WO2013154219A1 - 고흡수성 수지의 제조 방법 - Google Patents

고흡수성 수지의 제조 방법 Download PDF

Info

Publication number
WO2013154219A1
WO2013154219A1 PCT/KR2012/002817 KR2012002817W WO2013154219A1 WO 2013154219 A1 WO2013154219 A1 WO 2013154219A1 KR 2012002817 W KR2012002817 W KR 2012002817W WO 2013154219 A1 WO2013154219 A1 WO 2013154219A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
substrate
polymerization
monomer composition
meth
Prior art date
Application number
PCT/KR2012/002817
Other languages
English (en)
French (fr)
Inventor
임규
김기철
이상기
김규팔
원태영
한장선
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP12874028.9A priority Critical patent/EP2787012B1/en
Priority to US14/370,151 priority patent/US9656296B2/en
Priority to BR112014018266-3A priority patent/BR112014018266B1/pt
Priority to CN201280072374.3A priority patent/CN104220464B/zh
Publication of WO2013154219A1 publication Critical patent/WO2013154219A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/26Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic on endless conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the present invention relates to a manufacturing method of a super absorbent polymer, and more particularly, the particle size can be adjusted, the recycling process for the particulates can be minimized, the particle size distribution is narrowed and the uniformity is improved to the final manufactured product. It relates to a method for producing a super absorbent polymer that does not lower the physical properties of the.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, super absorbent material (SAM), AGM (Absorbent Gel) The names are different. Such super absorbent polymers have been put into practical use as physiological tools, and currently maintain freshness in horticultural soil repair agents, civil engineering, building index materials, seedling sheets, food distribution, as well as sanitary items such as paper diapers for children. It is widely used as a material for agent, and poultice. As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a solution polymerization is known. Reverse phase suspension polymerization is disclosed in, for example, Japanese Patent Laid-Open Nos.
  • aqueous solution polymerization As a method of aqueous solution polymerization, a thermal polymerization method in which a polymerization gel is broken and broken in a kneader with an axis, and a photopolymerization method in which polymerization and drying are simultaneously performed by irradiating ultraviolet rays or the like on a belt with a high concentration aqueous solution are known. .
  • Japanese Patent Application Laid-Open No. 2004-25Q689 discloses a method for producing an absorbent molded article which is polymerized by irradiating light intermittently with an aqueous solution containing a photoinitiator and a water-soluble ethylene unsaturated monomer.
  • Korean Patent No. 0330127 discloses a method for preparing an absorbent resin which polymerizes a water-soluble ethylene-based unsaturated monomer having a crosslinking agent with a radical photoinitiator having a benzyl group and irradiates ultraviolet (UV) in the presence of a peroxide. .
  • the monomer composition including the monomer and the initiator was introduced into the reactor 1 on the conveyor belt, and the reaction was carried out within a few seconds using ⁇ irradiation to prepare a base resin (2), which is a hydrogel polymer in sheet form,
  • the method of producing this into a powdery superabsorbent polymer through various processes by post-treatment is used.
  • the post-treatment process may include gel sizing, sizing (cutting process), drying, grinding, and surface treatment.
  • the process requires a recycling process that repeats the gel sizing, drying and sizing processes several times to obtain fine particles for the hydrogel polymer.
  • the recirculation process is repeated several times to adjust the particle size as described above, there is a problem in that the physical properties of the super absorbent polymer due to the generation of fine powder are lowered and the addition process is performed by the recirculation. That is, in the conventional method, in order to obtain a super absorbent polymer having a constant particle distribution for use as a product, the gel polymer is pulverized during the drying process of the polymer, and then unnecessary particle distribution is removed during the classification pulverization and drying process. As the superabsorbent polymer having it occurs, the physical properties of the superabsorbent polymer can be reduced, and there is a problem that the overall process is cumbersome and complicated.
  • the polymerization proceeds by a two-dimensional curing system after the monomer composition of the monomer and the initiator is added in a solution state, there is a problem that the thickness of the monomer composition depends on the transmittance of light during polymerization by UV. .
  • the present inventors completed the present invention while repeatedly studying a method for efficiently producing a superabsorbent polymer without inhibiting the physical properties of the final superabsorbent polymer.
  • the present invention provides a homogeneous synthesis and conversion rate of the monomer mixture having a fine particle diameter by contacting the monomer composition with a hydrophobic surface together with a spraying method in the process of injecting the monomer composition of the monomer and the initiator into the polymerization reactor.
  • Manufacturing method of super absorbent polymer which can improve and control particle size It is to provide.
  • Another object of the present invention is to provide a method for producing a super absorbent polymer which improves the uniformity while minimizing and simplifying the crushing and classification process while minimizing the drying process for controlling the particle size, and also improving the uniformity. It is to.
  • Another object of the present invention is to provide a method for producing a super absorbent polymer which does not impair the physical properties of the finally obtained super absorbent polymer.
  • the present invention comprises the steps of forming a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator;
  • the substrate having a hydrophobic surface provides a method for producing a super absorbent polymer having a tan q value of 20 ° to 70 ° with respect to the polymerization reactor.
  • a method of preparing a super absorbent polymer according to a specific embodiment of the present invention will be described in detail.
  • the present invention does not manufacture the hydrogel polymer in sheet form as before, but by specifically controlling the spraying method for the monomer composition including the monomer and the initiator and the conditions of the surface to which the monomer composition is contacted.
  • the superabsorbent polymer of fine particles can be produced by an easier method.
  • the present invention does not spray the monomer composition directly to the polymerization reactor, but is sprayed first to a substrate having a high hydrophobic surface having a constant tan angle before the monomer mixture having a fine particle diameter is supplied to the polymerization reactor.
  • the monomeric mixture having the fine particle diameter Aggregation in the form of particles on the aqueous surface is allowed to migrate to the polymerization reactor, the area where UV is irradiated by gravity force, and then UV polymerization proceeds.
  • the monomer composition is converted into a particle form exhibiting a fine particle diameter in a solution, UV irradiation is possible to a deeper layer inside the particle within the penetration depth range of light. It is possible to significantly increase the polymerization conversion and lower the content of residual monomers than the sheet polymerization method.
  • the present invention can provide a method for producing a super absorbent polymer of fine particles having a narrow particle size distribution having a uniform size as well as easy control of the particle size by appropriately adjusting the spraying conditions of the monomer composition.
  • the present invention it is not necessary to form a hydrous gel polymer in the form of a conventional sheet, and does not need to proceed a separate cutting process, it is possible to minimize the generation of fine powder according to the crushing process of several steps. Therefore, according to the present invention, it is possible to obtain fine particles having a uniform particle size distribution of a desired size due to the ease of processing, and to obtain a super absorbent polymer economically due to an easy drying process. In addition, the present invention is not concerned with deterioration of the physical properties of the superabsorbent polymer to be finally formed, or skin irritation that may appear when using the superabsorbent polymer in the final product form.
  • Figure 2 is a schematic diagram briefly showing the process of the manufacturing method of the super absorbent polymer according to an embodiment of the present invention.
  • a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator; By injecting the monomer composition onto a substrate having a hydrophobic surface connected to the polymerization reactor
  • the method of the present invention is characterized by using a polymerization reactor having a hydrophilic and a hydrophobic substrate and the injection device for the injection of the monomer composition.
  • the super absorbent polymer according to an embodiment of the present invention, the injection device 20 for injecting a monomer composition 30 containing a monomer and a polymerization initiator, as shown in Figure 2, injected through the injection device A polymerizer having a hydrophobic surface on which the monomer composition is sprayed to aggregate into fine particles to form a monomer mixture having a fine particle size, and polymerizing the monomer mixture having a fine particle size and having a weak hydrophilic surface 50 ( 10), and it can be produced through a device configuration with a UV irradiation device i (60) for irradiating the UV monomer to common compounds of the fine particle size.
  • a UV irradiation device i 60
  • the method of preparing the superabsorbent polymer according to the present invention includes a monomer composition (30) containing a monomer and a polymerization initiator in an injector (20), which is connected to a polymerization reactor and has a hydrophobic surface (0). Spray.
  • the particles of the injected monomer composition 30 are hydrophilic and are aggregated in the form of spherical particles like water droplets on a hydrophobic substrate to form a monomer mixture 32 having a fine particle size.
  • the plurality of fine particles thus collected are transported to the polymerization reactor 10 for UV irradiation after being blown down by a polymerization reactor having weak hydrophilicity by gravity while maintaining the state (a direction in FIG. 2). .
  • UV irradiation through the UV irradiation apparatus 60 to the fine particles moved to the polymerization reaction vessel 10 is a polymerization of the monomer mixture having a fine particle diameter to produce a fine hydrogel polymer 34.
  • the present invention uses a substrate having a hydrophobic surface, a weak hydrophilic polymerization reaction group, and appropriately adjusts the spraying method, thereby making it possible to prepare a super absorbent polymer having excellent uniformity and excellent physical properties having a desired size.
  • the polymerization proceeds after the particle size is uniformly and finely formed, UV is evenly irradiated to the deep layer of the particles, and thus the polymerization can be made more smoothly.
  • 3 is a diagram of the present invention. It is a schematic diagram which shows the structure of the polymerization apparatus used by the manufacturing method of a water absorbing resin briefly.
  • the apparatus for producing a superabsorbent polymer of the present invention includes a highly hydrophobic surface zone (I) having high hydrophobicity and a polymerized semi-aspirated zone (IlXslightlyhydrophillczone) having weak hydrophilicity.
  • the region (I) comprises a substrate (40) having a hydrophobic surface, which is not provided in line with the polymerization reactor (10) and has a constant inclination angle () with respect to the polymerization reactor.
  • the substrate having the hydrophobic surface has a tan q value ( ⁇ ) of 20 ° to 70 ° with respect to the polymerization reaction group. If the angle is less than 20 ⁇ , the injected monomer composition particle formation rate is slowed down so that the monomer composition does not flow well toward the polymerization reactor, and there is a problem that uneven particles are generated due to excessive aggregation between the particles. Since the monomer composition injected close to the vertical is directly taken down by the polymerization reactor, there is a problem that a non-uniform polymer is made after UV polymerization.
  • the method of manufacturing the substrate having the hydrophobic surface is not particularly limited, and for example, a substrate having a Teflon coated surface, a substrate coated with silicon, or the like may be used, and a substrate having a silicon coated surface may be preferably used.
  • a substrate having a silicon coated surface may be preferably used.
  • the injected monomer composition is to be in the form of droplets on the surface to flow down well.
  • the silicone in addition to the silicone, it is also possible to proceed through the general coating through the fluorinated substitution.
  • the substrate material may be a silicon substrate or a sapphire substrate made of a hydrophobic material.
  • the region ( ⁇ ) is a polymerization reactor, which is connected to the end of the substrate having the hydrophobic surface, the polymerization reactor
  • the polymerization reaction surface may have a weak hydrophilicity having a property of the contact angle (water contact angle) with respect to the entire water of 30 degrees to 90 degrees.
  • the polymerization reactor may prevent the mobility of the particles from becoming too large as the hydrophilicity is imparted.
  • the polymerization reaction can be given a weak hydrophilic group according to the coating method of silicon to the material used in the production of a conventional superabsorbent resin can be used to continuously move the conveyor belt.
  • the conveyor belt can be used by circulating a belt given some hydrophilicity with a silicone coating on rubber, fabric, and the like.
  • the injection device 20 although not shown in detail in the drawings is preferably provided with a hydraulic nozzle (Hydraulic nozzle), the slot number of the nozzle (slot number) can be from 1 to 9, the core size is 0.2 mm to 0.9 mm.
  • the present invention is characterized by controlling the droplet size and the droplet velocity according to the injection of the monomer composition by adjusting the pressure of the nozzle of the injection device.
  • 4 and 5 are schematic diagrams schematically showing a spraying method of the monomer composition in the method for producing a super absorbent polymer of the present invention.
  • the present invention can control the spray pattern when spraying the monomer composition from the injector 20, as shown in Figure 4, it can be made to have a very high cone (full cone) injection efficiency (Fig. 4 a ').
  • the injection device may comprise a conical spray nozzle.
  • fine atomization may be realized by spraying the monomer composition so that the spray droplet size is 10 to 150.
  • the injection pattern during the injection process By carefully adjusting, it is possible to form a fine particle size monomer mixture having a spray droplet size of 300 p or less, more preferably 15 to 200 most preferably 20 to 200, on the substrate.
  • Such fine particle monomer mixtures may be formed by, for example, gathering or dividing one or more droplets of the monomer composition sprayed onto a spray droplet size of 10 to 150 on a substrate.
  • the injection angle of the monomer composition injected from the injection device 20 is defined as “ ⁇ 2 ”
  • the injection angle of the monomer composition is at an angle of 20 ° to 150 ° from the hydraulic nozzle of the injection device. It is preferred to spray onto a substrate having a hydrophobic surface. If the spray angle is less than 20 ⁇ , the monomer composition is sprayed intensively in a narrow area, and if it exceeds 150 ⁇ , there is a problem that the spray is wider than the hydrophobic surface.
  • the monomer composition is preferably sprayed on a substrate having a hydrophobic surface at a spray rate of 0.5 to 5 ms- 1 . If the injection rate is less than 0.5 ms _ 1 there is a problem that the productivity is lowered by a low injection pressure, if 5 ms- 1 or more there is a problem that the monomer composition is not evenly distributed on the hydrophobic surface by the injection pressure. Therefore, the injection device of the present invention may be provided with a speed control means separately, may be provided with a temperature control means as necessary.
  • the conditions of UV polymerization of the said monomer composition are not specifically limited,
  • the method used for manufacture of normal super absorbent polymer can be used.
  • UV polymerization photopolymerization
  • UV polymerization is not much influenced by the temperature, so it can be carried out by irradiating ultraviolet light for 10 seconds to 5 minutes at a temperature of 25 ⁇ 99 ° C wide temperature range.
  • the amount of ultraviolet light during UV irradiation may be 0.1 to 30 mW / cm 2 .
  • the light source and wavelength range used for UV irradiation can also be used well known in the art.
  • the monomer composition may be prepared by mixing in a mixer in which a supply portion and a solvent supply portion of raw materials such as monomers and a polymerization initiator are connected. Since the monomer composition is separately The monomer composition may be supplied to the injection device or may be supplied to the injection device through a transfer line installed separately.
  • the water-containing gel polymer is subjected to a drying step, and if necessary, after the additional grinding process is subjected to a surface treatment process to be made of a super absorbent polymer having a uniform and fine particles Can be. That is, according to the present invention, since the monomer mixture is polymerized in the form of fine particles, it is also possible to obtain a super absorbent polymer of the fine particles only by the drying process, and if desired, the desired product can be obtained by further grinding. Can be. In particular, the present invention does not need to go through the process of cutting the polymer in the form of a sheet, and can minimize or simplify the miniaturization process of the particles at various stages through the cutting.
  • the drying temperature and time of the polymer may be appropriately selected according to the water content of the prepared hydrogel polymer, preferably 20 minutes to 40 minutes at a temperature of 160 to 175 ° C.
  • the drying temperature exceeds 175 ° C, the hydrogel polymer Only the surface of D is locally excessively dried, which not only lowers the product properties but also a large amount of fine powder is generated in a subsequent grinding step, thereby decreasing the pressure absorbing ability.
  • the configuration of the device at the time of the drying step is not particularly limited, and the "side may perform drying by infrared irradiation, hot air, microwave irradiation, or UV irradiation.
  • the drying temperature and time may be appropriately selected according to the water content of the polymer polymerized through the UV polymerization, preferably 20 to 120 minutes at a temperature condition of 80 to 200 ° C.
  • the temperature is less than 80 ° C. there is a problem in that the drying time is too long, the drying time is too long, when drying at a temperature exceeding 200 ° C, there is a problem that the superabsorbent resin is pyrolyzed.
  • the pulverization may be selected without any limitation as long as it is a method used for pulverization of the resin.
  • a pin mill, a hammer mill, a screw mill, a mill, etc. By selecting any one of the grinders selected from the group consisting of pulverization.
  • the average particle diameter of the final superabsorbent polymer particles after the grinding step is 150 to 850 mm 3.
  • the polymer having undergone the drying step and additional grinding step as necessary may be obtained in the form of a super absorbent polymer having a uniform and fine particle by performing a surface treatment process or the like.
  • the water content after drying of the hydrogel polymer polymerized through the UV polymerization may be 1 to 10% by weight.
  • the moisture content of the hydrogel polymer means the value of the water content of the total gel gel subtracted from the weight of the hydrogel polymer by the weight of the polymer in the dry state.
  • the structure of each monomer for forming the said monomer composition is demonstrated.
  • the polymerization of the water-soluble ethylenically unsaturated monomer is preferably performed in the aqueous solution state.
  • the water-soluble ethylenically unsaturated monomer may be used without limitation in the configuration as long as it is a monomer commonly used in the production of superabsorbent polymers.
  • any one or more selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic monomers, and amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
  • the water-soluble ethylenically unsaturated monomers are acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meta ) Acryloylpropanesulfonic acid, and anionic monomers and salts thereof of 2- (meth) acrylamide-2-methyl propane sulfonic acid; (Meth) acrylic amide, N- substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, _ 2-hydroxypropyl (meth) acrylate, meteuk when polyethylene glycol (meth) acrylate and polyethylene glycol Nonionic hydrophilic-containing monomers of (meth) acrylates; And an amino group-containing unsaturated monomer of ( ⁇ , ⁇ ) -dimethylaminoethyl (meth) acrylate and
  • the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition may be appropriately selected in consideration of polymerization time and reaction conditions, but may preferably be 35 to 50% by weight. If the concentration of the water-soluble ethylenically unsaturated monomer is less than 35% by weight, the yield is low, there is a problem of low economical efficiency, when more than 50% by weight is disadvantageous in terms of monomer solubility deterioration.
  • the polymerization initiator is acetophenone, benzoin, benzophenone, benzyl and derivatives thereof such as diepoxy acetophenone, 2—hydroxy-2-methyl-1-phenylpropane- 1-one, benzyl dimethyl tar, 4— ( Acetofetone derivatives such as 2-hydroxy ethoxy) phenyl ⁇ (2-hydroxy) -2-propyl ketone, 1-hydroxycyclonucleosil phenyl ketone; Benzoin alkyl ethers such as benzoin methyl ether, benzyl ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether; Benzophenone derivatives such as 0-benzoyl benzoic acid methyl 4-phenyl benzophenone, 4'-banjoyl '4'-methyl-diphenyl sulfide, and (4-benzoyl benzyl) trimethyl ammonium chloride; Thio
  • the polymerization initiator may be used in an amount of 0.01 to 1.0 weight « 3 ⁇ 4 based on the total monomer composition.
  • the monomer composition according to the present invention may further include a crosslinking agent.
  • the type of the crosslinking agent is a crosslinking agent having at least one functional group capable of reacting with the water-soluble substituent of the ethylenically unsaturated monomer, the water-soluble substituent of the ethylenically unsaturated monomer, and having at least one ethylenically unsaturated group or a mixture thereof.
  • a water-soluble substituent of an ethylenically unsaturated monomer a crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent produced by hydrolysis of vinyl monomers, and a mixture thereof. Any one or more of the above may be used.
  • crosslinking agent having two or more ethylenically unsaturated groups examples include bisacrylamide having 8 to 12 carbon atoms, poly (meth) acrylate of a polyol having 2 to 10 carbon atoms, and a polyol having a polyol having 2 to 10 carbon atoms ( Meta) allyl ether, etc.
  • the crosslinking agent may be used in an amount of 0.01 to 1.0 wt% based on the total monomer composition.
  • the particle size of the superabsorbent polymer is determined by specifying the conditions at the time of spraying the monomer composition, the substrate having the hydrophobic surface, and the surface conditions of the polymerization reaction group, as compared with the conventional method in the kneader polymerization. It is possible to minimize the recycle process for superabsorbent polymers with adjustable and unnecessary particle distribution.
  • the present invention by converting the monomer solution of the existing sheet form into the particle form, UV irradiation to the deep layer of the particles to improve the polymerization conversion rate and reduce the remaining monomers, narrow the particle size distribution and shape uniformity It is easy to dry, and it is possible to simplify the further cutting and grinding process after drying and to effectively control the rate of fine powder appearing in the general process. Furthermore, the superabsorbent polymer of the present invention not only effectively removes the water after polymerization, but also does not lower the physical properties of the superabsorbent polymer to be finally prepared, and requires only a few additional drying processes, thereby improving the efficiency of the entire process. Can be improved.
  • the present invention can produce a superabsorbent polymer having excellent physical properties more efficiently by the method for producing the superabsorbent polymer, and thus can greatly contribute to the industrial field related to the production of superabsorbent polymers.
  • FIG. 1 is a schematic diagram briefly showing a process of a method for preparing a super absorbent polymer using conventional UV polymerization.
  • Figure 2 is a schematic diagram briefly showing the process of the manufacturing method of the super absorbent polymer according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a brief configuration of the polymerization apparatus used in the method for producing a super absorbent polymer of the present invention.
  • 4 and 5 are schematic diagrams schematically showing a method of spraying a preferred monomer composition in the method for producing a super absorbent polymer of the present invention.
  • a super absorbent polymer was prepared according to the method shown in FIG. 2.
  • the monomer aqueous solution composition is introduced into the injector through the monomer supply unit, and the surface of the silicone-coated material (the hydrophobic surface) is injected through the hydraulic nozzle of the injector at a spraying speed of 1.0 ms— 1 at an injection angle of 45 °.
  • the surface of the silicone-coated material (the hydrophobic surface) is injected through the hydraulic nozzle of the injector at a spraying speed of 1.0 ms— 1 at an injection angle of 45 °.
  • the ultraviolet ray is irradiated through the UV irradiation device (irradiation amount: 2mW / cin 2 ). UV polymerization was performed for 2 minutes to prepare a fine hydrous gel polymer.
  • the substrate having the hydrophobic surface is 30 ° with respect to the polymerization reactor
  • the tan q value was produced.
  • the monomer composition was sprayed to have a spray droplet size of 100 j3 ⁇ 4.
  • the fine hydrogel polymer was dried in a hot air dryer at 16C C for 30 minutes. Subsequently, after grinding with a pin mill grinder, a sieve was used to obtain a super absorbent polymer having an average particle size of 150 to 300 zm. Subsequently, the surface of the superabsorbent polymer was crosslinked with ethylene glycol diglycidyl ether, water and ethane using a solution, and then reacted at 12 CTC for 30 minutes. After grinding, the average particle size was 150 to 300. A surface treated super absorbent polymer was obtained.
  • Example 2
  • a superabsorbent polymer was prepared in the same manner as in Example 1, except that the substrate having the hydrophobic surface was manufactured to have a tan q value of 60 ⁇ for the polymerization reactor.
  • Example 3
  • a super absorbent polymer was prepared in the same manner as in Example 1, except that the injection rate of the monomer composition was changed to 2.0 ms _1 .
  • Example 4
  • a super absorbent polymer was prepared in the same manner as in Example 1 except that the spray angle of the monomer composition was changed to 60 °. Comparative Example 1
  • the monomer composition was introduced into a continuously moving conveyor belt reactor of FIG. 1 (1; a semi-unggi machine without a substrate having a hydrophobic surface), and UV-irradiated polymers in the form of a sheet were irradiated under the same conditions as in Example 1. 2: base soya) was prepared.
  • the super absorbent polymer was prepared by gel sizing, sizing (cutting process), drying, pulverizing, and surface treatment in the usual manner. Comparative Example 2
  • the substrate having the hydrophobic surface was prepared in the same manner as in Example 1 except that a substrate having a tan q value of 80 ° was used for the polymerization reactor, thereby preparing a super absorbent polymer. Comparative Example 3
  • a superabsorbent polymer was prepared in the same manner as in Example 1, except that the group having a hydrophobic surface had a tan q value of 10 ° with respect to the polymerization reactor.
  • Examples 1 to 4 of the present invention can effectively remove the water after the polymerization is also lower than the moisture content of Comparative Examples 1 to 3. Accordingly, the present invention provides kneading for crushing polymers. Since only a minimal additional drying process is required without a process, the overall process can be simplified to improve process efficiency.
  • Test Example 2 Evaluation of Properties
  • Resin W (g) (about O.lg) obtained in Examples and Comparative Examples was uniformly placed in a non-woven bag and sealed, and then immersed in 0.9% by mass of physiological saline at room temperature. After 30 minutes, the envelope was centrifuged and drained at 250 G for 3 minutes, and then the mass W2 (g) of the envelope was measured. Moreover, after carrying out the same operation without using resin, the mass W1 (g) at that time was measured. Using each mass obtained, CRC (g / g) was calculated according to the following equation.
  • the water soluble component was measured in the same manner as the procedure disclosed in WO 2005/092956. However, it is modified by using 190 g of saline solution.
  • a stainless steel 400 mesh wire was mounted on the bottom of a 60 mm plastic cylinder.
  • the piston which can evenly spread 0.90 g of absorbent resin on the wire mesh under normal temperature and 50% humidity, and evenly apply a load of 4.83 kPa (0.7 psi) on it, has an outer diameter slightly smaller than 60 mm. There is no gap with the inner wall of the cylinder, and the up and down movement is not disturbed. At this time, the weight Wa (g) of the apparatus was measured.
  • a physiological saline solution consisting of 0.90% by weight sodium chloride with a glass filter 5 mm thick and 90 mm in diameter inside a 150 mm diameter petri dish. It was set to the same level as the upper surface of the filter. One sheet of filter paper 90 mm in diameter was loaded thereon. The measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour the measuring device was lifted and its weight Wb (g) was measured.
  • AUP (g / g) [Wb (g)-Wa (g)] / mass of absorbent resin (g)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymerisation Methods In General (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

본 발명은 고흡수성 수지의 제조 방법에 관한 것으로, 보다 상세하게는 모노머 조성물을 특정 tan 각도의 소수성 표면을 갖는 기판에 분사하고 약친수성 표면을 갖는 중합반응기에서 UV중합을 진행하는 단계를 포함하는 고흡수성 수지의 제조방법에 관한 것이다. 본 발명은 기존 시트 형태의 단량체 용액을 입자 형태로 전환함에 따라 깊은 층까지 UV 조사가 가능하도록 하여 중합체로의 전환율을 향상시킬 수 있고, 제조된 중합체의 입자 조절이 용이하여 재순환 공정을 최소화 또는 단순화시키며, 입경 분포를 좁게하고 균일성을 향상시켜 고품질의 고흡수성 수지를 제공하는 효과가 있다.

Description

【명세서】
【발명의 명 칭】
고흡수성 수지의 제조 방법
【기술분야】
본 발명은 고흡수성 수지의 제조 방법쎄 관한 것으로, 더욱 상세하게 는 입 경 조절이 가능하고 미 립자를 위 한 재순환 공정을 최소화할 수 있으며 입 경분포를 좁게하고 균일성을 향상시켜 최종 제조된 제품의 물성을 저하시 키지 않는 고흡수성 수지의 제조 방법에 관한 것 이다.
【발명의 배경 이 되는 기술】
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질 로서 , 개발업체마다 SAM (Super Absorbency Material), AGM (Absorbent Gel Material) 등 각기 다른 이름으로 명 명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서 , 현재는 어 린이용 종이기저귀 등 위 생용품 외에 원예용 토양보수제 , 토목, 건축용 지수재 , 육묘용 시트, 식품유 통분야에서의 신선도 유지제, 및 찜 질용 등의 재료로 널리 사용되고 있다. 상기와 같은 고흡수성 수지를 제조하는 방법으로는 역상현탁중합에 의 한 방법 또는 수용액 중합에 의 한 방법 등이 알려져 있다. 역상현탁중합에 대해서는 예를 들면 일본 특개소 56-161408, 특개소 57-158209, 및 특개 소 57-198714 둥에 개시되어 있다. 수용액 중합에 의한 방법으로는, 축을 구비한 반죽기 내에서 증합겔을 파단, 넁각하면서 증합하는 열중합 방법, 및 고농도 수용액을 벨트상에서 자외선 등을 조사하여 중합과 건조를 동시에 행하는 광중합 방법 등이 알려져 있다.
또한 일본특허공개 2004-25Q689호는 광중합개시제와 수용성 에 틸렌 성 불포화 단량체를 포함하는 수용액에 대해 빛을 단속적으로 조사하며 중 합을 행하는 흡수성 성 형 체의 제조방법을 개시하고 있다. 또한 대한민국특 허등록 제 0330127호는 가교제를 갖는 수용성 에 틸렌계 불포화 단량체를 벤 조일기를 갖는 라디칼계 광중합개시제와 과산화물 존재하에 자외선 (UV)을 조사하여 중합하는 흡수성 수지의 제조방법을 개시하고 있다.
상기 UV 중합을 이용한 종래 방법의 경우, 일반적으로 도 1에 도시 된 바와 같이 단량체와 개시제를 포함하는 모노머 조성물을 컨베이어 벨트 상 반응기 (1)에 투입하고 ,υν조사를 이용하여 수초 이내에 반웅을 진행시켜 시트 형태의 함수겔 중합체인 베이스 수지 (2)를 제조하고, 이것을 후처리에 의해 여러 공정을 거쳐 분말상의 고흡수성 수지로 제조하는 방법이 사용되 고 있다. 상기 후처리 공정은 겔사이징, 사이징 (절단공정), 건조, 분쇄, 및 표면처리공정 등을 포함할 수 있다.
하지만, 상기 방법은 함수겔 중합체에 대하여 미세 입자로 얻기 위해 겔 사이징, 건조 및 사이징 공정을 여러 번 반복하는 재순환 공정을 진행해 야 한다. 그런데 상기와 같이 입경 조절을 위해 재순환 공정을 여러 번 거 치게 되면 미분 발생으로 인한 고흡수성 수지의 물성이 저하되고 재순환에 의한 부가 공정을 진행해야 하는 문제가 있다. 즉 종래 방법의 경우 제품으 로 사용되기 위한 일정한 입자 분포도를 갖는 고흡수성 수지를 얻기 위해서, 중합체의 건조 과정을 진행시 겔 (gel) 중합체를 분쇄한 후에 분급 분쇄 및 건조공정 과정에서 불필요한 입자 분포를 갖는 고흡수성 수지가 발생함에 따라 고흡수성 수지의 물성을 저하시킬 수 있고, 또한 전체적인 공정이 번거 롭고 복잡해지는 문제가 있다.
더욱이, 상기 방법은 단량체와 개시제의 모노머 조성물이 용액 상태 로 투입된 후 2차원 경화 시스템에 의해 중합이 진행되므로, UV에 의한 중 합시 빛의 투과도에 따른 모노머 조성물의 두께의 제한이 따르는 문제가 있 다.
【발명의 내용】
[해결하려는 과제】
이에 본 발명자들은 최종 고흡수성 수지의 물성을 저해하지 않으면서 도 효율적으로 고흡수성 수지를 제조하는 방법을 거듭 연구하던 중 본 발명 을 완성하였다.
따라서 본 발명은 단량체와 개시제의 모노머 조성물을 중합반웅기에 투입하는 과정에서 분사 방법과 함께 소수성 표면을 갖는 기판에 상기 모노 머 조성물을 접촉시킴으로써 미세 입경을 갖는 단량체 흔합물의 균일한 중 합성과 전환율을 향상시키고 입경 조절이 용이한 고흡수성 수지의 제조방법 을 제공하기 위한 것이다.
- 본 발명의 다른 목적은 입경 조절을 위한 건조 공정을 최소화하면서 효율화하고, 또한 분쇄 및 분급 공정을 최소화하고 단순화시킬 뿐 아니라, 좁은 입경분포를 가지며 균일성을 향상시키는 고흡수성 수지의 제조방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 최종 얻어진 고흡수성 수지의 물성을 저해하 지 않는 고흡수성 수지의 제조방법을 제공하는 것이다.
【과제의 해결 수단】
본 발명은 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물을 형성하는 단계;
분사장치를 통해 상기 모노머 조성물을 중합반응기에 연결된 소수성 표면을 갖는 기판에 분사하여 300 im 이하의 분무 액적 크기를 가지는 미세 입경의 단량체 흔합물을 형성하는 단계;
상기 미세 입경의 단량체 흔합물을 연속 이동하는 중합반응기에서
UV중합하여 미세 함수겔 중합체를 제조하는 단계; 및
상기 미세 함수겔 중합체를 건조하는 단계를 포함하며,
- 상기 소수성 표면을 갖는 기판은 중합반응기에 대하여 20° 내지 70° 의 tan q값를 가지는 고흡수성 수지의 제조 방법을 제공한다. 이하, 발명의 구체적인 구현예에 따른 고흡수성 수지의 제조 방법에 대해 구체적으로 설명하기로 한다.
본 발명은 기존과 같이 시트 형태로 함수겔 증합체를 제조하는 것이 아니라, 단량체와 개시제를 포함하는 모노머 조성물에 대한 분사 (spray) 방 법 및 상기 모노머 조성물이 접촉되는 표면의 조건을 특정하게 조절함으로 써, 보다 용이한 방법으로 미세 입자의 고흡수성 수지를 제조할 수 있다. 특히, 본 발명은 상기 모노머 조성물을 직접 중합반응기로 분사하여 공급하지 않고, 일정의 tan 각도를 갖는 소수성이 높은 표면을 갖는 기판에 먼저 분사하여 미세 입경을 갖는 단량체 흔합물이 중합반응기로 공급되기 전의 이동 경로를 제공함으로써, 상기 미세 입경을 갖는 단량체 흔합물이 소 수성 표면 위에서 여러 입자 형태로 응집 (aggregation)되도록 하고, 이것이 중력 (gravity force)에 의해 UV가 조사되는 영역인 중합반웅기로 이동되도록 한 다음, UV중합이 진행되도록 한다. 본 발명은 모노머 조성물의 형태가 용 액에서 미세 입경을 나타내는 입자 형태로 전환됨에 따라, 빛의 투과도 (penetration depth) 범위내에서 입자 내부의 깊은 층 (deeper layer)까지 UV 조사가 가능하여 기존의 두꺼운 시트형태의 중합 방법 보다 중합 전환율 (conversion)을 크게 높이고 잔존 모노머 (residual monomer)의 .함량을 낮출 수 있다.
또한, 본 발명은 모노머 조성물의 분사조건을 적절히 조절하여, 입자 크기의 조절이 용이할 뿐 아니라 균일한 크기를 갖는 좁은 입경 분포를 갖 는 미립자의 고흡수성 수지의 제조 방법을 제공할 수 있다.
따라서 본 발명에 따르면, 기존 시트 형태의 함수겔 중합체를 형성할 필요가 없으므로, 별도의 절단 공정을 진행하지 않아도 되며, 여러 단계의 분쇄 공정에 따른 미분 발생을 최소화할 수 있다. 그러므로, 본 발명은 공 정의 용이성으로 원하는 크기의 입도분포가 균일한 미립자를 얻을 수 있으 며, 건조 공정이 수월하여 경제적으로 고흡수성 수지를 얻을 수 있다. 또한 본 발명은 최종 형성되는 고흡수성 수지의 물성이 저하되거나, 또는 고흡수 성 수지를 최종 제품 형태로 사용시 나타날 수 있는 피부 자극의 염려도 없 다.
이러한 본 발명의 고흡수성 수지의 제조 방법에 대하여 도면을 참고 하여 설명하 다음과 략다ᅳ
도 2는 본 발명의 바람직한 일실시예에 따른 고흡수성 수지의 제조방 법의 공정을 간략히 나타낸 모식도이다.
본 발명의 일 구현예에 따라, 수용성 에틸렌계 불포화 단량체 및 중 합개시제를 포함하는 모노머 조성물을 형성하는 단계; 분사장치를 통해 상기 모노머 조성물을 중합반웅기에 연결된 소수성 표면을 갖는 기판에 분사하여
300 m 이하의 분무 액적 크기를 가지는 미세 입경의 단량체 흔합물을 형성 하는 단계; 상기 미세 입경의 흔합물을 연속 이동하는 중합반응기에서 UV중 합하여 미세 함수겔 중합체를 제조하는 단계; 및 상기 미세 함수겔 중합체를 건조하는 단계를 포함하는 고흡수성 수지의 제조 방법이 제공된다. 상기 구현예 및 도 2를 참고하면, 본 발명의 방법은 모노머 조성물의 분사를 위한 분사장치와 소수성을 갖는 기판을 구비하고 약친수성을 갖는 중합반응기를 이용하는 특징이 있다. ,
보다 구체적으로, 본 발명의 일 실시예에 따른 고흡수성 수지는, 도 2와 같이 단량체와 중합개시제를 포함하는 모노머 조성물 (30)을 분사하기 위한 분사장치 (20), 상기 분사장치를 통해 분사된 모노머 조성물이 미세 입 자로 뭉쳐지도록 분사하여 미세 입경의 단량체 흔합물이 형성되는 소수성 표면을 갖는 기판 (40), 상기 미세 입경의 단량체 흔합물을 중합하고 약친수 성 표면 (50)을 갖는 중합반응기 (10), 및 상기 미세 입경의 단량체 흔합물에 UV를 조사하기 위한 UV조사장치 (60)를 구비한 장치 구성을 통해 제조될 수 있다.
즉 본 발명의 고흡수성 수지의 제조방법은 단량체와 중합개시제를 포 함하는 모노머 조성물 (30)을 분사장치 (20)에 투입하고 이것을 증합반웅기에 연결 설치되어 있으며 소수성 표면을 갖는 기판 0)으로 분사시킨다. 이러 한 과정을 통해, 상기 분사된 모노머 조성물 (30) 입자들은 친수성으로서 소 수성 기판 위에서 마치 물방울처럼 구형의 여러 입자 형태로 응집되어 미세 입경을 갖는 단량체 흔합물 (32)로 형성되는 특징이 '있다. 이렇게 웅집된 여 러 개의 미세 입자들은 상기 상태를 유지하면서 중력에 의해 약친수성을 갖 는 증합반웅기로 홀러내려간 후 (도 2의 a방향), UV조사를 위한 중합반웅기 (10)로 이동된다. 그런 다음, 상기 중합 반웅기 (10)로 이동된 미세 입자에 UV 조사 장치 (60)를 통해 UV를 조사하면 미세 입경을 갖는 단량체 흔합물 의 중합이 이루어져 미세 함수겔 중합체 (34)가 제조된다.
이와 같이 본 발명은 소수성 표면을 갖는 기판과 약친수성 중합반웅 기를 이용하고 분사 방법을 적절히 조절함으로써, 원하는 크기를 갖는 균일 하고 물성이 매우 우수한 고흡수성 수지를 제조할 수 있다. 또한 본 발명의 경우 입자 크기가 균일하고 미세하게 형성되도록 한 후 중합을 진행하므로 입자의 깊은 층까지 UV가 고르게 조사되어, 중합이 보다 원할하게 이루어질 수 있다.
그러면, 상기 방법에서 소수성 표면을 갖는 기판과 약친수성의 중합 반응기를 갖는 장치에 대하여 보다 상세히 설명한다. 도 3은 본 발명의 고 、흡수성 수지의 제조방법에서 사용되는 중합 장치의 구성을 간략히 나타낸 모식도이다.
도 3을 참고하면, 본 발명의 고흡수성 수지의 제조 장치는 높은 소수 성을 갖는 기판 영역 (I) (highly hydrophobic surface zone)과 약 친수성을 갖는 중합반웅기 영역 (IlXslightlyhydrophillczone)을 구비하고 있다.
이때 상기 영역 (I)는 소수성 표면을 갖는 기판 (40)을 포함하고 있으 며, 이것은 중합 반웅기 (10)과 나란히 일직선으로 구비되지 않고 상기 중합 반웅기에 대하여 일정의 기울기 각도 ( )를 갖는 특징이 있다. 바람직하게, 상기 소수성 표면을 갖는 기판은 중합반웅기에 대하여 20° 내지 70°의 tan q값 (θι)를 가지는 것이 바람칙하다. 상기 각도가 20ο미만이면 분사된 모노 머 조성물 입자 형성 속도가 느려져 모노머 조성물이 중합반응기 쪽으로 잘 흘러내려가지 않고 입자들간의 과도한 응집으로 불균일한 입자가 생기는 문 제가 있으며, 70°이상이면 기판이 거의 수직에 가까워져 분사된 모노머 조성 물이 바로 중합반응기로 홀러내려가므로 UV중합 후 불균일한 중합체가 만 들어지는 문제가 있다.
상기 소수성 표면을 갖는 기판의 제조방법은 특별히 한정되지는 않으 며, 예를 들면 테프론 코팅된 표면을 갖는 기판, 실리콘으로 코팅된 기판 등 을 사용할 수 있고, 바람직하게는 실리콘 코팅된 표면을 갖는 기판을 사용할 수 있다. 즉, 본 발명은 표면장력이 작은 실리콘을 도료화하여 기판 재료에 스프레이 및 분말정전도장, 건조, 가열, 소성의 공정으로 실리콘 고유의 특성 을 기판 재료에 부여할 수 있다. 이러한 실리콘 코팅을 통해 기판의 표면은 특유의 이형성 뿐만 아니라 내화학성, 내열성, 절연 안전성 및 낮은 마찰계 수를 나타낼 수 있다. 본 발명에서는 상기 실리콘의 코팅처리에 의해 기판 표면에 소수성을 부여함으로써, 분사된 모노머 조성물이 표면에서 액적 형태 가 되도록 하여 잘 흘러 내려가도록 한다. 또한, 본 발명에서는 실리콘 이외, 일반적인 플루오르화 치환을 통환 코팅을 진행할 수도 있다.
상기 기판 재료로는 유리, 고무, 세라믹, 플라스틱 (ΡΕ, PES, PEN 등) 등이 사용될 수 있지만, 그 종류가 특별히 한정되지는 않는다. 또한 상기 기판은 소수성 물질로 제작된 실리콘 기판 또는 사파이아 기판 등을 사용할 수도 있다. 본 발명 에 있어서, 상기 영 역 (Π)에는 중합반응기가 위 치하며, 이 것은 상기 소수성 표면을 갖는 기판의 끝 부분과 연결되어 있고, 상기 중합반웅기
(10)은 약친수성 표면 (50)을 갖는 특징 이 있다. 바람직하게, 상기 중합반웅 기는 표면 는 전체의 물에 대한 접촉 각도 (contact angle)가 30도 내지 90도 사이의 성 질을 지닌 약친수성을 가질 수 있다. 상기 중합반응기는 약 친수성 이 부여됨에 따라 입자들의 이동성 이 너무 커지는 것을 방지할 수 있 다. 또한 상기 중합반웅기는 통상의 고흡수성 수지의 제조에 사용되는 소재 에 실리콘의 코팅 방법에 따라 약친수성기를 부여할 수 있으므로 이를 이용 하여 연속 이동하는 컨베 이 어 벨트를 사용할 수 있다. 또한 상기 컨베이어 벨트는 고무, 직물 등의 위에 실리콘 코팅으로 약간의 친수성 이 부여 된 벨트 를 순환시켜서 이용할 수 있다.
한편 상기 분사 장치 (20)는 도면에 자세히 도시하지는 않았지만 유압 노즐 (Hydraulic nozzle)이 구비되어 있는 것 이 바람직하며, 상기 노즐의 슬롯 수 (slot number)는 1개에서 9개일 수 있고, 코어 크기는 0.2 mm 내지 0.9 mm 일 수 있다.
이 때 본 발명은 분사 장치의 노즐의 압력을 조절하여 모노머 조성물 의 분사에 따른 액적 크기와 액적 속도를 조절하는 것을 특징으로 한다. 도 4 및 5는 본 발명의 고흡수성 수지의 제조방법에 있어서, 모노머 조성물의 분사 방법을 간략히 나타낸 모식도이다.
먼저 본 발명은 상기 분사 장치 (20)로부터 모노머 조성물을 분사시 분사 패턴을 조절할 수 있는데, 도 4에 도시된 바와 같이, 분사 효율이 매우 높은 원추형 (full cone)이 되도록 할 수 있다 (도 4의 a'). 이 러 한 경우 상기 분사 장치는 원추형 스프레이 노즐을 포함할 수도 있다.
또한, 본 발명은 분사 장치를 이용한 분사 패턴에 있어서, 분무 액적 크기 (spray droplet size)를 10 내지 150 가 되도록 모노머 조성물의 분사 공정을 진행하여 미 립자화 (fine atomization)를 실현할 수 있다. 즉, 본 발명 은 분사 패턴의 분무 액적 크기를 10 mi 이상이 되도록 모노머 조성물의 분 사공정을 진행함으로써 초미 립자화 (Ultra-fine atomization)를 실현할 수 있 다.
따라서 본 발명 에 따르면 상기와 같이 분사 공정시의 분사패턴을 적 절히 조절함으로써, 기판 상에서 300 p 이하, 보다 바람직하게 15 내지 200 가장 바람직하게 20 내지 200 의 분무 액적 크기 (spray droplet size) 를 가지는 미세 입경의 단량체 흔합물을 형성할 수 있다. 이 러 한 미세 입경 의 단량체 흔합물은, 예를 들어, 10 내지 150 의 분무 액적 크기로 분사된 모노머 조성물의 액적 이 기판 상에서 하나 이상 모이거나 분할되 어 형성될 수 있다 .
또한 본 발명 에 따르면, 상기 모노머 조성물의 분사시 분사 각도를 특정함으로써, 효과를 나타낼 수 있다. 도 5를 참고하면, 상기 분사 장치 (20)로부터 분사되는 모노머 조성물의 분사 각도를 "θ2"라 정의하면, 상기 모노머 조성물의 분사각도는 분사장치의 유압 노즐로부터 20° 내지 150°의 각도로 소수성 표면을 갖는 기판에 분사되는 것이 바람직하다. 상기 분사 각도가 20ο미 만이 면 모노머 조성물이 좁은 지 역 에 집중적으로 분사되는 문 제가 있고, 150ο를 초과하면 소수성 표면을 벗어나 넓 게 분사되는 문제가 있 다.
상기 모노머 조성물은 0.5 내지 5 ms—1의 분사속도로 소수성 표면을 갖는 기판에 분사되는 것 이 바람직하다. 상기 분사속도가 0.5 ms_ 1미만이면 낮은 분사압에 의해 생산성 이 저하되는 문제가 있고, 5 ms— 1 이상이 면 모노머 조성물이 분사압에 의해 소수성 표면에 균일하게 분포되지 못하는 문제가 있다. 따라서, 본 발명의 분사 장치는 속도 조절 수단이 별도로 구비 될 수 있으며, 필요에 따라 온도조절 수단도 구비될 수 있다.
상기 모노머 조성물의 UV 중합은 그 조건이 특별히 한정되지 않고, 통상의 고흡수성 수지의 제조에 사용되는 방법을 이용할 수 있다. 예를 들 면, 또한, UV중합 (광중합)은 온도에 따른 영 향이 많지 않으므로 온도 폭이 넓 게 25~99 °C의 온도에서 10초 내지 5분간 자외선 광을 조사함으로써 진 행될 수 있다. 또한, UV 조사시 자외선의 광량은 0.1 내지 30 mW/cm2일 수 있다. UV 조사시 사용하는 광원 및 파장범위 또한 당업 계에 잘 알려진 공지 의 것을 사용할 수 있다.
또한 도면에는 도시하지 않았지만, 상기 모노머 조성물은 단량체 및 중합개시제 등의 원료물질의 공급부 및 용매 공급부가 연결설치된 흔합기 에 서 흔합을 진행하여 제조할 수 있다. 이후 상기 모노머 조성물은 별도로 분 사장치에 투입되거나, 또는 별도로 연결 설치된 이송라인을 통해 상기 분사 장치로 모노머 조성물이 공급될 수도 있다.
본 발명의 일 구현예에 있어서, 얻어진 함수겔 중합체에 대하여 건조 하는 단계를 거치게 되며, 필요에 따라 추가 분쇄 공정을 진행한 후 표면처 리 공정을 거쳐 균일하고 미립자를 갖는 고흡수성의 수지로 제조될 수 있다. 즉, 본 발명에 따르면, 미세 입자 형태로 단량체 흔합물이 중합이 이루어지 므로, 건조 공정 만으로도 미세 입자의 고흡수성 수지를 얻는 것도 가능하고, 초 미세 입자를 원하는 경우 추가 분쇄를 통해 원하는 제품을 얻을 수 있다. 특히, 본 발명은 기존과 같이 시트 형태의 중합체의 절단 과정을 거치지 않 아도 되며, 절단을 통한 여러 단계의 입자의 미세화 공정을 최소화 또는 단 순화할 수 있다.
상기 중합체의 건조 온도 및 시간은 제조된 함수겔 중합체의 함수율 에 따라 적절히 선택되어 진행될 수 있는데, 바람직하게는 160 내지 175°C 의 온도 조건에서 20분 내지 40 분 동안 진행되는 것이 바람직하다. 건조 시, 온도가 160 "C 미만인 경우에는 건조 효과가 미미하여 건조 시간이 지 나치게 길어지고, 함수량을 30 중량 % 이하만큼 낮추기 어렵다. 또한, 건조 온도가 175 °C를 초과하는 경우, 함수겔 중합체의 표면만이 국부적으로 지 나치게 건조되어 제품 물성에 저하가 될 뿐만 아니라 추후 행해지는 분쇄 단계에서 다량의 미분이 발생하여 가압 흡수능이 감소하는 경향이 있다.
상기 건조공정시의 장치의 구성은 특별히 한정되지 않으며, 예를 들' 면 적외선 조사, 열풍, 극초단파 조사, 또는 자외선 조사를 통해 건조를 수행 할 수 있다. 또한, 건조 온도 및 시간은 UV 중합을 통해 중합된 중합체의 함수량에 따라 적절히 선택되어 진행될 수 있는테, 바람직하게는 80 내지 200 °C의 온도 조건에서 20 내지 120분 동안 진행되는 것이 바람직하다. 건조 시, 온도가 80°C 미만인 경우에는 건조 효과가 미미하여 건조 시간이 지나치게 길어지는 문제점이 있고, 200°C를 초과하는 온도에서 건조하는 경 우, 고흡수성 수지가 열분해되는 문제가 있다.
상기 건조된 중합체에 대하여 추가 분쇄를 실시하는 경우, 분쇄는 수 지의 분쇄를 위해 사용되는 방법이면 .구성의 한정이 없이 선택될 수 있다. 바람직하게는 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀, 를 밀 등으 로 이루어진 군에서 선택되는 어느 하나의 분쇄장치를 선택하여 분쇄할 수 있다. 이 때, 분쇄 단계 후의.최종 고흡수성 수지 입자의 평균 입경은 150 내지 850卿인 것이 바람직하다.
본 발명에 있어서, 상기 건조단계 및 필요에 따른 추가 분쇄 단계을 거찬중합체는 표면처리 공정등을 수행하여 균일하고 미립자를 갖는 고흡수 성 수지 형태로 얻어질 수 있다.
이때 상기 UV중합을 통해 중합된 함수겔 중합체의 건조후 함수율은 1 내지 10 중량 %일 수 있다. 이 때, 함수겔 중합체의 함수율은 전체 중합체 겔 중량에 대해, 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 한편, 상기 모노머 조성물을 형성하기 위한 각 단량체의 구성에 대하 여 설명한다.
본 발명에서 상기 수용성 에틸렌계 불포화 단량체의 중합은 수용액 상태에서 이루어지는 것이 바람직하다.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에서 통 상 사용되는 단량체라면 그 구성의 한정이 없이 사용될 수 있다. 크게, 음이 온성 단량체와 그의 염, 비이온계 친수성 함유 단량체, 및 아미노기 함유 불 포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상 을 사용할 수 있다.
구체적으로는, 수용성 에틸렌계 불포화 단 체는 아크릴산, 메타아크 릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2- (메타)아크릴로일프로판술폰산, 및 2- (메타) 아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 그의 염; (메타)아 크릴아미드, N-치환 (메타)아크릴레이트, 2-히드록시에틸 (메타)아크릴레이트, 2_히드록시프로필 (메타)아크릴레이트, 메특시폴리에틸렌글리콜 (메타)아크릴 레이트 및 폴리에틸렌 글리콜 (메타)아크릴레이트의 비이온계 친수성 함유 단 량체; 및 (Ν,Ν)-디메틸아미노에틸 (메타)아크릴레이트 및 (Ν,Ν)-디메틸아미 노프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물 로 이루어진 군에서 선택된 어느 하나 이상을 사용하는 것이 바람직하다. 더욱 바람직하게, 수용성 에틸렌계 불포화 단량체는 아크릴산과 그의 염을 사용할 수 있는데, 이것은 물성이 우수한 점에서 유리하다.
상기 모노머 조성물 중 수용성 에틸렌계 불포화 단량체의 농도는 중 합 시간 및 반웅 조건 등을 고려하여 적절히 선택하여 사용할 수 있으나, 바 람직하게는 35 내지 50 중량 %일 수 있다. 수용성 에틸렌계 불포화 단량체 의 농도가 35 중량 % 미만인 경우 수율이 낮아 경제성이 낮은 문제가 있으 며, 50 중량 % 이상인 경우 모노머 용해도 저하의 점에서 불리하다.
상기 중합개시제는 아세토페논, 벤조인, 벤조페논, 벤질 및 이의 유도 체로서 디에특시 아세토페논, 2—히드록시 -2-메틸 -1-페닐프로판— 1-온, 벤질 디메틸 타르, 4— (2-히드록시 에록시)페닐ᅳ (2-히드록시)—2-프로필 케톤, 1— 히드록시시클로핵실페닐케톤 등의 아세토페톤 유도체; 벤조인메틸에테르, 벤 조일에틸에테르, 벤조인이소프로필에테르, 벤조인이소부틸에테르 등의 벤조 인알킬에테르류; 0—벤조일 안식향산 메틸 4-페닐 벤조페논, 4ᅳ밴조일ᅳ 4'-메 틸-디페닐 황화물, (4-벤조일 벤질)트리메틸 암모늄 염화물 등의 벤조페논 유도체; 티옥산톤 (thioxanthone)계 화합물; 비스 (2,4,6-트리메틸벤조일) -페 닐 포스핀 옥시드, 디페닐 (2,4,6-트리메틸벤조일)ᅳ포스핀 옥시드 등의 아실 포스핀 옥시드 유도체; 2-히드록시 메틸 프로피온니트릴, 2,2'-{아조비스 (2- 메틸— Ν-[1,1'-비스 (히드록시메틸 )ᅳ2-히드록시에틸)프로피온 아미드] 등의 아조계 화합물 등으로 이루어진 군에서 선택되는 하나 이상의 광중합 개시 제를 사용할 수 있다.
상기 중합개시제는 전체 모노머 조성물에 대하여 0.01 내지 1.0 중 량 «¾로 사용할 수 있다.
또한 본 발명에 따른 상기 모노머 조성물은 가교제를 더 포함할 수 있다.
상기 가교제의 종류는 상기 가교제는 에틸렌계 불포화 단량체의 수용 성 치환기, 에틸렌계 불포화 단량체의 수용성 치환기와 반응할 수 있는 관능 기를 적어도 1개 가지고 적어도 1개의 에틸렌성 불포화기를 갖는 가교제 또 는 이들의 흔합물; 및 에틸렌계 불포화 단량체의 수용성 치환기, 비닐 모노 머의 가수분해에 따라 생성하는 수용성 치환기와 반응할 수 있는 관능기를 적어도 2개 이상 가지는 가교제, 및 이들의 흔합물로 이루어진 군에서 선택 된 어느 하나 이상을 사용할 수 있다. 에틸렌성 불포화기를 2개 이상 가지 는 가교제로는 탄소수 8~12의 비스 아크릴아미드, 비스 메타 아크릴 아미드 탄소수 2~10의 폴리올의 폴리 (메타)아크릴레이트, 및 탄소수 2~10의 폴리 올의 폴리 (메타)알릴에 테르 등이 사용되고, Ν,Ν' 메틸렌비스 (메타)아크릴레이 트, 에 틸렌옥시 (메타)아크릴레이트, 폴리에 틸렌옥시 (메타)아크릴레이트, 프로 필렌옥시 (메타)아크릴레이트, 글리세린 디 아크릴레이트, 글리세린 트리아크릴 레이트, 트리 메티롤프로판 트리 아크릴레이트, 트리 알릴 아민, 트리 아릴시아 누레이트, 트리 알릴이소시 아네 이트, 폴리에 틸렌글리콜, 디에 틸렌글리콜 및 프 로필렌글리콜로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다. 상기 가교제는 전체 모노머 조성물에 대하여 0.01 내지 1.0 중량 %로 사용할 수 있다.
【발명의 효과】
본 발명에 따르면 기존 일반적 인 니더 중합기 내에서 실시하는 방법 과 비교하여 , 모노머 조성물의 분사시의 조건, 소수성 표면을 갖는 기판 및 중합 반웅기의 표면 조건을 특정함으로써, 고흡수성 수지 의 입자크기 의 조절 이 가능하고, 불필요한 입자 분포도를 가진 고흡수성 수지를 위 한 재순환 공 정을 최소화할 수 있다. 또한, 본 발명은 기존 시트 형 태의 단량체 용액을 입자 형 태로 전환하여, 입자의 깊은 층까지 UV가 조사되도록 함으로써 중합 전환율의 향상과 잔존 모노머를 감소시 키고, 입자크기 분포를 좁게하며 균일 성을 형상시 켜 건조가 용이하고 건조후 추가 절단 및 분쇄 공정을 단순화할 수 있고 일반 공정에서 나타나는 미분발생율을 효율적으로 제어할 수 있는 효과가 있다. 더욱이, 본 발명의 고흡수성 수지는 중합후의 수분 또한 효과 적으로 제거할 수 있을 뿐 아니라, 최종 준비되는 고흡수성 수지의 물성을 저하시 키지 않으며 최소한의 추가적 인 건조공정만을 필요하므로 전체 공정 의 효율을 향상시킬 수 있다.
그러므로, 본 발명은 상기 고흡수성 수지의 제조 방법에 의해, 보다 효율적으로 우수한 물성을 갖는 고흡수성 수지를 제조할 수 있으므로, 고흡 수성 수지 제조 관련 산업 분야에 크게 기 여할 수 있다. 【도면의 간단한 설명】
도 1은 종래 UV중합을 이용한 고흡수성 수지의 제조방법의 공정을 간략히 나타낸 모식도이다.
도 2는 본 발명의 바람직한 일실시 예에 따른 고흡수성 수지의 제조방 법의 공정을 간략히 나타낸 모식도이다.
도 3은 본 발명의 고흡수성 수지의 제조방법에서 사용되는 중합 장치 의 구성을 간략히 나타낸 모식도이다.
도 4 및 5는 본 발명의 고흡수성 수지의 제조방법 에 있어서, 바람직 한 모노머 조성물의 분사 방법을 간략히 나타낸 모식도이다.
【발명을 실시하기 위한 구체적 인 내용】
이하, 발명의 구체적 인 실시 예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이 러한 실시 예는 발명의 예시로 제시된 것에 불과하 며, 이에 의해 발명의 권리 범위가 정해지는 것은 아니다. 실시예 1
도 2에 도시된 방법에 따라 고흡수성 수지를 제조하였다.
아크릴산 lOOg, 가교제로 폴리에 틸렌글리콜디아크릴레이트 (Mw=523) 0.5g, UV개시제로 디페닐 (2,4,6-트리 메틸벤조일)—포스핀 옥시드 0.033g, 50% 가성소다 (NaOH) 83.3g 및 물 89.8g을 흔합하여, 단량체 농도 가 45 중량%인 모노머 수용액 조성물을 제조하였다.
이후, 상기 모노머 수용액 조성물을 모노머 공급부를 통해 분사장치 로 투입하고, 분사장치의 유압 노즐을 통해 1.0 ms— 1의 분사속도, 45°의 분사 각도로 모노머 조성물을 실리콘 코팅된 소재의 표면 (소수성 표면을 갖는 기 판)에 분사하여 미세 입 경을 갖는 단량체 흔합물을 형성하였다. 이후 상기 미세 입 경을 갖는 단량체 흔합물이 실리콘 소재의 연속 이동하는 10%의 약 친수성을 갖는 연속 이동하는 컨베이어 벨트상으로 이동되면, UV조사 장치 를 통해 자외선을 조사 (조사량: 2mW/cin2)하여 2분 동안 UV 중합을 진행으로 미세 함수겔 중합체를 제조하였다.
이 때 , 상기 소수성 표면을 갖는 기판은 중합반응기 에 대하여 30°의 tan q값을 나타내도톡 제작하였다. 또한, 상기 모노머 조성물은 100 j¾m의 분무 액적 크기를 갖도록 분사되었다.
상기 미세 함수겔 중합체에 대하여 16C C 온도의 열풍건조기에서 30 분 동안 건조하였다. 이어서, 핀밀 분쇄기로 분쇄한 후 시브 (sieve)를 이용 하여 평균 입경 크기가 150내지 300인 zm의 고흡수성 수지를 얻었다. 이후, 에틸렌 글리콜 디글리시딜 에테르, 물 및 에탄을 용액을 이용하 여 고흡수성 수지를 표면 가교후, 12CTC에서 30분간 반응하고, 분쇄후 시브 (sieve)를 이용하여 평균 입경 크기가 150 내지 300 의 표면처리된 고흡수 성 수지를 얻었다. 실시예 2
상기 소수성 표면을 갖는 기판이 중합반응기에 대하여 60ο의 tan q값 을 갖도록 제작한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 제조하였다. 실시예 3
상기 모노머 조성물의 분사시 분사속도를 2.0 ms_1로 변경한 것을 제 외하고는, 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 제조하였 다. 실시예 4
상기 모노머 조성물의 분사시 분사각도를 60°로 변경한 것을 제외하 고는, 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 제조하였다. 비교예 1
상기 모노머 조성물을 도 1의 연속 이동하는 컨베이어 벨트상 반응기 (1; 소수성 표면을 갖는 기판이 없는 반웅기)에 투입하고, 실시예 1과 동일 한 조건의 UV를 조사한 결과 시트 형태의 함수겔 중합체 (2: 베이스 수자)가 제조되었다.
상기 모노머 조성물의 분사시 분사속도를 8.0 ms— 1로 변경한 것을 제 외하고는, 실시 예 1과 동일한 방법으로 수행하여 고흡수성 수지를 제조하였 다.
상기 함수겔 중합체에 대하여 통상의 방법으로 겔사이 징, 사이징 (절 단공정 ), 건조, 분쇄, 및 표면처 리의 후처 리 공정을 진행하여 고흡수성 수지 를 제조하였다. 비교예 2
상기 소수성 표면을 갖는 기판은 중합반응기 에 대하여 80°의 tan q값 를 가지는 것을 사용한 것을 제외하고는, 실시 예 1과 동일한 방법으로 수행 하여 고흡수성 수지를 제조하였다. 비교예 3
상기 소수성 표면을 갖는 기 은 중합반응기 에 대하여 10°의 tan q값 를 가지는 것을 사용한 것을 제외하고는, 실시 예 1과 동일한 방법으로 수행 하여 고흡수성 수지를 제조하였다. 시험예 : 고흡수성 수지의 함수율 및 물성 평가
시험예 1: 함수율 평가
상기 실시 예 및 비교예에 따른 각각의 흡수성 수지 분말 lg을 IR(infrared ray)를 이용한 건조기에 넣어 180°C에서 40분간 건조한 다음, 함수율을 측정하였다. 그 결과는 표 1에 나타내었다.
【표 1】
Figure imgf000017_0001
상기 표 1의 결과를 통해, 본 발명의 실시 예 1 내지 4는 비교예 1 내지 3에 비해 함수율이 낮아 중합후의 수분 또한 효과적으로 제거할 수 있 음을 알 수 있다. 따라서, 본 발명은 중합체를 잘게 부수는 니딩 (kneading) 공정이 없이 최소한의 추가적인 건조 공정만을 필요로 하므로 전체 공정의 단순화를 실현하여 공정 효을을 향상시킬 수 있다. 시험예 2: 물성 평가
실시예의 고흡수성 수지 및 비교예의 수지의 물성을 평가하기 위해 하기와 같은 시험을 진행하였다. 또한 실시예 및 비교예에 따른 흡수성 수 지의 물성은 하기와 같은 방법으로 측정하였고, 그 결과를 표 2에 나타내었 다.
(1) 무하중하 흡수배율 (CRC)
실시예 및 비교예로 얻어진 수지 W(g) (약 O.lg)을 부직포제의 봉투 에 균일하게 넣고 밀봉 (seal)한 후에, 상온에 0.9 질량 %의 생리 식염수에 침 수했다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 Wl(g)을 측정했다. 얻어진 각 질량을 이용하 여 다음과 같은 식에 따라 CRC(g/g)를 산출하였다.
[수학식 1]
CRC(g/g) = {(W2(g) - Wl(g))/W(g)} - 1
(2) 수가용성분 (Extractable content)
수가용 성분 측정은 WO 2005/092956 호에 개시되어 있는 순서와 동일한 방법으로 측정하였다. 단, 190g의 살린 용액을 사용하는 것에 개변 되어 있다.
(3) 가압 흡수능 (AUP: Absorbency under Pressure)
내경 60mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망 을 장착시켰다. 상온, 습도 50%의 조건하에서 철망상에 흡수성 수지 0.90g 을 균일하게 살포하고 그 위에 4.83 kPa(0.7 psi)의 하중을 균일하게 더 부 여할 수 있는 피스톤 (piston)은 외경이 60 mm 보다 약간 작고 원통의 내벽 과 틈이 없고, 상하의 움직임이 방해받지 않도록 하였다. 이때 상기 장치의 중량 Wa(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 90mm로 두께 5mm의 유리 필터를 두고, 0.90 중량 % 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직 경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정장치를 싣고, 액을 하중하에서 1시간 동안 흡수하였다. 1시간 후 측정 장치를 들어올리고, 그 중량 Wb(g)을 측 정하였다.
그리고 Wa, Wb로부터 다음 식에 따라 가압 흡수능을 산출하였다. [수학식 2]
AUP (g/g) = [Wb(g) - Wa(g)]/ 흡수 수지의 질량 (g)
【표 2]
Figure imgf000019_0001
상기 표 2에서 보면, 본 발명의 실시 예 1 내지 4는 비교예 1 내지 3 과 비교하여, 기존과 동등 이상의 물성을 나타내며 흡수능이 더 효율적 이고 우수함을 알 수 있다. 【부호의 설명】
1: 컨베이어 벨트상 반웅기
2: 베 이스 수지 (시트 형 태의 함수겔 중합체)
10: 중합반웅기
20: 분사 장치
30: 분사되는 모노머 조성물
32: 미세 입경을 갖는 단량체 흔합물 : 미세 함수겔 중합체 : 소수성 표면을 갖는 : 약친수성 표면 : UV 조사 장치

Claims

【특허청구범위】
【청구항 1】
수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물을 형성하는 단계;
분사장치를 통해 상기 모노머 조성물을 중합반웅기에 연결된 소수성 표면을 갖는 기판에 분사하여 300 이하의 분무 액적 크기를 가지는 미세 입경의 단량체 흔합물을 형성하는 단계;
상기 미세 입경의 단량체 흔합물을 연속 이동하는 중합반응기에서
UV중합하여 미세 함수겔 중합체를 제조하는 단계; 및
상기 미세 함수겔 중합체를 건조하는 단계를 포함하며,
상기 소수성 표면을 갖는 기판은 중합반웅기에 대하여 20° 내지 70° 의 tan q값를 가지는 고흡수성 수지의 제조 방법 .
【청구항 2】
제 1항에 있어서, 상기 소수성 표면을 갖는 기판은 테프론 코팅된 표면을 갖는 기판 또는 실리콘으로 코팅된 기판을 사용하는 고흡수성 수지의 제조방법.
【청구항 3】
제 1항에 있어서, 상기 중합반응기는 표면 또는 전체의 물에 대한 접촉 각도가 30도 내지 90도의 성질을 지닌 약친수성을 가지는, 고흡수성 수지의 제조방법.
【청구항 4】
제 1항에 있어서, 상기 모노머 조성물은 0.
5 내지 5 ms_1의 분사속도로 소수성 표면을 갖는 기판에 분사되는 고흡수성 수지의 제조방법. 【청구항 5】
게 1항에 있어서, 상기 모노머 조성물의 분사각도는 분사장치의 유압 노즐로부터 20ο 내지 150°의 각도로 소수성 표면을 갖는 기판에 분사되는 고흡수성 수지의 제조방법.
【청구항 6】
제 1항에 있어서, 상기 모노머 조성물은 분무 액적 크기간 10 이상이 되도록 분사되는 고흡수성 수지의 제조방법.
【청구항 7】
제 1항에 있어서, 상기 모노머 조성물은 분무 액적 크기가 10 내지 150 이 되도록 분사되는 고흡수성 수지의 제조방법.
【청구항 8]
제 1항에 있어서, 상기 기판 상의 미세 입경의 단량체 흔합물은 20 내지 200 의 분무 액적 크기를 가지는 고홉수성 수지의 제조방법/
【청구항 9】
제 1항에 있어서, 상기 UV 중합은 25~99 °C의 온도에서 10초 내지 5분간자외선 광을 조사하여 이루어지는 고흡수성 수지의 제조 방법 .
【청구항 10】
제 1항에 있어서, 모노머 조성물은 가교제를 더 포함하는 고흡수성 수지의 제조 방법.
【청구항 11】
겨 U항에 있어서, 상기 수용성 에틸렌계 불포화 단량체는
아크릴산, 메타아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산,
'2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2- (메타)아크릴로일 프로판술폰산, 및 2- (메타)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염;
(메타)아크릴아미드, N-치환 (메타)아크릴레이트, 2-히드록시에틸 (메타) 아크릴레이트 , 2-히드록시프로필 (메타)아크릴레이트, 메록시폴리에틸렌글리콜 (메타)아크릴레이트 및 폴리에틸렌 글리콜 (메타)아크릴레이트의 비이은계 친 수성 함유 단량체; 및
(Ν,Ν)-디메틸아미노에틸 (메타)아크릴레이트 및 (Ν,Ν)-디메틸아미노 프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상인 것인, 고흡수성 수지의 제조 방 법.
【청구항 12】
제 1항에 있어서, 상기 수용성 에틸렌계 불포화 단량체의 농도는 20 내지 60중량 %인 고흡수성 수지의 제조 방법.
【청구항 13】 게 10항에 있어서, 상기 가교제는 에틸렌계 불포화 단량체의 수용성 치환기, 에틸렌계 불포화 단량체의 수용성 치환기와 반응할 수 있는 관능기를 적어도 1개 가^고 적어도 1개의 에틸렌성 불포화기를 갖는 가교제 또는 이들의 흔합물; 및
에틸렌계 불포화 단량체의 수용성 치환기, 비닐 모노머의 가수분해에 따라 생성하는 수용성 치환기와 반웅할 수 있는 관능기를 적어도 2개 이상 가지는 가교제, 및 이들의 흔합물로 이루어진 군에서 선택된 어느 하나 이상 인, 고흡수성 수지의 제조 방법.
【청구항 14】
제 1항에 있어서, 상기 중합개시제는 아조계 개시제, 과산화물계 개시제, 레독스계 개시제, 유기 할로겐화물 개시제, 아세토페논, 벤조인, 벤조페논, 벤질 및 이의 유도체로 이루어진 군에서 선택되는 어느 하 인 고흡수성 수지의 제조 방법.
【청구항 15】
제 1항에 있어서, 상기 건조된 중합체에 대하여 핀 밀, 해머 밀, 스크류 밀 및 를 밀로 이루어진 군에서 선택되는 어느 하나의 분쇄장치로 분쇄하는 단계를 더 포함하는 고흡수성 수지의 제조 방법.
【청구항 16】
제 1항에 있어서, 입경이 150 내지 850 /皿인 분말형태의 수지를 형성하는 고흡수성 수지의 제조 방법.
【청구항 17】
거 U항에 있어서, 건조후 함수율이 1 내지 10 중량 %인 고흡수성 수지의 제조 방법.
PCT/KR2012/002817 2012-04-13 2012-04-13 고흡수성 수지의 제조 방법 WO2013154219A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12874028.9A EP2787012B1 (en) 2012-04-13 2012-04-13 Method for preparing superabsorbent polymer
US14/370,151 US9656296B2 (en) 2012-04-13 2012-04-13 Preparation method of a super absorbent polymer
BR112014018266-3A BR112014018266B1 (pt) 2012-04-13 2012-04-13 método de preparação de um polímero super-absorvente
CN201280072374.3A CN104220464B (zh) 2012-04-13 2012-04-13 高吸水性聚合物的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120038478A KR101477252B1 (ko) 2012-04-13 2012-04-13 고흡수성 수지의 제조 방법
KR10-2012-0038478 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013154219A1 true WO2013154219A1 (ko) 2013-10-17

Family

ID=49327772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002817 WO2013154219A1 (ko) 2012-04-13 2012-04-13 고흡수성 수지의 제조 방법

Country Status (6)

Country Link
US (1) US9656296B2 (ko)
EP (1) EP2787012B1 (ko)
KR (1) KR101477252B1 (ko)
CN (1) CN104220464B (ko)
BR (1) BR112014018266B1 (ko)
WO (1) WO2013154219A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050397A1 (de) * 2014-09-30 2016-04-07 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537412B (zh) * 2016-06-27 2021-06-01 思拓凡生物工艺研发有限公司 制备聚合物微球的方法和系统
US11208508B2 (en) 2016-12-26 2021-12-28 Toagosei Co. Ltd. Polymer fine particles manufacturing method
KR102095003B1 (ko) * 2017-01-03 2020-03-30 주식회사 엘지화학 수지 입자의 제조 방법
CN106944317B (zh) * 2017-05-03 2020-03-24 泫泽工业传动系统(上海)有限公司 一种同步带与涂层的贴合方法及装置
KR20190041308A (ko) * 2017-10-12 2019-04-22 주식회사 엘지화학 슈트 타입 모노머 디스펜서
CN110090593B (zh) * 2018-01-30 2022-08-12 徐州市禾协肥业有限公司 一种肥料料浆液滴冷却成型的方法及颗粒肥料
CN114354554B (zh) * 2021-12-17 2023-12-26 北京科技大学 一种用于全时间线生物标志物的检测平台的制备方法及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
KR100330127B1 (ko) 1994-10-05 2002-08-08 송원산업주식회사 흡수성수지의제조방법
JP2002265528A (ja) * 2001-03-14 2002-09-18 Toagosei Co Ltd 吸水性樹脂の製造方法
JP2004250689A (ja) 2003-01-27 2004-09-09 Nippon Shokubai Co Ltd 吸水性成形体の製造方法
WO2005092956A1 (en) 2004-03-29 2005-10-06 Nippon Shokubai Co., Ltd. Particulate water absorbing agent with water-absorbing resin as main component
JP2005298681A (ja) * 2004-04-12 2005-10-27 Asahi Kasei Chemicals Corp 吸水性樹脂の製造装置と製造方法
JP2006152095A (ja) * 2004-11-29 2006-06-15 Asahi Kasei Chemicals Corp 吸水性樹脂の連続製造装置及び連続製造方法
JP2006199862A (ja) * 2005-01-21 2006-08-03 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JP2010513632A (ja) * 2006-12-22 2010-04-30 ビーエーエスエフ ソシエタス・ヨーロピア 機械的に安定な吸水性ポリマー粒子の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2070369T3 (es) 1990-07-17 1995-06-01 Sanyo Chemical Ind Ltd Procedimiento para la fabricacion de resinas absorbentes de agua.
KR19990057609A (ko) 1997-12-30 1999-07-15 조정래 고흡수성 수지의 제조방법
US6417425B1 (en) 2000-02-01 2002-07-09 Basf Corporation Absorbent article and process for preparing an absorbent article
JP2002003509A (ja) 2000-06-26 2002-01-09 Toagosei Co Ltd 含水状重合体の製造方法
US6822135B2 (en) 2002-07-26 2004-11-23 Kimberly-Clark Worldwide, Inc. Fluid storage material including particles secured with a crosslinkable binder composition and method of making same
DE602004009484T2 (de) 2003-01-27 2008-07-24 Nippon Shokubai Co. Ltd. Verfahren zur Herstellung von einem wasserabsorbierenden Formkörper
JP4414293B2 (ja) 2004-06-30 2010-02-10 大王製紙株式会社 吸収性複合体の製造方法
DE102004042955A1 (de) * 2004-09-02 2006-03-09 Basf Ag Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
JP2006160845A (ja) 2004-12-06 2006-06-22 Asahi Kasei Chemicals Corp 吸水性樹脂の製造方法
EP1813291A1 (de) * 2006-01-20 2007-08-01 Basf Aktiengesellschaft Geruchsverhindernde wasserabsorbierende Zusammensetzungenen enthaltend Urease-Inhibitoren
DE102006060156A1 (de) 2006-12-18 2008-06-19 Evonik Stockhausen Gmbh Wasserabsorbierende Polymergebilde, welche unter Einsatz von Polymerdispersionen hergestellt wurden
WO2009077526A1 (de) 2007-12-17 2009-06-25 Basf Se Vorrichtung zur herstellung wasserabsorbierender polymerartikel
KR101302172B1 (ko) 2010-06-21 2013-08-30 주식회사 엘지화학 고흡수성 수지의 제조 장치 및 이를 이용한 고흡수성 수지의 제조 방법
KR101299649B1 (ko) 2010-08-04 2013-08-23 주식회사 엘지화학 양이온성 광개시제를 이용한 고흡수성 수지의 제조 방법 및 고흡수성 수지 제조용 조성물

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
KR100330127B1 (ko) 1994-10-05 2002-08-08 송원산업주식회사 흡수성수지의제조방법
JP2002265528A (ja) * 2001-03-14 2002-09-18 Toagosei Co Ltd 吸水性樹脂の製造方法
JP2004250689A (ja) 2003-01-27 2004-09-09 Nippon Shokubai Co Ltd 吸水性成形体の製造方法
WO2005092956A1 (en) 2004-03-29 2005-10-06 Nippon Shokubai Co., Ltd. Particulate water absorbing agent with water-absorbing resin as main component
JP2005298681A (ja) * 2004-04-12 2005-10-27 Asahi Kasei Chemicals Corp 吸水性樹脂の製造装置と製造方法
JP2006152095A (ja) * 2004-11-29 2006-06-15 Asahi Kasei Chemicals Corp 吸水性樹脂の連続製造装置及び連続製造方法
JP2006199862A (ja) * 2005-01-21 2006-08-03 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JP2010513632A (ja) * 2006-12-22 2010-04-30 ビーエーエスエフ ソシエタス・ヨーロピア 機械的に安定な吸水性ポリマー粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787012A1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050397A1 (de) * 2014-09-30 2016-04-07 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel

Also Published As

Publication number Publication date
CN104220464A (zh) 2014-12-17
US20140329024A1 (en) 2014-11-06
CN104220464B (zh) 2016-03-16
EP2787012B1 (en) 2017-03-29
BR112014018266A8 (pt) 2017-07-11
US9656296B2 (en) 2017-05-23
KR101477252B1 (ko) 2014-12-29
BR112014018266B1 (pt) 2021-01-12
EP2787012A4 (en) 2015-07-22
KR20130115810A (ko) 2013-10-22
BR112014018266A2 (ko) 2017-06-20
EP2787012A1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP6535056B2 (ja) 高吸水性樹脂およびその製造方法
WO2013154219A1 (ko) 고흡수성 수지의 제조 방법
KR101495779B1 (ko) 고흡수성 수지의 제조 방법
CN105814088B (zh) 超吸收性聚合物的制备方法
EP3235856B1 (en) Surface cross-linked super absorbent resin and method for preparing same
US9999868B2 (en) Method for preparing super absorbent resin
KR101718942B1 (ko) 고흡수성 수지의 제조 방법
CN105916902A (zh) 用于制备超吸收性聚合物的方法和由此制备的超吸收性聚合物
KR20160061743A (ko) 고흡수성 수지 및 이의 제조 방법
US10294334B2 (en) Method for preparing super absorbent resin
US10829630B2 (en) Super absorbent polymer
KR101668856B1 (ko) 고흡수성 수지의 제조 방법
EP3159359B2 (en) Method for producing a super absorbent polymer containing water-soluble salt
KR20150068321A (ko) 고흡수성 수지 및 그 제조 방법
KR101461174B1 (ko) 고흡수성 수지의 제조 방법
KR20120039284A (ko) 고흡수성 수지의 제조 방법
KR20150132035A (ko) 고흡수성 수지, 및 이의 제조 방법
WO2019117418A1 (ko) 고흡수성 수지 및 이의 제조방법
KR20180043713A (ko) 고흡수성 수지
WO2018074665A1 (ko) 고흡수성 수지의 제조 방법
KR20160137499A (ko) 고흡수성 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280072374.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874028

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012874028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14370151

Country of ref document: US

Ref document number: 2012874028

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014018266

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112014018266

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140724