能となり、微小流量でも蒸発温度の制御が可能となる。
 第3の発明では、全閉直前の微小開度を使って蒸発圧力を十分に下げられる。
 第4の発明では、全閉直前での開度変化に対する流量変化を大きくすることで、全閉状態と全閉直前の蒸発温度の変化が大きくなり、全閉直前であることを認識することが容易となり、全閉による回路閉塞を避けやすくなる。
本発明の実施形態に係る空気調和機の冷媒回路を示す回路図である。 本発明の実施形態に係る空気調和機の室内機の概略断面図である。 室内熱交換器の構成を説明する図である。 本発明の実施形態に係る空気調和機の制御部を説明する図である。 膨張弁において開度を変化したときの流量変化の一例を示している。 除湿運転モードで運転される場合の制御を説明する図である。 膨張弁の制御方法を説明する図である。
 以下、本発明に係る空気調和機1の実施の形態について説明する。
<空気調和機1の全体構成>
 図1に示すように、本実施形態の空気調和機1は、室内に設置される室内機2と、室外に設置される室外機3とを備えている。そして、空気調和機1は、圧縮機10と、四方弁11、室外熱交換器12と、膨張弁13と、室内熱交換器14とを接続した冷媒回路を備えている。冷媒回路において、圧縮機10の吐出口に四方弁11を介して室外熱交換器12が接続され、その室外熱交換器12に膨張弁13が接続される。そして、膨張弁13に室内熱交換器14の一端が接続され、その室内熱交換器14の他端に四方弁11を介して圧縮機10の吸込口が接続される。室内熱交換器14は、補助熱交換器20と、主熱交換器21とを有している。
 空気調和機1は、冷房運転モード、所定の除湿運転モードおよび暖房運転モードにおける運転が可能であって、リモコンによって、いずれかの運転を選択して運転開始操作を行ったり、運転切換操作や運転停止操作を行うことができる。また、リモコンでは、室内温度の設定温度を設定したり、室内ファンの回転数を変化させることによって室内機2の風量を変更できる。
 冷房運転モードおよび所定の除湿運転モードでは、図示実線矢印で示すように、圧縮機10から吐出された冷媒が四方弁11から室外熱交換器12、膨張弁13、補助熱交換器20、主熱交換器21へと順に流れ、主熱交換器21を経た冷媒が四方弁11を通って圧縮機10に戻る冷房サイクルまたは除湿サイクルが形成される。すなわち、室外熱交換器12が凝縮器、室内熱交換器14(補助熱交換器20および主熱交換器21)が蒸発器として機能する。
一方、暖房運転モードでは、四方弁11が切換わることにより、図示破線矢印で示すように、圧縮機10から吐出される冷媒が四方弁11から主熱交換器21、補助熱交換器20、膨張弁13、室外熱交換器12へと順に流れ、室外熱交換器12を経た冷媒が四方弁11を通って圧縮機10に戻る暖房サイクルが形成される。すなわち、室内熱交換器14(補助熱交換器20および主熱交換器21)が凝縮器、室外熱交換器12が蒸発器として機能する。
 室内機2は、上面に室内空気の吸込口2aを有し、前面下部に空調用空気の吹出口2bとを有している。室内機2内には、吸込口2aから吹出口2bに向かって空気流路が形成され、この空気流路には、室内熱交換器14と、横流型の室内ファン16が配置される。したがって、室内ファン16が回転すると、室内空気が吸込口2aから室内ユニット1内に吸込まれる。室内機2の前側において、吸込口2aからの吸込み空気は、補助熱交換器20と主熱交換器21を通って室内ファン16側に流れる。一方、室内機2の背面側において、吸込口2aからの吸込み空気は、主熱交換器21を通って室内ファン16側に流れる。
 室内熱交換器14は、上述したように、補助熱交換器20と、冷房運転モードおよび所定の除湿運転モードで運転されているときに、補助熱交換器20の下流側に配置された主熱交換器21を有している。主熱交換器21は、室内機2の前面側に配置された前面熱交換器21aと、室内機2の背面側に配置された背面熱交換器21bとを有しており、この熱交換器21a、21bが、室内ファン16を囲むように逆V字状に配置される。そして、補助熱交換器20が前面熱交換器21aの前方に配置される。補助熱交換器20および主熱交換器21(前面熱交換器21a、背面熱交換器21b)は、それぞれ、熱交換パイプおよび多数枚のフィンを備えている。
 冷房運転モードおよび所定の除湿運転モードでは、図3に示すように、補助熱交換器20の下方の端部近くに配置された液入口17aから液冷媒が供給され、その供給された液冷媒は、補助熱交換器20の上端に近付くように流れる。そして、補助熱交換器20の上端近くに配置された出口17bから流れ出て分岐部18aに流れる。分岐部18aにおいて分岐された冷媒が、それぞれ、主熱交換器21の3つの入口17cから、前面熱交換器21aの下方部分と上方部分と背面熱交換器21bに供給され、その後、出口17dから流れ出て合流部18bで合流する。また、暖房運転モードでは、冷媒が上記と反対方向に流れる。
 そして、空気調和機1では、所定の除湿運転モードでの運転が行われているとき、補助熱交換器20の液入口17aから供給された液冷媒は、補助熱交換器20の途中で全て蒸発する。したがって、補助熱交換器20の液入口17a近くの一部の範囲だけが、液冷媒が蒸発する蒸発域である。よって、所定の除湿運転モードで運転されているとき、室内熱交換器14において、補助熱交換器20の上流側の一部だけが蒸発域であって、補助熱交換器20の蒸発域の下流側の範囲と主熱交換器21とは、いずれも過熱域である。
 そして、補助熱交換器20の上端近くの過熱域を流れた冷媒が、補助熱交換器20の下方部分の風下側に配置された前面熱交換器21aの下方部分を流れる。したがって、吸込口2aからの吸込空気において、補助熱交換器20の蒸発域で冷却された空気は、前面熱交換器21aで加熱された後で、吹出口2bから吹き出される。一方、吸込口2aからの吸込空気において、補助熱交換器20の過熱域と前面熱交換器21aを流れた空気と、背面熱交換器21bを流れた空気とは、室内温度と略同一の温度で、吹出口2bから吹き出される。
 空気調和機1では、図1に示すように、室外機3に、冷媒回路において膨張弁13の下流側において蒸発温度を検知する蒸発温度センサ30が取り付けられる。そして、室内機2に、室内温度(室内機2の吸込口2aからの吸込空気の温度)を検知する室内温度センサ31と、補助熱交換器20において液冷媒の蒸発が終了したことを検知する室内熱交温度センサ32が取付けられる。
 室内熱交温度センサ32は、図3に示すように、補助熱交換器20の上端近くの風下側に配置される。そして、補助熱交換器20の上端近くの過熱域では、吸込口2aからの吸込空気がほとんど冷却されない。したがって、室内熱交温度センサ32で検知される温度が、室内温度センサ31で検知される室内温度と略同一である場合には、補助熱交換器20の途中で蒸発が終了して、補助熱交換器20の上端近くの範囲が過熱域であることを検知できる。また、室内熱交温度センサ32は、室内熱交換器14の中間部の伝熱管に配置される。したがって、室内熱交換器14の中間部近くにおいて、冷暖房運転での凝縮温度または蒸発温度を検知できる。
 図4に示すように、空気調和機1の制御部には、圧縮機10と、四方弁11、膨張弁13と、室内ファン16を駆動するモータ16aと、蒸発温度センサ30と、室内温度センサ31と、室内熱交温度センサ32とが接続される。したがって、制御部は、リモコンからの指令(運転開始操作や室内温度の設定温度等)や、蒸発温度センサ30で検知される蒸発温度、室内温度センサ31で検知される室内温度(吸込空気の温度)、室内熱交温度センサ32で検知される熱交中間温度に基づいて空気調和機1の運転を制御する。
 そして、空気調和機1では、所定の除湿運転モードにおいて、補助熱交換器20が、液冷媒が蒸発する蒸発域と蒸発域の下流側の過熱域を有するが、この蒸発域の範囲が、負荷に応じて変化するように、圧縮機10及び膨張弁13が制御される。ここで、負荷に応じて変化するとは、蒸発域に供給される熱量に応じて変化することであって、熱量は例えば室内温度(吸込空気の温度)と室内風量によって決まる。また、負荷は、必要除湿能力(必要冷房能力)に対応しており、例えば室内温度と設定温度との差に基づいて検知できる。
 圧縮機10は、室内温度と設定温度との差に基づいて制御される。室内温度と設定温度との差が大きい場合に負荷が大きいことから圧縮機10の周波数が増加され、室内温度と設定温度との差が小さい場合に負荷が小さいことから、圧縮機10の周波数が減少するように制御される。
膨張弁13は、蒸発温度センサ30で検知される蒸発温度に基づいて制御される。上述したように、圧縮機10の周波数が制御された状態において、蒸発温度が目標蒸発温度(12℃)近くの所定範囲(10℃-14℃)内の温度になるように、膨張弁13が制御される。この蒸発温度の所定範囲は、圧縮機10の周波数によらず一定に制御されるのが好ましい。ただし、周波数によって、わずかに変化するようにしても実質的に一定であれば問題ない。
 このように、所定の除湿運転モードにおいて、負荷に応じて圧縮機10及び膨張弁13を制御することによって、補助熱交換器20の蒸発域の範囲を変化して、蒸発温度が所定範囲内の温度になるようにできる。
空気調和機1では、補助熱交換器20及び前面熱交換器21aが、12段の伝熱管をそれぞれ有している。そして、所定の除湿運転モードにおいて補助熱交換器20の蒸発域となる段数が、前面熱交換器21aの段数の半分以上である場合、補助熱交換器の蒸発域の範囲を十分に広くできるので負荷の変動に十分に対応できる。特に負荷が大きい場合に効果がある。
図5は、膨張弁13において開度を変化したときの流量変化を示している。膨張弁13は、入力される駆動パルスの数に応じて開度が連続的に変化する。そして、開度が減少するにつれて、膨張弁13を流れる冷媒の流量が減少する。膨張弁13では、開度t0のときに全閉状態であって、開度t0からt1の間では、開度が増加するにつれて流量が第1の傾きにしたがって増加し、開度t1からt2の間では、開度が増加するにつれて流量が第2の傾きにしたがって増加する。ここで、第1の傾きは、第2の傾きより大きい。したがって、膨張弁13の開度が全閉に対応した開度t0に近付くように減少した場合において、膨張弁13の開度が全閉近くの所定の開度t1以下になったときに、開度変化に対する流量の減少量が増加する。
空気調和機1において所定の除湿運転モードで運転される場合の制御について、図6に基づいて説明する。
まず、リモコンにおいて除湿運転開始操作が行われると(ステップS1)、圧縮機周波数が上限周波数より小さく、熱交中間温度が除湿限界温度より高いか否かを判断することによって、冷房運転において負荷が小さくて除湿できない状態であるかを判断する(ステップS2)。ステップS2では、圧縮機周波数が除湿運転モードにおける上限周波数より小さく、冷房運転において負荷が小さくて除湿できない状態であるかを判断しているが、圧縮機周波数が上限周波数より小さい場合でも、蒸発温度が低い場合は除湿できると考えられるので、蒸発温度が除湿限界温度より低い場合は、冷房運転において負荷が小さくて除湿できない状態であると判断しない。したがって、ステップS2では、負荷が小さく、蒸発温度が除湿限界温度より高い場合に、冷房運転において除湿できない状態であると判断する。
そして、圧縮機周波数が上限周波数より小さく、熱交中間温度が除湿限界温度より高いと判断した場合には(ステップS2:YES)、冷房運転では負荷が小さくて除湿できないので、弁開度を急激に閉じて、除湿運転を開始する(ステップS3)。すると、補助熱交換器20の液入口17aから供給された液冷媒が補助熱交換器20の途中で全て蒸発して、補助熱交換器20の液入口17a近くの一部の範囲だけが蒸発域となる除湿運転が開始される。
除湿運転が開始された後、蒸発温度センサ30で検知される蒸発温度が下限値より低いか否かを判断することによって、蒸発温度が低すぎないかを判断する。(ステップS4)。蒸発温度が下限値(膨張弁13の閉塞を防止するための下限値)より低い場合は、膨張弁13が閉塞状態に近いと考えられる。したがって、ステップS4では、膨張弁13が閉塞状態に近いかを判断して、弁開度を大きくする必要があるかを判断する。
そして、蒸発温度が下限値より低い(膨張弁13が閉塞状態に近い)と判断された場合には(ステップS4:YES)、熱交中間温度(補助熱交換器20の上端近くの風下側の空気温度)が室内温度より高いか否かを判断することによって、補助熱交換器20で蒸発が終了しているかを判断する(ステップS5)。補助熱交換器20の上端近くが過熱域である場合は、吸込口2aからの吸込空気が補助熱交換器20の上端近くにおいてほとんど冷却されないので、室内熱交温度センサ32で検知される熱交中間温度が、室内温度センサ31で検知される室内温度に近い温度か室内温度より高い温度になる。したがって、ステップS5では、熱交中間温度が室内温度より補正量だけ低い温度以上である場合に、補助熱交換器20の上端近くの風下側の空気温度が室内温度より高いと判断して、補助熱交換器20の上端近くの範囲が過熱域であって、補助熱交換器20で蒸発が終了していると判断する。
熱交中間温度(補助熱交換器20の上端近くの風下側の空気温度)が室内温度より低い場合には(ステップS5:NO)、補助熱交換器20で蒸発が終了してない状態であるが、弁開度を急激に開く(ステップS6)。その後、補助熱交換器20の液入口17aから供給された液冷媒が、主熱交換器21に流れる状態において冷房運転を開始する(ステップS7)。
一方、熱交中間温度(補助熱交換器20の上端近くの風下側の空気温度)が室内温度より高い場合には(ステップS5:YES)、補助熱交換器20で蒸発が終了して、補助熱交換器20が蒸発域と過熱域とを有している状態において、弁開度を大きく開く(ステップS8)。その後、室内温度が室内設定温度に近付くように圧縮機の周波数を変更する(ステップS9)。そして、圧縮機周波数が上限周波数より小さいか否かを判断する(ステップS10)。圧縮機周波数が上限周波数以上の場合には(ステップS10:NO)、冷房運転において除湿できるので、冷房運転を開始する(ステップS7)。圧縮機周波数が上限周波数より小さい場合には(ステップS10:YES)、除湿運転の状態で、ステップS4が移行する。
ステップS2において、圧縮機周波数が上限周波数以上、または、熱交中間温度が除湿限界温度以下と判断した場合には(ステップS2:NO)、冷房運転において除湿できる状態であるので、冷房運転を開始する(ステップS7)。
ステップS4において、蒸発温度センサ30で検知される蒸発温度が下限値以上の場合には(ステップS4:NO)、熱交中間温度(補助熱交換器20の上端近くの風下側の空気温度)が室内温度より高いか否かを判断することによって、補助熱交換器20で蒸発が終了しているかを判断する(ステップS11)。
熱交中間温度(補助熱交換器20の上端近くの風下側の空気温度)が室内温度より高い場合には(ステップS11:YES)、補助熱交換器20で蒸発が終了して、補助熱交換器20が蒸発域と過熱域と有している状態であるが、蒸発温度が目標蒸発温度近くの所定範囲内の温度か否かを判断する(ステップS12)。このように、ステップS12では、蒸発温度センサ30で検知される蒸発温度が目標蒸発温度近くの所定範囲内の温度となるように、弁開度を変更する必要があるかを判断する。
ステップS12において、蒸発温度が目標蒸発温度近くの所定範囲内の温度である場合には(ステップS12:YES)、弁開度を変更する必要がないので、ステップS9に移行する。
一方、蒸発温度が目標蒸発温度近くの所定範囲内の温度でない場合には(ステップS12:NO)、蒸発温度が目標蒸発温度より低いか否かを判断する(ステップS13)。蒸発温度が目標蒸発温度より低い場合には(ステップS13:YES)、蒸発温度が目標蒸発温度に近付くように、弁開度を少し開く(ステップS14)。一方、蒸発温度が目標蒸発温度より高い場合には(ステップS13:NO)、蒸発温度が目標蒸発温度に近付くように、弁開度を少し閉じる(ステップS15)。その後、ステップS9に移行する。
 ステップS11において、熱交中間温度(補助熱交換器20の上端近くの風下側の空気温度)が室内温度以下の場合には(ステップS11:NO)、補助熱交換器20で蒸発が終了してないので、弁開度を大きく閉じる(ステップS16)。その後、ステップS9に移行する。
 このように、空気調和機1では、所定の除湿運転モードにおいて補助熱交換器20の蒸発域の範囲が変化するように行われる制御が行われる。例えば、所定の除湿運転モードにおいて、補助熱交換器20の蒸発域の範囲が所定面積であるときに負荷が大きくなった場合、圧縮機10の周波数が増加されると共に、膨張弁13の開度が大きく変更される。したがって、補助熱交換器20の蒸発域の範囲が所定面積より大きくなって、室内機2に吸い込まれた風量が一定であっても、実際に蒸発域を通過する風量が増加する。
 一方、所定の除湿運転モードにおいて、補助熱交換器20の蒸発域の範囲が所定面積であるときに負荷が小さくなった場合、圧縮機10の周波数が減少されると共に、膨張弁13の開度が小さく変更される。したがって、補助熱交換器20の蒸発域の範囲が所定面積より小さくなって、室内機2に吸い込まれた風量が一定であっても、実際に蒸発域を通過する風量が減少する。
 空気調和機1の膨張弁13の制御について、図7に基づいて説明する。上述したように、膨張弁13は、蒸発温度に基づいて制御されるが、開度が全閉近くの所定開度ta以下の場合と、開度が所定開度taより大きい場合とで制御が異なる。これは、開度が全閉近くにおいて、開度変化に対する流量の変化量が大きいことから、開度の変化を小さくするためである。所定開度taは、開度t1またはその近くの開度である。
 まず、開度を蒸発温度に基づいて制御するときに、開度を大きく変更する必要がある場合には、膨張弁の弁開度が所定開度taより小さいか否かを判断する(ステップS101)。弁開度が所定開度taより小さいと判断した場合には(ステップS101:YES)、弁開度を1パルスだけ小さくしたときに全閉しないか否かを判断する(ステップS102)。詳しくは、そのときの圧縮機周波数が全閉圧縮機周波数(全閉とみなした圧縮機周波数)以上であって、弁開度が全閉弁開度(全閉とみなした弁開度)より2パルス以上大きい場合に、弁開度を1パルスだけ小さくしたときに全閉しないと判断する。
 そして、弁開度を1パルスだけ小さくしたときに全閉しないと判断した場合には(ステップS102:YES)、弁開度を1パルスだけ小さく変更して(ステップS103)、運転が所定時間行われる(ステップS104)。その後、膨張弁が全閉してないかを判断する(ステップS105)。詳しくは、所定時間運転前から蒸発温度が所定の温度差(例えば5℃)だけ低下した場合、または、所定時間運転後において蒸発温度が所定の温度(例えば5℃)以下の場合に、膨張弁が全閉状態と判断する。そして、全閉してないと判断した場合には(ステップS105:NO)、そのときの圧縮機の周波数及び膨張弁の弁開度が全閉圧縮機周波数、全閉弁開度として記憶される(ステップS106)。
ステップS101において、弁開度が所定開度ta以上と判断した場合には(ステップS101:NO)、蒸発温度に基づいて、弁開度が小さく変更される(ステップS107)。
 また、ステップS102において、弁開度を1パルスだけ小さくしたときに全閉すると判断した場合(ステップS102:NO)、ステップS105において、膨張弁が全閉したと判断した場合(ステップS105:NO)には、開度を変更しない。
 ここで、空気調和機1では、上述したように、所定時間運転前から蒸発温度が所定の温度差だけ低下した場合、または、所定時間運転後において蒸発温度が所定の温度以下の場合に、膨張弁が全閉状態と判断するので、圧縮機周波数が大きく流量が大きいときに、全閉状態と判断されやすい場合がある。したがって、圧縮機周波数が小さいときは、全閉弁開度として記憶された弁開度より小さく変更できることがあることから、空気調和機1では、圧縮機の周波数が記憶された全閉圧縮機周波数より小さい場合には、開度を小さく変更できるかを判断する。
 一方、開度を蒸発温度に基づいて制御するときに、開度を小さく変更する必要がある場合には、膨張弁の弁開度が所定開度taより小さいか否かを判断する(ステップS201)。弁開度が所定開度taより小さいと判断した場合には(ステップS201:YES)、弁開度を1パルスだけ大きく変更する(ステップS202)。
ステップS201において、弁開度が所定開度ta以上と判断した場合には(ステップS201:NO)、蒸発温度に基づいて、弁開度が大きく変更される(ステップS203)。
<本実施形態の空気調和機の特徴>
 本実施形態の空気調和機1では、蒸発温度を検知する蒸発温度センサ30が、室外機3における膨張弁13の下流側に配置されるので、膨張弁13が全閉した時の回路閉塞による圧力低下(温度低下)を確実に検知できるため、微小流量においても、膨張弁13が全閉近くまで確実に流量を絞ることができ、蒸発温度を下げて、除湿ができる。
 また、本実施形態の空気調和機1では、膨張弁13が、全閉近くにおいて開度が小さくなるにつれて流量が減少するものであるので、膨張弁13が全閉直前でも流量の調整が可能となり、微小流量でも蒸発温度の制御が可能となる。
また、本実施形態の空気調和機1では、膨張弁13が全閉状態をとり得るので、全閉直前の微小開度を使って蒸発圧力を十分に下げられる。
 また、本実施形態の空気調和機1では、膨張弁13の開度が全閉に対応した開度に近付くように減少した場合において、膨張弁13の開度が全閉近くの所定の開度t1以下になったときに、開度変化に対する流量の減少量が増加する。したがって、全閉直前での開度変化に対する流量変化を大きくすることで、全閉状態と全閉直前の蒸発温度の変化が大きくなり、全閉直前であることを認識することが容易となり、全閉による回路閉塞を避けやすくなる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
 上述の実施形態において、補助熱交換器と主熱交換器とが一体に構成されてもよい。したがって、この場合、室内熱交換器が一体に構成され、室内熱交換器の最風上側に、補助熱交換器に対応した部分が設けられ、その風下側に、主熱交換器に対応した部分が設けられる。
 また、上述の実施形態では、冷房運転モード、所定の除湿運転モードおよび暖房運転モードでの運転を行う空気調和機について説明したが、所定の除湿運転モードの他の方法で除湿運転を行う除湿運転モードでの運転を行う空気調和機であってもよい。
 本発明を利用すれば、膨張弁が全閉した時の回路閉塞による圧力低下(温度低下)を確実に検知できる。
1 空気調和機
2 室内機
3 室外機
10 圧縮機
12 室外熱交換器
13 膨張弁
14 室内熱交換器
16 室内ファン
20 補助熱交換器
21 主熱交換器

Claims (4)

  1.  圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器とを接続した冷媒回路を備え、前記室内熱交換器の全体を蒸発域とする冷房運転と、前記室内熱交換器の一部分を蒸発域とする除湿運転を行う空気調和機であって、
     前記圧縮機、前記室外熱交換器及び前記膨張弁が、室外機に配置され、
     前記室内熱交換器が、室内機に配置されると共に、
     前記室外機における膨張弁の下流側には、蒸発温度を検知する蒸発温度検知手段が配置されることを特徴とする空気調和機。
  2.  前記膨張弁が、全閉近くにおいて開度が小さくなるにつれて流量が減少するものであることを特徴とする請求項1に記載の空気調和機。
  3.  前記膨張弁が、全閉状態をとり得ることを特徴とする請求項1または2に記載の空気調和機。
  4.  前記膨張弁の開度が全閉に対応した開度に近付くように減少した場合において、
    前記膨張弁の開度が全閉近くの所定の開度以下になったときに、開度変化に対する流量の減少量が増加することを特徴とする請求項1-3のいずれかに記載の空気調和機。
PCT/JP2013/060367 2012-04-16 2013-04-04 空気調和機 WO2013157404A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2013250424A AU2013250424B2 (en) 2012-04-16 2013-04-04 Air conditioner
SG11201406663UA SG11201406663UA (en) 2012-04-16 2013-04-04 Air conditioner
BR112014025451-6A BR112014025451B1 (pt) 2012-04-16 2013-04-04 Ar-condicionado
CN201380020154.0A CN104246388B (zh) 2012-04-16 2013-04-04 空调机
ES13778027T ES2705212T3 (es) 2012-04-16 2013-04-04 Aire acondicionado
US14/394,664 US9546806B2 (en) 2012-04-16 2013-04-04 Air conditioner
EP13778027.6A EP2905553B1 (en) 2012-04-16 2013-04-04 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012093124A JP5573881B2 (ja) 2012-04-16 2012-04-16 空気調和機
JP2012-093124 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013157404A1 true WO2013157404A1 (ja) 2013-10-24

Family

ID=49383368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060367 WO2013157404A1 (ja) 2012-04-16 2013-04-04 空気調和機

Country Status (10)

Country Link
US (1) US9546806B2 (ja)
EP (1) EP2905553B1 (ja)
JP (1) JP5573881B2 (ja)
CN (1) CN104246388B (ja)
AU (1) AU2013250424B2 (ja)
BR (1) BR112014025451B1 (ja)
ES (1) ES2705212T3 (ja)
MY (1) MY168379A (ja)
SG (1) SG11201406663UA (ja)
WO (1) WO2013157404A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595205B2 (ja) * 2015-04-24 2019-10-23 株式会社日立製作所 冷凍サイクル装置
US10976090B2 (en) * 2016-09-30 2021-04-13 Daikin Industries, Ltd. Air conditioner
CN110057052A (zh) * 2019-04-11 2019-07-26 青岛海尔空调器有限总公司 用于空调器的控制方法及空调器
US11525606B2 (en) 2019-09-27 2022-12-13 Emerson Digital Cold Chain, Inc. Floating evaporator saturated suction temperature systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203847A (ja) * 1990-11-30 1992-07-24 Toshiba Corp 空気調和装置
JPH07332736A (ja) * 1994-06-10 1995-12-22 Hitachi Ltd 空気調和装置
JPH0914727A (ja) 1995-06-28 1997-01-17 Toshiba Corp 空気調和機
JPH0996452A (ja) * 1995-09-29 1997-04-08 Toshiba Corp 空気調和機
JPH09152168A (ja) * 1995-11-28 1997-06-10 Daikin Ind Ltd 分離形空気調和機
JP2007040567A (ja) * 2005-08-01 2007-02-15 Daikin Ind Ltd 冷凍装置
JP2009236346A (ja) * 2008-03-26 2009-10-15 Daikin Ind Ltd 冷凍装置
JP2012032108A (ja) * 2010-08-02 2012-02-16 Daikin Industries Ltd 空気調和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878355A (en) * 1989-02-27 1989-11-07 Honeywell Inc. Method and apparatus for improving cooling of a compressor element in an air conditioning system
JPH0352168A (ja) * 1989-07-19 1991-03-06 Nec Corp 位相誤差検出回路
JP2909190B2 (ja) * 1990-11-02 1999-06-23 株式会社東芝 空気調和機
JP3233447B2 (ja) * 1992-06-02 2001-11-26 東芝キヤリア株式会社 空気調和機
JPH08320160A (ja) * 1995-05-25 1996-12-03 Sharp Corp ヒートポンプ式空気調和機
JP3584862B2 (ja) * 2000-07-13 2004-11-04 ダイキン工業株式会社 空気調和機の冷媒回路
JP4302874B2 (ja) * 2000-12-26 2009-07-29 東芝キヤリア株式会社 空気調和機
JP3976561B2 (ja) * 2001-12-12 2007-09-19 シャープ株式会社 空気調和機
JP4396521B2 (ja) * 2002-10-30 2010-01-13 三菱電機株式会社 空気調和装置
JP2005315031A (ja) * 2004-04-30 2005-11-10 Nippon Light Metal Co Ltd 階段
JP2006266533A (ja) * 2005-03-22 2006-10-05 Fuji Koki Corp 弁制御システム及び弁制御方法
CN1892154B (zh) * 2005-07-08 2011-07-13 海尔集团公司 多联机空调的回油控制方法
JP4923794B2 (ja) * 2006-07-06 2012-04-25 ダイキン工業株式会社 空気調和装置
JP4840207B2 (ja) * 2006-07-12 2011-12-21 パナソニック株式会社 換気空調装置
JP2008121996A (ja) * 2006-11-13 2008-05-29 Fujitsu General Ltd 空気調和機
JP4329858B2 (ja) * 2007-11-30 2009-09-09 ダイキン工業株式会社 冷凍装置
CN101509693B (zh) * 2009-03-16 2011-05-18 宁波奥克斯电气有限公司 变频热泵空调室外机电子膨胀阀的控制方法
CN101539322B (zh) * 2009-03-31 2011-06-01 宁波奥克斯电气有限公司 制热待机的室内机电子膨胀阀的控制方法
CN201463434U (zh) * 2009-06-25 2010-05-12 海尔集团公司 热水空调器的控制电路
CN202092280U (zh) * 2010-11-24 2011-12-28 海尔集团公司 多联中央空调系统的控制装置
CN102135295A (zh) * 2011-04-03 2011-07-27 Tcl空调器(中山)有限公司 空调器及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203847A (ja) * 1990-11-30 1992-07-24 Toshiba Corp 空気調和装置
JPH07332736A (ja) * 1994-06-10 1995-12-22 Hitachi Ltd 空気調和装置
JPH0914727A (ja) 1995-06-28 1997-01-17 Toshiba Corp 空気調和機
JPH0996452A (ja) * 1995-09-29 1997-04-08 Toshiba Corp 空気調和機
JPH09152168A (ja) * 1995-11-28 1997-06-10 Daikin Ind Ltd 分離形空気調和機
JP2007040567A (ja) * 2005-08-01 2007-02-15 Daikin Ind Ltd 冷凍装置
JP2009236346A (ja) * 2008-03-26 2009-10-15 Daikin Ind Ltd 冷凍装置
JP2012032108A (ja) * 2010-08-02 2012-02-16 Daikin Industries Ltd 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2905553A4

Also Published As

Publication number Publication date
US20150068238A1 (en) 2015-03-12
BR112014025451A2 (ja) 2017-06-20
BR112014025451B1 (pt) 2022-05-17
EP2905553A1 (en) 2015-08-12
JP5573881B2 (ja) 2014-08-20
ES2705212T3 (es) 2019-03-22
AU2013250424B2 (en) 2015-10-29
CN104246388A (zh) 2014-12-24
MY168379A (en) 2018-10-31
AU2013250424A1 (en) 2014-12-04
CN104246388B (zh) 2016-01-20
JP2013221670A (ja) 2013-10-28
SG11201406663UA (en) 2014-11-27
EP2905553B1 (en) 2018-09-19
EP2905553A4 (en) 2016-03-16
US9546806B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
JP5817803B2 (ja) 空気調和機
JP5533926B2 (ja) 空気調和機
JP6044238B2 (ja) 空気調和機
JP5805579B2 (ja) 空気調和機
WO2013005424A1 (ja) 冷凍サイクル装置
JP5749210B2 (ja) 空気調和機
JP6135638B2 (ja) 空気調和機
JP5316668B1 (ja) 空気調和機
JP5573881B2 (ja) 空気調和機
JP5310904B1 (ja) 空気調和機
JP6070624B2 (ja) 空気調和機
JP2014159954A5 (ja)
JP5780199B2 (ja) 空気調和機
AU2013250426B9 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14394664

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013778027

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014025451

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013250424

Country of ref document: AU

Date of ref document: 20130404

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112014025451

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141013