WO2013157126A1 - 過給機付き内燃機関の制御装置 - Google Patents

過給機付き内燃機関の制御装置 Download PDF

Info

Publication number
WO2013157126A1
WO2013157126A1 PCT/JP2012/060612 JP2012060612W WO2013157126A1 WO 2013157126 A1 WO2013157126 A1 WO 2013157126A1 JP 2012060612 W JP2012060612 W JP 2012060612W WO 2013157126 A1 WO2013157126 A1 WO 2013157126A1
Authority
WO
WIPO (PCT)
Prior art keywords
supercharging pressure
measured
pressure
estimated
target
Prior art date
Application number
PCT/JP2012/060612
Other languages
English (en)
French (fr)
Inventor
田中 聡
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/394,919 priority Critical patent/US9567923B2/en
Priority to PCT/JP2012/060612 priority patent/WO2013157126A1/ja
Priority to CN201280072449.8A priority patent/CN104246172B/zh
Priority to EP12874475.2A priority patent/EP2840244B1/en
Priority to JP2014511049A priority patent/JP5939297B2/ja
Publication of WO2013157126A1 publication Critical patent/WO2013157126A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • F02B2039/162Control of pump parameters to improve safety thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine with a supercharger that operates a supercharging pressure control actuator so that a supercharging pressure measured by a supercharging pressure sensor becomes a target supercharging pressure.
  • the present invention relates to a control device having a function of self-diagnosis of abnormality relating to control.
  • An internal combustion engine with a supercharger equipped with an actuator capable of actively changing the supercharging pressure, such as a waste gate valve and a variable nozzle, is known.
  • the target boost pressure is determined according to the target air amount, and the operation amount of the actuator is set so that the boost pressure measured by the boost pressure sensor becomes the target boost pressure. Feedback controlled.
  • the supercharging pressure sensor plays an important role in accurately controlling the supercharging pressure.
  • the boost pressure sensor will always function normally.
  • Some abnormality such as disconnection or short circuit or deterioration of the sensor element may occur in the boost pressure sensor.
  • the actual supercharging pressure cannot follow the target supercharging pressure.
  • a supercharger-equipped internal combustion engine that performs supercharging pressure feedback control requires a self-diagnosis function that can quickly and correctly diagnose abnormality of the supercharging pressure sensor.
  • a method disclosed in Japanese Patent Application Laid-Open No. 2006-207509 is known as a method for diagnosing abnormality of a supercharging pressure sensor.
  • a difference between a reference boost pressure in a predetermined load region of an internal combustion engine and a boost pressure obtained by measurement by a boost pressure sensor is calculated, and the difference exceeds a predetermined value. If it is, it is determined that an abnormality has occurred in the supercharging pressure sensor.
  • the supercharging pressure obtained by measurement by the supercharging pressure sensor is a value deviating from the reference supercharging pressure.
  • the supercharging pressure measured by the supercharging pressure sensor shows a higher value than the reference supercharging pressure. Therefore, according to the method described in the above publication, an abnormality occurs in the supercharging pressure sensor. A misdiagnosis is made.
  • the self-diagnosis function provided in the control device for an internal combustion engine with a supercharger is required to be able to diagnose the abnormality of the supercharging pressure sensor separately from the abnormality of the actuator.
  • JP 2007-009877 A calculates the deviation between the target boost pressure and the actual boost pressure corresponding to the control duty value each time the control duty value for the wastegate valve is changed by a predetermined amount. It is described that the abnormality of the wastegate valve is determined by comparing the deviation with the abnormality determination value.
  • the technique described in the publication is based on the premise that the supercharging pressure sensor is normal, and the abnormality of the wastegate valve is not distinguished from the abnormality of the supercharging pressure sensor.
  • the present invention has been made in view of the above-described problems.
  • an abnormality of a supercharging pressure sensor used for monitoring the supercharging pressure is detected.
  • the purpose is to detect accurately.
  • the present invention provides a control device for an internal combustion engine with a supercharger configured to operate as follows.
  • the control device operates the actuator so that the supercharging pressure measured by the supercharging pressure sensor becomes the target supercharging pressure, and acquires a measured value of the flow rate of air flowing through the intake passage of the internal combustion engine.
  • the estimated supercharging pressure is calculated based on the measured air flow rate.
  • An air flow meter can be used to measure the air flow rate, and a physical model can be used to calculate the estimated supercharging pressure based on the measured air flow rate.
  • the estimated boost pressure calculated from the measured air flow is almost equivalent to the actual boost pressure. Therefore, if both the supercharging pressure sensor and the actuator are normal, the measured supercharging pressure, the target supercharging pressure, and the estimated supercharging pressure should be almost equal. However, when an abnormality occurs in any of the supercharging pressure sensor and the actuator, there is a difference in magnitude among the measured supercharging pressure, the target supercharging pressure, and the estimated supercharging pressure. Moreover, the magnitude relationship among the measured supercharging pressure, the target supercharging pressure, and the estimated supercharging pressure differs depending on whether an abnormality has occurred in the supercharging pressure sensor or an abnormality in the actuator. Become.
  • the magnitude relationship including the estimated boost pressure is evaluated with simultaneous inequalities. It is possible to accurately detect a sensor abnormality by distinguishing it from an actuator abnormality.
  • control device is a simultaneous inequality that evaluates the magnitude relationship among the measured supercharging pressure, the target supercharging pressure, and the estimated supercharging pressure, and when the supercharging pressure sensor is normal.
  • a first abnormality flag is set when the first simultaneous inequality that does not hold holds. Since the first abnormality flag is raised, it can be known that an abnormality has occurred in the supercharging pressure sensor.
  • control device is more preferably a simultaneous inequality that evaluates a magnitude relationship among the measured supercharging pressure, the target supercharging pressure, and the estimated supercharging pressure, and the first simultaneous inequality and If the second simultaneous inequality that does not hold at the same time and does not hold when the actuator is normal holds, a second abnormality flag is set. Since the second abnormality flag is set, it can be known that an abnormality has occurred in the actuator.
  • Embodiment 1 FIG. Embodiment 1 of the present invention will be described with reference to the drawings.
  • FIG. 1 is a schematic diagram illustrating a configuration of a supercharged engine in which a control device according to the present embodiment is used.
  • the supercharged engine according to the present embodiment includes a turbocharger 30 including a compressor 32 provided in the intake passage 10 and a turbine 34 provided in the exhaust passage 20.
  • the intake passage 10 is connected to an intake manifold 18 attached to the engine body 2.
  • An air cleaner 12 is provided at the inlet of the intake passage 10, and an air flow meter 42 for measuring the air flow rate is disposed downstream of the air cleaner 12 and upstream of the compressor 32.
  • An intercooler 14 is provided between the compressor 32 and the throttle 16 in the intake passage 10.
  • a supercharging pressure sensor 44 for measuring the pressure in the upstream portion of the throttle 16, that is, the supercharging pressure, is attached to the outlet of the intercooler 14.
  • the intake passage 10 is provided with an air bypass valve 36 for bypassing the compressor 32 from the downstream side to the upstream side of the compressor 32 to recirculate air.
  • the exhaust passage 20 is connected to an exhaust manifold 22 attached to the engine body 2.
  • the exhaust passage 20 is provided with a waste gate valve 38 for allowing the exhaust gas to flow by bypassing the turbine 34.
  • This waste gate valve 38 is an active control compatible waste gate valve driven by E-VRV (Electric Vacuum Regulating Valve).
  • the control device is realized as a part of the function of an ECU (Electronic Control Unit) 100 that controls the supercharged engine.
  • the ECU 100 includes various sensors such as a throttle opening sensor 46, an engine speed sensor 48, an accelerator opening sensor 50, and the like regarding various engine operating conditions and operating conditions. Information and signals are input.
  • the ECU 100 operates various actuators such as the throttle 16 and the waste gate valve 38 based on the information and signals.
  • the instruction opening is supplied from the ECU 100 to the E-VRV. By operating the E-VRV in accordance with the indicated opening, the wastegate valve 38 is moved to an arbitrary opening.
  • the block diagram of FIG. 2 shows a configuration of the ECU 100 as the control device according to the present embodiment.
  • the ECU 100 includes a target boost pressure calculation unit 102, a feedback controller 104, a boost pressure estimation unit 106, and an abnormality diagnosis unit 108.
  • these elements 102, 104, 106, and 108 are expressed in a diagram by paying attention only to elements relating to supercharging pressure feedback control and abnormality diagnosis among various functions of the ECU 100. Therefore, FIG. 2 does not mean that the ECU 100 includes only these elements.
  • the ECU 100 is an automobile computer, and each element is virtually realized when software stored in the memory is executed by the CPU.
  • the target boost pressure calculation unit 102 calculates a target boost pressure Pict for boost pressure feedback control. For calculating the target supercharging pressure Pict, the engine speed NE measured by the engine speed sensor 48 and the accelerator pedal opening AP measured by the accelerator opening sensor 50 are used. The target boost pressure calculation unit 102 determines a target air amount based on these pieces of information, and determines a target boost pressure Pict according to the target air amount.
  • the feedback controller 104 determines an instruction opening ⁇ wgv that is an operation amount of the wastegate valve 38 by feedback control.
  • the difference between the target boost pressure Pict calculated by the target boost pressure calculation unit 102 and the boost pressure Picm measured by the boost pressure sensor 44 is calculated.
  • the command opening ⁇ wgv is calculated by PI control with respect to the difference between the target boost pressure Pict and the measured boost pressure Picm.
  • the supercharging pressure estimation unit 106 calculates an estimated supercharging pressure Pice based on the air flow rate mafm measured by the air flow meter 42.
  • a physical model that physically models the behavior of air in the supercharged engine is used.
  • the physical model includes a plurality of element models, that is, an intercooler model M1, a throttle model M2, an intake manifold model M3, and an intake valve model M4.
  • an intercooler model M1 a throttle model
  • M3 an intake manifold model
  • intake valve model M4 an intake valve model
  • the intercooler model M1 is a physical model constructed based on a conservation law regarding air in the intercooler 14 in the intake passage 10.
  • the intercooler model M1 specifically, an energy conservation law equation and a flow conservation law equation are used.
  • the air flow rate mafm measured by the air flow meter 42 is used as the flow rate of air flowing into the intercooler 14, and the throttle flow rate mt calculated in the throttle model M2 described later is air flowing out of the intercooler 14. It is used as a flow rate.
  • a supercharging pressure Pic is calculated.
  • the throttle model M2 is a model for calculating the flow rate of air passing through the throttle 16, and specifically, based on the differential pressure before and after the throttle 16, the flow area determined by the throttle opening, and the flow coefficient.
  • the orifice flow rate formula is used.
  • information such as the throttle opening TA measured by the throttle opening sensor 46, the supercharging pressure Pic calculated by the intercooler model M1, and the intake manifold pressure Pm calculated by the intake manifold model M3 described later. Is input, and the throttle flow rate mt is calculated from the input information.
  • the intake manifold model M3 is a physical model constructed based on the conservation law regarding the air in the intake manifold 18. As the intake manifold model M3, specifically, an energy conservation law formula and a flow rate conservation law formula are used. In the intake manifold model M3, information such as a throttle flow rate mt calculated by the throttle model M2 and an intake valve flow rate mc calculated by an intake valve model M4 described later is input, and the intake manifold pressure Pm is calculated from the input information. Is done.
  • the intake valve model M4 is a model based on the result of an experiment that investigated the relationship between the intake valve flow rate and the intake manifold pressure. Based on empirical rules obtained through experiments, in the intake valve model M4, the relationship between the intake valve flow rate and the intake manifold pressure is approximated by a straight line.
  • the coefficient of the linear equation is not a constant, but is a variable determined by the engine speed, the wastegate valve opening, the intake valve timing, the exhaust valve timing, and the like.
  • the intake valve model M4 in addition to the intake manifold pressure Pm calculated in the intake manifold model M3, information such as the engine speed NE and the wastegate valve instruction opening ⁇ wgv is input, and the intake valve flow rate mc is obtained from the input information. Calculated.
  • ECU100 takes out the supercharging pressure Pic calculated by the intercooler model M1 from the various parameters calculated by the supercharging pressure estimation unit 106 as the estimated supercharging pressure Pic.
  • the abnormality diagnosis unit 108 diagnoses an abnormality in devices related to the supercharging pressure control, that is, the supercharging pressure sensor 44 and the wastegate valve 38.
  • the abnormality of the supercharging pressure sensor 44 and the abnormality of the waste gate valve 38 are distinguished. If there is an abnormality in the supercharging pressure sensor 44, the abnormality diagnosis unit 108 sets the first abnormality flag FLG1 (sets the value of the flag FLG1 to 1), and if there is an abnormality in the wastegate valve 38, the abnormality diagnosis unit 108
  • the second abnormality flag FLG2 is set (the value of the flag FLG2 is set to 1).
  • the target boost pressure Pict calculated by the target boost pressure calculation unit 102, the measured boost pressure Picm measured by the boost pressure sensor 44, and the boost pressure estimation unit 106 are used.
  • the estimated supercharging pressure Pice estimated in (1) is used.
  • the ECU 100 performs the supercharging pressure feedback control by the feedback controller 104, if both the supercharging pressure sensor 44 and the wastegate valve 38 are normal, the actual supercharging pressure substantially coincides with the target supercharging pressure Pict. Should be.
  • the actual supercharging pressure corresponds to the measured supercharging pressure Picm directly measured by the supercharging pressure sensor 44, and the estimated supercharging pressure Pic calculated based on the measured air flow rate mafm. Therefore, if both the supercharging pressure sensor 44 and the wastegate valve 38 are normal, the target supercharging pressure Pict, the measured supercharging pressure Picm, and the estimated supercharging pressure Picice should substantially match.
  • the estimated supercharging pressure Pice is an estimated value of the actual supercharging pressure calculated based on the measured air flow rate mafm, the estimated supercharging pressure Pice is measured regardless of whether the wastegate valve 38 is abnormal. It is within a certain error range with respect to the supply pressure Picm.
  • FIG. 3 shows the relationship between the target boost pressure Pict, the measured boost pressure Picm, and the estimated boost pressure Picice when the wastegate valve 38 is closed from the indicated opening ⁇ wgv.
  • the wastegate valve 38 is closed more than the instruction opening ⁇ wgv, the actual supercharging pressure becomes larger than the target supercharging pressure Pict.
  • the measured boost pressure Picm which is a measured value of the actual boost pressure, becomes larger than the target boost pressure Pict. Since the air flow rate increases as the boost pressure increases, the estimated boost pressure Pic calculated based on the measured air flow rate mafm also becomes larger than the target boost pressure Pict.
  • the waste gate valve 38 is opened more than the instruction opening degree ⁇ wgv, the measured supercharging pressure Picm becomes smaller than the target supercharging pressure Pict due to insufficient supercharging. If the supercharging pressure is insufficient, the air flow rate is also reduced. Therefore, the estimated supercharging pressure Pic calculated based on the measured air flow rate mafm is also smaller than the target supercharging pressure Pict.
  • the measured supercharging pressure Picm obtained from the output value of the supercharging pressure sensor 44 and the estimated supercharging pressure Pic calculated based on the measured air flow rate mafm are one. The two will diverge beyond a certain error range.
  • the appropriate supercharging pressure feedback control cannot be performed as in the case where an abnormality occurs in the wastegate valve 38, and the actual supercharging pressure is set to the target overpressure. It becomes impossible to make it correspond to supply pressure Pict.
  • the estimated supercharging pressure Picice which is an estimated value of the actual supercharging pressure, and the target supercharging pressure Pict are greatly deviated.
  • FIG. 4 shows the target supercharging pressure Pict and the measured supercharging pressure when the measured supercharging pressure Picm does not show a correct value due to abnormality of the supercharging pressure sensor 44 and the measured supercharging pressure Picm is smaller than the actual value.
  • the relationship between the supply pressure Picm and the estimated supercharging pressure Pic is shown.
  • the instruction opening ⁇ wgv of the wastegate valve 38 is determined so as to eliminate the difference between the measured supercharging pressure Picm and the target supercharging pressure Pict, so that the measured supercharging pressure Picm is smaller than the actual value.
  • the actual boost pressure realized by the boost pressure feedback control becomes larger than the target boost pressure Pict.
  • the estimated boost pressure Pic calculated based on the measured air flow rate mafm becomes larger than the target boost pressure Pict. That is, in this case, the measured boost pressure Picm is smaller than the target boost pressure Pict, while the estimated boost pressure Pic is greater than the target boost pressure Pict. Conversely, when the measured supercharging pressure Picm is larger than the actual value, the supercharging pressure feedback control is performed based on the inaccurate measured supercharging pressure Picm. As a result, the measured supercharging pressure Picm Becomes larger than the target supercharging pressure Pict, while the estimated supercharging pressure Picice becomes smaller than the target supercharging pressure Pict.
  • the target supercharging pressure Pict when an abnormality occurs in any of the supercharging pressure sensor 44 and the waste gate valve 38, the target supercharging pressure Pict, the measured supercharging pressure Picm, and the estimated supercharging pressure Pic There is a difference in size.
  • the target supercharging pressure Pict when there is an abnormality in the supercharging pressure sensor 44 and when there is an abnormality in the wastegate valve 38, there is a difference between the target supercharging pressure Pict, the measured supercharging pressure Picm, and the estimated supercharging pressure Pic.
  • the magnitude relationship is different.
  • the above simultaneous inequality is defined as follows.
  • the first simultaneous inequality for determining that an abnormality has occurred in the supercharging pressure sensor 44 is as follows.
  • This simultaneous inequality is an expression (1A) indicating that the difference between the target supercharging pressure Pict and the measured supercharging pressure Picm is larger than the first threshold value ⁇ , the measured supercharging pressure Picm, and the estimated supercharging pressure Pice.
  • This is a combination with the expression (1B) indicating that the magnitude of the difference is greater than the second threshold value ⁇ .
  • a second simultaneous inequality for determining that an abnormality has occurred in the wastegate valve 38 is as follows.
  • This simultaneous inequality is an expression (2A) indicating that the difference between the target supercharging pressure Pict and the measured supercharging pressure Picm is larger than the first threshold ⁇ , the measured supercharging pressure Picm and the estimated supercharging pressure Pic
  • This is a combination with the formula (2B) indicating that the magnitude of the difference is equal to or less than the second threshold value ⁇ .
  • the values of the threshold values ⁇ and ⁇ in the above simultaneous inequalities are determined by adaptation using the actual engine.
  • the abnormality diagnosis unit 108 sets the value of the first abnormality flag FLG1 to 1.
  • the abnormality diagnosis unit 108 sets the value of the second abnormality flag FLG2 to 1.
  • the abnormality diagnosis method described above is implemented by the ECU 100 executing the routine shown in the flowchart of FIG.
  • the abnormality diagnosis routine is executed by the ECU 100 every control cycle.
  • the estimated supercharging pressure Pice is calculated based on the air flow rate mafm measured by the air flow meter 42.
  • step S104 it is determined whether or not the difference between the target boost pressure Pict and the measured boost pressure Picm is greater than the first threshold value ⁇ . If the determination result is negative, it can be determined that neither the supercharging pressure sensor 44 nor the waste gate valve 38 is abnormal. Therefore, if the determination result in step S104 is negative, the values of both flags FLG1 and FLG2 are held at zero.
  • step S106 it is determined whether or not the magnitude of the difference between the measured supercharging pressure Picm and the estimated supercharging pressure Pic is greater than the second threshold value ⁇ . If the determination result is affirmative, the processing by ECU 100 proceeds to step S108. In step S108, the value of the first abnormality flag FLG1 indicating that an abnormality has occurred in the supercharging pressure sensor 44 is set to 1. On the other hand, if the determination result of step S106 is negative, the process by the ECU 100 proceeds to step S110. In step S110, the value of the second abnormality flag FLG2 indicating that an abnormality has occurred in the wastegate valve (WGV) 38 is set to 1.
  • the ECU 100 turns on an abnormality lamp provided on the instrument panel and whether the abnormality is the supercharging pressure sensor 44 or the wastegate valve 38. Is recorded in the memory.
  • the recorded abnormality code is read by the diagnostic device at the time of inspection of the vehicle, and the vehicle mechanic looks at the abnormal code displayed on the diagnostic device and identifies where the abnormality is occurring.
  • the control device is used for a supercharged engine configured as shown in FIG. 1 as in the first embodiment, and is realized as part of the function of the ECU 100 that controls the supercharged engine. Further, the ECU 100 as the control device has the configuration shown in FIG. 2 as in the first embodiment.
  • the difference between the control device according to the present embodiment and the control device according to the first embodiment is in an abnormality diagnosis method by ECU 100 as the control device. More specifically, simultaneous inequality used for abnormality diagnosis is different from that of the first embodiment.
  • the simultaneous inequality including the following expressions (3A) and (3B) is used. Equation (3A) is an inequality that indicates that the difference between the measured boost pressure Picm and the estimated boost pressure Picice is greater than the third threshold ⁇ , and Equation (3B) is the measured boost pressure Pict with respect to the target boost pressure Pict. It is an inequality representing that the sign of each error of the charging pressure Picm and the estimated supercharging pressure Pic is different.
  • Expression (4A) is an inequality expression indicating that the difference between the target boost pressure Pict and the measured boost pressure Picm is larger than the fourth threshold value ⁇
  • Expression (4B) is the measured boost pressure for the target boost pressure Pict. It is an inequality representing that the sign of each error of the supply pressure Picm and the estimated supercharging pressure Pic is the same sign. As shown in the example of FIG. 3, when the boost pressure feedback control is performed in a situation where the waste gate valve 38 is abnormal, the target boost pressure Pict and the measured boost pressure Picm greatly deviate from each other.
  • the estimated supercharging pressure Picice is within a certain error range with respect to the measured supercharging pressure Picm.
  • the second simultaneous inequality consisting of the equations (4A) and (4B) is a simultaneous inequality that holds in such a situation.
  • the equation (4B) constituting the second simultaneous inequality and the equation (3B) constituting the first simultaneous inequality these two simultaneous inequalities do not hold simultaneously.
  • Threshold values ⁇ and ⁇ in the above simultaneous inequalities are determined by adaptation using the actual engine.
  • the abnormality diagnosis unit 108 sets the value of the first abnormality flag FLG1 to 1.
  • the abnormality diagnosis unit 108 sets the value of the second abnormality flag FLG2 to 1.
  • the abnormality diagnosis method described above is implemented by the ECU 100 executing the routine shown in the flowchart of FIG. 6 and the routine shown in the flowchart of FIG.
  • the routine shown in the flowchart of FIG. 6 is a routine for diagnosing abnormality of the supercharging pressure sensor 44, and the ECU 100 executes this routine every control cycle.
  • the estimated supercharging pressure Pice is calculated based on the air flow rate mafm measured by the air flow meter 42.
  • next step S204 it is determined whether the above equation (3A) is satisfied. If the determination result is negative, it can be determined that no abnormality has occurred in the supercharging pressure sensor 44, so the value of the first abnormality flag FLG1 is held at zero.
  • step S206 it is determined whether the above equation (3B) is satisfied. If the determination result is negative, it can be determined that no abnormality has occurred in the supercharging pressure sensor 44, so the value of the first abnormality flag FLG1 is held at zero. On the other hand, if the determination result of step S206 is affirmative, the process by the ECU 100 proceeds to step S208. In step S208, the value of the first abnormality flag FLG1 indicating that an abnormality has occurred in the supercharging pressure sensor 44 is set to 1.
  • the routine shown in the flowchart of FIG. 7 is a routine for diagnosing an abnormality of the waste gate valve 38, and the ECU 100 also executes this routine every control cycle.
  • the estimated supercharging pressure Pice is calculated based on the air flow rate mafm measured by the air flow meter 42.
  • next step S304 it is determined whether the above equation (4A) is satisfied. If the determination result is negative, it can be determined that no abnormality has occurred in the wastegate valve 38, so the value of the second abnormality flag FLG2 is held at zero.
  • step S304 determines whether the determination result of step S304 is affirmative. If the determination result of step S304 is affirmative, the determination of step S306 is further performed. In step S206, it is determined whether the above equation (4B) is satisfied. If the determination result is negative, it can be determined that no abnormality has occurred in the wastegate valve 38, and therefore the value of the second abnormality flag FLG1 is held at zero. On the other hand, if the determination result of step S306 is affirmative, the process by the ECU 100 proceeds to step S308. In step S308, the value of the second abnormality flag FLG2 indicating that an abnormality has occurred in the wastegate valve 38 is set to 1.
  • the actuator for changing the supercharging pressure may be a variable nozzle of a variable displacement turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 本発明の目的は、アクチュエータの操作によって過給圧を変化させることができる過給機付き内燃機関において、過給圧センサの異常を正確に検出することである。この目的のため、本発明に係る制御装置は、過給圧センサ(44)により計測された過給圧(Picm)が目標過給圧(Pict)になるようにアクチュエータ(38)を操作するとともに、吸気通路(10)を流れる空気の流量の計測値(mafm)を取得し、計測空気流量(mafm)に基づいて推定過給圧(Pice)を計算する。そして、本発明に係る制御装置は、計測過給圧(Picm)、目標過給圧(Pict)、及び、推定過給圧(Pice)の間の大小関係を評価する連立不等式であって、過給圧センサ(44)が正常な場合には成り立つことのない第1の連立不等式が成り立つ場合に第1の異常フラグ(FLG1)を立てる。この第1の異常フラグ(FLG1)が立ったことにより、過給圧センサ(44)に異常が起きていることを知ることができる。

Description

過給機付き内燃機関の制御装置
 本発明は、過給圧センサにより計測された過給圧が目標過給圧になるように過給圧制御用アクチュエータを操作する過給機付き内燃機関の制御装置に関し、詳しくは、過給圧制御に関する異常を自己診断する機能を備えた制御装置に関する。
 ウエストゲートバルブや可変ノズル等、過給圧を能動的に変化させることができるアクチュエータを備えた過給機付き内燃機関が知られている。この種の内燃機関の吸気量制御では、目標空気量に応じて目標過給圧が決定され、過給圧センサにより計測された過給圧が目標過給圧になるようにアクチュエータの操作量がフィードバック制御されている。
 上記の過給圧フィードバック制御において、過給圧センサは過給圧を精度良く制御する上で重要な役割を果たしている。ところが、他のセンサの場合と同様、過給圧センサが常に正常に機能しているという保証はない。断線や短絡、或いはセンサ素子の劣化等、何らかの異常が過給圧センサに発生する場合がある。そのような場合に過給圧センサの出力値に基づくフィードバック制御を行ったとしても、実際の過給圧を目標過給圧に追従させることはできない。このため、過給圧フィードバック制御を行う過給機付き内燃機関では、過給圧センサの異常を速やかに且つ正しく診断することができる自己診断機能が必要とされている。
 過給圧センサの異常診断の方法としては、例えば、特開2006―207509号公報に開示されている方法が知られている。この公報に開示された方法によれば、内燃機関の所定負荷領域における基準過給圧と過給圧センサによる計測で得られた過給圧との差が計算され、その差が所定値を超えている場合には過給圧センサに異常が生じていると判断される。
 ところが、計測過給圧が基準過給圧から乖離しているからといって、必ずしも過給圧センサの異常がその原因であるとは限らない。過給圧制御に用いられているアクチュエータに異常が生じている場合にも、過給圧センサによる計測で得られる過給圧は基準過給圧から乖離した値となる。例えば、アクチュエータとしてウエストゲートバルブを例にとると、ウエストゲートバルブが作動不良によって開かなくなった場合には、目標通りに過給圧を低下させることができなくなる。このような場合、過給圧センサにより計測された過給圧は基準過給圧よりも高い値を示すことになるため、上記公報に記載の方法によれば、過給圧センサに異常が生じているとの誤診断がなされてしまう。
 このようなことから、過給機付き内燃機関の制御装置が備える自己診断機能には、過給圧センサの異常をアクチュエータの異常と区別して診断できることが求められる。
 なお、本発明に関連する先行技術としては、上記公報に記載の技術も含めて以下に列挙する各特許文献に記載の技術を挙げることができる。例えば、特開2007―009877号公報には、ウエストゲートバルブに対する制御デューティ値を所定量ずつ変化させる毎に制御デューティ値に対応する目標過給圧と実過給圧との偏差を算出し、この偏差を異常判定値と比較することによってウエストゲートバルブの異常を判定することが記載されている。しかし、同公報に記載の技術は過給圧センサが正常であることを前提としており、ウエストゲートバルブの異常を過給圧センサの異常と区別して診断するようにはなっていない。
特開2006-207509号公報 特開2010-106811号公報 特開平11-351042号公報 特開2007-009877号公報
 本発明は、上述の問題に鑑みなされたもので、アクチュエータの操作によって過給圧を変化させることができる過給機付き内燃機関において、過給圧のモニタに用いられる過給圧センサの異常を正確に検出することを目的とする。そして、そのような目的のために、本発明は、次のように動作するように構成された過給機付き内燃機関の制御装置を提供する。
 本発明に係る制御装置は、過給圧センサにより計測された過給圧が目標過給圧になるようにアクチュエータを操作するとともに、内燃機関の吸気通路を流れる空気の流量の計測値を取得し、その計測空気流量に基づいて推定過給圧を計算する。空気流量の計測にはエアフローメータを用いることができ、計測空気流量に基づく推定過給圧の計算には物理モデルを用いることができる。
 計測空気流量から計算される推定過給圧はほぼ実際の過給圧に相当している。よって、過給圧センサもアクチュエータもともに正常であるならば、計測過給圧と目標過給圧と推定過給圧はほぼ等しくなっているはずである。しかし、過給圧センサとアクチュエータの何れかに異常が起きている場合には、計測過給圧と目標過給圧と推定過給圧との間で大きさに差が生じる。しかも、過給圧センサに異常が起きている場合とアクチュエータに異常が起きている場合とでは、計測過給圧と目標過給圧と推定過給圧との間の大小関係は異なったものとなる。よって、単に計測過給圧と目標過給圧との間の大小関係を1つの不等式で評価するのではなく、推定過給圧も含めた大小関係を連立不等式によって評価することで、過給圧センサの異常をアクチュエータの異常と区別して正確に検出することができる。
 そこで、本発明に係る制御装置は、計測過給圧、目標過給圧、及び、推定過給圧の間の大小関係を評価する連立不等式であって、過給圧センサが正常な場合には成り立つことのない第1の連立不等式が成り立つ場合に第1の異常フラグを立てる。この第1の異常フラグが立ったことにより、過給圧センサに異常が起きていることを知ることができる。
 また、本発明に係る制御装置は、より好ましくは、計測過給圧、目標過給圧、及び、推定過給圧の間の大小関係を評価する連立不等式であって、第1の連立不等式とは同時には成り立つことがなく且つアクチュエータが正常な場合には成り立つことのない第2の連立不等式が成り立つ場合には第2の異常フラグを立てる。この第2の異常フラグが立ったことにより、アクチュエータに異常が起きていることを知ることができる。
本発明の実施の形態1に係る制御装置が用いられる過給機付き内燃機関の構成を示す概略図である。 本発明の実施の形態1に係る制御装置の構成を示すブロック図である。 ウエストゲートバルブに異常が起きた場合の計測過給圧、目標過給圧、及び、推定過給圧の各挙動を示す図である。 過給圧センサに異常が起きた場合の計測過給圧、目標過給圧、及び、推定過給圧の各挙動を示す図である。 本発明の実施の形態1に係る制御装置によって実行される異常診断のためのルーチンを示すフローチャートである。 本発明の実施の形態2に係る制御装置によって実行される異常診断のためのルーチンを示すフローチャートである。 本発明の実施の形態2に係る制御装置によって実行される異常診断のためのルーチンを示すフローチャートである。
実施の形態1.
 本発明の実施の形態1について図を参照して説明する。
 本実施の形態に係る制御装置が用いられる内燃機関(以下、エンジン)は、ウエストゲートバルブを有する過給エンジンであり、より詳しくは、スロットルによる空気量の調整によってトルクを制御することのできる4サイクルレシプロエンジンである。図1は、本実施の形態に係る制御装置が用いられる過給エンジンの構成を示す概略図である。本実施の形態に係る過給エンジンは、吸気通路10に設けられたコンプレッサ32と排気通路20に設けられたタービン34とからなるターボ過給機30を備えている。吸気通路10はエンジン本体2に取り付けられた吸気マニホールド18に接続されている。吸気通路10の入口にはエアクリーナ12が設けられ、その下流であってコンプレッサ32よりも上流には空気流量を計測するためのエアフローメータ42が配置されている。吸気通路10におけるコンプレッサ32とスロットル16との間にはインタークーラ14が設けられている。インタークーラ14の出口には、スロットル16の上流部の圧力、すなわち、過給圧を計測するための過給圧センサ44が取り付けられている。また、吸気通路10には、コンプレッサ32の下流側から上流側へコンプレッサ32をバイパスして空気を再循環させるためのエアバイパスバルブ36が設けられている。排気通路20はエンジン本体2に取り付けられた排気マニホールド22に接続されている。排気通路20には、タービン34をバイパスして排気ガスを流すためのウエストゲートバルブ38が設けられている。このウエストゲートバルブ38はE-VRV(Electric Vacuum Regulating Valve)によって駆動されるアクティブ制御対応のウエストゲートバルブである。
 本実施の形態に係る制御装置は、過給エンジンを制御するECU(Electronic Control Unit)100の機能の一部として実現される。ECU100には、エアフローメータ42や過給圧センサ44の他にもスロットル開度センサ46、エンジン回転数センサ48、アクセル開度センサ50等の各種のセンサから、エンジンの運転状態や運転条件に関する様々な情報や信号が入力される。ECU100は、それら情報や信号に基づいてスロットル16やウエストゲートバルブ38等の各種のアクチュエータを操作する。ウエストゲートバルブ38に関しては、ECU100からE-VRVに指示開度が供給される。その指示開度に従いE-VRVが作動することにより、ウエストゲートバルブ38は任意の開度に動かされる。
 図2のブロック図は、本実施の形態に係る制御装置としてのECU100の構成を示している。図2に示す構成によれば、ECU100は、目標過給圧演算ユニット102とフィードバックコントローラ104と過給圧推定ユニット106と異常診断ユニット108とから構成されている。ただし、これらの要素102,104,106,108は、ECU100が有する種々の機能のうち過給圧フィードバック制御と異常診断とに関する要素のみに着目して図で表現したものである。したがって、図2はECU100がこれらの要素のみで構成されていることを意味するものではない。なお、ECU100は自動車用のコンピュータであって、各要素はメモリに記憶されたソフトウェアがCPUで実行されたときに仮想的に実現される。
 目標過給圧演算ユニット102は、過給圧フィードバック制御のための目標過給圧Pictを演算する。目標過給圧Pictの演算には、エンジン回転数センサ48によって計測されたエンジン回転数NEと、アクセル開度センサ50によって計測されたアクセルペダル開度APとが用いられる。目標過給圧演算ユニット102はこれらの情報に基づいて目標空気量を決定し、目標空気量に応じて目標過給圧Pictを決定する。
 フィードバックコントローラ104は、フィードバック制御によってウエストゲートバルブ38の操作量である指示開度θwgvを決定する。そのフィードバック制御では、目標過給圧演算ユニット102で演算された目標過給圧Pictと、過給圧センサ44によって計測された過給圧Picmとの差が計算される。そして、目標過給圧Pictと計測過給圧Picmとの差に対するPI制御によって指示開度θwgvが算出される。
 過給圧推定ユニット106は、エアフローメータ42により計測された空気流量mafmに基づいて推定過給圧Piceを演算する。推定過給圧Piceの演算には、過給エンジンにおける空気の挙動を物理的にモデル化した物理モデルが用いられる。この物理モデルは、複数の要素モデル、すなわち、インタークーラモデルM1、スロットルモデルM2、吸気マニホールドモデルM3及び吸気弁モデルM4から構成されている。以下、推定過給圧Piceの演算に用いられる各要素モデルの内容について説明する。ただし、これらの要素モデルはそれぞれに公知であり、また、それ自体は本発明における特徴点ではないことから、数式やマップ等の各要素モデルの詳細については記載を省略する。
 インタークーラモデルM1は、吸気通路10におけるインタークーラ14内の空気に関する保存則に基づいて構築された物理モデルである。インタークーラモデルM1としては、具体的にはエネルギー保存則の式と流量保存則の式とが用いられている。インタークーラモデルM1では、エアフローメータ42により計測された空気流量mafmがインタークーラ14に流入する空気の流量として用いられ、後述するスロットルモデルM2で算出されたスロットル流量mtがインタークーラ14から流出する空気の流量として用いられる。そして、これらの入力情報に基づいてスロットル上流圧力としての過給圧Picが算出される。
 スロットルモデルM2は、スロットル16を通過する空気の流量を算出するためのモデルであって、具体的には、スロットル16の前後の差圧、スロットル開度により決まる流路面積、及び流量係数を基本とするオリフィスの流量式が用いられている。スロットルモデルM2では、スロットル開度センサ46により計測されたスロットル開度TA、インタークーラモデルM1で算出された過給圧Pic、及び後述する吸気マニホールドモデルM3で算出された吸気マニホールド圧Pm等の情報が入力され、それらの入力情報からスロットル流量mtが算出される。
 吸気マニホールドモデルM3は、吸気マニホールド18内の空気に関する保存則に基づいて構築された物理モデルである。吸気マニホールドモデルM3としては、具体的にはエネルギー保存則の式と流量保存則の式とが用いられている。吸気マニホールドモデルM3では、スロットルモデルM2で算出されたスロットル流量mt、及び後述する吸気弁モデルM4で算出された吸気弁流量mc等の情報が入力され、それらの入力情報から吸気マニホールド圧Pmが算出される。
 吸気弁モデルM4は、吸気弁流量と吸気マニホールド圧との関係について調べた実験の結果に基づくモデルである。実験で得られた経験則により、吸気弁モデルM4においては吸気弁流量と吸気マニホールド圧との関係が直線で近似されている。その直線の方程式の係数は定数ではなく、エンジン回転数、ウエストゲートバルブ開度、吸気弁のバルブタイミング、排気弁のバルブタイミング等によって決まる変数である。吸気弁モデルM4では、吸気マニホールドモデルM3で算出された吸気マニホールド圧Pmの他、エンジン回転数NEやウエストゲートバルブ指示開度θwgv等の情報が入力され、それらの入力情報から吸気弁流量mcが算出される。
 ECU100は、過給圧推定ユニット106で計算される各種パラメータのうち、インタークーラモデルM1で算出された過給圧Picを推定過給圧Piceとして取り出す。
 異常診断ユニット108は、過給圧制御に関係するデバイス、すなわち、過給圧センサ44とウエストゲートバルブ38の異常を診断する。過給圧センサ44の異常とウエストゲートバルブ38の異常は区別される。過給圧センサ44に異常がある場合、異常診断ユニット108は第1の異常フラグFLG1を立て(フラグFLG1の値を1にする)、ウエストゲートバルブ38に異常がある場合、異常診断ユニット108は第2の異常フラグFLG2を立てる(フラグFLG2の値を1にする)。異常診断ユニット108による異常診断には、目標過給圧演算ユニット102で演算された目標過給圧Pict、過給圧センサ44により計測された計測過給圧Picm、そして、過給圧推定ユニット106で推定された推定過給圧Piceが用いられる。以下、これらの情報を用いた異常診断の方法について図を用いて説明する。
 ECU100はフィードバックコントローラ104によって過給圧フィードバック制御を行っているので、過給圧センサ44とウエストゲートバルブ38が共に正常であるならば、実際の過給圧は目標過給圧Pictにほぼ一致しているはずである。ここで、実際の過給圧に相当するのが過給圧センサ44によって直接計測される計測過給圧Picmであり、また、計測空気流量mafmに基づき計算される推定過給圧Piceである。よって、過給圧センサ44とウエストゲートバルブ38が共に正常であるならば、目標過給圧Pict、計測過給圧Picm及び推定過給圧Piceはほぼ一致しているはずである。
 しかし、ウエストゲートバルブ38が何らかの異常により指示開度θwgv通りに作動しなくなった場合、実際の過給圧を目標過給圧Pictに一致させることはできなくなる。その結果、実際過給圧に相当する計測過給圧Picmは目標過給圧Pictに対して大きく乖離することになる。一方、推定過給圧Piceは計測空気流量mafmに基づき計算される実際過給圧の推定値であることから、ウエストゲートバルブ38の異常の有無とは関係なく、推定過給圧Piceは計測過給圧Picmに対して一定の誤差の範囲に収まっている。
 図3は、ウエストゲートバルブ38が指示開度θwgvよりも閉じている場合の目標過給圧Pictと計測過給圧Picmと推定過給圧Piceとの関係を示している。ウエストゲートバルブ38が指示開度θwgvよりも閉じている場合、実際過給圧は目標過給圧Pictよりも大きくなる。その結果、実際過給圧の計測値である計測過給圧Picmは目標過給圧Pictより大きくなる。過給圧が大きくなれば空気流量も大きくなることから、計測空気流量mafmに基づき計算される推定過給圧Piceも目標過給圧Pictより大きくなる。逆に、ウエストゲートバルブ38が指示開度θwgvよりも開いている場合には、過給不足によって計測過給圧Picmは目標過給圧Pictよりも小さくなる。過給圧が不足すれば空気流量も少なくなることから、計測空気流量mafmに基づき計算される推定過給圧Piceも目標過給圧Pictより小さくなる。
 一方、過給圧センサ44に異常が発生した場合には、過給圧センサ44の出力値から得られる計測過給圧Picmと計測空気流量mafmに基づき計算される推定過給圧Piceとは一致しなくなり、両者は一定の誤差の範囲を超えて乖離するようになる。さらに、過給圧センサ44に異常が発生した場合には、ウエストゲートバルブ38に異常が発生した場合と同様に適正な過給圧フィードバック制御を行うことができず、実際過給圧を目標過給圧Pictに一致させることはできなくなる。その結果、実際過給圧の推定値である推定過給圧Piceと目標過給圧Pictとは大きく乖離することになる。
 図4は、過給圧センサ44の異常により計測過給圧Picmが正しい値を示さず、計測過給圧Picmが実際値よりも小さい値になっている場合の目標過給圧Pictと計測過給圧Picmと推定過給圧Piceとの関係を示している。過給圧フィードバック制御では計測過給圧Picmと目標過給圧Pictとの差を解消するようにウエストゲートバルブ38の指示開度θwgvが決定されるため、計測過給圧Picmが実際値よりも小さい値を示す場合、過給圧フィードバック制御によって実現される実際過給圧は目標過給圧Pictよりも大きくなる。過給圧が大きくなれば空気流量も大きくなることから、計測空気流量mafmに基づき計算される推定過給圧Piceは目標過給圧Pictより大きくなる。つまり、この場合、計測過給圧Picmが目標過給圧Pictよりも小さくなる一方、推定過給圧Piceは目標過給圧Pictよりも大きくなる。逆に、計測過給圧Picmが実際値よりも大きい値になっている場合には、その不正確な計測過給圧Picmに基づいて過給圧フィードバック制御が行われる結果、計測過給圧Picmが目標過給圧Pictよりも大きくなる一方、推定過給圧Piceは目標過給圧Pictよりも小さくなる。
 以上の例から分かるように、過給圧センサ44とウエストゲートバルブ38の何れかに異常が起きている場合には、目標過給圧Pictと計測過給圧Picmと推定過給圧Piceとの間で大きさに差が生じる。しかも、過給圧センサ44に異常が起きている場合とウエストゲートバルブ38に異常が起きている場合とでは、目標過給圧Pictと計測過給圧Picmと推定過給圧Piceとの間の大小関係は異なったものとなる。
 このようなことから、目標過給圧Pictと計測過給圧Picmと推定過給圧Piceとの間の大小関係に関し、ウエストゲートバルブ38に異常が起きている場合には成立せず、ウエストゲートバルブ38は正常で過給圧センサ44に異常が起きている場合にのみ成立する不等式が考えられる。また、過給圧センサ44に異常が起きている場合には成立せず、過給圧センサ44は正常でウエストゲートバルブ38に異常が起きている場合にのみ成立する不等式も考えられる。ただし、それらの不等式は単一の式ではなく、少なくとも2つの不等式からなる連立不等式のはずである。異常が起きているかどうか診断するための不等式と、その異常が過給圧センサ44とウエストゲートバルブ38のどちらに起きているのか診断するための不等式が必要だからである。
 本実施の形態では、上述の連立不等式を次のように定めている。まず、過給圧センサ44に異常が起きていることを判断するための第1の連立不等式は次の通りである。この連立不等式は目標過給圧Pictと計測過給圧Picmとの差の大きさが第1閾値αよりも大きいことを表す式(1A)と、計測過給圧Picmと推定過給圧Piceとの差の大きさが第2閾値βよりも大きいことを表す式(1B)との組み合わせである。
 |Pict-Picm|>α …式(1A)
 |Picm-Pice|>β …式(1B)
 次に、ウエストゲートバルブ38に異常が起きていることを判断するための第2の連立不等式は次の通りである。この連立不等式は目標過給圧Pictと計測過給圧Picmとの差の大きさが第1閾値αよりも大きいことを表す式(2A)と、計測過給圧Picmと推定過給圧Piceとの差の大きさが第2閾値β以下であることを表す式(2B)との組み合わせである。第2の連立不等式を構成する式(2B)と第1の連立不等式を構成する式(1B)との関係から分かるように、これらの2つの連立不等式が同時に成り立つことは無い。
 |Pict-Picm|>α …式(2A)
 |Picm-Pice|≦β …式(2B)
 上記の各連立不等式における閾値α,βの値は、エンジンの実機を用いた適合によって決定される。上記の第1の連立不等式が成り立つ場合、異常診断ユニット108は第1の異常フラグFLG1の値を1にする。一方、上記の第2の連立不等式が成り立つ場合、異常診断ユニット108は第2の異常フラグFLG2の値を1にする。
 以上述べた異常診断の方法は、ECU100が図5のフローチャートに示すルーチンを実行することによって実施される。ECU100による異常診断ルーチンの実行は制御周期毎に行われる。異常診断ルーチンの最初のステップS102では、エアフローメータ42によって計測された空気流量mafmに基づいて推定過給圧Piceが算出される。
 次のステップS104では、目標過給圧Pictと計測過給圧Picmとの差の大きさが第1閾値αよりも大きいかどうか判定される。その判定結果が否定であるならば、過給圧センサ44にもウエストゲートバルブ38にも異常は起きていないと判断することができる。よって、ステップS104の判定結果が否定の場合、両フラグFLG1,FLG2の値はゼロのまま保持される。
 ステップS104の判定結果が肯定の場合、さらに、ステップS106の判定が行われる。ステップS106では、計測過給圧Picmと推定過給圧Piceとの差の大きさが第2閾値βよりも大きいかどうか判定される。その判定結果が肯定であるならば、ECU100による処理はステップS108に進む。ステップS108では、過給圧センサ44に異常が起きていることを表す第1の異常フラグFLG1の値が1にされる。一方、ステップS106の判定結果が否定であるならば、ECU100による処理はステップS110に進む。ステップS110では、ウエストゲートバルブ(WGV)38に異常が起きていることを表す第2の異常フラグFLG2の値が1にされる。
 なお、何れかの異常フラグFLG1,FLG2が立った場合、ECU100はインストルメントパネルに設けられた異常を示すランプを点灯させるとともに、その異常が過給圧センサ44とウエストゲートバルブ38のどちらなのかを表す異常コードをメモリに記録する。記録された異常コードは車両の点検時に診断器によって読み出され、車両整備士は診断器に表示される異常コードを見てどこに異常が起きているのかを特定する。
 実施の形態2.
 次に、本発明の実施の形態2について図を参照して説明する。
 本実施の形態に係る制御装置は、実施の形態1と同様に、図1のように構成される過給エンジンに用いられ、過給エンジンを制御するECU100の機能の一部として実現される。また、制御装置としてのECU100は、実施の形態1と同様に、図2に示す構成を有している。
 本実施の形態に係る制御装置と実施の形態1に係る制御装置との相違点は、制御装置としてのECU100による異常診断の方法にある。より詳しくは、異常診断に用いる連立不等式が実施の形態1のものとは異なっている。まず、過給圧センサ44に異常が起きていることを判断するための第1の連立不等式として、本実施の形態では以下の式(3A)及び式(3B)からなる連立不等式が用いられる。式(3A)は計測過給圧Picmと推定過給圧Piceとの差の大きさが第3閾値γよりも大きいことを表す不等式であり、式(3B)は目標過給圧Pictに対する計測過給圧Picmと推定過給圧Piceの各誤差の符号が異符号であることを表す不等式である。図4の例に示すように、過給圧センサ44に異常に起きている状況で過給圧フィードバック制御を行った場合、計測過給圧Picmと推定過給圧Piceとが大きく乖離するとともに、目標過給圧Pictに対する計測過給圧Picmの大小関係と目標過給圧Pictに対する推定過給圧Piceの大小関係は逆になる。式(3A)及び式(3B)からなる第1の連立不等式はこのような状況で成立する連立不等式になっている。
 |Pict-Picm|>γ …式(3A)
 (Pict-Picm)×(Pict-Pice)<0 …式(3B)
 次に、過給圧センサ44に異常が起きていることを判断するための第2の連立不等式として、本実施の形態では以下の式(4A)及び式(4B)からなる連立不等式が用いられる。式(4A)は目標過給圧Pictと計測過給圧Picmとの差の大きさが第4閾値δよりも大きいことを表す不等式であり、式(4B)は目標過給圧Pictに対する計測過給圧Picmと推定過給圧Piceの各誤差の符号が同符号であることを表す不等式である。図3の例に示すように、ウエストゲートバルブ38に異常が起きている状況で過給圧フィードバック制御を行った場合は、目標過給圧Pictと計測過給圧Picmとは大きく乖離するものの、推定過給圧Piceは計測過給圧Picmに対して一定の誤差範囲に収まっている。式(4A)及び式(4B)からなる第2の連立不等式はこのような状況で成立する連立不等式になっている。なお、第2の連立不等式を構成する式(4B)と第1の連立不等式を構成する式(3B)との関係から分かるように、これらの2つの連立不等式が同時に成り立つことは無い。
 |Pict-Picm|>δ …式(4A)
 (Pict-Picm)×(Pict-Pice)>0 …式(4B)
 上記の各連立不等式における閾値γ,δの値は、エンジンの実機を用いた適合によって決定される。上記の第1の連立不等式が成り立つ場合、異常診断ユニット108は第1の異常フラグFLG1の値を1にする。一方、上記の第2の連立不等式が成り立つ場合、異常診断ユニット108は第2の異常フラグFLG2の値を1にする。
 以上述べた異常診断の方法は、ECU100が図6のフローチャートに示すルーチンと図7のフローチャートに示すルーチンとをそれぞれ実行することによって実施される。図6のフローチャートに示すルーチンは過給圧センサ44の異常を診断するためのルーチンであり、ECU100はこのルーチンを制御周期毎に実行する。この異常診断ルーチンの最初のステップS202では、エアフローメータ42によって計測された空気流量mafmに基づいて推定過給圧Piceが算出される。
 次のステップS204では、上記の式(3A)が成立するかどうか判定される。その判定結果が否定であるならば、過給圧センサ44には異常は起きていないと判断することができるため、第1の異常フラグFLG1の値はゼロのまま保持される。
 ステップS204の判定結果が肯定の場合、さらに、ステップS206の判定が行われる。ステップS206では、上記の式(3B)が成立するかどうか判定される。その判定結果が否定であるならば、過給圧センサ44には異常は起きていないと判断することができるため、第1の異常フラグFLG1の値はゼロのまま保持される。一方、ステップS206の判定結果が肯定であるならば、ECU100による処理はステップS208に進む。ステップS208では、過給圧センサ44に異常が起きていることを表す第1の異常フラグFLG1の値が1にされる。
 図7のフローチャートに示すルーチンはウエストゲートバルブ38の異常を診断するためのルーチンであり、ECU100はこのルーチンも制御周期毎に実行する。この異常診断ルーチンの最初のステップS302では、エアフローメータ42によって計測された空気流量mafmに基づいて推定過給圧Piceが算出される。
 次のステップS304では、上記の式(4A)が成立するかどうか判定される。その判定結果が否定であるならば、ウエストゲートバルブ38には異常は起きていないと判断することができるため、第2の異常フラグFLG2の値はゼロのまま保持される。
 ステップS304の判定結果が肯定の場合、さらに、ステップS306の判定が行われる。ステップS206では、上記の式(4B)が成立するかどうか判定される。その判定結果が否定であるならば、ウエストゲートバルブ38には異常は起きていないと判断することができるため、第2の異常フラグFLG1の値はゼロのまま保持される。一方、ステップS306の判定結果が肯定であるならば、ECU100による処理はステップS308に進む。ステップS308では、ウエストゲートバルブ38に異常が起きていることを表す第2の異常フラグFLG2の値が1にされる。
その他.
 本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、実施の形態2において第1の連立不等式を構成している式(3A)に代えて、第2の連立不等式を構成している式(4A)と同じ不等式を用いてもよい。
 また、実施の形態1,2にかかる過給エンジンはウエストゲートバルブを備えているが、過給圧を変化させるアクチュエータとしては可変容量型ターボ過給機の可変ノズルであってもよい。
2 エンジン本体
10 吸気通路
20 排気通路
30 ターボ過給機
32 コンプレッサ
34 タービン
38 ウエストゲートバルブ
42 エアフローメータ
44 過給圧センサ
100 ECU(制御装置)
102 目標過給圧演算ユニット
104 フィードバックコントローラ
106 過給圧推定ユニット
108 異常診断ユニット
M1 インタークーラモデル
M2 スロットルモデル
M3 吸気マニホールドモデル
M4 吸気弁モデル

Claims (6)

  1.  アクチュエータの操作によって過給圧を変化させることができる過給機付き内燃機関に用いられ、過給圧センサにより得られた計測過給圧が目標過給圧になるように前記アクチュエータを操作するように構成された制御装置において、
     前記内燃機関の吸気通路における空気流量の計測値を取得し、計測空気流量に基づいて推定過給圧を計算する手段と、
     前記計測過給圧、前記目標過給圧、及び、前記推定過給圧の間の大小関係を評価する連立不等式であって、前記過給圧センサが正常な場合には成り立つことのない第1の連立不等式が成り立つ場合に第1の異常フラグを立てる手段と、
    を備えることを特徴とする過給機付き内燃機関の制御装置。
  2.  前記計測過給圧、前記目標過給圧、及び、前記推定過給圧の間の大小関係を評価する連立不等式であって、前記第1の連立不等式とは同時には成り立つことがなく且つ前記アクチュエータが正常な場合には成り立つことのない第2の連立不等式が成り立つ場合に第2の異常フラグを立てる手段
    をさらに備えることを特徴とする請求項1に記載の過給機付き内燃機関の制御装置。
  3.  前記第1の連立不等式は、前記目標過給圧と前記計測過給圧との差の大きさが第1閾値よりも大きいことを表す式と、前記計測過給圧と前記推定過給圧との差の大きさが第2閾値よりも大きいことを表す式との組み合わせであることを特徴とする請求項1に記載の過給機付き内燃機関の制御装置。
  4.  前記第1の連立不等式は、前記目標過給圧と前記計測過給圧との差の大きさが第1閾値よりも大きいことを表す式と、前記計測過給圧と前記推定過給圧との差の大きさが第2閾値よりも大きいことを表す式との組み合わせであり、
     前記第2の連立不等式は、前記目標過給圧と前記計測過給圧との差の大きさが前記第1閾値よりも大きいことを表す式と、前記計測過給圧と前記推定過給圧との差の大きさが前記第2閾値以下であることを表す式との組み合わせであることを特徴とする請求項2に記載の過給機付き内燃機関の制御装置。
  5.  前記第1の連立不等式は、前記計測過給圧と前記推定過給圧との差の大きさが第3閾値よりも大きいことを表す式と、前記目標過給圧に対する前記計測過給圧と前記推定過給圧の各誤差の符号が異符号であることを表す式との組み合わせであることを特徴とする請求項1に記載の過給機付き内燃機関の制御装置。
  6.  前記第1の連立不等式は、前記計測過給圧と前記推定過給圧との差の大きさが第3閾値よりも大きいことを表す式と、前記目標過給圧に対する前記計測過給圧と前記推定過給圧の各誤差の符号が異符号であることを表す式との組み合わせであり、
     前記第2の連立不等式は、前記目標過給圧と前記計測過給圧との差の大きさが第4閾値よりも大きいことを表す式と、前記目標過給圧に対する前記計測過給圧と前記推定過給圧の各誤差の符号が同符号であることを表す式との組み合わせであることを特徴とする請求項2に記載の過給機付き内燃機関の制御装置。
PCT/JP2012/060612 2012-04-19 2012-04-19 過給機付き内燃機関の制御装置 WO2013157126A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/394,919 US9567923B2 (en) 2012-04-19 2012-04-19 Control device for internal combustion engine equipped with supercharger
PCT/JP2012/060612 WO2013157126A1 (ja) 2012-04-19 2012-04-19 過給機付き内燃機関の制御装置
CN201280072449.8A CN104246172B (zh) 2012-04-19 2012-04-19 带有增压器的内燃机的控制装置
EP12874475.2A EP2840244B1 (en) 2012-04-19 2012-04-19 Control device for internal combustion engine equipped with supercharger
JP2014511049A JP5939297B2 (ja) 2012-04-19 2012-04-19 過給機付き内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060612 WO2013157126A1 (ja) 2012-04-19 2012-04-19 過給機付き内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013157126A1 true WO2013157126A1 (ja) 2013-10-24

Family

ID=49383108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060612 WO2013157126A1 (ja) 2012-04-19 2012-04-19 過給機付き内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9567923B2 (ja)
EP (1) EP2840244B1 (ja)
JP (1) JP5939297B2 (ja)
CN (1) CN104246172B (ja)
WO (1) WO2013157126A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178809A (ja) * 2014-03-19 2015-10-08 マツダ株式会社 ターボ過給機付エンジンの故障検出装置
CN105593490A (zh) * 2013-12-04 2016-05-18 三菱重工业株式会社 涡轮增压器的控制装置
US10006348B2 (en) 2013-12-04 2018-06-26 Mitsubishi Heavy Industries, Ltd. Turbocharger device
US10047666B2 (en) 2013-12-04 2018-08-14 Mitsubishi Heavy Industries, Ltd. Control system for turbo-compound system
US10197003B2 (en) 2013-12-04 2019-02-05 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
US10428748B2 (en) 2013-12-04 2019-10-01 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490959B1 (ko) * 2013-12-12 2015-02-12 현대자동차 주식회사 터보 차저 제어 방법
US9719467B2 (en) * 2014-12-19 2017-08-01 Caterpillar Inc. Wastegate position sensor for wastegate and engine pressure sensor diagnostics
US10385794B2 (en) * 2015-09-24 2019-08-20 Ai Alpine Us Bidco Inc. Method and engine controller for diagnosing waste gate valve malfunction and related power generation system
US10605161B2 (en) 2017-05-18 2020-03-31 Ford Global Technologies, Llc Method and system for indicating degradation of boosted engine system
US10934979B2 (en) * 2017-05-30 2021-03-02 Ford Global Technologies, Llc Methods and system diagnosing a variable geometry compressor for an internal combustion engine
JP7172855B2 (ja) * 2019-05-27 2022-11-16 トヨタ自動車株式会社 ハイブリッド車両およびその異常診断方法
JP7222363B2 (ja) * 2020-01-07 2023-02-15 トヨタ自動車株式会社 エアフロメータの異常診断装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441629A (en) * 1987-08-08 1989-02-13 Daihatsu Motor Co Ltd Fuel control method for engine with supercharger
JPH0996242A (ja) * 1995-09-29 1997-04-08 Isuzu Motors Ltd 電動・発電機付ターボチャージャの制御装置
JPH11351042A (ja) 1998-06-08 1999-12-21 Fuji Heavy Ind Ltd 過給機付き内燃機関
JP2000345851A (ja) * 1999-05-31 2000-12-12 Isuzu Motors Ltd ターボチャージャ付きエンジン
JP2006207509A (ja) 2005-01-31 2006-08-10 Fujitsu Ten Ltd 過給圧制御装置、圧力検出装置、及び圧力検出方法
JP2007009877A (ja) 2005-07-04 2007-01-18 Denso Corp 過給圧制御システムの異常診断装置
JP2010106811A (ja) 2008-10-31 2010-05-13 Toyota Motor Corp 過給装置の異常診断装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155316A (ja) * 1984-08-28 1986-03-19 Nissan Motor Co Ltd タ−ボチヤ−ジヤの過給圧制御装置
JPS61138828A (ja) * 1984-12-07 1986-06-26 Nissan Motor Co Ltd タ−ボチヤ−ジヤの過給圧制御装置
JPH02191844A (ja) * 1989-01-20 1990-07-27 Mitsubishi Motors Corp エンジントルク制御装置
JP3136968B2 (ja) 1995-10-20 2001-02-19 トヨタ自動車株式会社 内燃機関の吸気圧力異常検出装置
JP4365342B2 (ja) * 2005-04-08 2009-11-18 トヨタ自動車株式会社 ターボチャージャの異常判定装置
US7677227B2 (en) 2005-07-04 2010-03-16 Denso Corporation Apparatus and method of abnormality diagnosis for supercharging pressure control system
JP4815294B2 (ja) * 2006-07-25 2011-11-16 本田技研工業株式会社 エンジンの過給装置における過給圧制御手段の故障検知装置
JP2010096050A (ja) * 2008-10-15 2010-04-30 Denso Corp 過給システムの異常検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441629A (en) * 1987-08-08 1989-02-13 Daihatsu Motor Co Ltd Fuel control method for engine with supercharger
JPH0996242A (ja) * 1995-09-29 1997-04-08 Isuzu Motors Ltd 電動・発電機付ターボチャージャの制御装置
JPH11351042A (ja) 1998-06-08 1999-12-21 Fuji Heavy Ind Ltd 過給機付き内燃機関
JP2000345851A (ja) * 1999-05-31 2000-12-12 Isuzu Motors Ltd ターボチャージャ付きエンジン
JP2006207509A (ja) 2005-01-31 2006-08-10 Fujitsu Ten Ltd 過給圧制御装置、圧力検出装置、及び圧力検出方法
JP2007009877A (ja) 2005-07-04 2007-01-18 Denso Corp 過給圧制御システムの異常診断装置
JP2010106811A (ja) 2008-10-31 2010-05-13 Toyota Motor Corp 過給装置の異常診断装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593490A (zh) * 2013-12-04 2016-05-18 三菱重工业株式会社 涡轮增压器的控制装置
EP3037641A4 (en) * 2013-12-04 2016-08-03 Mitsubishi Heavy Ind Ltd CONTROL DEVICE FOR A TURBOLADER
US9903296B2 (en) 2013-12-04 2018-02-27 Mitsubishi Heavy Industries, Ltd. Control device for turbocharger
US10006348B2 (en) 2013-12-04 2018-06-26 Mitsubishi Heavy Industries, Ltd. Turbocharger device
US10047666B2 (en) 2013-12-04 2018-08-14 Mitsubishi Heavy Industries, Ltd. Control system for turbo-compound system
CN105593490B (zh) * 2013-12-04 2018-08-28 三菱重工业株式会社 涡轮增压器的控制装置
US10197003B2 (en) 2013-12-04 2019-02-05 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
US10428748B2 (en) 2013-12-04 2019-10-01 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
JP2015178809A (ja) * 2014-03-19 2015-10-08 マツダ株式会社 ターボ過給機付エンジンの故障検出装置

Also Published As

Publication number Publication date
EP2840244A1 (en) 2015-02-25
EP2840244A4 (en) 2015-05-06
EP2840244B1 (en) 2019-02-27
US9567923B2 (en) 2017-02-14
CN104246172A (zh) 2014-12-24
US20150122234A1 (en) 2015-05-07
CN104246172B (zh) 2017-08-08
JP5939297B2 (ja) 2016-06-22
JPWO2013157126A1 (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5939297B2 (ja) 過給機付き内燃機関の制御装置
US10012169B2 (en) Method and device for diagnosing a component in a gas-routing system of an engine system having a combustion engine
US7438061B2 (en) Method and apparatus for estimating exhaust pressure of an internal combustion engine
US9605608B2 (en) Apparatus for controlling internal combustion engine having turbocharger
CN103518047A (zh) 增压发动机的控制装置
JP4775097B2 (ja) 遠心式圧縮機を備える内燃機関の制御装置
US8762029B2 (en) Control device for internal combustion engine with supercharger
WO2016021488A1 (ja) 異常判定装置
CN107269407B (zh) 用于确定燃烧马达中的新鲜空气质量流量的方法和装置
US20100089371A1 (en) Forced air induction system for internal combustion engine and abnormality diagnosis method for same system
CN106285971B (zh) 带增压器的内燃机的控制装置
JP5842795B2 (ja) 過給機付き内燃機関の制御装置
US7802427B2 (en) System and method for monitoring boost leak
JP2012241625A (ja) 過給エンジンの制御装置
JP5246298B2 (ja) 内燃機関の吸気漏洩診断装置
JP5854131B2 (ja) 過給機付き内燃機関の制御装置
EP3205863A1 (en) System and method for estimating turbo speed of an engine
WO2013018895A1 (ja) 空気流量センサ校正装置
JP5958118B2 (ja) 過給システム付き内燃機関の制御装置
CN110719993B (zh) 空气质量测量装置的可信度检验
JP5561236B2 (ja) 過給エンジンの制御装置
JP4561652B2 (ja) 内燃機関の制御装置
JP6065850B2 (ja) 過給機付きエンジンの過給診断装置
JP2018178753A (ja) 内燃機関の異常診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511049

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012874475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14394919

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE