WO2013154144A1 - 流量センサおよびその製造方法 - Google Patents

流量センサおよびその製造方法 Download PDF

Info

Publication number
WO2013154144A1
WO2013154144A1 PCT/JP2013/060888 JP2013060888W WO2013154144A1 WO 2013154144 A1 WO2013154144 A1 WO 2013154144A1 JP 2013060888 W JP2013060888 W JP 2013060888W WO 2013154144 A1 WO2013154144 A1 WO 2013154144A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
flow rate
resin
sealing body
flow sensor
Prior art date
Application number
PCT/JP2013/060888
Other languages
English (en)
French (fr)
Inventor
河野 務
半沢 恵二
徳安 昇
忍 田代
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP13775539.3A priority Critical patent/EP2837918B1/en
Priority to US14/391,782 priority patent/US9580303B2/en
Priority to CN201380030748.XA priority patent/CN104364614B/zh
Publication of WO2013154144A1 publication Critical patent/WO2013154144A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00309Processes for packaging MEMS devices suitable for fluid transfer from the MEMS out of the package or vice versa, e.g. transfer of liquid, gas, sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0154Moulding a cap over the MEMS device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present invention relates to a flow sensor and a manufacturing technique thereof, and more particularly, to a resin-sealed flow sensor and a technique effective when applied to the manufacturing technique.
  • Patent Document 1 discloses a technique for pouring resin by clamping a part with a mold having a release film sheet as a method for manufacturing a semiconductor package.
  • an internal combustion engine such as an automobile is provided with an electronically controlled fuel injection device.
  • This electronically controlled fuel injection device has the role of operating the internal combustion engine efficiently by appropriately adjusting the amount of gas (air) and fuel flowing into the internal combustion engine. For this reason, in the electronically controlled fuel injection device, it is necessary to accurately grasp the gas (air) flowing into the internal combustion engine. For this reason, the electronic control fuel injection device is provided with a flow rate sensor (air flow sensor) for measuring the flow rate of gas (air).
  • a flow sensor manufactured by a semiconductor micromachining technology is particularly attracting attention because it can reduce cost and can be driven with low power.
  • a flow sensor has, for example, a diaphragm (thin plate portion) formed by anisotropic etching on the back surface of a semiconductor substrate made of silicon, and a heating resistor and a temperature measuring device on the surface of the semiconductor substrate opposite to the diaphragm.
  • the flow rate detection part which consists of a resistor is formed.
  • the actual flow sensor has, for example, a second semiconductor chip formed with a control circuit unit for controlling the flow rate detection unit in addition to the first semiconductor chip formed with the diaphragm and the flow rate detection unit.
  • the first semiconductor chip and the second semiconductor chip described above are mounted on a substrate, for example, and are electrically connected to wiring (terminals) formed on the substrate.
  • the first semiconductor chip is connected to a wiring formed on the substrate by a wire made of a gold wire
  • the second semiconductor chip uses a bump electrode formed on the second semiconductor chip. , Connected to the wiring formed on the substrate. In this way, the first semiconductor chip and the second semiconductor chip mounted on the substrate are electrically connected via the wiring formed on the substrate.
  • the flow rate detection unit formed in the first semiconductor chip can be controlled by the control circuit unit formed in the second semiconductor chip, and a flow rate sensor is configured.
  • the gold wire (wire) connecting the first semiconductor chip and the substrate is usually fixed by potting resin in order to prevent contact due to deformation. That is, the gold wire (wire) is covered and fixed by the potting resin, and the gold wire (wire) is protected by the potting resin.
  • the first semiconductor chip and the second semiconductor chip constituting the flow sensor are usually not sealed with potting resin.
  • a normal flow sensor has a structure in which only a gold wire (wire) is covered with a potting resin.
  • the fixing of the gold wire (wire) with the potting resin is not performed in a state in which the first semiconductor chip is fixed with a mold or the like. Therefore, the contraction of the potting resin causes the first semiconductor chip to deviate from the mounting position. There's a problem. Furthermore, since the potting resin is formed by dropping, there is a problem that the dimensional accuracy of the potting resin is low. As a result, the mounting position of the first semiconductor chip on which the flow rate detection unit is formed varies for each individual flow sensor, and the formation position of the potting resin is slightly different. Variations will occur.
  • An object of the present invention is to provide a technology capable of improving performance by suppressing performance variation for each flow sensor (including the case of improving performance by improving reliability).
  • the flow sensor in the representative embodiment is arranged in an outer region of the semiconductor chip without overlapping the semiconductor chip in an arbitrary cross section parallel to the traveling direction of the gas flowing on the exposed flow rate detection unit.
  • the sealing body is released from the lower mold by pushing up the protruding pin from the lower mold.
  • ⁇ Performance can be improved by suppressing performance variation for each flow sensor.
  • FIG. 3 is a circuit block diagram showing a circuit configuration of the flow sensor in the first embodiment.
  • FIG. 3 is a plan view showing a layout configuration of a semiconductor chip that constitutes a part of the flow sensor in the first embodiment. It is sectional drawing which shows the structure of the flow sensor in 1st related technology. It is sectional drawing which shows the process of resin-sealing the flow sensor in 1st related technology. It is sectional drawing which shows a mode that a resin sealing process is implemented using a 2nd related technique. It is sectional drawing which shows the mold release process in 2nd related technology.
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the flow sensor in the first embodiment.
  • FIG. 11 is a cross-sectional view showing a manufacturing process of the flow sensor following FIG. 10.
  • FIG. 12 is a cross-sectional view showing a manufacturing process of the flow sensor following FIG. 11.
  • FIG. 13 is a cross-sectional view showing a manufacturing process for the flow sensor following FIG. 12.
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the flow sensor in the first embodiment.
  • FIG. 15 is a cross-sectional view showing a manufacturing process of the flow sensor following FIG. 14.
  • FIG. 16 is a cross-sectional view showing the manufacturing process of the flow sensor following FIG. 15.
  • FIG. 17 is a cross-sectional view showing a manufacturing process for the flow sensor following FIG. 16. It is a figure which shows an example of the enlarged view of the area
  • FIG. 3 It is a figure which shows another example of the enlarged view of the area
  • region in FIG. 3 is a cross-sectional view showing a structure of a flow sensor in the first embodiment.
  • FIG. (A)-(e) is sectional drawing which shows an example of the trace by a protrusion pin. It is the top view which looked at the flow sensor in modification 1 from the back side.
  • (A) is a top view which shows the structure of the flow sensor after resin sealing in the modification 2
  • (b) is sectional drawing cut
  • FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • (A) is a top view which shows the mounting structure of the flow sensor in Embodiment 2
  • (b) is sectional drawing cut
  • (c) is (a) 2 is a cross-sectional view taken along line BB in FIG. It is the top view which looked at the flow sensor in Embodiment 2 from the back side.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • FIG. 1 is a circuit block diagram showing a circuit configuration of the flow sensor according to the first embodiment.
  • the flow sensor in the first embodiment has a CPU (Central Processing Unit) 1 for controlling the flow sensor, and an input circuit 2 for inputting an input signal to the CPU 1. And it has the output circuit 3 for outputting the output signal from CPU1.
  • the flow rate sensor is provided with a memory 4 for storing data, and the CPU 1 can access the memory 4 and refer to the data stored in the memory 4.
  • the CPU 1 is connected to the base electrode of the transistor Tr through the output circuit 3.
  • the collector electrode of the transistor Tr is connected to the power source PS, and the emitter electrode of the transistor Tr is connected to the ground (GND) via the heating resistor HR. Therefore, the transistor Tr is controlled by the CPU 1. That is, since the base electrode of the transistor Tr is connected to the CPU 1 via the output circuit 3, an output signal from the CPU 1 is input to the base electrode of the transistor Tr.
  • the current flowing through the transistor Tr is controlled by the output signal (control signal) from the CPU 1.
  • the current flowing through the transistor Tr is increased by the output signal from the CPU 1, the current supplied from the power source PS to the heating resistor HR is increased, and the heating amount of the heating resistor HR is increased.
  • the flow rate sensor according to the first embodiment is configured such that the amount of current flowing through the heating resistor HR is controlled by the CPU 1 and the amount of heat generated from the heating resistor HR is thereby controlled by the CPU 1. I understand that.
  • a heater control bridge HCB is provided in order to control the current flowing through the heating resistor HR by the CPU 1.
  • the heater control bridge HCB is configured to detect the amount of heat released from the heating resistor HR and output the detection result to the input circuit 2.
  • the CPU 1 can input the detection result from the heater control bridge HCB, and controls the current flowing through the transistor Tr based on this.
  • the heater control bridge HCB includes resistors R1 to R4 that form a bridge between the reference voltage Vref1 and the ground (GND).
  • the heater control bridge HCB configured as described above, when the gas heated by the heating resistor HR is higher than the intake air temperature by a certain temperature ( ⁇ T, for example, 100 ° C.), the potential of the node A and the node B
  • ⁇ T the temperature
  • the resistance values of the resistors R1 to R4 are set so that the potential difference between the potentials of the resistors R1 to R4 is 0V.
  • the resistors R1 to R4 constituting the heater control bridge HCB are referred to as a component in which the resistor R1 and the resistor R3 are connected in series and a component in which the resistor R2 and the resistor R4 are connected in series.
  • the bridge is configured so as to be connected in parallel between the voltage Vref1 and the ground (GND).
  • a connection point between the resistor R1 and the resistor R3 is a node A
  • a connection point between the resistor R2 and the resistor R4 is a node B.
  • the resistance value of the resistor R1 constituting the heater control bridge HCB mainly changes depending on the amount of heat generated from the heating resistor HR.
  • the resistance value of the resistor R1 changes in this way, the potential difference between the node A and the node B changes. Since the potential difference between the node A and the node B is input to the CPU 1 via the input circuit 2, the CPU 1 controls the current flowing through the transistor Tr based on the potential difference between the node A and the node B.
  • the CPU 1 controls the amount of heat generated from the heating resistor HR by controlling the current flowing through the transistor Tr so that the potential difference between the node A and the node B becomes 0V. That is, in the flow rate sensor according to the first embodiment, the CPU 1 causes the gas heated by the heating resistor HR to be only a certain temperature ( ⁇ T, for example, 100 ° C.) higher than the intake air temperature based on the output of the heater control bridge HCB. It can be seen that the feedback control is performed so as to maintain a high constant value.
  • ⁇ T for example, 100 ° C.
  • the flow sensor in the first embodiment has a temperature sensor bridge TSB for detecting the gas flow rate.
  • the temperature sensor bridge TSB is composed of four temperature measuring resistors that form a bridge between the reference voltage Vref2 and the ground (GND).
  • the four resistance temperature detectors are composed of two upstream resistance temperature detectors UR1 and UR2, and two downstream resistance temperature detectors BR1 and BR2.
  • the direction of the arrow in FIG. 1 indicates the direction in which the gas flows.
  • the upstream resistance thermometers UR1 and UR2 are provided on the upstream side of the gas flow direction, and the downstream resistance thermometers BR1 and BR2 is provided.
  • the upstream resistance thermometers UR1 and UR2 and the downstream resistance thermometers BR1 and BR2 are arranged so that the distance to the heating resistor HR is the same.
  • an upstream resistance temperature detector UR1 and a downstream resistance temperature detector BR1 are connected in series between the reference voltage Vref2 and the ground (GND), and the upstream resistance temperature detector UR1 and the downstream resistance temperature detector.
  • the connection point of BR1 is node C.
  • an upstream resistance temperature detector UR2 and a downstream resistance temperature detector BR2 are connected in series between the ground (GND) and the reference voltage Vref2, and a connection point between the upstream resistance temperature detector UR2 and the downstream resistance temperature detector BR2. Is node D. Then, the potential of the node C and the potential of the node D are configured to be input to the CPU 1 via the input circuit 2.
  • the upstream resistance thermometers UR1 and UR2 and the downstream temperature sensor are set so that the potential difference between the potential of the node C and the potential of the node D becomes 0V when the flow rate of the gas flowing in the arrow direction is zero.
  • Each resistance value of the resistors BR1 and BR2 is set.
  • the upstream resistance thermometers UR1 and UR2 and the downstream resistance thermometers BR1 and BR2 are configured to have the same distance from the heating resistor HR and the same resistance value. For this reason, it can be seen that the temperature sensor bridge TSB is configured such that the potential difference between the node C and the node D is 0 V in the absence of wind regardless of the amount of heat generated by the heating resistor HR.
  • the flow sensor in the first embodiment is configured as described above, and the operation thereof will be described below with reference to FIG.
  • the CPU 1 outputs an output signal (control signal) to the base electrode of the transistor Tr via the output circuit 3, thereby causing a current to flow through the transistor Tr.
  • a current flows from the power source PS connected to the collector electrode of the transistor Tr to the heating resistor HR connected to the emitter electrode of the transistor Tr.
  • the heating resistor HR generates heat.
  • the gas warmed by the heat generated from the heat generating resistor HR heats the resistor R1 constituting the heater control bridge HCB.
  • the resistor is set so that the potential difference between the node A and the node B of the heater control bridge HCB becomes 0V.
  • Each resistance value of R1 to R4 is set. For this reason, for example, when the gas heated by the heating resistor HR is increased by a certain temperature (for example, 100 ° C.), the potential difference between the node A and the node B of the heater control bridge HCB becomes 0V, This difference potential (0 V) is input to the CPU 1 via the input circuit 2. Then, the CPU 1 recognizing that the difference potential from the heater control bridge HCB is 0 V outputs an output signal (control signal) for maintaining the current amount of current to the base electrode of the transistor Tr via the output circuit 3. Output.
  • the CPU 1 controls the control signal so that the current flowing through the transistor Tr decreases. (Output signal) is output to the base electrode of the transistor Tr.
  • a potential difference in a direction in which the gas heated by the heating resistor HR becomes higher than a certain temperature (for example, 100 ° C.) is generated, the CPU 1 increases the current flowing through the transistor Tr.
  • a control signal is output to the base electrode of the transistor Tr.
  • the CPU 1 performs feedback control based on the output signal from the heater control bridge HCB so that the potential difference between the node A and the node B of the heater control bridge HCB is 0 V (equilibrium state). To do. From this, it can be seen that in the flow rate sensor according to the first embodiment, the gas heated by the heating resistor HR is controlled to have a constant temperature.
  • the upstream resistance temperature detectors UR1 and UR2 are set so that the potential difference between the node C potential and the node D potential of the temperature sensor bridge TSB becomes 0V.
  • Each resistance value of the downstream resistance thermometers BR1 and BR2 is set.
  • the upstream resistance thermometers UR1 and UR2 and the downstream resistance thermometers BR1 and BR2 are configured to have the same distance from the heating resistor HR and the same resistance value. Therefore, in the temperature sensor bridge TSB, regardless of the amount of heat generated by the heating resistor HR, if there is no wind, the difference potential between the node C and the node D becomes 0V, and this difference potential (0V) is passed through the input circuit 2. Are input to the CPU 1. Then, the CPU 1 recognizing that the potential difference from the temperature sensor bridge TSB is 0 V recognizes that the flow rate of the gas flowing in the direction of the arrow is zero, and the gas flow rate Q is zero via the output circuit 3. Is output from the flow sensor in the first embodiment.
  • This difference potential is input to the CPU 1 via the input circuit 2. Then, the CPU 1 recognizing that the potential difference from the temperature sensor bridge TSB is not zero recognizes that the flow rate of the gas flowing in the arrow direction is not zero. Thereafter, the CPU 1 accesses the memory 4. Since the memory 4 stores a comparison table (table) in which the difference potential and the gas flow rate are associated with each other, the CPU 1 accessing the memory 4 calculates the gas flow rate Q from the comparison table stored in the memory 4. . In this way, the gas flow rate Q calculated by the CPU 1 is output from the flow rate sensor in the first embodiment via the output circuit 3. As described above, according to the flow rate sensor of the first embodiment, it can be seen that the flow rate of gas can be obtained.
  • the layout configuration of the flow sensor according to the first embodiment will be described.
  • the flow sensor in the first embodiment shown in FIG. 1 is formed on two semiconductor chips.
  • the heating resistor HR, the heater control bridge HCB, and the temperature sensor bridge TSB are formed on one semiconductor chip, and the CPU 1, the input circuit 2, the output circuit 3, the memory 4, and the like are formed on another semiconductor chip.
  • a layout configuration of a semiconductor chip on which the heating resistor HR, the heater control bridge HCB, and the temperature sensor bridge TSB are formed will be described.
  • FIG. 2 is a plan view showing a layout configuration of the semiconductor chip CHP1 that constitutes a part of the flow sensor according to the first embodiment.
  • the semiconductor chip CHP1 has a rectangular shape, and gas flows from the left side to the right side (arrow direction) of the semiconductor chip CHP1.
  • a rectangular diaphragm DF is formed on the back surface side of the rectangular semiconductor chip CHP1.
  • the diaphragm DF indicates a thin plate region where the thickness of the semiconductor chip CHP1 is reduced. That is, the thickness of the region where the diaphragm DF is formed is thinner than the thickness of the other semiconductor chip CHP1.
  • a flow rate detection unit FDU is formed in the surface region of the semiconductor chip CHP1 opposite to the back surface region where the diaphragm DF is thus formed.
  • a heating resistor HR is formed at the center of the flow rate detection unit FDU, and a resistor R1 that forms a heater control bridge is formed around the heating resistor HR.
  • Resistors R2 to R4 constituting the heater control bridge are formed outside the flow rate detection unit FDU.
  • a heater control bridge is constituted by the resistors R1 to R4 formed in this way.
  • the resistor R1 constituting the heater control bridge is formed in the vicinity of the heating resistor HR, the temperature of the gas heated by the heat generated from the heating resistor HR is accurately reflected in the resistor R1. Can do.
  • the resistors R2 to R4 constituting the heater control bridge are arranged apart from the heating resistor HR, they can be hardly affected by the heat generated by the heating resistor HR.
  • the resistor R1 can be configured to react sensitively to the temperature of the gas heated by the heating resistor HR, and the resistors R2 to R4 are not easily affected by the heating resistor HR and have a constant resistance value. The value can be easily maintained. For this reason, the detection accuracy of the heater control bridge can be increased.
  • upstream resistance thermometers UR1 and UR2 and downstream resistance thermometers BR1 and BR2 are arranged so as to sandwich the heating resistor HR formed in the flow rate detection unit FDU. Specifically, upstream resistance thermometers UR1 and UR2 are formed on the upstream side in the arrow direction in which gas flows, and downstream resistance thermometers BR1 and BR2 are formed in the downstream in the arrow direction in which gas flows.
  • the temperature of the upstream resistance thermometers UR1 and UR2 can be lowered and the temperature of the downstream resistance thermometers BR1 and BR2 can be increased.
  • the temperature sensor bridge is formed by the upstream resistance thermometers UR1 and UR2 and the downstream resistance thermometers BR1 and BR2 arranged in the flow rate detection unit FDU.
  • the heating resistor HR, the upstream resistance thermometers UR1 and UR2, and the downstream resistance thermometers BR1 and BR2 are formed by sputtering a metal film such as platinum or a semiconductor thin film such as polysilicon (polycrystalline silicon), for example. It can be formed by patterning by a method such as ion etching after forming by a method such as the CVD method or the CVD (Chemical Vapor Deposition) method.
  • the heating resistor HR configured as described above, the resistors R1 to R4 constituting the heater control bridge, and the upstream temperature sensing resistors UR1 and UR2 and the downstream temperature sensing resistors BR1 and BR2 constituting the temperature sensor bridge are These are connected to the wiring WL1 and drawn out to the pads PD1 arranged along the lower side of the semiconductor chip CHP1.
  • the semiconductor chip CHP1 constituting a part of the flow sensor according to the first embodiment is laid out.
  • the actual flow rate sensor includes one semiconductor chip on which the heating resistor HR, the heater control bridge HCB and the temperature sensor bridge TSB are formed, and another one on which the CPU 1, the input circuit 2, the output circuit 3, the memory 4, and the like are formed.
  • the semiconductor chip has a structure in which these semiconductor chips are mounted on a substrate.
  • FIG. 3 is a cross-sectional view showing the configuration of the flow sensor FSP in the first related technology.
  • the flow sensor FSP in the first related technology has a semiconductor chip CHP1 on the chip mounting portion TAB1, and this semiconductor chip CHP1 is bonded to the chip mounting portion TAB1 with an adhesive ADH1.
  • a flow rate detection unit FDU is formed on the main surface (upper surface, front surface) of the semiconductor chip CHP1, and a diaphragm (thin plate portion) DF is formed at a position facing the flow rate detection unit FDU on the back surface of the semiconductor chip CHP1. ing.
  • the resin MR covers the side surface and part of the upper surface of the semiconductor chip CHP1 while exposing the flow rate detection unit FDU formed on the upper surface of the semiconductor chip CHP1. Is formed.
  • the height of the upper surface SUR (CHP) of the semiconductor chip CHP1 is lower than the height of the upper surface SUR (MR) of the resin MR. In other words, it can be said that the height of the upper surface SUR (MR) of the resin MR is higher than the height of the upper surface SUR (CHP) of the semiconductor chip CHP1.
  • the flow sensor FSP in the first related technology configured in this way is resin-sealed by, for example, the manufacturing process shown in FIG.
  • FIG. 4 is a cross-sectional view showing a step of resin-sealing the flow rate sensor FSP in the first related technology.
  • the semiconductor chip CHP1 is fixed to the chip mounting portion TAB1 formed on the lead frame LF with an adhesive ADH1. Then, the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the upper mold UM and the lower mold BM through the second space. Thereafter, the resin MR is poured into the second space under heating, whereby a part of the semiconductor chip CHP1 is sealed with the resin MR.
  • the diaphragm DF since the internal space of the diaphragm DF is separated from the second space by the adhesive ADH1, the diaphragm DF can be filled even when the second space is filled with the resin MR. It is possible to prevent the resin MR from entering the internal space.
  • the upper mold UM is formed with a recess so as to ensure a first space SP1 (sealed space) surrounding the flow rate detection unit FDU formed on the upper surface SUR (CHP) of the semiconductor chip CHP1.
  • the recesses formed in the upper mold UM surround the flow rate detection unit FDU formed in the semiconductor chip CHP1 and the vicinity thereof.
  • the side surface and part of the upper surface of the semiconductor chip CHP1 can be sealed while the one space SP1 (sealed space) is secured. That is, according to the first related technique, a part of the semiconductor chip CHP1 can be sealed while exposing the flow rate detection unit FDU formed in the semiconductor chip CHP1 and the vicinity thereof.
  • an elastic film LAF is interposed between the lead frame LF on which the semiconductor chip CHP1 is mounted and the upper mold UM.
  • the thickness of the semiconductor chip CHP1 is thinner than the average thickness
  • a gap is generated when the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the upper mold UM and the lower mold BM. Since the gap can be filled with the elastic film LAF, resin leakage onto the semiconductor chip CHP1 can be prevented.
  • the thickness of the semiconductor chip CHP1 is larger than the average thickness
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the upper mold UM and the lower mold BM
  • the elastic film LAF is used for the semiconductor chip CHP1. Therefore, the dimension of the elastic film LAF in the thickness direction changes so as to absorb the thickness of the semiconductor chip CHP1.
  • the thickness of the semiconductor chip CHP1 is larger than the average thickness, it is possible to prevent the semiconductor chip CHP1 from being subjected to an excessive force, and as a result, to prevent the semiconductor chip CHP1 from being broken. Can do.
  • the semiconductor chip CHP1 is pressed by the upper mold UM through the elastic film LAF. For this reason, it is possible to absorb the mounting variation of the components due to the thickness variation of the semiconductor chip CHP1, the adhesive material ADH1, and the lead frame LF by the thickness change of the elastic film LAF.
  • the clamping force applied to the semiconductor chip CHP1 can be relaxed. As a result, it is possible to prevent breakage such as cracks, chips or cracks of the semiconductor chip CHP1.
  • the semiconductor chip CHP1 is damaged due to breakage, chipping, cracking or the like of the semiconductor chip CHP1 due to an increase in clamping force due to component mounting variation. Can be protected.
  • FIG. 4 shows a manufacturing method such as a semiconductor chip CHP1 mounted on the chip mounting portion TAB1 of the lead frame LF by the lower mold BM and the upper mold UM on which the elastic film LAF is installed.
  • It is sectional drawing which shows the process of inject
  • FIG. 4 shows a cross-sectional view in the flow direction of air (gas) of the flow sensor. As shown in FIG. 4, the end portion of the semiconductor chip CHP1 is pressed by the upper mold UM through the elastic film LAF, whereby the semiconductor chip CHP1 is fixed by the upper mold UM.
  • the position of the upper surface SUR (MR) of the resin MR is higher than the position of the upper surface SUR (CHP) of the semiconductor chip CHP1.
  • a flow sensor (see FIG. 3) will be manufactured.
  • the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed can be performed in a state of being fixed by a mold, a part of the semiconductor chip CHP1 is suppressed while suppressing the displacement of the semiconductor chip CHP1.
  • a part of the semiconductor chip CHP1 can be sealed with the resin MR while suppressing the displacement of each flow sensor, and the semiconductor chip CHP1. It means that the variation in the position of the flow rate detection unit FDU formed in the above can be suppressed.
  • the position of the flow rate detection unit FDU that detects the flow rate of gas can be matched by each flow rate sensor, so that the performance variation of detecting the gas flow rate in each flow rate sensor can be suppressed. That is, according to the first related technology that seals a part of the semiconductor chip CHP1 while being fixed by the mold, it is possible to suppress the performance variation for each flow sensor FSP as compared with the technology using the potting resin.
  • a protrusion pin (ejector pin) EJPN capable of moving up and down is inserted into the lower mold BM.
  • the resin mold is sealed.
  • the sealing body is released from the lower mold BM.
  • the position of the ejection pin EJPN is sealed. It is conceivable to dispose the stop body in the vicinity of a position obtained by dividing the horizontal dimension into three equal parts. That is, as shown in FIG. 4, it is conceivable to arrange the protruding pin EJPN at a position overlapping the semiconductor chip CHP1 in a plan view. In this case, it seems that there is no problem in the resin sealing step shown in FIG. 4, but when the second related technique shown below is adopted, the inventor newly found that the problem becomes obvious. It was.
  • a positioning hole is provided in a dam bar constituting a part of the lead frame LF, a positioning pin is provided in the lower mold BM, and the positioning pin is inserted into the positioning hole. It is done.
  • the lead frame LF can be securely fixed to the lower mold BM by inserting the positioning pins into the positioning holes, so that the upper frame UM and the lower mold BM use the lead frame. The alignment accuracy when the LF is sandwiched can be improved.
  • FIG. 5 is a cross-sectional view showing a state in which the resin sealing process is performed using the second related technology.
  • a positioning hole AHL is formed in a dam bar DM that constitutes a part of the lead frame LF, and a positioning pin APN provided in the lower mold BM is provided in the positioning hole AHL.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted can be securely fixed to the lower mold BM, and thereby, the lead frame LF can be secured between the upper mold UM and the lower mold BM. It is possible to improve the alignment accuracy when sandwiching.
  • the sealing body is removed from the lower mold BM using the protruding pin EJPN inserted into the lower mold BM. Mold release is performed.
  • the protruding pin EJPN is configured to be movable up and down by a protruding pin plate EPLT, and the protruding pin plate EPLT is configured to be movable in the vertical direction by a pressurizing mechanism and a spring SPR of the molding apparatus.
  • a case is considered in which the protruding pin EJPN is arranged so as to overlap the semiconductor chip CHP1 in a planar manner.
  • the position of the ejection pin EJPN is arranged in the vicinity of a position obtained by dividing the lateral dimension of the sealing body into three equal parts. In this case, the position of the ejection pin EJPN is separated from the position of the positioning pin APN.
  • the positioning pin APN of the lower mold BM is inserted into the positioning hole AHL provided in the lead frame LF, this part is less likely to be released than the other part of the lead frame LF. Furthermore, since the right positioning hole AHL shown in FIG. 5 is covered with the gate through which the resin MR flows, the right positioning hole AHL is covered with the resin MR that passes through the gate, and thus is not easily released. It has become.
  • the position of the protruding pin EJPN and the connecting portion where the positioning pin APN is inserted into the positioning hole AHL are largely separated from each other, the connecting portion is firmly fixed, and the positioning pin APN is Due to the fact that it is difficult to come out of the positioning hole AHL and that the upper portion of the connecting portion is covered with the resin MR, the connecting portion is difficult to release. That is, in the second related technology, as shown in FIG. 6, when the sealing body made of the resin MR is released from the lower mold BM by raising the protruding pin EJPN, there is a connection portion away from the protruding pin EJPN. It becomes difficult to release.
  • the center portion of the sealing body is lifted up by the protruding pin EJPN in a state where the connecting portion is not used as a fulcrum.
  • the sealing body is in an upward convex deformation state.
  • the deformation is greatest at the center of the sealing body.
  • a semiconductor chip CHP1 is sealed at the center of the sealing body, and a diaphragm DF, which is a thin plate portion, is formed on the semiconductor chip CHP1.
  • the diaphragm DF formed on the semiconductor chip CHP1 is likely to be broken by deformation when the sealing body is released from the lower mold BM.
  • the diaphragm DF formed on the semiconductor chip CHP1 is easily broken by deformation of the sealing body at the time of releasing. Therefore, in the second related technology, it is obvious that the yield of the flow sensor is reduced due to the destruction of the diaphragm DF, thereby increasing the manufacturing cost of the flow sensor.
  • the dam bar DM that constitutes a part of the lead frame LF from the viewpoint of improving the alignment accuracy when the lead frame LF is sandwiched between the upper mold UM and the lower mold BM.
  • a connection structure is employed in which a hole AHL is formed and a positioning pin APN provided in the lower mold BM is inserted into the positioning hole AHL.
  • this connection structure firmly fixes the lead frame LF and the lower mold BM, and therefore becomes an obstacle when releasing the sealing body from the lower mold BM. Therefore, unless any contrivance is applied to the mold release method using the ejection pin EJPN, a large deformation of the sealing body is caused at the time of mold release.
  • the diaphragm DF composed of a thin plate portion that is weak against deformation is formed on the semiconductor chip CHP1 sealed in the sealing body, a large deformation of the sealing body at the time of mold release is caused by the flow rate sensor. It is directly connected to the destruction.
  • a positioning hole AHL is formed in the dam bar DM that constitutes a part of the lead frame LF, and the lower mold BM is provided in the positioning hole AHL.
  • a demolding method using the ejection pin EJPN is devised. Below, the technical idea in this Embodiment 1 which gave this device is demonstrated.
  • the feature of the first embodiment is that the semiconductor chip disposed in the vicinity of the central portion in an arbitrary cross section of the flow rate sensor parallel to the traveling direction of the gas flowing on the exposed flow rate detection unit formed on the semiconductor chip,
  • the sealing body is released from the lower mold by pushing up the protruding pin arranged in the outer region of the semiconductor chip without overlapping, from the lower mold.
  • a dam bar is disposed outside the sealing body, and a positioning pin formed in the lower mold is inserted into a positioning hole provided in the dam bar to form a connection portion.
  • This connection part is firmly fixed, and the positioning pin is difficult to be removed from the positioning hole. Further, the connection part is difficult to release due to the resin covering the upper part of the connection part.
  • the structure which pushes up the peripheral part (outer edge part) vicinity of a sealing body with a protrusion pin is employ
  • FIG. 7 is a diagram illustrating a mounting configuration of the flow sensor FS1 in the first embodiment, and is a diagram illustrating a configuration before sealing with resin.
  • FIG. 7A is a plan view showing a mounting configuration of the flow sensor FS1 in the first embodiment.
  • FIG. 7B is a cross-sectional view taken along the line AA in FIG. 7A, and
  • FIG. 7C is a plan view showing the back surface of the semiconductor chip CHP1.
  • the flow sensor FS1 has a lead frame LF made of, for example, a copper material.
  • the lead frame LF includes a chip mounting portion TAB1 and a chip mounting portion TAB2 inside the dam bar DM constituting the outer frame body.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1, and the semiconductor chip CHP2 is mounted on the chip mounting portion TAB2.
  • the semiconductor chip CHP1 has a rectangular shape, and a flow rate detection unit FDU is formed substantially at the center.
  • a wiring WL1 connected to the flow rate detection unit FDU is formed on the semiconductor chip CHP1, and the wiring WL1 is connected to a plurality of pads PD1 formed along one side of the semiconductor chip CHP1. That is, the flow rate detection unit FDU and the plurality of pads PD1 are connected by the wiring WL1.
  • These pads PD1 are connected to a lead LD1 formed on the lead frame LF via a wire W1 made of, for example, a gold wire.
  • the lead LD1 formed on the lead frame LF is further connected to a pad PD2 formed on the semiconductor chip CHP2 via a wire W2 made of, for example, a gold wire.
  • an integrated circuit made of semiconductor elements such as MISFET (Metal Insulator Semiconductor Semiconductor Field Field Effect Transistor) and wiring is formed on the semiconductor chip CHP2.
  • MISFET Metal Insulator Semiconductor Semiconductor Field Field Effect Transistor
  • an integrated circuit constituting the CPU 1, the input circuit 2, the output circuit 3 or the memory 4 shown in FIG. 1 is formed.
  • These integrated circuits are connected to the pads PD2 and PD3 that function as external connection terminals.
  • the pad PD3 formed on the semiconductor chip CHP2 is connected to the lead LD2 formed on the lead frame LF via a wire W3 made of, for example, a gold wire.
  • the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed and the semiconductor chip CHP2 in which the control circuit is formed are connected via the leads LD1 formed in the lead frame LF. Recognize.
  • a polyimide film may be formed on the outermost surface of the semiconductor chip CHP1 for the purpose of stress buffering with the resin to be bonded, surface protection, insulation, and the like.
  • the dam bar DM shown in FIG. 7A has a function of preventing resin leakage in a resin sealing process to be described later.
  • a plurality of positioning holes AHL are provided in the dam bar DM having such a function.
  • This positioning hole AHL is for inserting a positioning pin provided in a lower mold, which will be described later, and has a dam bar DM by inserting the positioning pin into a positioning hole AHL provided in the dam bar DM.
  • the lead frame LF can be securely fixed to the lower mold. Thereby, the positioning accuracy at the time of arrange
  • die can be improved.
  • a chip mounting part TAB1 is formed on the lead frame LF, and the semiconductor chip CHP1 is mounted on the chip mounting part TAB1.
  • the semiconductor chip CHP1 is bonded to the chip mounting portion TAB1 with an adhesive ADH1.
  • a diaphragm DF thin plate portion
  • a flow rate detection unit FDU is formed on the surface of the semiconductor chip CHP1 facing the diaphragm DF.
  • an opening OP1 is formed at the bottom of the chip mounting portion TAB1 existing below the diaphragm DF.
  • the opening OP1 is formed at the bottom of the chip mounting portion TAB1 existing below the diaphragm DF, but the technical idea in the first embodiment is not limited to this.
  • a lead frame LF in which the opening OP1 is not formed can also be used.
  • a pad PD1 connected to the flow rate detection unit FDU is formed, and this pad PD1 Is connected to a lead LD1 formed on the lead frame LF via a wire W1.
  • the semiconductor chip CHP2 is also mounted on the lead frame LF, and the semiconductor chip CHP2 is bonded to the chip mounting portion TAB2 with an adhesive ADH2.
  • the pad PD2 formed on the semiconductor chip CHP2 and the lead LD1 formed on the lead frame LF are connected via a wire W2.
  • the pad PD3 formed on the semiconductor chip CHP2 and the lead LD2 formed on the lead frame LF are electrically connected through a wire W3.
  • the adhesive ADH1 that bonds the semiconductor chip CHP1 and the chip mounting portion TAB1 and the adhesive ADH2 that bonds the semiconductor chip CHP2 and the chip mounting portion TAB2 are, for example, thermosetting such as epoxy resin or polyurethane resin.
  • An adhesive having a resin as a component and an adhesive having a thermoplastic resin such as a polyimide resin, an acrylic resin, or a fluororesin as a component can be used.
  • the bonding between the semiconductor chip CHP1 and the chip mounting portion TAB1 can be performed by applying an adhesive ADH1 or a silver paste as shown in FIG. 7C, or by using a sheet-like adhesive.
  • FIG. 7C is a plan view showing the back surface of the semiconductor chip CHP1.
  • a diaphragm DF is formed on the back surface of the semiconductor chip CHP1, and an adhesive ADH1 is applied so as to surround the diaphragm DF.
  • FIG. 7C shows an example in which the adhesive ADH1 is applied so as to surround the diaphragm DF in a square shape.
  • the present invention is not limited to this.
  • the diaphragm DF is surrounded by an arbitrary shape such as an elliptical shape.
  • the adhesive ADH1 may be applied.
  • the mounting configuration of the flow sensor FS1 before sealing with resin is configured as described above, and the mounting configuration of the flow sensor FS1 after sealing with resin is described below. Will be described.
  • FIG. 8 is a diagram showing a mounting configuration of the flow sensor FS1 in the first embodiment, and is a diagram showing a configuration after sealing with resin.
  • FIG. 8A is a plan view showing a mounting configuration of the flow sensor FS1 in the first embodiment.
  • 8B is a cross-sectional view taken along the line AA in FIG. 8A, and
  • FIG. 8C is a cross-sectional view taken along the line BB in FIG. 8A.
  • the flow rate sensor FS1 As shown in FIG. 8A, a part of the semiconductor chip CHP1 and the semiconductor chip CHP2 are exposed with the flow rate detection unit FDU formed in the semiconductor chip CHP1 exposed.
  • the entire structure is covered with the resin MR. That is, in the first embodiment, the pad forming region of the semiconductor chip CHP1 and the entire region of the semiconductor chip CHP2 are collectively sealed with the resin MR while exposing the region where the flow rate detection unit FDU is formed. .
  • a convex portion made of resin MR may be provided so as to cover the wire W1 electrically connected to the pad PD formed on the semiconductor chip CHP1. That is, in order to reliably seal a component such as a gold wire (wire) having a high loop height, a convex portion can be formed on the resin MR (sealing body).
  • the convex portion is not an essential component.
  • the gold wire (wire) that electrically connects the pad PD1 and the lead LD1 formed on the semiconductor chip CHP1 can be sealed with the resin MR without providing the convex portion, the resin MR (sealing) It is not necessary to provide a convex part on the (stopping body).
  • thermosetting resin such as an epoxy resin or a phenol resin
  • thermoplastic resin such as polycarbonate or polyethylene terephthalate
  • filler such as glass or mica
  • the sealing with the resin MR can be performed in a state in which the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed is fixed by the mold, so that the semiconductor chip CHP1 is displaced. While suppressing, a part of the semiconductor chip CHP1 and the semiconductor chip CHP2 can be sealed with the resin MR.
  • a part of the semiconductor chip CHP1 and the entire region of the semiconductor chip CHP2 can be sealed with the resin MR while suppressing the displacement of each flow sensor FS1. This means that variation in the position of the flow rate detection unit FDU formed in the semiconductor chip CHP1 can be suppressed.
  • the position of the flow rate detection unit FDU that detects the flow rate of gas can be matched by each flow rate sensor FS1, so that there is performance variation in detecting the gas flow rate in each flow rate sensor FS1.
  • the remarkable effect which can be suppressed can be acquired.
  • the adhesive ADH1 is applied so as to surround the diaphragm DF formed on the back surface of the semiconductor chip CHP1. It is premised on taking the composition to do. Then, as shown in FIGS. 8B and 8C, an opening OP1 is formed at the bottom of the chip mounting portion TAB1 below the diaphragm DF formed on the back surface of the semiconductor chip CHP1, and further, the chip An opening OP2 is provided in the resin MR that covers the back surface of the mounting portion TAB1.
  • the internal space of the diaphragm DF flows through the opening OP1 formed in the bottom of the chip mounting portion TAB1 and the opening OP2 formed in the resin MR. It communicates with the external space of the sensor FS1.
  • the pressure in the inner space of the diaphragm DF and the pressure in the outer space of the flow rate sensor FS1 can be made equal, and it is possible to suppress the stress from being applied to the diaphragm DF.
  • the upper surface SUR (MR) of the resin MR is higher than the upper surface SUR (CHP) of the semiconductor chip CHP1. That is, in the first embodiment, the height of the upper surface SUR (MR) of the resin MR (sealing body) in the cross section in the direction parallel to the air flow is equal to the upper surface SUR of the semiconductor chip CHP1 including the flow rate detection unit FDU ( It is higher than the height of CHP).
  • the resin MR partially covers the upper portion of the semiconductor chip CHP1 in the cross section in the direction parallel to the air flow (Y direction). From this, the contact area between the semiconductor chip CHP1 and the resin MR increases in the cross section in the direction parallel to the air flow, so that the interface between the semiconductor chip CHP1 and the resin MR can be prevented from peeling off.
  • the flow sensor FS1 in the first embodiment includes the above-described feature points, so that it is possible to avoid the problem that a crack grows from a peeled portion and a large crack occurs, Air turbulence above the flow rate detection unit FDU can be suppressed. As a result, accurate measurement accuracy of the air flow rate at the flow rate detection unit FDU can be improved.
  • the first embodiment is characterized in that a configuration in which the vicinity of the peripheral portion (outer edge portion) of the sealing body is pushed up by a protruding pin is employed.
  • a trace of a configuration in which the vicinity of the peripheral portion (outer edge portion) of the sealing body is pushed out by the protruding pin remains.
  • FIG. 8C in the thickness direction of the sealing body, traces due to the protruding pins remain in the ejector region EJA that is the outer region of the semiconductor chip CHP1 without overlapping the semiconductor chip CHP1. become.
  • traces due to the protruding pins remain in the ejector area EJA that is the outer area of the chip mounting portion TAB1 without overlapping the chip mounting portion TAB1. The specific shape of this trace will be described later.
  • the flow sensor FS1 As described above, the flow sensor FS1 according to the first embodiment is mounted and configured. However, in the actual flow sensor FS1, after sealing with the resin MR, the dam bar DM constituting the outer frame of the lead frame LF. Is removed.
  • FIG. 8A shows a mounting configuration of the flow rate sensor FS1 after the dam bar DM is removed. As shown in FIG. 8A, it can be seen that by cutting the dam bar DM, a plurality of electrical signals can be independently taken out from the plurality of leads LD2.
  • FIG. 9 is a plan view of the flow sensor FS1 according to the first embodiment as viewed from the back side.
  • the flow sensor FS1 in the first embodiment has a rectangular sealing body made of a resin MR, and a plurality of leads LD2 protrude from the resin MR.
  • a semiconductor chip CHP1 is embedded in the sealing body made of resin MR, and an opening OP1 communicating with the diaphragm formed in the semiconductor chip CHP1 and An opening OP2 is formed.
  • the opening OP1 is provided in the chip mounting portion on which the semiconductor chip CHP1 is mounted, and the opening OP2 is provided in the resin MR constituting the sealing body.
  • the diameter of the opening OP2 is larger than the diameter of the opening OP1.
  • a plurality of traces TC due to the protruding pins remain on the back surface of the sealing body constituting the flow sensor FS1.
  • a plurality of traces TC are arranged at equal intervals along the long side direction (X direction) constituting a part of the outer edge portion of the sealing body.
  • the semiconductor chip CHP1 does not overlap with the semiconductor chip CHP1 in plan view. It can be seen that the trace TC is formed in the outer region of the.
  • the trace TC is formed in a region sandwiched between the semiconductor chip CHP1 and the outer edge region of the sealing body. Therefore, in the flow rate sensor FS1 in the first embodiment, a trace TC of the mold release process by the ejection pin performed after the resin sealing process remains, and if the back surface of the flow sensor FS1 that is the final product is viewed, In the mold release step after the resin sealing step, it can be specified at which position of the sealing body the protruding pin is pressed. This means that if the flow sensor FS1 that is the final product is viewed, it can be determined whether or not the product has been subjected to the mold release step that is a feature of the first embodiment.
  • a lead frame LF made of a copper material is prepared.
  • a chip mounting portion TAB1, a chip mounting portion TAB2, a lead LD1, and a lead LD2 are integrally formed, and an opening OP1 is formed at the bottom of the chip mounting portion TAB1.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1, and the semiconductor chip CHP2 is mounted on the chip mounting portion TAB2.
  • the semiconductor chip CHP1 is connected to the chip mounting portion TAB1 formed on the lead frame LF with an adhesive ADH1.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1 so that the diaphragm DF formed on the semiconductor chip CHP1 communicates with the opening OP1 formed at the bottom of the chip mounting portion TAB1.
  • a flow rate detection unit FDU, wiring (not shown), and a pad PD1 are formed by a normal semiconductor manufacturing process.
  • the diaphragm DF is formed in the position of the back surface facing the flow volume detection part FDU formed in the surface of the semiconductor chip CHP1 by anisotropic etching, for example.
  • a semiconductor chip CHP2 is also mounted on the chip mounting portion TAB2 formed on the lead frame LF by an adhesive ADH2.
  • semiconductor elements (not shown) such as MISFETs, wirings (not shown), pads PD2, and pads PD3 are formed in advance by a normal semiconductor manufacturing process.
  • the pad PD1 formed on the semiconductor chip CHP1 and the lead LD1 formed on the lead frame LF are connected by a wire W1 (wire bonding).
  • the pad PD2 formed on the semiconductor chip CHP2 is connected to the lead LD1 and the wire W2
  • the pad PD3 formed on the semiconductor chip CHP2 is connected to the lead LD2 and the wire W3.
  • the wires W1 to W3 are made of gold wires, for example.
  • the lead frame LF on which the semiconductor chip CHP1 and the semiconductor chip CHP2 are mounted is sandwiched between the upper mold UM and the lower mold BM through the second space (sealed space).
  • the resin MR is poured into the second space (sealed space) under heating, so that the surface of the semiconductor chip CHP1 excluding the flow rate detection unit FDU and its vicinity, the wires W1, the leads LD1, the wires W2, and the semiconductor chips CHP2 The entire main surface, part of the wire W3 and the lead LD2 are sealed with resin MR.
  • the diaphragm DF since the internal space of the diaphragm DF is separated from the first space by the adhesive ADH1, the diaphragm DF is also filled when the first space is filled with the resin MR. It is possible to prevent the resin MR from entering the internal space.
  • the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed can be fixed with a mold, the position of the semiconductor chip CHP1 is suppressed while suppressing the displacement of the semiconductor chip CHP1.
  • a part and the semiconductor chip CHP2 can be sealed with the resin MR. This is because, according to the flow sensor manufacturing method of the first embodiment, a part of the semiconductor chip CHP1 and the entire region of the semiconductor chip CHP2 can be sealed with the resin MR while suppressing the displacement of each flow sensor. This means that variation in the position of the flow rate detection unit FDU formed in the semiconductor chip CHP1 can be suppressed.
  • the position of the flow rate detection unit FDU that detects the gas flow rate can be matched by each flow rate sensor, it is possible to suppress the performance variation of detecting the gas flow rate in each flow rate sensor. A remarkable effect can be obtained.
  • the lower mold is formed so that the flow rate detection unit FDU formed in the semiconductor chip CHP1 is surrounded by the first space SP1 isolated from the second space.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the BM and the upper mold UM.
  • the lead frame LF mounting the semiconductor chip CHP1 when the lead frame LF mounting the semiconductor chip CHP1 is sandwiched between the upper mold UM and the lower mold BM, the lead frame LF mounting the semiconductor chip CHP1 and the upper An elastic film LAF is interposed between the mold UM.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is connected to the upper mold UM.
  • a gap is generated, and the resin MR leaks onto the semiconductor chip CHP1 from this gap.
  • the force applied to the semiconductor chip CHP1 increases when the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the upper mold UM and the lower mold BM.
  • the semiconductor chip CHP1 may be broken.
  • the lead frame on which the semiconductor chip CHP1 is mounted in order to prevent resin leakage onto the semiconductor chip CHP1 due to the above-described thickness variation of the semiconductor chip CHP1 or breakage of the semiconductor chip CHP1, the lead frame on which the semiconductor chip CHP1 is mounted.
  • An elastic film LAF is interposed between the LF and the upper mold UM.
  • the elastic film LAF is soft when the lead frame LF mounting the semiconductor chip CHP1 is sandwiched between the upper mold UM and the lower mold BM.
  • the dimension of the elastic film LAF in the thickness direction changes so as to absorb the thickness of the chip CHP1.
  • a polymer material such as Teflon (registered trademark) or a fluororesin can be used.
  • the resin MR also flows into the back surface side of the lead frame LF. Therefore, since the opening OP1 is formed at the bottom of the chip mounting portion TAB1, there is a concern that the resin MR flows into the inner space of the diaphragm DF from the opening OP1. Therefore, in the first embodiment, the shape of the lower mold BM that sandwiches the lead frame LF is devised. Specifically, as shown in FIG. 13, a protruding insertion piece IP1 is formed in the lower mold BM, and is formed in the lower mold BM when the lead frame LF is sandwiched between the upper mold UM and the lower mold BM.
  • the protruding insertion piece IP1 is inserted into an opening OP1 formed at the bottom of the chip mounting portion TAB1.
  • the insert piece IP1 is inserted into the opening OP1 without a gap, and therefore, the resin MR can be prevented from entering the inner space of the diaphragm DF from the opening OP1.
  • a protruding insertion piece IP1 is formed in the lower mold BM, and this insertion piece IP1 is inserted into the opening OP1 formed at the bottom of the chip mounting portion TAB1 during resin sealing. is doing.
  • the shape of the insert piece IP1 is devised.
  • the insert piece IP1 includes an insertion portion that is inserted into the opening OP1 and a pedestal portion that supports the insertion portion.
  • the cross-sectional area is large.
  • the insert piece IP1 has a structure in which a step portion is provided between the insertion portion and the pedestal portion, and the step portion is in close contact with the bottom surface of the chip mounting portion TAB1.
  • the insert piece IP1 in this way, the insertion portion is inserted into the opening portion OP1, so the diameter of the insertion portion of the insertion piece IP1 is slightly smaller than the diameter of the opening portion OP1. It has become. Therefore, when the insertion piece IP1 is configured only from the insertion portion, even if the insertion portion of the insertion piece IP1 is inserted into the opening OP1, there is a slight gap between the inserted insertion portion and the opening OP1. Conceivable. In this case, the resin MR may enter the inner space of the diaphragm DF from the gap.
  • the insertion part IP1 is configured to form the insertion part on the pedestal part having a larger cross-sectional area than the insertion part.
  • the insertion portion of the insertion piece IP1 is inserted into the opening OP1, and the pedestal portion of the insertion piece IP1 comes into close contact with the bottom surface of the chip mounting portion TAB1.
  • the pedestal is firmly pressed against the back surface of the chip mounting part TAB1, so that the resin MR enters the opening OP1. It can be prevented.
  • the insertion piece IP1 is configured to provide the insertion portion on the pedestal portion having a larger cross-sectional area than the insertion portion, and therefore the resin MR reaches the opening OP1 by the pedestal portion.
  • the combination of the fact that the step portion formed between the pedestal portion and the insertion portion is pressed against the chip mounting portion TAB1 makes the resin MR the internal space of the diaphragm DF through the opening OP1. It is possible to effectively prevent intrusion.
  • the lead frame LF on which the semiconductor chip CHP1 and the semiconductor chip CHP2 are mounted is removed from the upper mold UM and the lower mold BM.
  • the flow sensor FS1 in the first embodiment can be manufactured.
  • the flow sensor FS1 manufactured at this time as a result of using the lower mold BM in which the insertion piece IP1 is formed in the resin sealing process, for example, as shown in FIG. 8B, on the bottom surface of the chip mounting portion TAB1.
  • An opening OP1 is formed, and an opening OP2 communicating with the opening OP1 is formed in the resin MR.
  • the opening OP2 is produced as a result of forming a pedestal on the insert piece IP1, and the cross-sectional area of the opening OP2 is larger than the cross-sectional area of the opening OP1.
  • the internal space of the diaphragm DF flows through the opening OP1 formed in the bottom of the chip mounting portion TAB1 and the opening OP2 formed in the resin MR. It communicates with the external space of the sensor FS1.
  • the pressure in the inner space of the diaphragm DF and the pressure in the outer space of the flow rate sensor FS1 can be made equal, and it is possible to suppress the stress from being applied to the diaphragm DF.
  • a lead frame LF made of a copper material is prepared.
  • the lead frame LF is formed with a chip mounting portion TAB1, and an opening OP1 is formed at the bottom of the chip mounting portion TAB1.
  • a dam bar DM is formed in the lead frame LF, and a positioning hole AHL is formed in the dam bar DM.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1. Specifically, the semiconductor chip CHP1 is connected to the chip mounting portion TAB1 formed on the lead frame LF with an adhesive ADH1. At this time, the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1 so that the diaphragm DF formed on the semiconductor chip CHP1 communicates with the opening OP1 formed at the bottom of the chip mounting portion TAB1.
  • the semiconductor chip CHP1 is formed with a flow rate detection unit FDU, wiring (not shown), and pads (not shown) by a normal semiconductor manufacturing process. And the diaphragm DF is formed in the position of the back surface facing the flow volume detection part FDU formed in the surface of the semiconductor chip CHP1 by anisotropic etching, for example.
  • the pads formed on the semiconductor chip CHP1 and the leads formed on the lead frame LF are connected by wires (wire bonding).
  • This wire is formed of, for example, a gold wire.
  • the side surface of the semiconductor chip CHP1 is sealed with a resin MR (molding process). That is, a part of the semiconductor chip CHP1 is sealed with the resin MR (sealing body) while exposing the flow rate detection unit FDU formed in the semiconductor chip CHP1.
  • an upper mold UM with an elastic film LAF attached thereto and a lower mold BM with an ejection pin EJPN inserted are prepared.
  • a first space SP1 in which a part of the upper mold UM is brought into close contact with the upper surface of the semiconductor chip CHP1 through the elastic film LAF and the flow rate detection unit FDU is surrounded between the upper mold UM and the semiconductor chip CHP1.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the upper mold UM and the lower mold BM through the second space.
  • a positioning hole AHL is provided in the dam bar DM constituting a part of the lead frame LF, while a positioning pin APN is formed in the lower mold BM.
  • the lead frame LF is firmly fixed to the lower mold BM so that the positioning pin APN is inserted into the positioning hole AHL formed in the dam bar DM. From this, according to this Embodiment 1, the positioning accuracy at the time of arrange
  • the resin MR is poured into the second space by the plunger PJ.
  • a protruding pin EJPN is inserted into the lower mold BM.
  • the protruding pin EJPN is configured to be movable up and down by a protruding pin plate EPLT, and the protruding pin plate EPLT is configured to be movable in the vertical direction by a pressurizing mechanism and a spring SPR of the molding apparatus.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is removed from the upper mold UM and the lower mold BM.
  • the protruding pin plate EPLT is moved upward by the pressurizing mechanism and the spring SPR of the molding apparatus.
  • the protrusion pin EJPN connected to the protrusion pin plate EPLT also moves upward.
  • the sealing body in which a part of the semiconductor chip CHP1 is sealed is released from the lower mold BM by the protrusion by the protrusion pin EJPN moved upward.
  • the feature of the first embodiment is that the semiconductor disposed near the center in an arbitrary cross section of the flow rate sensor FS1 parallel to the traveling direction of the gas flowing on the flow rate detection unit FDU formed in the semiconductor chip CHP1.
  • the projecting pin EJPN arranged in the outer region of the semiconductor chip CHP1 without being overlapped with the chip CHP1 is pushed up from the lower mold BM, thereby releasing the sealing body from the lower mold BM.
  • the protruding pin EJPN is located in the outer region of the semiconductor chip CHP1 and in the inner region of the dam bar DM in an arbitrary cross section parallel to the traveling direction of the gas flowing on the exposed flow rate detection unit FDU. Has been placed.
  • the protruding pin EJPN is provided between one end of the semiconductor chip CHP1 and the outer wall of the sealing body (resin MR).
  • the deformation applied to the sealing body at the time of mold release is reduced compared to the case where the protruding pin EJPN is arranged in the region overlapping with the semiconductor chip CHP1 and the mold is released from the lower mold BM.
  • the deformation of the sealing body is reduced by adopting a configuration in which the vicinity of the peripheral portion (outer edge portion) of the sealing body is pushed up by the protruding pin EJPN rather than the construction in which the vicinity of the central portion of the sealing body is pushed up by the protruding pin EJPN. It can be done.
  • the diaphragm formed on the semiconductor chip As a result, it is possible to prevent the diaphragm formed on the semiconductor chip from being destroyed due to the deformation applied to the sealing body, thereby improving the yield of the flow sensor, and in turn reducing the manufacturing cost of the flow sensor. Reduction can be achieved.
  • the position of the protruding pin EJPN is arranged at a position that does not overlap with the semiconductor chip CHP1, a load more than necessary is applied to the diaphragm DF formed on the semiconductor chip CHP1. It can suppress adding.
  • a dam bar DM is disposed outside the sealing body, and a positioning pin APN formed in the lower mold BM is inserted into a positioning hole AHL provided in the dam bar DM to form a connection portion.
  • This connecting portion is firmly fixed so that the positioning pin APN is difficult to be removed from the positioning hole AHL, and further, the connecting portion is released due to the resin MR covering the upper portion of the connecting portion. It is difficult to do.
  • the first embodiment employs a configuration in which the vicinity of the peripheral portion (outer edge portion) of the sealing body is pushed out by a protruding pin EJPN.
  • the position of the protruding pin EJPN is arranged at a position close to the connecting portion where the positioning pin APN is inserted into the positioning hole AHL, so the positioning pin APN from the positioning hole AHL in this connecting portion. Can be easily removed.
  • the push-up position by the ejector pin EJPN and the position of the connection portion are close to each other, which makes it easy to release the connection portion and seals the connection portion that is difficult to release as a fulcrum. This means that body deformation can also be suppressed.
  • the diaphragm formed on the semiconductor chip it is possible to prevent the diaphragm formed on the semiconductor chip from being broken due to the large deformation applied to the sealing body, and thereby the yield of the flow rate sensor. It can be seen that a significant effect can be obtained that the manufacturing cost of the flow sensor can be reduced.
  • the protrusion pin EJPN disposed in the outer region of the semiconductor chip CHP1 without being overlapped with the semiconductor chip CHP1 disposed in the vicinity of the central portion is pushed up from the lower mold BM.
  • the structure in which the sealing body is released from the lower mold BM is adopted.
  • (1) the position of the ejection pin EJPN does not overlap with the semiconductor chip CHP1 and the diaphragm DF, and therefore, the semiconductor chip CHP1 and the diaphragm DF are not subjected to an unnecessarily large load and deformation is reduced, and (2) the ejection pin EJPN.
  • the first embodiment when the position of is close to the connection portion where the positioning pin APN is inserted into the positioning hole AHL, the release at the connection portion becomes easy. The destruction of the flow sensor can be effectively prevented.
  • the heated upper mold UM and the lower mold BM Heat is transferred from the mold BM to the resin MR injected into the second space in a short time.
  • the heating / curing time of the resin MR can be shortened.
  • the potting resin when only fixing a gold wire (wire) with a potting resin, the potting resin does not promote curing by heating, so the potting resin The time until curing becomes long, and the problem that the throughput in the manufacturing process of the flow sensor is lowered becomes obvious.
  • the heated upper mold UM and the lower mold BM are used, the heated upper mold UM and the lower mold BM are used. Heat conduction from the mold BM to the resin MR can be performed in a short time, and the heating / curing time of the resin MR can be shortened. As a result, according to the first embodiment, the throughput in the manufacturing process of the flow sensor FS1 can be improved. As described above, the flow sensor FS1 in the first embodiment can be manufactured.
  • FIG. 18 is a diagram showing an example of an enlarged view of the area AR in FIG.
  • the protrusion pin EJPN is inserted into an insertion hole provided in the lower mold BM.
  • the insertion pin EJPN is inserted into the insertion hole so that the protrusion pin EJPN can move up and down within the insertion hole.
  • the resin MR that has entered the gap is transferred to the molded product (flow rate sensor FS1), so that the convex portion CVX1 is formed on the lower surface BS (MR) of the resin (sealing body) MR of the completed flow rate sensor FS1.
  • the trace which consists of convex-shaped part CVX1 is formed in the area
  • the position of the upper surface SUR (EJ) of the protrusion pin EJPN cannot always be processed to the same height as the position of the upper surface SUR (BM) of the lower mold BM. Therefore, for example, as shown in FIG. 18, when the position of the upper surface SUR (EJ) of the ejection pin EJPN is lower than the position of the upper surface SUR (BM) of the lower mold BM by the dimension H1, the ejection pin EJPN
  • the convex portion CVX1 is formed in the gap portion between the insertion holes, and the resin MR is in contact with the upper surface SUR (BM) of the lower mold BM at the portion where the sealing body contacts the protruding pin EJPN.
  • a convex portion CVX2 is formed with respect to (MR).
  • FIG. 20 is a diagram showing a cross-sectional configuration of a flow sensor FS1 manufactured by the flow sensor manufacturing method according to the first embodiment.
  • the first embodiment is characterized in that a configuration in which the vicinity of the peripheral portion (outer edge portion) of the sealing body is pushed up by the protruding pin is employed.
  • the flow sensor FS1 which is the final product, a trace of a configuration in which the vicinity of the peripheral portion (outer edge portion) of the sealing body is pushed out by the protruding pin remains. Specifically, as shown in FIG.
  • traces due to the protruding pins remain in the ejector region EJA that is the outer region of the semiconductor chip CHP1 without overlapping the semiconductor chip CHP1.
  • traces due to the protruding pins remain in the ejector area EJA that is the outer area of the chip mounting portion TAB1 without overlapping the chip mounting portion TAB1.
  • This trace is the size of the gap formed between the protrusion pin EJPN and the insertion hole provided in the lower mold BM, and the upper surface SUR (EJ) of the protrusion pin EJPN and the upper surface SUR (BM of the lower mold BM). ) Depending on the positional relationship.
  • the various trace shapes will be described below with reference to FIGS. 21 (a) to 21 (e).
  • FIG. 21 (a) is a diagram showing an example of traces.
  • the convex portion CVX1 and the convex portion CVX2 are formed on the lower surface BS (MR) of the resin MR.
  • This trace is a trace formed when resin sealing is performed with the upper surface SUR (EJ) of the protrusion pin EJPN being lower than the upper surface SUR (BM) of the lower mold BM.
  • the convex portion CVX2 is formed on the lower surface BS (MR) of the resin MR.
  • the diameter of the insertion hole provided in the lower mold BM is larger than the diameter of the ejection pin EJPN, and there is a sufficient gap between the insertion hole provided in the lower mold BM and the ejection pin EJPN.
  • the convex portion CVX1 is formed around the convex portion CVX2.
  • FIG. 21B is a diagram showing another example of the trace.
  • the convex portion CVX1 and the concave portion CNV are formed on the lower surface BS (MR) of the resin MR.
  • This trace is a trace formed when resin sealing is performed with the upper surface SUR (EJ) of the protrusion pin EJPN being higher than the upper surface SUR (BM) of the lower mold BM.
  • the concave portion CNV is formed on the lower surface BS (MR) of the resin MR.
  • the diameter of the insertion hole provided in the lower mold BM is larger than the diameter of the ejection pin EJPN, and there is a sufficient gap between the insertion hole provided in the lower mold BM and the ejection pin EJPN.
  • the convex portion CVX1 is formed around the concave portion CNV.
  • FIG. 21 (c) is a diagram showing still another example of the trace.
  • the convex portion CVX2 is formed on the lower surface BS (MR) of the resin MR.
  • This trace is a trace formed when resin sealing is performed with the upper surface SUR (EJ) of the protrusion pin EJPN being lower than the upper surface SUR (BM) of the lower mold BM.
  • the convex portion CVX2 is formed on the lower surface BS (MR) of the resin MR.
  • the convex portion CVX1 may not be formed around the convex portion CVX2.
  • FIG. 21D is a diagram showing another example of the trace.
  • the concave portion CNV is formed on the lower surface BS (MR) of the resin MR.
  • This trace is a trace formed when resin sealing is performed with the upper surface SUR (EJ) of the protrusion pin EJPN being higher than the upper surface SUR (BM) of the lower mold BM.
  • the concave portion CNV is formed on the lower surface BS (MR) of the resin MR.
  • the convex portion CVX1 may not be formed around the concave portion CNV.
  • FIG. 21 (e) is a diagram showing another example of the trace.
  • the convex portion CVX1 is formed on the lower surface BS (MR) of the resin MR.
  • This trace is formed as a result of the resin MR entering the gap when there is a sufficient gap between the insertion hole provided in the lower mold BM and the protruding pin EJPN.
  • the height of the upper surface SUR (BM) of the lower mold BM is equal to the height of the upper surface SUR (EJ) of the protruding pin EJPN.
  • CVX2 and concave-shaped part CNV are not formed.
  • the trace shape by the protruding pin EJPN is composed of at least one convex portion or concave portion.
  • the trace TC in FIG. 9 an example in which the shape of the trace TC is circular has been described.
  • the technical idea in the first embodiment is described here.
  • a trace TC having an arbitrary shape such as an elliptical shape or a rectangular shape may be formed by making the cross-sectional shape of the protruding pin EJPN an elliptical shape or a rectangular shape.
  • the sealing body is released from the lower mold BM by pushing up the ejector pin EJPN disposed in the outer region of the semiconductor chip CHP1 without overlapping the semiconductor chip CHP1 disposed in the vicinity of the center portion. is doing.
  • the mold is released. The deformation applied to the sealing body can be reduced.
  • the dam bar DM is disposed outside the sealing body, and the lower mold BM is formed in the positioning hole AHL provided in the dam bar DM.
  • the connection pins are formed by inserting the positioning pins APN.
  • This connection part is firmly fixed, and the positioning pin is difficult to be removed from the positioning hole. Further, the connection part is difficult to release due to the resin covering the upper part of the connection part.
  • the first embodiment employs a configuration in which the vicinity of the peripheral portion (outer edge portion) of the sealing body is pushed out by a protruding pin EJPN.
  • the push-up position by the ejector pin EJPN and the position of the connection part are close to each other, which makes it easy to release the connection part and also causes the deformation of the sealing body with the connection part difficult to release as a fulcrum. Can be suppressed. From the above, according to the first embodiment, it is possible to prevent the diaphragm DF formed on the semiconductor chip CHP1 from being destroyed by a large deformation applied to the sealing body.
  • the sealing with the resin MR is performed in a state where the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed is fixed by a mold. Therefore, a part of the semiconductor chip CHP1 can be sealed with the resin MR while suppressing the displacement of the semiconductor chip CHP1.
  • a part of the semiconductor chip CHP1 can be sealed with the resin MR while suppressing the positional deviation of each flow rate sensor FS1. It means that the variation in the position of the formed flow rate detection unit FDU can be suppressed.
  • the position of the flow rate detection unit FDU that detects the flow rate of gas can be matched by each flow rate sensor FS1, so that there is performance variation in detecting the gas flow rate in each flow rate sensor FS1.
  • the effect which can be suppressed can be acquired.
  • the semiconductor chip CHP1 is pressed by the upper mold UM via the elastic film LAF. For this reason, the mounting variation of the components resulting from the thickness variation of the semiconductor chip CHP1, the adhesive ADH1, and the lead frame LF can be absorbed by the thickness change of the elastic film LAF. Thus, according to the first embodiment, the clamping force applied to the semiconductor chip CHP1 can be relaxed. As a result, it is possible to prevent breakage such as cracks, chips or cracks of the semiconductor chip CHP1.
  • Modification 1 of the flow sensor FS1 in the first embodiment will be described.
  • a plurality of traces TC are arranged at equal intervals along the long side direction (X direction) constituting a part of the outer edge portion of the sealing body. Is formed.
  • the semiconductor chip CHP1 does not overlap with the semiconductor chip CHP1 in plan view.
  • a trace TC is formed in the outer region of.
  • traces TC2 are also formed on the back surface of the sealing body that overlaps the semiconductor chip CHP1 in a planar manner will be described.
  • FIG. 22 is a plan view of the flow rate sensor FS1 in the first modification viewed from the back side.
  • a plurality of traces TC and traces TC ⁇ b> 2 are formed on the back surface of the sealing body made of resin MR.
  • the trace TC and the trace TC2 are traces formed when the sealing body is released from the lower mold by pushing up the sealing body with the ejection pin EJPN after the resin sealing step.
  • a trace TC is formed in which the protrusion pin EJPN is pressed against the back surface of the sealing body (resin MR) in the outer region of the semiconductor chip CHP1 without overlapping with the semiconductor chip CHP1 in plan view.
  • the deformation applied to the sealing body at the time of mold release can be reduced, and as a result, the semiconductor chip CHP1 is formed by the deformation applied to the sealing body. It can be seen that it is possible to prevent the broken diaphragm DF from being destroyed.
  • the trace TC2 by the protruding pin EJPN is also formed on the back surface of the resin MR (sealing body) that overlaps the semiconductor chip CHP1 in a planar manner.
  • the protrusion pin EJPN is pressed against the back surface of the resin MR (sealing body) that overlaps the semiconductor chip CHP1 in plan view during release.
  • the diaphragm DF formed on the semiconductor chip CHP1 is destroyed by the load by the protruding pin EJPN, but the mold release from the lower mold BM is devised as shown below. Since this improves the releasability, this point will be described.
  • the sealing body when the sealing body is released from the lower mold BM, first, the sealing body does not overlap the semiconductor chip CHP1, but protrudes from the back surface of the sealing body (resin MR) in the outer region of the semiconductor chip CHP1.
  • the sealing body (resin MR) By pressing the pin EJPN, the sealing body (resin MR) is slightly released from the lower mold BM (first stage).
  • the resin MR (sealing body) that overlaps the semiconductor chip CHP1 in plan view is further formed on the back surface.
  • the protrusion by the ejector pin EJPN is also added (second stage).
  • the connecting portion can be easily released, and deformation of the sealing body having the connecting portion that is difficult to release as a fulcrum can also be suppressed.
  • the first-stage release is completed at one end, the release of the connecting portion is completed, so that the sealing body with the connecting portion serving as a fulcrum hardly deforms.
  • the protrusion by the protrusion pin EJPN is also added to the back surface of the resin MR (sealing body) that overlaps the semiconductor chip CHP1 in a planar manner by the second-stage release.
  • the first modification as a result of an increase in the number of the projecting pins EJPN that project the sealing body, the load applied to the back surface of the sealing body can be made uniform, and the sealing body (resin MR) It can be released smoothly.
  • the release of the sealing body (resin MR) from the lower mold BM is performed in a combination of the first stage and the second stage, so that the diaphragm DF formed on the semiconductor chip CHP1 is formed. It is possible to further improve the releasability from the lower mold BM of the sealing body (resin MR) while preventing breakage at the time of release.
  • FIG. 23 is a diagram showing the structure of the flow rate sensor FS1 after resin sealing in the second modification.
  • 23A is a plan view showing the structure of the flow sensor FS1 after resin sealing
  • FIG. 23B is a cross-sectional view taken along the line AA in FIG. 23A
  • FIG. 23C is a cross-sectional view taken along the line BB in FIG.
  • a plate-like structure PLT is formed over the lower layer of the semiconductor chip CHP1 and the lower layer of the semiconductor chip CHP2. Recognize.
  • the plate-like structure PLT has, for example, a rectangular shape, and has an outer dimension that includes the semiconductor chip CHP1 and the semiconductor chip CHP2 in plan view.
  • the plate-like structure PLT is disposed on the chip mounting portion TAB1 and the chip mounting portion TAB2.
  • the plate-like structure PLT is bonded to the chip mounting portion TAB1 and the chip mounting portion TAB2 using, for example, an adhesive ADH3, but can also be bonded using a paste material.
  • a semiconductor chip CHP1 is mounted via an adhesive ADH1
  • a semiconductor chip CHP2 is mounted via an adhesive ADH2.
  • the plate-like structure PLT is made of a metal material, it can be connected to the semiconductor chip CHP1 with a wire, and can also be connected to the semiconductor chip CHP2 with a wire.
  • components such as a capacitor and a thermistor can be mounted on the chip mounting portion TAB1 and the chip mounting portion TAB2.
  • the plate-like structure PLT described above mainly functions as a cushioning material for improving the rigidity of the flow sensor FS1 and for shock from the outside. Further, when the plate-like structure PLT is made of a conductive material, it is electrically connected to the semiconductor chip CHP1 (pad PD1) or the semiconductor chip CHP2 (pad PD2) and used for supplying a ground potential (reference potential). It is also possible to stabilize the ground potential. For example, when the plate-like structure PLT uses a highly rigid material such as a metal material, the rigidity of the flow sensor FS1 can be improved.
  • the mounting variation of the components clamped between the upper mold UM and the lower mold BM is caused by deformation of the plate-like structure PLT in the resin sealing process. Can be absorbed.
  • the plate-like structure PLT is, for example, a thermoplastic resin such as PBT resin, ABS resin, PC resin, nylon resin, PS resin, PP resin, or fluorine resin, or thermosetting resin such as epoxy resin, phenol resin, or urethane resin. It can consist of In this case, the plate-like structure PLT can mainly function as a buffer material that protects the semiconductor chip CHP1 and the semiconductor chip CHP2 from external impacts.
  • the plate-like structure PLT can be formed by pressing a metal material such as an iron alloy, an aluminum alloy, or a copper alloy, or can be formed from a glass material.
  • a metal material such as an iron alloy, an aluminum alloy, or a copper alloy
  • the rigidity of the flow sensor FS1 can be increased.
  • the plate-like structure PLT can be electrically connected to the semiconductor chip CHP1 and the semiconductor chip CHP2, and the plate-like structure PLT can be used for supplying the ground potential and stabilizing the ground potential.
  • the plate-like structure PLT is composed of a thermoplastic resin or a thermosetting resin
  • an inorganic filler such as glass, talc, silica, mica, or an organic filler such as carbon is used for the thermoplastic resin or thermosetting resin.
  • the plate-like structure PLT can be molded by filling a mold with a resin by a transfer molding method, or can be formed by arbitrarily laminating sheet-shaped products by roll processing.
  • the same mold release step as that of the first embodiment can be realized.
  • the semiconductor chip CHP1 disposed in the vicinity of the center portion The sealing body can be released from the lower mold BM by pushing the protruding pin EJPN arranged in the outer region of the semiconductor chip CHP1 without overlapping, from the lower mold BM.
  • the sealing is performed at the time of releasing.
  • the deformation applied to the body can be reduced.
  • the manufacturing cost can be reduced.
  • a trace by the protruding pin EJPN remains in a region that is an outer region of the semiconductor chip CHP1 without overlapping the semiconductor chip CHP1 in the back surface region of the sealing body.
  • the flow sensor FS1 having a two-chip structure including the semiconductor chip CHP1 and the semiconductor chip CHP2 has been described as an example.
  • the technical idea of the present invention is not limited to this.
  • the technical idea of the present invention can be applied to a flow sensor having a one-chip structure including one semiconductor chip in which a flow rate detection unit and a control unit (control circuit) are integrally formed.
  • a flow sensor having a one-chip structure a case where the technical idea of the present invention is applied to a flow sensor having a one-chip structure will be described as an example.
  • FIG. 24 is a diagram illustrating a mounting configuration of the flow rate sensor FS2 in the second embodiment, and is a diagram illustrating a configuration after sealing with resin.
  • FIG. 24A is a plan view showing a mounting configuration of the flow sensor FS2 in the second embodiment.
  • 24B is a cross-sectional view taken along line AA in FIG. 24A
  • FIG. 24C is a cross-sectional view taken along line BB in FIG. 24A.
  • FIG. 24B shows a cross section parallel to the traveling direction of the gas flowing on the exposed flow rate detection unit FDU.
  • the gas is, for example, left on the X axis. It flows from the right to the right.
  • the flow sensor FS2 has a sealing body including a resin MR having a rectangular shape, and a lead LD2 protrudes from the resin MR.
  • a part of the semiconductor chip CHP1 is exposed from the upper surface (surface) of the resin MR.
  • the semiconductor chip CHP1 is formed with a flow rate detection unit FDU and a control unit that controls the flow rate detection unit FDU.
  • the flow rate detection unit FDU formed in the semiconductor chip CHP1 is electrically connected to the control unit by the wiring WL1.
  • this control unit is covered with the resin MR, and is not shown, but is disposed inside the resin MR. That is, the flow rate sensor FS2 according to the second embodiment includes the semiconductor chip CHP1 in which the flow rate detection unit FDU and the control unit are integrally formed, and the flow rate detection unit FDU is exposed from the resin MR. It will be.
  • the flow rate sensor FS2 in the second embodiment has the semiconductor chip CHP1 mounted on the chip mounting portion TAB1 via the adhesive ADH1.
  • a flow rate detection unit FDU is formed on the upper surface (front surface, main surface) of the semiconductor chip CHP1, and a diaphragm DF (thin plate portion) is formed on the back surface of the semiconductor chip CHP1 facing the flow rate detection unit FDU.
  • an opening OP1 is formed at the bottom of the chip mounting portion TAB1 existing below the diaphragm DF.
  • the adhesive ADH1 that bonds the semiconductor chip CHP1 and the chip mounting portion TAB1 uses, for example, a thermosetting resin such as an epoxy resin or a polyurethane resin, or a thermoplastic resin such as a polyimide resin or an acrylic resin. it can.
  • a thermosetting resin such as an epoxy resin or a polyurethane resin
  • a thermoplastic resin such as a polyimide resin or an acrylic resin. it can.
  • the resin MR is formed so as to cover a part of the side surface and the upper surface of the semiconductor chip CHP1 and a part of the chip mounting portion TAB1. Has been.
  • the opening OP1 is formed at the bottom of the chip mounting portion TAB1 below the diaphragm DF formed on the back surface of the semiconductor chip CHP1, and the resin that covers the back surface of the chip mounting portion TAB1.
  • An opening OP2 is provided in the MR.
  • the internal space of the diaphragm DF flows through the opening OP1 formed in the bottom of the chip mounting portion TAB1 and the opening OP2 formed in the resin MR. It communicates with the external space of the sensor FS2.
  • the pressure in the inner space of the diaphragm DF and the pressure in the outer space of the flow rate sensor FS2 can be made equal, and stress can be suppressed from being applied to the diaphragm DF.
  • the upper surface SUR (MR) of the resin MR is formed to be higher than the upper surface SUR (CHP) of the semiconductor chip CHP1.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1 via the adhesive ADH1, and the flow rate detection unit FDU and the control unit CU are formed on the upper surface of the semiconductor chip CHP1. It can be seen that it is formed. That is, in the second embodiment, it can be seen that the flow rate detection unit FDU and the control unit CU are integrally formed on the semiconductor chip CHP1. Further, a pad PD is formed on the upper surface of the semiconductor chip CHP1, and the pad PD and the lead LD2 are electrically connected by a wire W. The control unit CU and the pad PD formed on the upper surface of the semiconductor chip CHP1 and the wire W are sealed with a resin MR.
  • a mold release process having the same concept as the first embodiment can be realized.
  • the semiconductor chip CHP1 does not overlap with the semiconductor chip CHP1 disposed in the vicinity of the center portion.
  • the sealing body can be released from the lower mold by pushing up the protruding pin disposed in the outer region of the lower mold.
  • the sealing body is released at the time of releasing.
  • the deformation applied to can be reduced. As a result, it is possible to prevent the diaphragm DF formed on the semiconductor chip CHP1 from being broken due to the deformation applied to the sealing body. Thereby, the yield of the flow sensor FS2 can be improved, and the manufacturing cost of the flow sensor FS2 can be reduced. As a result, even in the flow rate sensor FS2 in the second embodiment, a trace by the protruding pin remains in a region that is an outer region of the semiconductor chip CHP1 without overlapping the semiconductor chip CHP1 in the back surface region of the sealing body. .
  • FIG. 25 is a plan view of the flow sensor FS2 according to the second embodiment as viewed from the back side.
  • the flow sensor FS2 according to the second embodiment has a rectangular sealing body made of a resin MR, and a plurality of leads LD2 protrude from the resin MR.
  • the semiconductor chip CHP1 is embedded in the sealing body made of the resin MR, and an opening OP1 communicating with the diaphragm formed in the semiconductor chip CHP1 and An opening OP2 is formed.
  • the opening OP1 is provided in the chip mounting portion on which the semiconductor chip CHP1 is mounted, and the opening OP2 is provided in the resin MR constituting the sealing body.
  • the diameter of the opening OP2 is larger than the diameter of the opening OP1.
  • a plurality of traces TC due to the protruding pins remain on the back surface of the sealing body constituting the flow sensor FS2.
  • a plurality of traces TC are arranged at equal intervals so as to surround the periphery of the outer edge portion of the sealing body.
  • the trace TC is formed in the outer region of the semiconductor chip CHP1 without overlapping the semiconductor chip CHP1.
  • the trace TC is formed in a region sandwiched between the semiconductor chip CHP1 and the outer edge region of the sealing body.
  • the trace TC of the mold release process by the protruding pin performed after the resin sealing process remains, and if the back surface of the flow sensor FS2 that is the final product is viewed, In the mold release step after the resin sealing step, it can be specified at which position of the sealing body the protruding pin is pressed.
  • the flow sensor described in the above-described embodiment is a device that measures the flow rate of gas, but specific types of gas are not limited, and air, LP gas, carbon dioxide (CO 2 gas) It can be widely applied to devices for measuring the flow rate of any gas such as chlorofluorocarbon.
  • the flow sensor for measuring the flow rate of gas has been described.
  • the technical idea of the present invention is not limited to this, and a part of a semiconductor element such as a humidity sensor is exposed.
  • the present invention can be widely applied to semiconductor devices that are resin-sealed in such a state.
  • the present invention can be widely used in manufacturing industries for manufacturing semiconductor devices such as flow sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 流量センサごとの性能バラツキを抑制して性能向上を図ることができる技術を提供する。例えば、半導体チップCHP1に形成された露出している流量検出部FDU上を流れる気体の進行方向と並行する任意断面において、中央部近傍に配置されている半導体チップCHP1と重ならずに半導体チップCHP1の外側領域に配置された突き出しピンEJPNを下金型BMから突き上げることにより、封止体を下金型BMから離型している。これにより、本実施の形態1によれば、半導体チップCHP1と重なる領域に突き出しピンEJPNを配置して封止体の下金型BMからの離型を行なう場合に比べて、離型の際に封止体に加わる変形を小さくすることができる。

Description

流量センサおよびその製造方法
 本発明は、流量センサおよびその製造技術に関し、特に、樹脂封止型の流量センサおよびその製造技術に適用して有効な技術に関する。
 特開2004-74713号公報(特許文献1)には、半導体パッケージの製造方法として、離型フィルムシートを設置した金型によって部品をクランプして、樹脂を流し込む技術が開示されている。
特開2004-74713号公報
 例えば、現在、自動車などの内燃機関には、電子制御燃料噴射装置が設けられている。この電子制御燃料噴射装置は、内燃機関に流入する気体(空気)と燃料の量を適切に調整することにより、内燃機関を効率よく稼動させる役割を有している。このため、電子制御燃料噴射装置においては、内燃機関に流入する気体(空気)を正確に把握する必要がある。このことから、電子制御燃料噴射装置には、気体(空気)の流量を測定する流量センサ(エアフローセンサ)が設けられている。
 流量センサの中でも、特に、半導体マイクロマシンニング技術により製造された流量センサは、コストを削減でき、かつ、低電力で駆動できることから、注目されている。このような流量センサは、例えば、シリコンからなる半導体基板の裏面に異方性エッチングにより形成したダイヤフラム(薄板部)を形成し、このダイヤフラムと相対する半導体基板の表面に、発熱抵抗体と測温抵抗体とからなる流量検出部を形成した構成をしている。
 実際の流量センサでは、例えば、ダイヤフラムおよび流量検出部を形成した第1半導体チップの他に、流量検出部を制御する制御回路部を形成した第2半導体チップも有している。上述した第1半導体チップおよび第2半導体チップは、例えば、基板上に搭載され、基板上に形成されている配線(端子)と電気的に接続されている。具体的には、例えば、第1半導体チップは金線からなるワイヤによって基板に形成されている配線と接続され、第2半導体チップは、第2半導体チップに形成されているバンプ電極を使用して、基板に形成されている配線と接続されている。このようにして、基板上に搭載されている第1半導体チップと第2半導体チップは、基板に形成されている配線を介して電気的に接続される。この結果、第1半導体チップに形成されている流量検出部を、第2半導体チップに形成されている制御回路部で制御することが可能となり、流量センサが構成されることになる。
 このとき、第1半導体チップと基板とを接続する金線(ワイヤ)は、変形による接触などを防止するため、通常、ポッティング樹脂によって固定されている。つまり、金線(ワイヤ)は、ポッティング樹脂によって覆われて固定されており、このポッティング樹脂により、金線(ワイヤ)は保護されている。一方、流量センサを構成する第1半導体チップおよび第2半導体チップは通常、ポッティング樹脂で封止されていない。すなわち、通常の流量センサにおいては、金線(ワイヤ)だけがポッティング樹脂で覆われた構造をしている。
 ここで、金線(ワイヤ)のポッティング樹脂による固定は、第1半導体チップを金型などで固定した状態で行われないため、ポッティング樹脂の収縮により、第1半導体チップが搭載位置からずれてしまう問題がある。さらに、ポッティング樹脂は滴下することにより形成されるので、ポッティング樹脂の寸法精度が低い問題がある。この結果、個々の流量センサごとに、流量検出部が形成されている第1半導体チップの搭載位置にずれが生じるとともに、ポッティング樹脂の形成位置も微妙に異なることとなり、各流量センサの検出性能にバラツキが生じることになる。このため、各流量センサの性能バラツキを抑制するため、流量センサごとに検出性能の補正を行なう必要があり、流量センサの製造工程における性能補正工程を追加する必要性が生じる。特に、性能補正工程が長くなると、流量センサの製造工程におけるスループットが低下し、流量センサのコストが上昇してしまう問題点も存在する。さらに、ポッティング樹脂は、加熱による硬化の促進を行っていないので、ポッティング樹脂が硬化するまでの時間が長くなり、流量センサの製造工程におけるスループットが低下してしまう。
 本発明の目的は、流量センサごとの性能バラツキを抑制して性能向上を図る(信頼性を向上して性能向上を達成する場合も含む)ことができる技術を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 例えば、代表的な実施の形態における流量センサは、露出している流量検出部上を流れる気体の進行方向と並行する任意断面において、半導体チップと重ならずに半導体チップの外側領域に配置された突き出しピンを下金型から突き上げることにより、封止体を下金型から離型するものである。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 流量センサごとの性能バラツキを抑制して性能向上を図ることができる。
実施の形態1における流量センサの回路構成を示す回路ブロック図である。 実施の形態1における流量センサの一部を構成した半導体チップのレイアウト構成を示す平面図である。 第1関連技術における流量センサの構成を示す断面図である。 第1関連技術における流量センサを樹脂封止する工程を示す断面図である。 第2関連技術を使用して樹脂封止工程を実施する様子を示す断面図である。 第2関連技術における離型工程を示す断面図である。 (a)は、実施の形態1における流量センサの実装構成を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は半導体チップの裏面を示す平面図である。 (a)は、実施の形態1における流量センサの実装構成を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は、(a)のB-B線で切断した断面図である。 実施の形態1における流量センサを裏面側から見た平面図である。 実施の形態1における流量センサの製造工程を示す断面図である。 図10に続く流量センサの製造工程を示す断面図である。 図11に続く流量センサの製造工程を示す断面図である。 図12に続く流量センサの製造工程を示す断面図である。 実施の形態1における流量センサの製造工程を示す断面図である。 図14に続く流量センサの製造工程を示す断面図である。 図15に続く流量センサの製造工程を示す断面図である。 図16に続く流量センサの製造工程を示す断面図である。 図16中の領域の拡大図の一例を示す図である。 図16中の領域の拡大図の他の一例を示す図である。 実施の形態1における流量センサの構造を示す断面図である。 (a)~(e)は、突き出しピンによる痕跡の一例を示す断面図である。 変形例1における流量センサを裏面側から見た平面図である。 (a)は、変形例2において、樹脂封止後の流量センサの構造を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は、(a)のB-B線で切断した断面図である。 (a)は、実施の形態2における流量センサの実装構成を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は、(a)のB-B線で切断した断面図である。 実施の形態2における流量センサを裏面側から見た平面図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 (実施の形態1)
 <流量センサの回路構成>
 まず、流量センサの回路構成を説明する。図1は、本実施の形態1における流量センサの回路構成を示す回路ブロック図である。図1において、本実施の形態1における流量センサは、まず、流量センサを制御するためのCPU(Central Processing Unit)1を有し、さらに、このCPU1に入力信号を入力するための入力回路2、および、CPU1からの出力信号を出力するための出力回路3を有している。そして、流量センサにはデータを記憶するメモリ4が設けられており、CPU1は、メモリ4にアクセスして、メモリ4に記憶されているデータを参照できるようになっている。
 次に、CPU1は、出力回路3を介して、トランジスタTrのベース電極と接続されている。そして、このトランジスタTrのコレクタ電極は電源PSに接続され、トランジスタTrのエミッタ電極は発熱抵抗体HRを介してグランド(GND)に接続されている。したがって、トランジスタTrは、CPU1によって制御されるようになっている。すなわち、トランジスタTrのベース電極は、出力回路3を介してCPU1に接続されているので、CPU1からの出力信号がトランジスタTrのベース電極に入力される。
 この結果、CPU1からの出力信号(制御信号)によって、トランジスタTrを流れる電流が制御されるように構成されている。CPU1からの出力信号によってトランジスタTrを流れる電流が大きくなると、電源PSから発熱抵抗体HRに供給される電流が大きくなり、発熱抵抗体HRの加熱量が大きくなる。
 一方、CPU1からの出力信号によってトランジスタTrを流れる電流が少なくなると、発熱抵抗体HRへ供給される電流が少なくなり、発熱抵抗体HRの加熱量は減少する。
 このように本実施の形態1における流量センサでは、CPU1によって発熱抵抗体HRを流れる電流量が制御され、これによって、発熱抵抗体HRからの発熱量がCPU1によって制御されるように構成されていることがわかる。
 続いて、本実施の形態1における流量センサでは、CPU1によって発熱抵抗体HRを流れる電流を制御するため、ヒータ制御ブリッジHCBが設けられている。このヒータ制御ブリッジHCBは、発熱抵抗体HRから放散される発熱量を検知し、この検知結果を入力回路2へ出力するように構成されている。この結果、CPU1は、ヒータ制御ブリッジHCBからの検知結果を入力することができ、これに基づいて、トランジスタTrを流れる電流を制御する。
 具体的に、ヒータ制御ブリッジHCBは、図1に示すように、参照電圧Vref1とグランド(GND)との間にブリッジを構成する抵抗体R1~抵抗体R4を有している。このように構成されているヒータ制御ブリッジHCBでは、発熱抵抗体HRで加熱された気体が吸気温度よりもある一定温度(ΔT、例えば、100℃)だけ高い場合に、ノードAの電位とノードBの電位の電位差が0Vとなるように、抵抗体R1~抵抗体R4の抵抗値が設定されている。つまり、ヒータ制御ブリッジHCBを構成する抵抗体R1~抵抗体R4は、抵抗体R1と抵抗体R3を直列接続した構成要素と、抵抗体R2と抵抗体R4を直列接続した構成要素とが、参照電圧Vref1とグランド(GND)との間に並列接続されるようにしてブリッジが構成されている。そして、抵抗体R1と抵抗体R3の接続点がノードAとなっており、抵抗体R2と抵抗体R4の接続点がノードBとなっている。
 このとき、発熱抵抗体HRで加熱された気体は、ヒータ制御ブリッジHCBを構成する抵抗体R1に接触するようになっている。したがって、発熱抵抗体HRからの発熱量によって、ヒータ制御ブリッジHCBを構成する抵抗体R1の抵抗値が主に変化することになる。このように抵抗体R1の抵抗値が変化すると、ノードAとノードBとの間の電位差が変化する。このノードAとノードBとの電位差は、入力回路2を介してCPU1に入力されるので、CPU1は、ノードAとノードBとの電位差に基づいて、トランジスタTrを流れる電流を制御する。
 具体的に、CPU1は、ノードAとノードBとの電位差が0VとなるようにトランジスタTrを流れる電流を制御して、発熱抵抗体HRからの発熱量を制御するようになっている。すなわち、本実施の形態1における流量センサでは、CPU1がヒータ制御ブリッジHCBの出力に基づいて、発熱抵抗体HRで加熱された気体が吸気温度よりもある一定温度(ΔT、例えば、100℃)だけ高い一定値に保持するようにフィードバック制御するように構成されていることがわかる。
 続いて、本実施の形態1における流量センサは、気体の流量を検知するための温度センサブリッジTSBを有している。この温度センサブリッジTSBは、参照電圧Vref2とグランド(GND)との間にブリッジを構成する4つの測温抵抗体から構成されている。この4つの測温抵抗体は、2つの上流測温抵抗体UR1、UR2と、2つの下流測温抵抗体BR1、BR2から構成されている。
 つまり、図1の矢印の方向は、気体が流れる方向を示しており、この気体が流れる方向の上流側に上流測温抵抗体UR1、UR2が設けられ、下流側に下流測温抵抗体BR1、BR2が設けられている。これらの上流測温抵抗体UR1、UR2および下流測温抵抗体BR1、BR2は、発熱抵抗体HRまでの距離が同じになるように配置されている。
 温度センサブリッジTSBでは、参照電圧Vref2とグランド(GND)の間に上流測温抵抗体UR1と下流測温抵抗体BR1が直列接続されており、この上流測温抵抗体UR1と下流測温抵抗体BR1の接続点がノードCとなっている。
 一方、グランド(GND)と参照電圧Vref2の間に上流測温抵抗体UR2と下流測温抵抗体BR2が直列接続されており、この上流測温抵抗体UR2と下流測温抵抗体BR2の接続点がノードDとなっている。そして、ノードCの電位とノードDの電位は、入力回路2を介してCPU1に入力されるように構成されている。そして、矢印方向に流れる気体の流量が零である無風状態のとき、ノードCの電位とノードDの電位との差電位が0Vとなるように、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2の各抵抗値が設定されている。
 具体的に、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2は、発熱抵抗体HRからの距離が等しく、かつ、抵抗値も等しくなるように構成されている。このため、温度センサブリッジTSBでは、発熱抵抗体HRの発熱量にかかわらず、無風状態であれば、ノードCとノードDの差電位は0Vとなるように構成されていることがわかる。
 <流量センサの動作>
 本実施の形態1における流量センサは上記のように構成されており、以下に、その動作について図1を参照しながら説明する。まず、CPU1は、出力回路3を介してトランジスタTrのベース電極に出力信号(制御信号)を出力することにより、トランジスタTrに電流を流す。すると、トランジスタTrのコレクタ電極に接続されている電源PSから、トランジスタTrのエミッタ電極に接続されている発熱抵抗体HRに電流が流れる。このため、発熱抵抗体HRは発熱する。そして、発熱抵抗体HRからの発熱で暖められた気体がヒータ制御ブリッジHCBを構成する抵抗体R1を加熱する。
 このとき、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)だけ高くなっている場合、ヒータ制御ブリッジHCBのノードAとノードBの差電位が0Vとなるように、抵抗体R1~R4の各抵抗値が設定されている。このため、例えば、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)だけ高くなっている場合、ヒータ制御ブリッジHCBのノードAとノードBとの間の差電位は0Vとなり、この差電位(0V)が入力回路2を介してCPU1に入力される。そして、ヒータ制御ブリッジHCBからの差電位が0Vであることを認識したCPU1は、出力回路3を介してトランジスタTrのベース電極に、現状の電流量を維持するための出力信号(制御信号)を出力する。
 一方、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)からずれている場合、ヒータ制御ブリッジHCBのノードAとノードBとの間に0Vではない差電位が発生し、この差電位が入力回路2を介してCPU1に入力される。そして、ヒータ制御ブリッジHCBからの差電位が発生していることを認識したCPU1は、出力回路3を介してトランジスタTrのベース電極に、差電位が0Vになるような出力信号(制御信号)を出力する。
 例えば、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)よりも高くなる方向の差電位が発生している場合、CPU1は、トランジスタTrを流れる電流が減少するような制御信号(出力信号)を、トランジスタTrのベース電極へ出力する。これに対し、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)よりも低くなる方向の差電位が発生している場合、CPU1は、トランジスタTrを流れる電流が増加するような制御信号(出力信号)を、トランジスタTrのベース電極へ出力する。
 以上のようにして、CPU1は、ヒータ制御ブリッジHCBのノードAとノードBとの間の差電位が0V(平衡状態)になるように、ヒータ制御ブリッジHCBからの出力信号に基づいて、フィードバック制御する。このことから、本実施の形態1における流量センサでは、発熱抵抗体HRで暖められた気体が一定温度となるように制御されることがわかる。
 次に、本実施の形態1における流量センサでの気体の流量を測定する動作について説明する。まず、無風状態の場合について説明する。矢印方向に流れる気体の流量が零である無風状態のとき、温度センサブリッジTSBのノードCの電位とノードDの電位との差電位が0Vとなるように、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2の各抵抗値が設定されている。
 具体的に、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2は、発熱抵抗体HRからの距離が等しく、かつ、抵抗値も等しくなるように構成されている。このため、温度センサブリッジTSBでは、発熱抵抗体HRの発熱量にかかわらず、無風状態であれば、ノードCとノードDの差電位は0Vとなり、この差電位(0V)が入力回路2を介してCPU1に入力される。そして、温度センサブリッジTSBからの差電位が0Vであることを認識したCPU1は、矢印方向に流れる気体の流量が零であると認識し、出力回路3を介して気体流量Qが零であることを示す出力信号が本実施の形態1における流量センサから出力される。
 続いて、図1の矢印方向に気体が流れている場合を考える。この場合、図1に示すように、気体の流れる方向の上流側に配置されている上流測温抵抗体UR1、UR2は、矢印方向に流れる気体によって冷却される。このため、上流測温抵抗体UR1、UR2の温度は低下する。これに対し、気体の流れる方向の下流側に配置されている下流測温抵抗体BR1、BR2は、発熱抵抗体HRで暖められた気体が下流測温抵抗体BR1、BR2に流れてくるので温度が上昇する。この結果、温度センサブリッジTSBのバランスが崩れ、温度センサブリッジTSBのノードCとノードDとの間に零ではない差電位が発生する。
 この差電位が入力回路2を介してCPU1に入力される。そして、温度センサブリッジTSBからの差電位が零ではないことを認識したCPU1は、矢印方向に流れる気体の流量が零ではないことを認識する。その後、CPU1はメモリ4にアクセスする。メモリ4には、差電位と気体流量を対応づけた対比表(テーブル)が記憶されているので、メモリ4にアクセスしたCPU1は、メモリ4に記憶されている対比表から気体流量Qを算出する。このようにして、CPU1で算出された気体流量Qは出力回路3を介して、本実施の形態1における流量センサから出力される。以上のようにして、本実施の形態1における流量センサによれば、気体の流量を求めることができることがわかる。
 <流量センサのレイアウト構成>
 次に、本実施の形態1における流量センサのレイアウト構成について説明する。例えば、図1に示す本実施の形態1における流量センサは、2つの半導体チップに形成される。具体的には、発熱抵抗体HR、ヒータ制御ブリッジHCBおよび温度センサブリッジTSBが1つの半導体チップに形成され、CPU1、入力回路2、出力回路3およびメモリ4などが別の半導体チップに形成される。以下では、発熱抵抗体HR、ヒータ制御ブリッジHCBおよび温度センサブリッジTSBが形成されている半導体チップのレイアウト構成について説明する。
 図2は、本実施の形態1における流量センサの一部を構成した半導体チップCHP1のレイアウト構成を示す平面図である。まず、図2に示すように、半導体チップCHP1が矩形形状をしており、この半導体チップCHP1の左側から右側に向って(矢印方向)、気体が流れるようになっている。そして、図2に示すように、矩形形状をした半導体チップCHP1の裏面側に矩形形状のダイヤフラムDFが形成されている。ダイヤフラムDFとは、半導体チップCHP1の厚さを薄くした薄板領域のことを示している。つまり、ダイヤフラムDFが形成されている領域の厚さは、その他の半導体チップCHP1の領域の厚さよりも薄くなっている。
 このようにダイヤフラムDFが形成されている裏面領域に相対する半導体チップCHP1の表面領域には、図2に示すように、流量検出部FDUが形成されている。具体的に、この流量検出部FDUの中央部には、発熱抵抗体HRが形成されており、この発熱抵抗体HRの周囲にヒータ制御ブリッジを構成する抵抗体R1が形成されている。そして、流量検出部FDUの外側にヒータ制御ブリッジを構成する抵抗体R2~R4が形成されている。このように形成された抵抗体R1~R4によってヒータ制御ブリッジが構成される。
 特に、ヒータ制御ブリッジを構成する抵抗体R1は、発熱抵抗体HRの近傍に形成されているので、発熱抵抗体HRからの発熱で暖められた気体の温度を抵抗体R1に精度良く反映させることができる。
 一方、ヒータ制御ブリッジを構成する抵抗体R2~R4は、発熱抵抗体HRから離れて配置されているので、発熱抵抗体HRからの発熱の影響を受けにくくすることができる。
 したがって、抵抗体R1は発熱抵抗体HRで暖められた気体の温度に敏感に反応するように構成することができるとともに、抵抗体R2~R4は発熱抵抗体HRの影響を受けにくく抵抗値を一定値に維持しやすく構成することができる。このため、ヒータ制御ブリッジの検出精度を高めることができる。
 さらに、流量検出部FDUに形成されている発熱抵抗体HRを挟むように、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2が配置されている。具体的に、気体が流れる矢印方向の上流側に上流測温抵抗体UR1、UR2が形成され、気体が流れる矢印方向の下流側に下流測温抵抗体BR1、BR2が形成されている。
 このように構成することにより、気体が矢印方向に流れる場合、上流測温抵抗体UR1、UR2の温度を低下させることができるとともに、下流測温抵抗体BR1、BR2の温度を上昇させることができる。このように流量検出部FDUに配置されている上流測温抵抗体UR1、UR2および下流測温抵抗体BR1、BR2により温度センサブリッジが形成される。
 上述した発熱抵抗体HR、上流測温抵抗体UR1、UR2および下流測温抵抗体BR1、BR2は、例えば、白金(プラチナ)などの金属膜やポリシリコン(多結晶シリコン)などの半導体薄膜をスパッタリング法やCVD(Chemical Vapor Deposition)法などの方法で形成した後、イオンエッチングなどの方法でパターニングすることにより形成することができる。
 このように構成されている発熱抵抗体HR、ヒータ制御ブリッジを構成する抵抗体R1~R4、および、温度センサブリッジを構成する上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2は、それぞれ、配線WL1と接続されて、半導体チップCHP1の下辺に沿って配置されているパッドPD1に引き出されている。
 以上のようにして、本実施の形態1における流量センサの一部を構成する半導体チップCHP1がレイアウト構成されている。実際の流量センサは、発熱抵抗体HR、ヒータ制御ブリッジHCBおよび温度センサブリッジTSBが形成された1つの半導体チップと、CPU1、入力回路2、出力回路3およびメモリ4などが形成されたもう1つの半導体チップとを有し、これらの半導体チップを基板上に実装した構造をしている。
 以下では、まず、流量センサの実装構成に関する関連技術について説明し、その後、この関連技術が有する問題点を説明する。その次に、関連技術が有する問題点を解決する工夫を施した本実施の形態1における流量センサの実装構成について説明する。
 <関連技術の説明>
 図3は、第1関連技術における流量センサFSPの構成を示す断面図である。図3に示すように、第1関連技術における流量センサFSPは、チップ搭載部TAB1上に半導体チップCHP1を有しており、この半導体チップCHP1は、チップ搭載部TAB1に接着材ADH1で接着されている。半導体チップCHP1の主面(上面、表面)には、流量検出部FDUが形成されており、半導体チップCHP1の裏面のうち、流量検出部FDUと相対する位置にダイヤフラム(薄板部)DFが形成されている。そして、第1関連技術における流量センサFSPでは、半導体チップCHP1の一部およびチップ搭載部TAB1の一部が樹脂MRを含む封止体で封止されている。具体的に、第1関連技術における流量センサFSPでは、半導体チップCHP1の上面に形成されている流量検出部FDUを露出させながら、半導体チップCHP1の側面および上面の一部を覆うように樹脂MRが形成されている。このとき、第1関連技術における流量センサFSPにおいては、半導体チップCHP1の上面SUR(CHP)の高さが樹脂MRの上面SUR(MR)の高さよりも低くなっている。言い換えれば、樹脂MRの上面SUR(MR)の高さは、半導体チップCHP1の上面SUR(CHP)の高さよりも高くなっているということもできる。
 このように構成されている第1関連技術における流量センサFSPは、例えば、図4に示す製造工程によって樹脂封止される。図4は、第1関連技術における流量センサFSPを樹脂封止する工程を示す断面図である。
 図4に示すように、リードフレームLFに形成されているチップ搭載部TAB1上に接着材ADH1で半導体チップCHP1が固定されている。そして、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで第2空間を介して挟み込む。その後、加熱下において、この第2空間に樹脂MRを流し込むことにより、半導体チップCHP1の一部を樹脂MRで封止する。
 このとき、図4に示すように、ダイヤフラムDFの内部空間は、接着材ADH1によって、上述した第2空間と隔離されているので、第2空間を樹脂MRで充填する際にも、ダイヤフラムDFの内部空間へ樹脂MRが侵入することを防止できる。
 また、上金型UMには、半導体チップCHP1の上面SUR(CHP)に形成されている流量検出部FDUを囲む第1空間SP1(密閉空間)を確保するように凹み部が形成されている。このことから、上金型UMを半導体チップCHP1上に押し当てると、上金型UMに形成されている凹み部によって、半導体チップCHP1に形成されている流量検出部FDUおよびその近傍領域を囲む第1空間SP1(密閉空間)が確保されつつ、例えば、半導体チップCHP1の側面および上面の一部を封止することができる。すなわち、第1関連技術によれば、半導体チップCHP1に形成されている流量検出部FDUおよびその近傍領域を露出させつつ、半導体チップCHP1の一部を封止することができる。
 ここで、第1関連技術においては、図4に示すように、半導体チップCHP1を搭載したリードフレームLFと上金型UMとの間に弾性体フィルムLAFを介在させている。これにより、例えば、半導体チップCHP1の厚さが平均的な厚さよりも薄い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、隙間が生じるが、この隙間を弾性体フィルムLAFで充填できるため、半導体チップCHP1上への樹脂漏れを防止できる。
 一方、半導体チップCHP1の厚さが平均的な厚さよりも厚い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、弾性体フィルムLAFは、半導体チップCHP1よりも柔らかいため、半導体チップCHP1の厚さを吸収するように弾性体フィルムLAFの厚さ方向の寸法が変化する。これにより、半導体チップCHP1の厚さが平均的な厚さよりも厚くても、必要以上に半導体チップCHP1へ力が加わることを防止することができ、この結果、半導体チップCHP1の破断を防止することができる。
 つまり、第1関連技術における流量センサの製造方法によれば、弾性体フィルムLAFを介して半導体チップCHP1が上金型UMで押さえ付けられている。このため、半導体チップCHP1、接着材ADH1、リードフレームLFの厚さバラツキに起因する部品の実装バラツキを弾性体フィルムLAFの厚さ変化により吸収することができるのである。このように第1関連技術によれば、半導体チップCHP1に加わるクランプ力を緩和することができる。この結果、半導体チップCHP1の割れ、欠け、あるいは、ひび割れなどに代表される破損を防止することができる。すなわち、第1関連技術における流量センサの製造方法によれば、部品の実装バラツキに起因したクランプ力の増大に伴う半導体チップCHP1の割れ、欠け、あるいは、ひび割れなどに代表される破損から半導体チップCHP1を保護することができる。
 具体的に、図4は、製造方法として、下金型BMと、弾性体フィルムLAFを設置した上金型UMとによって、リードフレームLFのチップ搭載部TAB1上に搭載された半導体チップCHP1などの部品をクランプした状態で、上金型UMと下金型BMとの間に形成される第2空間に樹脂MRを注入する工程を示す断面図である。特に、図4は、流量センサの空気(気体)の流れ方向の断面図が示されている。図4に示すように、半導体チップCHP1の端部は、弾性体フィルムLAFを介して上金型UMで押し付けられており、これによって、半導体チップCHP1が上金型UMで固定される。
 このように、図4に示す製造方法で半導体チップCHP1を樹脂MRで封止する場合、半導体チップCHP1の上面SUR(CHP)の位置よりも樹脂MRの上面SUR(MR)の位置のほうが高くなる流量センサ(図3参照)が製造されることになる。
 第1関連技術では、流量検出部FDUが形成されている半導体チップCHP1を、金型で固定した状態で行なうことができるので、半導体チップCHP1の位置ずれを抑制しながら、半導体チップCHP1の一部を樹脂MRで封止することができる。このことは、第1関連技術における流量センサFSPの製造方法によれば、各流量センサの位置ずれを抑制しながら、半導体チップCHP1の一部を樹脂MRで封止できることを意味し、半導体チップCHP1に形成されている流量検出部FDUの位置のバラツキを抑制できることを意味する。この結果、第1関連技術によれば、気体の流量を検出する流量検出部FDUの位置を各流量センサで一致させることができるため、各流量センサにおいて気体流量を検出する性能バラツキを抑制できる。つまり、金型で固定しながら半導体チップCHP1の一部を封止する第1関連技術によれば、ポッティング樹脂を使用する技術に比べて、流量センサFSPごとの性能バラツキを抑制することができる。
 ここで、例えば、樹脂封止工程を採用する流量センサFSPの製造工程では、樹脂MRを含む封止体を下金型BMからスムーズに離型する必要がある。そこで、図4に示すように、通常、下金型BMには、上下動が可能な突き出しピン(イジェクタピン)EJPNが挿入されており、この突き出しピンEJPNを使用することにより、樹脂封止後の封止体を下金型BMから離型することが行なわれている。
 このとき、図4に示すように、突き出しピンEJPNを突き出すことによって封止体へ印加される力を均等にしてスムーズに封止体の離型を実現するため、突き出しピンEJPNの位置は、封止体の横方向の寸法を3等分した位置近傍に配置することが考えられる。つまり、図4に示すように、半導体チップCHP1と平面的に重なる位置に突き出しピンEJPNを配置することが考えられる。この場合、図4に示す樹脂封止工程では、何ら問題ないように思えるが、以下に示す第2関連技術を採用する場合には、問題点が顕在化することを本発明者が新たに見出した。
 この第2関連技術について説明する。例えば、上述した第1関連技術でも行われているように、樹脂封止工程においては、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込んだ後、上金型UMと下金型BMで挟まれた密閉空間に樹脂MRを注入することにより封止体を形成する。したがって、上金型UMと下金型BMで半導体チップCHP1を搭載したリードフレームLFを挟み込む際の位置合わせ精度が重要となる。このことから、例えば、第2関連技術として、リードフレームLFの一部を構成するダムバーに位置決め孔を設けるとともに、下金型BMに位置決めピンを設け、位置決めピンを位置決め孔に挿入することが考えられる。この第2関連技術によれば、位置決めピンを位置決め孔に挿入することにより、リードフレームLFを下金型BMに確実に固定することができるため、上金型UMと下金型BMでリードフレームLFを挟み込む際の位置合わせ精度を向上させることができる。
 ところが、下金型BMとリードフレームLFとの位置合わせ精度を向上する観点から、第2関連技術を採用する場合、突き出しピンEJPNの位置を、上述した第1関連技術と同等とすると、スムーズな離型が実現困難となる問題点が顕在化する。以下に、この点について説明する。
 図5は、第2関連技術を使用して樹脂封止工程を実施する様子を示す断面図である。具体的に、図5に示すように、リードフレームLFの一部を構成するダムバーDMに位置決め孔AHLが形成されており、この位置決め孔AHLに、下金型BMに設けられた位置決めピンAPNが挿入されている。この結果、第2関連技術によれば、半導体チップCHP1を搭載したリードフレームLFを下金型BMに確実に固定することができ、これによって、上金型UMと下金型BMでリードフレームLFを挟み込む際の位置合わせ精度を向上させることができる。
 図5に示すように、通常、プランジャPJによって樹脂MRを流し込むことにより封止体を形成した後、下金型BMに挿入された突き出しピンEJPNを用いて、下金型BMから封止体を離型することが行なわれる。この突き出しピンEJPNは、突き出しピンプレートEPLTによって上下移動できるように構成されており、突き出しピンプレートEPLTは、成形装置の加圧機構とバネSPRによって上下方向に移動できるように構成されている。
 このとき、図5に示すように、突き出しピンEJPNが半導体チップCHP1と平面的に重なるように配置されている場合を考える。言い換えれば、突き出しピンEJPNの位置を、封止体の横方向の寸法を3等分した位置近傍に配置する場合を考える。この場合、突き出しピンEJPNの位置と、位置決めピンAPNの位置が離れていることになる。
 ここで、リードフレームLFに設けられた位置決め孔AHLに、下金型BMの位置決めピンAPNが挿入されているため、この部分は、リードフレームLFの他の部分と比較して離型されにくい。さらに、図5に示す右側の位置決め孔AHLは、樹脂MRを流し込むゲートに覆われているため、右側の位置決め孔AHLは、ゲートを通過する樹脂MRで覆われる状態となるため、離型されにくくなっている。
 したがって、突き出しピンEJPNの位置が、封止体の横方向の寸法を3等分した位置近傍に配置されている場合、突き出しピンEJPNの位置と位置決めピンAPNとの位置が離れた状態で、半導体チップCHP1の直下領域を突き出しピンEJPNにより荷重を加えて離型することになる。このとき、図6に示すように、突き出しピンEJPNの位置と、位置決め孔AHLに位置決めピンAPNを挿入した接続部が大きく離れていること、この接続部がしっかり固定されており、位置決めピンAPNが位置決め孔AHLから抜けにくくなっていること、さらには、この接続部の上部を樹脂MRが覆っていることに起因して、接続部が離型しにくくなっている。つまり、第2関連技術では、図6に示すように、樹脂MRからなる封止体を下金型BMから突き出しピンEJPNを上昇させることで離型するとき、突き出しピンEJPNから離れた接続部が離型されにくくなる。
 この結果、この接続部が支点となって離型されない状態で、突き出しピンEJPNにより封止体の中央部が上部に持ち上げられることになる。このことから、図6に示すように、封止体を下金型BMから離型する際、封止体は、上に凸の変形状態となる。この場合、封止体の中央部で変形が最も大きくなる。そして、封止体の中央部には、半導体チップCHP1が封止されており、半導体チップCHP1には、薄板部であるダイヤフラムDFが形成されている。このため、半導体チップCHP1に形成されているダイヤフラムDFは、封止体を下金型BMから離型する際の変形により破壊されやすくなる。すなわち、離型時の封止体の変形により、半導体チップCHP1に形成されているダイヤフラムDFが破壊されやすくなるのである。したがって、第2関連技術では、ダイヤフラムDFが破壊されることによる流量センサの歩留まり低下を招き、これによって、流量センサの製造コストの増大を招くことが顕在化する。
 上述したように、第2関連技術では、上金型UMと下金型BMでリードフレームLFを挟み込む際の位置合わせ精度を向上させる観点から、リードフレームLFの一部を構成するダムバーDMに位置決め孔AHLを形成し、この位置決め孔AHLに、下金型BMに設けられた位置決めピンAPNが挿入する接続構造を採用している。一方で、この接続構造は、リードフレームLFと下金型BMとをしっかり固定することになるが故に、封止体を下金型BMから離型する際の障害となってしまうのである。したがって、突き出しピンEJPNによる離型方法に何らの工夫を施さないと、離型の際に封止体の大きな変形を招くことになる。特に、流量センサでは、封止体に封止されている半導体チップCHP1に変形に弱い薄板部からなるダイヤフラムDFが形成されていることから、離型の際の封止体の大きな変形が流量センサの破壊に直結するのである。
 そこで、本実施の形態1では、上述した点を改善するため、リードフレームLFの一部を構成するダムバーDMに位置決め孔AHLを形成し、この位置決め孔AHLに、下金型BMに設けられた位置決めピンAPNが挿入する接続構造を採用することを前提して、突き出しピンEJPNによる離型方法に工夫を施している。以下に、この工夫を施した本実施の形態1における技術的思想について説明する。
 <実施の形態1における特徴の概要>
 本実施の形態1の特徴は、半導体チップに形成された露出している流量検出部上を流れる気体の進行方向と並行する流量センサの任意断面において、中央部近傍に配置されている半導体チップと重ならずに半導体チップの外側領域に配置された突き出しピンを下金型から突き上げることにより、封止体を下金型から離型する点にある。これにより、半導体チップと重なる領域に突き出しピンを配置して封止体の下金型からの離型を行なう場合に比べて、離型の際に封止体に加わる変形を小さくすることができる。つまり、封止体の中央部近傍を突き出しピンで突き上げる構成よりも、封止体の周辺部(外縁部)近傍を突き出しピンで突き上げる構成を採ることにより、封止体の変形を小さくすることができるのである。この結果、封止体に加わる変形によって、半導体チップに形成されているダイヤフラムが破壊されることを防止することができ、これによって、流量センサの歩留まり向上、引いては、流量センサの製造コストの低減を図ることができる。
 特に、本実施の形態1では、封止体の外側にダムバーが配置されており、このダムバーに設けられた位置決め孔へ下金型に形成された位置決めピンが挿入されて接続部が形成されている。この接続部は、しっかり固定されて、位置決めピンが位置決め孔から抜けにくくなっており、さらには、この接続部の上部を樹脂が覆っていることに起因して、接続部が離型しにくくなっているが、本実施の形態1では、封止体の周辺部(外縁部)近傍を突き出しピンで突き上げる構成を採用している。このことは、突き出しピンによる突き上げ位置と接続部の位置が近づくことを意味し、これによって、接続部が離型しやすくなるとともに、離型しにくい接続部が支点となる封止体の変形も抑制できることを意味している。このことからも、本実施の形態1によれば、封止体に加わる大きな変形によって、半導体チップに形成されているダイヤフラムが破壊されることを防止することができ、これによって、流量センサの歩留まり向上、引いては、流量センサの製造コストの低減を図ることができるという顕著な効果を得ることができることがわかる。
 <実施の形態1における流量センサの実装構成>
 以下では、本実施の形態1における流量センサの実装構成について説明する。図7は、本実施の形態1における流量センサFS1の実装構成を示す図であり、樹脂で封止する前の構成を示す図である。特に、図7(a)は、本実施の形態1における流量センサFS1の実装構成を示す平面図である。図7(b)は、図7(a)のA-A線で切断した断面図であり、図7(c)は半導体チップCHP1の裏面を示す平面図である。
 まず、図7(a)に示すように、本実施の形態1における流量センサFS1は、例えば、銅材からなるリードフレームLFを有している。このリードフレームLFは、外枠体を構成するダムバーDMで囲まれた内部にチップ搭載部TAB1とチップ搭載部TAB2を有している。そして、チップ搭載部TAB1上に半導体チップCHP1が搭載され、チップ搭載部TAB2上に半導体チップCHP2が搭載されている。
 半導体チップCHP1は、矩形形状をしており、ほぼ中央部に流量検出部FDUが形成されている。そして、流量検出部FDUと接続する配線WL1が半導体チップCHP1上に形成されており、この配線WL1は、半導体チップCHP1の一辺に沿って形成された複数のパッドPD1と接続されている。すなわち、流量検出部FDUと複数のパッドPD1とは配線WL1で接続されていることになる。これらのパッドPD1は、リードフレームLFに形成されているリードLD1と、例えば、金線からなるワイヤW1を介して接続されている。リードフレームLFに形成されているリードLD1は、さらに、半導体チップCHP2に形成されているパッドPD2と、例えば、金線からなるワイヤW2を介して接続されている。
 半導体チップCHP2には、MISFET(Metal Insulator Semiconductor Field Effect Transistor)などの半導体素子や配線からなる集積回路が形成されている。具体的には、図1に示すCPU1、入力回路2、出力回路3、あるいは、メモリ4などを構成する集積回路が形成されている。これらの集積回路は、外部接続端子として機能するパッドPD2やパッドPD3と接続されている。そして、半導体チップCHP2に形成されているパッドPD3は、リードフレームLFに形成されているリードLD2と、例えば、金線からなるワイヤW3を介して接続されている。このようにして、流量検出部FDUが形成されている半導体チップCHP1と、制御回路が形成されている半導体チップCHP2は、リードフレームLFに形成されているリードLD1を介して接続されていることがわかる。ここで、図示はしていないが、半導体チップCHP1の最外表面には、接着する樹脂との応力緩衝、表面保護、絶縁などを目的としてポリイミド膜が形成されていてもよい。
 なお、図7(a)に示すダムバーDMは、後述する樹脂封止工程における樹脂漏れを防止する機能を有している。本実施の形態1では、このような機能を有するダムバーDMに複数の位置決め孔AHLが設けられている。この位置決め孔AHLは、後述する下金型に設けられている位置決めピンを挿入するためのものであり、ダムバーDMに設けられている位置決め孔AHLに位置決めピンを挿入することにより、ダムバーDMを有するリードフレームLFを下金型に確実に固定することができる。これにより、リードフレームLFを下金型に配置する際の位置決め精度を向上させることができる。
 続いて、図7(b)に示すように、リードフレームLFにはチップ搭載部TAB1が形成されており、このチップ搭載部TAB1上に半導体チップCHP1が搭載されている。この半導体チップCHP1は、接着材ADH1によってチップ搭載部TAB1と接着している。半導体チップCHP1の裏面には、ダイヤフラムDF(薄板部)が形成されており、ダイヤフラムDFと相対する半導体チップCHP1の表面には、流量検出部FDUが形成されている。一方、ダイヤフラムDFの下方に存在するチップ搭載部TAB1の底部には開口部OP1が形成されている。ここでは、ダイヤフラムDFの下方に存在するチップ搭載部TAB1の底部に開口部OP1が形成されている例を示したが、本実施の形態1における技術的思想は、これに限定されるものではなく、開口部OP1が形成されていないリードフレームLFを使用することもできる。
 さらに、図7(b)に示すように、半導体チップCHP1の表面(上面)には、流量検出部FDUの他に、流量検出部FDUと接続されたパッドPD1が形成されており、このパッドPD1は、リードフレームLFに形成されたリードLD1とワイヤW1を介して接続されている。そして、リードフレームLFには、半導体チップCHP1の他に半導体チップCHP2も搭載されており、半導体チップCHP2は、接着材ADH2によってチップ搭載部TAB2に接着している。さらに、半導体チップCHP2に形成されているパッドPD2と、リードフレームLFに形成されているリードLD1がワイヤW2を介して接続されている。また、半導体チップCHP2に形成されているパッドPD3と、リードフレームLFに形成されているリードLD2は、ワイヤW3を介して電気的に接続されている。
 半導体チップCHP1とチップ搭載部TAB1とを接着している接着材ADH1や、半導体チップCHP2とチップ搭載部TAB2とを接着している接着材ADH2は、例えば、エポキシ樹脂やポリウレタン樹脂などの熱硬化性樹脂を成分とした接着材、ポリイミド樹脂やアクリル樹脂やフッ素樹脂などの熱可塑性樹脂を成分とした接着材を使用することができる。
 例えば、半導体チップCHP1とチップ搭載部TAB1の接着は、図7(c)に示すように接着材ADH1や銀ペーストなどを塗布することや、シート状の接着材により行うことができる。図7(c)は、半導体チップCHP1の裏面を示す平面図である。図7(c)に示すように、半導体チップCHP1の裏面には、ダイヤフラムDFが形成されており、このダイヤフラムDFを囲むように接着材ADH1が塗布されている。なお、図7(c)では、ダイヤフラムDFを四角形形状に囲むように接着材ADH1を塗布する例を示しているが、これに限らず、例えば、ダイヤフラムDFを楕円形状などの任意の形状で囲むように接着材ADH1を塗布してもよい。
 本実施の形態1における流量センサFS1において、樹脂で封止する前の流量センサFS1の実装構成は上記のように構成されており、以下に、樹脂で封止した後の流量センサFS1の実装構成について説明する。
 図8は、本実施の形態1における流量センサFS1の実装構成を示す図であり、樹脂で封止した後の構成を示す図である。特に、図8(a)は、本実施の形態1における流量センサFS1の実装構成を示す平面図である。図8(b)は、図8(a)のA-A線で切断した断面図であり、図8(c)は、図8(a)のB-B線で切断した断面図である。
 本実施の形態1における流量センサFS1では、図8(a)に示すように、半導体チップCHP1に形成されている流量検出部FDUを露出した状態で、半導体チップCHP1の一部および半導体チップCHP2の全体が樹脂MRで覆われた構造をしている。つまり、本実施の形態1では、流量検出部FDUが形成されている領域を露出させながら、半導体チップCHP1のパッド形成領域および半導体チップCHP2の全領域を一括して樹脂MRで封止している。
 ここで、本実施の形態1では、例えば、半導体チップCHP1に形成されているパッドPDと電気的に接続するワイヤW1を覆うように、樹脂MRからなる凸部を設けてもよい。すなわち、ループ高さが高い金線(ワイヤ)などの部品を確実に封止するため、樹脂MR(封止体)に凸部を形成することができる。ただし、図8(a)および図8(b)に示すように、本実施の形態1において、凸部は必須構成要件ではない。つまり、凸部を設けなくても、半導体チップCHP1に形成されているパッドPD1とリードLD1とを電気的に接続する金線(ワイヤ)を樹脂MRで封止することができれば、樹脂MR(封止体)に凸部を設ける必要はない。
 なお、上述した樹脂MRは、例えば、エポキシ樹脂やフェノール樹脂などの熱硬化性樹脂、ポリカーボネート、ポリエチレンテレフタレートなどの熱可塑性樹脂を使用することができるとともに、樹脂中にガラスやマイカなどの充填材を混入させることもできる。
 本実施の形態1によれば、この樹脂MRによる封止は、流量検出部FDUが形成されている半導体チップCHP1を金型で固定した状態で行なうことができるので、半導体チップCHP1の位置ずれを抑制しながら、半導体チップCHP1の一部および半導体チップCHP2を樹脂MRで封止することができる。このことは、本実施の形態1における流量センサFS1によれば、各流量センサFS1の位置ずれを抑制しながら、半導体チップCHP1の一部および半導体チップCHP2の全領域を樹脂MRで封止できることを意味し、半導体チップCHP1に形成されている流量検出部FDUの位置のバラツキを抑制できることを意味する。
 この結果、本実施の形態1によれば、気体の流量を検出する流量検出部FDUの位置を各流量センサFS1で一致させることができるため、各流量センサFS1において気体流量を検出する性能バラツキを抑制できる顕著な効果を得ることができる。
 なお、本実施の形態1では、樹脂MRがダイヤフラムDFの内部空間へ侵入することを防止するために、例えば、半導体チップCHP1の裏面に形成されているダイヤフラムDFを囲むように接着材ADH1を塗布する構成を取ることを前提としている。そして、図8(b)および図8(c)に示すように、半導体チップCHP1の裏面に形成されたダイヤフラムDFの下方にあるチップ搭載部TAB1の底部に開口部OP1を形成し、さらに、チップ搭載部TAB1の裏面を覆う樹脂MRに開口部OP2を設けている。
 これにより、本実施の形態1による流量センサFS1によれば、ダイヤフラムDFの内部空間は、チップ搭載部TAB1の底部に形成された開口部OP1および樹脂MRに形成された開口部OP2を介して流量センサFS1の外部空間と連通することになる。この結果、ダイヤフラムDFの内部空間の圧力と、流量センサFS1の外部空間の圧力とを等しくすることができ、ダイヤフラムDF上に応力が加わることを抑制できる。
 さらに、本実施の形態1においては、半導体チップCHP1の上面SUR(CHP)よりも樹脂MRの上面SUR(MR)の方が高くなっている。つまり、本実施の形態1においては、空気の流れと並行方向の断面において、樹脂MR(封止体)の上面SUR(MR)高さが、流量検出部FDUを含む半導体チップCHP1の上面SUR(CHP)の高さよりも高くなっている。これにより、流量検出部FDUの上方を流れる空気の流れを安定化することができ、これによって、流量検出部FDUにおける流量検出精度を向上させることができる。
 さらに、本実施の形態1における流量センサFS1では、空気の流れと並行方向(Y方向)の断面において、半導体チップCHP1の上部を部分的に樹脂MRが覆う形状をしている。このことから、空気の流れと並行方向の断面において、半導体チップCHP1と樹脂MRの接触面積が増えるため、半導体チップCHP1と樹脂MRとの界面の剥離を防止することができる。
 以上のように、本実施の形態1における流量センサFS1は、上述したような特徴点を備えているので、剥離部分からクラックが成長して大きな割れが発生する問題を回避することができるとともに、流量検出部FDUの上方での空気の乱れを抑制することができる。この結果、流量検出部FDUでの正確な空気流量の測定精度を向上させることができる。
 ここで、本実施の形態1では、封止体の周辺部(外縁部)近傍を突き出しピンで突き上げる構成を採用している点に特徴がある。このため、最終製品である流量センサFS1には、封止体の周辺部(外縁部)近傍を突き出しピンで突き上げる構成の痕跡が残ることになる。具体的に、図8(c)に示すように、封止体の厚さ方向において、半導体チップCHP1と重ならずに半導体チップCHP1の外側領域となるイジェクタ領域EJAに突き出しピンによる痕跡が残ることになる。言い換えれば、チップ搭載部TAB1と重ならずチップ搭載部TAB1の外側領域となるイジェクタ領域EJAに突き出しピンによる痕跡が残ることになる。この痕跡の具体的な形状は後述する。
 以上のようにして、本実施の形態1における流量センサFS1が実装構成されているが、実際の流量センサFS1では、樹脂MRで封止した後、リードフレームLFの外枠体を構成するダムバーDMが除去される。図8(a)では、ダムバーDMを除去した後の流量センサFS1の実装構成が示されている。図8(a)に示すように、ダムバーDMを切断することにより、複数の電気信号を複数のリードLD2から独立して取り出すことができることがわかる。
 図9は、本実施の形態1における流量センサFS1を裏面側から見た平面図である。図9に示すように、本実施の形態1における流量センサFS1は、樹脂MRからなる矩形形状の封止体を有しており、この樹脂MRから複数のリードLD2が突き出ている。そして、樹脂MRからなる封止体の内部には、図9での破線で示すように、半導体チップCHP1が埋め込まれており、この半導体チップCHP1に形成されているダイヤフラムと連通する開口部OP1および開口部OP2が形成されている。開口部OP1は、半導体チップCHP1が搭載されているチップ搭載部に設けられており、開口部OP2は、封止体を構成する樹脂MRに設けられている。図9からわかるように、開口部OP2の径は、開口部OP1の径よりも大きくなっている。
 そして、図9に示すように、流量センサFS1を構成する封止体の裏面には、突き出しピンによる複数の痕跡TCが残存している。具体的には、図9に示すように、封止体の外縁部の一部を構成する長辺方向(X方向)に沿って、複数の痕跡TCが等間隔で並んでいることがわかる。一方、封止体の外縁部の一部を構成する短辺方向(Y方向)(気体が流れる方向と並行する方向)に着目すると、平面視において、半導体チップCHP1と重ならず、半導体チップCHP1の外側領域に痕跡TCが形成されていることがわかる。言い換えれば、平面視において、半導体チップCHP1と封止体の外縁領域とにより挟まれた領域に痕跡TCが形成されていることがわかる。したがって、本実施の形態1における流量センサFS1には、樹脂封止工程後に実施された突き出しピンによる離型工程の痕跡TCが残存することとなり、最終製品である流量センサFS1の裏面を見れば、樹脂封止工程後の離型工程において、封止体のどの位置に突き出しピンが押し当てられたかを特定することができる。このことは、最終製品である流量センサFS1を見れば、本実施の形態1の特徴である離型工程が実施された製品であるか否かを判断できることを意味する。
 <実施の形態1における流量センサの製造方法>
 以下では、本実施の形態1における特徴である流量センサFS1の製造方法について、図面を参照しながら説明する。まず、図8(a)のA-A線で切断した断面図を使用して、本実施の流量センサFS1が半導体チップCHP1と半導体チップCHP2を有する2チップ構造であることが明確化される観点で説明する(図10~図13)。その後、図8(a)のB-B線で切断した断面図を使用することにより、本実施の形態1における特徴工程が明確化される観点で説明することにする(図14~図17)。
 まず、図10に示すように、例えば、銅材からなるリードフレームLFを用意する。このリードフレームLFには、チップ搭載部TAB1、チップ搭載部TAB2、リードLD1およびリードLD2が一体的に形成されており、チップ搭載部TAB1の底部に開口部OP1が形成されている。
 続いて、図11に示すように、チップ搭載部TAB1上に半導体チップCHP1を搭載し、チップ搭載部TAB2上に半導体チップCHP2を搭載する。具体的には、リードフレームLFに形成されたチップ搭載部TAB1上に半導体チップCHP1を接着材ADH1で接続する。このとき、半導体チップCHP1に形成されているダイヤフラムDFがチップ搭載部TAB1の底部に形成されている開口部OP1と連通するように、半導体チップCHP1がチップ搭載部TAB1上に搭載される。
 なお、半導体チップCHP1には、通常の半導体製造プロセスによって流量検出部FDU、配線(図示せず)およびパッドPD1が形成される。そして、例えば、異方性エッチングにより、半導体チップCHP1の表面に形成された流量検出部FDUと相対する裏面の位置にダイヤフラムDFが形成されている。また、リードフレームLFに形成されているチップ搭載部TAB2上に、接着材ADH2によって半導体チップCHP2も搭載されている。この半導体チップCHP2には、予め、通常の半導体製造プロセスによって、MISFETなどの半導体素子(図示せず)や配線(図示せず)、パッドPD2、パッドPD3が形成されている。
 次に、図12に示すように、半導体チップCHP1に形成されているパッドPD1と、リードフレームLFに形成されているリードLD1とをワイヤW1で接続する(ワイヤボンディング)。同様に、半導体チップCHP2に形成されているパッドPD2をリードLD1とワイヤW2で接続し、半導体チップCHP2に形成されているパッドPD3をリードLD2とワイヤW3で接続する。ワイヤW1~W3は、例えば、金線から形成される。
 その後、図13に示すように、流量検出部FDUおよびその近傍を除く半導体チップCHP1の表面、ワイヤW1、リードLD1、ワイヤW2、半導体チップCHP2の主面全面、ワイヤW3およびリードLD2の一部を樹脂MRで封止する(モールド工程)。具体的には、図13に示すように、半導体チップCHP1および半導体チップCHP2を搭載したリードフレームLFを上金型UMと下金型BMで第2空間(密閉空間)を介して挟み込む。その後、加熱下において、この第2空間(密閉空間)に樹脂MRを流し込むことにより、流量検出部FDUおよびその近傍を除く半導体チップCHP1の表面、ワイヤW1、リードLD1、ワイヤW2、半導体チップCHP2の主面全面、ワイヤW3およびリードLD2の一部を樹脂MRで封止する。
 このとき、図13に示すように、ダイヤフラムDFの内部空間は、接着材ADH1によって、上述した第1空間と隔離されているので、第1空間を樹脂MRで充填する際にも、ダイヤフラムDFの内部空間へ樹脂MRが侵入することを防止できる。
 さらに、本実施の形態1では、流量検出部FDUが形成されている半導体チップCHP1を金型で固定した状態で行なうことができるので、半導体チップCHP1の位置ずれを抑制しながら、半導体チップCHP1の一部および半導体チップCHP2を樹脂MRで封止することができる。このことは、本実施の形態1における流量センサの製造方法によれば、各流量センサの位置ずれを抑制しながら、半導体チップCHP1の一部および半導体チップCHP2の全領域を樹脂MRで封止できることを意味し、半導体チップCHP1に形成されている流量検出部FDUの位置のバラツキを抑制できることを意味する。この結果、本実施の形態1によれば、気体の流量を検出する流量検出部FDUの位置が各流量センサで一致させることができるため、各流量センサにおいて気体流量を検出する性能バラツキを抑制できる顕著な効果を得ることができる。
 ここで、本実施の形態1における流量センサの製造方法では、半導体チップCHP1に形成されている流量検出部FDUを第2空間とは隔離された第1空間SP1で囲まれるように、下金型BMと上金型UMで、半導体チップCHP1を搭載したリードフレームLFを挟み込んでいる。これにより、本実施の形態1によれば、半導体チップCHP1に形成されている流量検出部FDUおよびその近傍領域を露出させつつ、それ以外の半導体チップCHP1の表面領域を封止することができる。
 さらに、本実施の形態1における流量センサの製造方法では、半導体チップCHP1を搭載したリードフレームLFを、上金型UMと下金型BMで挟み込む際、半導体チップCHP1を搭載したリードフレームLFと上金型UMとの間に弾性体フィルムLAFを介在させている。例えば、個々の半導体チップCHP1の厚さには寸法バラツキが存在するため、半導体チップCHP1の厚さが平均的な厚さよりも薄い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、隙間が生じ、この隙間から半導体チップCHP1上に樹脂MRがもれ出てしまう。一方、半導体チップCHP1の厚さが平均的な厚さよりも厚い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、半導体チップCHP1に加わる力が大きくなり、半導体チップCHP1が破断するおそれがある。
 そこで、本実施の形態1では、上述した半導体チップCHP1の厚さバラツキに起因した半導体チップCHP1上への樹脂漏れ、あるいは、半導体チップCHP1の破断を防止するため、半導体チップCHP1を搭載したリードフレームLFと上金型UMとの間に弾性体フィルムLAFを介在させている。これにより、例えば、半導体チップCHP1の厚さが平均的な厚さよりも薄い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、隙間が生じるが、この隙間を弾性体フィルムLAFで充填できるため、半導体チップCHP1上への樹脂漏れを防止できる。一方、半導体チップCHP1の厚さが平均的な厚さよりも厚い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、弾性体フィルムLAFは柔らかいため、半導体チップCHP1の厚さを吸収するように弾性体フィルムLAFの厚さ方向の寸法が変化する。これにより、半導体チップCHP1の厚さが平均的な厚さよりも厚くても、必要以上に半導体チップCHP1へ力が加わることを防止することができ、この結果、半導体チップCHP1の破断を防止することができる。
 なお、上述した弾性体フィルムLAFとしては、例えば、テフロン(登録商標)やフッ素樹脂などの高分子材料を使用することができる。
 続いて、図13に示すように、本実施の形態1では、リードフレームLFの裏面側にも樹脂MRが流れ込む。したがって、チップ搭載部TAB1の底部に開口部OP1が形成されているため、この開口部OP1からダイヤフラムDFの内部空間へ樹脂MRが流れ込むことが懸念される。そこで、本実施の形態1では、リードフレームLFを挟み込む下金型BMの形状に工夫を施している。具体的には、図13に示すように、下金型BMに突起状の入れ駒IP1を形成し、上金型UMと下金型BMでリードフレームLFを挟み込む際、下金型BMに形成されている突起状の入れ駒IP1がチップ搭載部TAB1の底部に形成された開口部OP1に挿入されるように構成している。これにより、開口部OP1に入れ駒IP1が隙間無く挿入されるので、開口部OP1からダイヤフラムDFの内部空間への樹脂MRの侵入を防止することができる。つまり、本実施の形態1では、下金型BMに突起状の入れ駒IP1を形成し、樹脂封止の際、この入れ駒IP1をチップ搭載部TAB1の底部に形成された開口部OP1に挿入している。
 さらに、本実施の形態1では、入れ駒IP1の形状に工夫を施している。具体的に、本実施の形態1において、入れ駒IP1は、開口部OP1に挿入する挿入部と、この挿入部を支持する台座部から構成されており、挿入部の断面積よりも台座部の断面積が大きくなっている。これにより、入れ駒IP1は、挿入部と台座部の間に段差部が設けられる構造となり、この段差部がチップ搭載部TAB1の底面に密着することになる。
 このように入れ駒IP1を構成することにより、以下に示す効果が得られる。例えば、入れ駒IP1の形状を上述した挿入部だけから構成する場合、挿入部は開口部OP1に挿入されるため、入れ駒IP1の挿入部の径は、開口部OP1の径よりもわずかに小さくなっている。したがって、入れ駒IP1を挿入部だけから構成する場合、入れ駒IP1の挿入部を開口部OP1に挿入した場合であっても、挿入した挿入部と開口部OP1の間にわずかな隙間が存在すると考えられる。この場合、隙間から樹脂MRがダイヤフラムDFの内部空間へ侵入するおそれがある。
 そこで、本実施の形態1において、入れ駒IP1を挿入部よりも断面積の大きな台座部上に挿入部を形成する構成をとっている。この場合、図13に示すように、開口部OP1の内部に入れ駒IP1の挿入部が挿入されるとともに、入れ駒IP1の台座部がチップ搭載部TAB1の底面に密着するようになる。この結果、入れ駒IP1の挿入部と開口部OP1の間にわずかな隙間が生じても、台座部がチップ搭載部TAB1の裏面にしっかり押し付けられているので、樹脂MRが開口部OP1内へ侵入することを防止できるのである。つまり、本実施の形態1では、入れ駒IP1を挿入部よりも断面積の大きな台座部上に挿入部を設けるように構成しているので、台座部によって、樹脂MRが開口部OP1にまで達することはないという点と、台座部と挿入部との間に形成される段差部がチップ搭載部TAB1に押し付けられるという点との組み合わせにより、樹脂MRが開口部OP1を介してダイヤフラムDFの内部空間へ侵入することを効果的に防止することができるのである。
 その後、樹脂MRが硬化した段階で、半導体チップCHP1および半導体チップCHP2を搭載したリードフレームLFを上金型UMと下金型BMから取り外す。これにより、本実施の形態1における流量センサFS1を製造することができる。このとき製造される流量センサFS1においては、樹脂封止工程で入れ駒IP1を形成した下金型BMを使用する結果、例えば、図8(b)に示すように、チップ搭載部TAB1の底面に開口部OP1が形成され、この開口部OP1と連通する開口部OP2が樹脂MRに形成される。この開口部OP2は、入れ駒IP1に台座部を形成した結果として生じるものであり、この開口部OP2の断面積は、開口部OP1の断面積よりも大きくなっている。これにより、本実施の形態1による流量センサFS1によれば、ダイヤフラムDFの内部空間は、チップ搭載部TAB1の底部に形成された開口部OP1および樹脂MRに形成された開口部OP2を介して流量センサFS1の外部空間と連通することになる。この結果、ダイヤフラムDFの内部空間の圧力と、流量センサFS1の外部空間の圧力とを等しくすることができ、ダイヤフラムDF上に応力が加わることを抑制できる。
 次に、本実施の形態1における特徴工程が明確化される観点で、流量センサFS1の製造工程について説明する(図14~図17)。
 まず、図14に示すように、例えば、銅材からなるリードフレームLFを用意する。このリードフレームLFには、チップ搭載部TAB1が形成されており、チップ搭載部TAB1の底部に開口部OP1が形成されている。また、リードフレームLFには、ダムバーDMが形成されており、このダムバーDMに位置決め孔AHLが形成されている。
 続いて、図15に示すように、チップ搭載部TAB1上に半導体チップCHP1を搭載する。具体的には、リードフレームLFに形成されたチップ搭載部TAB1上に半導体チップCHP1を接着材ADH1で接続する。このとき、半導体チップCHP1に形成されているダイヤフラムDFがチップ搭載部TAB1の底部に形成されている開口部OP1と連通するように、半導体チップCHP1がチップ搭載部TAB1上に搭載される。
 なお、半導体チップCHP1には、通常の半導体製造プロセスによって流量検出部FDU、配線(図示されず)およびパッド(図示されず)が形成される。そして、例えば、異方性エッチングにより、半導体チップCHP1の表面に形成された流量検出部FDUと相対する裏面の位置にダイヤフラムDFが形成されている。
 その後、図面には示されていないが、半導体チップCHP1に形成されているパッドと、リードフレームLFに形成されているリードとをワイヤで接続する(ワイヤボンディング)。このワイヤは、例えば、金線から形成される。
 次に、図16に示すように、半導体チップCHP1の側面を樹脂MRで封止する(モールド工程)。つまり、半導体チップCHP1に形成されている流量検出部FDUを露出させつつ、半導体チップCHP1の一部を樹脂MR(封止体)で封止する。
 具体的には、まず、弾性体フィルムLAFを貼り付けた上金型UMと、突き出しピンEJPNを挿入した下金型BMとを用意する。
 次に、弾性体フィルムLAFを介して半導体チップCHP1の上面に上金型UMの一部を密着させ、かつ、上金型UMと半導体チップCHP1の間に流量検出部FDUを囲む第1空間SP1を形成しながら、上金型UMと下金型BMとで、半導体チップCHP1を搭載したリードフレームLFを、第2空間を介して挟み込む。このとき、リードフレームLFの一部を構成するダムバーDMには、位置決め孔AHLが設けられている一方、下金型BMには、位置決めピンAPNが形成されている。そして、ダムバーDMに形成されている位置決め孔AHLに位置決めピンAPNを挿入するようにして、リードフレームLFが下金型BMにしっかり固定されている。このことから、本実施の形態1によれば、リードフレームLFを下金型BMに配置する際の位置決め精度を向上させることができる。
 その後、加熱下において、プランジャPJによって第2空間に樹脂MRを流し込む。このとき、図16に示すように、下金型BMには、突き出しピンEJPNが挿入されている。この突き出しピンEJPNは、突き出しピンプレートEPLTによって上下移動できるように構成されており、突き出しピンプレートEPLTは、成形装置の加圧機構とバネSPRによって上下方向に移動できるように構成されている。
 続いて、図17に示すように、樹脂MRが硬化した段階で、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMから取り外す。具体的には、まず、樹脂MRを含む封止体から上金型UMを取り外した後、成形装置の加圧機構とバネSPRによって、突き出しピンプレートEPLTを上方向に移動させる。これにより、突き出しピンプレートEPLTに接続されている突き出しピンEJPNも上方向に移動する。この結果、上方向に移動した突き出しピンEJPNによる突き出しによって、半導体チップCHP1の一部を封止した封止体が下金型BMから離型する。
 ここで、本実施の形態1における特徴は、半導体チップCHP1に形成された流量検出部FDU上を流れる気体の進行方向と並行する流量センサFS1の任意断面において、中央部近傍に配置されている半導体チップCHP1と重ならずに半導体チップCHP1の外側領域に配置された突き出しピンEJPNを下金型BMから突き上げることにより、封止体を下金型BMから離型する点にある。別の言い方をすれば、突き出しピンEJPNは、露出している流量検出部FDU上を流れる気体の進行方向と並行する任意断面において、半導体チップCHP1の外側領域で、かつ、ダムバーDMの内側領域に配置されている。さらに、言い換えれば、突き出しピンEJPNは、半導体チップCHP1の一端部と封止体(樹脂MR)の外壁の間に設けられているということができる。
 これにより、半導体チップCHP1と重なる領域に突き出しピンEJPNを配置して封止体の下金型BMからの離型を行なう場合に比べて、離型の際に封止体に加わる変形を小さくすることができる。つまり、封止体の中央部近傍を突き出しピンEJPNで突き上げる構成よりも、封止体の周辺部(外縁部)近傍を突き出しピンEJPNで突き上げる構成を採ることにより、封止体の変形を小さくすることができるのである。この結果、封止体に加わる変形によって、半導体チップに形成されているダイヤフラムが破壊されることを防止することができ、これによって、流量センサの歩留まり向上、引いては、流量センサの製造コストの低減を図ることができる。特に、本実施の形態1によれば、突き出しピンEJPNの位置が半導体チップCHP1と平面的に重ならない位置に配置されているため、半導体チップCHP1に形成されているダイヤフラムDFに必要以上の荷重が加わることを抑制することができる。
 さらに、封止体の外側にダムバーDMが配置されており、このダムバーDMに設けられた位置決め孔AHLへ下金型BMに形成された位置決めピンAPNが挿入されて接続部が形成されている。この接続部は、しっかり固定されて、位置決めピンAPNが位置決め孔AHLから抜けにくくなっており、さらには、この接続部の上部を樹脂MRが覆っていることに起因して、接続部が離型しにくくなっている。この点に関し、本実施の形態1では、封止体の周辺部(外縁部)近傍を突き出しピンEJPNで突き上げる構成を採用している。すなわち、本実施の形態1では、突き出しピンEJPNの位置が、位置決め孔AHLに位置決めピンAPNを挿入した接続部に近い位置に配置されているため、この接続部における位置決め孔AHLからの位置決めピンAPNの脱離を容易に行なうことができるのである。つまり、本実施の形態1では、突き出しピンEJPNによる突き上げ位置と接続部の位置が近づいており、これによって、接続部が離型しやすくなるとともに、離型しにくい接続部が支点となる封止体の変形も抑制できることを意味している。このことからも、本実施の形態1によれば、封止体に加わる大きな変形によって、半導体チップに形成されているダイヤフラムが破壊されることを防止することができ、これによって、流量センサの歩留まり向上、引いては、流量センサの製造コストの低減を図ることができるという顕著な効果を得ることができることがわかる。
 以上のことから、本実施の形態1によれば、中央部近傍に配置されている半導体チップCHP1と重ならずに半導体チップCHP1の外側領域に配置された突き出しピンEJPNを下金型BMから突き上げることにより、封止体を下金型BMから離型する構成を採っている。この結果、(1)突き出しピンEJPNの位置が半導体チップCHP1およびダイヤフラムDFと重ならないことにより、半導体チップCHP1およびダイヤフラムDFに必要以上の荷重が加わらず変形が小さくなる点、(2)突き出しピンEJPNの位置が、位置決め孔AHLに位置決めピンAPNを挿入した接続部に近くなることにより、接続部における離型が容易となる点の相乗効果により、本実施の形態1によれば、離型時における流量センサの破壊を効果的に防止することができるのである。
 なお、本実施の形態1における樹脂封止工程(モールド工程)では、80℃以上の高温度の上金型UMと下金型BMを使用しているため、加熱された上金型UMと下金型BMから第2空間に注入された樹脂MRに短時間で熱が伝わる。この結果、本実施の形態1における流量センサFS1の製造方法によれば、樹脂MRの加熱・硬化時間を短縮することができる。
 例えば、発明が解決しようとする課題の欄で説明したように、ポッティング樹脂による金線(ワイヤ)の固定だけを行なう場合、ポッティング樹脂は、加熱による硬化の促進を行っていないので、ポッティング樹脂が硬化するまでの時間が長くなり、流量センサの製造工程におけるスループットが低下してしまう問題点が顕在化する。
 これに対し、本実施の形態1における樹脂封止工程では、上述したように、加熱された上金型UMと下金型BMを使用しているため、加熱された上金型UMと下金型BMから樹脂MRへの短時間での熱伝導が可能となり、樹脂MRの加熱・硬化時間を短縮することができる。この結果、本実施の形態1によれば、流量センサFS1の製造工程におけるスループットを向上させることができる。以上のようにして、本実施の形態1における流量センサFS1を製造することができる。
 ここで、図18は、図16中の領域ARの拡大図の一例を示す図である。図18に示すように、突き出しピンEJPNは、下金型BM内に設けられた挿入孔に挿入されているが、突き出しピンEJPNが、この挿入孔の内部で上下に移動できるように、挿入孔と突き出しピンEJPNの間に隙間が存在する。このため、樹脂MRを密閉空間に流し込む際、この隙間にも樹脂MRが侵入する。この結果、隙間に侵入した樹脂MRが成形品(流量センサFS1)に転写されることにより、完成した流量センサFS1の樹脂(封止体)MRの下面BS(MR)に凸形状部CVX1が形成されることになる。つまり、完成した封止体の下面BS(MR)のうち、突き出しピンEJPNを押し当てた領域に凸形状部CVX1からなる痕跡が形成されることになる。
 また、図18に示すように、突き出しピンEJPNの上面SUR(EJ)の位置は、下金型BMの上面SUR(BM)の位置とは必ずしも同じ高さに加工することができないと考えられる。したがって、例えば、図18に示すように、突き出しピンEJPNの上面SUR(EJ)の位置が、下金型BMの上面SUR(BM)の位置よりも寸法H1だけ低い場合には、突き出しピンEJPNと挿入孔の間の隙間の部分に凸形状部CVX1が形成されるとともに、封止体が突き出しピンEJPNと接触する部分には、樹脂MRが下金型BMの上面SUR(BM)と接する下面BS(MR)に対して凸形状部CVX2が形成されることになる。
 一方、図19に示すように、突き出しピンEJPNの上面SUR(EJ)の位置が、下金型BMの上面SUR(BM)の位置よりも寸法H2だけ高い場合には、突き出しピンEJPNと挿入孔の間の隙間の部分に凸形状部CVX1が形成されるとともに、封止体が突き出しピンEJPNと接触する部分には、樹脂MRが下金型BMの上面SUR(BM)と接する下面BS(MR)に対して凹形状部CNVが形成されることになる。
 図20は、本実施の形態1における流量センサの製造方法で製造された流量センサFS1の断面構成を示す図である。上述したように、本実施の形態1では、封止体の周辺部(外縁部)近傍を突き出しピンで突き上げる構成を採用している点に特徴がある。このため、最終製品である流量センサFS1には、封止体の周辺部(外縁部)近傍を突き出しピンで突き上げる構成の痕跡が残ることになる。具体的に、図20に示すように、封止体の厚さ方向において、半導体チップCHP1と重ならずに半導体チップCHP1の外側領域となるイジェクタ領域EJAに突き出しピンによる痕跡が残ることになる。言い換えれば、チップ搭載部TAB1と重ならずチップ搭載部TAB1の外側領域となるイジェクタ領域EJAに突き出しピンによる痕跡が残ることになる。
 <痕跡の様々なバリエーション>
 この痕跡は、突き出しピンEJPNと、下金型BMに設けられた挿入孔との間に形成される隙間の大小や、突き出しピンEJPNの上面SUR(EJ)と下金型BMの上面SUR(BM)との位置関係によって、様々な形状となる。以下に、この様々な痕跡の形状について、図21(a)~図21(e)に挙げて説明する。
 図21(a)は、痕跡の一例を示す図である。図21(a)に示すように、樹脂MRの下面BS(MR)に凸形状部CVX1および凸形状部CVX2が形成されていることがわかる。この痕跡は、下金型BMの上面SUR(BM)よりも、突き出しピンEJPNの上面SUR(EJ)が低い状態で樹脂封止した際にできる痕跡である。これにより、樹脂MRの下面BS(MR)に凸形状部CVX2が形成される。さらに、例えば、下金型BMに設けられた挿入孔の径が、突き出しピンEJPNの径よりも大きく、下金型BMに設けられる挿入孔と突き出しピンEJPNの間に充分な隙間が存在する場合、この隙間に樹脂MRが侵入する結果、凸形状部CVX2の周囲に凸形状部CVX1が形成される。
 続いて、図21(b)は、痕跡の他の一例を示す図である。図21(b)に示すように、樹脂MRの下面BS(MR)に凸形状部CVX1および凹形状部CNVが形成されていることがわかる。この痕跡は、下金型BMの上面SUR(BM)よりも、突き出しピンEJPNの上面SUR(EJ)が高い状態で樹脂封止した際にできる痕跡である。これにより、樹脂MRの下面BS(MR)に凹形状部CNVが形成される。さらに、例えば、下金型BMに設けられた挿入孔の径が、突き出しピンEJPNの径よりも大きく、下金型BMに設けられる挿入孔と突き出しピンEJPNの間に充分な隙間が存在する場合、この隙間に樹脂MRが侵入する結果、凹形状部CNVの周囲に凸形状部CVX1が形成される。
 次に、図21(c)は、痕跡のさらに他の一例を示す図である。図21(c)に示すように、樹脂MRの下面BS(MR)に凸形状部CVX2が形成されていることがわかる。この痕跡は、下金型BMの上面SUR(BM)よりも、突き出しピンEJPNの上面SUR(EJ)が低い状態で樹脂封止した際にできる痕跡である。これにより、樹脂MRの下面BS(MR)に凸形状部CVX2が形成される。ここで、下金型BMに設けられる挿入孔と突き出しピンEJPNの間に形成されている隙間の寸法が小さかったり、樹脂粘度が高く金型形状の樹脂への転写性が悪い場合には、図21(c)に示すように、凸形状部CVX2の周囲に凸形状部CVX1が形成されない場合もある。
 さらに、図21(d)は、痕跡の他の一例を示す図である。図21(d)に示すように、樹脂MRの下面BS(MR)に凹形状部CNVが形成されていることがわかる。この痕跡は、下金型BMの上面SUR(BM)よりも、突き出しピンEJPNの上面SUR(EJ)が高い状態で樹脂封止した際にできる痕跡である。これにより、樹脂MRの下面BS(MR)に凹形状部CNVが形成される。ここで、下金型BMに設けられる挿入孔と突き出しピンEJPNの間に形成されている隙間の寸法が小さかったり、樹脂粘度が高く金型形状の樹脂への転写性が悪い場合には、図21(d)に示すように、凹形状部CNVの周囲に凸形状部CVX1が形成されない場合もある。
 最後に、図21(e)は、痕跡の他の一例を示す図である。図21(e)に示すように、樹脂MRの下面BS(MR)に凸形状部CVX1が形成されていることがわかる。この痕跡は、下金型BMに設けられる挿入孔と突き出しピンEJPNの間に充分な隙間が存在する場合、この隙間に樹脂MRが侵入する結果、形成されるものである。なお、図21(e)においては、例えば、下金型BMの上面SUR(BM)の高さと突き出しピンEJPNの上面SUR(EJ)の高さが等しい場合を想定しているため、凸形状部CVX2や凹形状部CNVは形成されていない。
 以上のことから、突き出しピンEJPNによる痕跡形状は、少なくとも1箇所の凸部または凹部から構成されていることがわかる。なお、本実施の形態1では、例えば、図9の痕跡TCで示すように、痕跡TCの形状を円形状とする例について説明しているが、本実施の形態1における技術的思想はこれに限定されるものではなく、突き出しピンEJPNの断面形状を楕円形状や四角形状とすることにより、楕円形状や四角形状などの任意の形状を有する痕跡TCが形成されることもある。
 <本実施の形態1における代表的な効果>
 本実施の形態1における流量センサFS1によれば、以下に示す効果が得られる。
 (1)本実施の形態1によれば、例えば、図17に示すように、半導体チップCHP1に形成された露出している流量検出部FDU上を流れる気体の進行方向と並行する任意断面において、中央部近傍に配置されている半導体チップCHP1と重ならずに半導体チップCHP1の外側領域に配置された突き出しピンEJPNを下金型BMから突き上げることにより、封止体を下金型BMから離型している。これにより、本実施の形態1によれば、半導体チップCHP1と重なる領域に突き出しピンEJPNを配置して封止体の下金型BMからの離型を行なう場合に比べて、離型の際に封止体に加わる変形を小さくすることができる。この結果、封止体に加わる変形によって、半導体チップCHP1に形成されているダイヤフラムDFが破壊されることを防止することができ、これによって、流量センサFS1の歩留まり向上、引いては、流量センサFS1の製造コストの低減を図ることができる。この結果形成される流量センサFS1においては、封止体の裏面領域のうち、半導体チップCHP1と重ならずに半導体チップCHP1の外側領域となる領域に突き出しピンによる痕跡が残ることになる。
 (2)特に、本実施の形態1では、図17に示すように、封止体の外側にダムバーDMが配置されており、このダムバーDMに設けられた位置決め孔AHLへ下金型BMに形成された位置決めピンAPNが挿入されて接続部が形成されている。この接続部は、しっかり固定されて、位置決めピンが位置決め孔から抜けにくくなっており、さらには、この接続部の上部を樹脂が覆っていることに起因して、接続部が離型しにくくなっている。この点に関し、本実施の形態1では、封止体の周辺部(外縁部)近傍を突き出しピンEJPNで突き上げる構成を採用している。このことから、突き出しピンEJPNによる突き上げ位置と接続部の位置が近づくことになり、これによって、接続部が離型しやすくなるとともに、離型しにくい接続部が支点となる封止体の変形も抑制できる。以上のことから、本実施の形態1によれば、封止体に加わる大きな変形によって、半導体チップCHP1に形成されているダイヤフラムDFが破壊されることを防止することができる。
 (3)本実施の形態1によれば、例えば、図16に示すように、樹脂MRによる封止は、流量検出部FDUが形成されている半導体チップCHP1を金型で固定した状態で行なうことができるので、半導体チップCHP1の位置ずれを抑制しながら、半導体チップCHP1の一部を樹脂MRで封止することができる。このことは、本実施の形態1における流量センサFS1によれば、各流量センサFS1の位置ずれを抑制しながら、半導体チップCHP1の一部を樹脂MRで封止できることを意味し、半導体チップCHP1に形成されている流量検出部FDUの位置のバラツキを抑制できることを意味する。この結果、本実施の形態1によれば、気体の流量を検出する流量検出部FDUの位置を各流量センサFS1で一致させることができるため、各流量センサFS1において気体流量を検出する性能バラツキを抑制できる効果を得ることができる。
 (4)本実施の形態1によれば、例えば、図16に示すように、弾性体フィルムLAFを介して半導体チップCHP1が上金型UMで押さえ付けられている。このため、半導体チップCHP1、接着材ADH1、リードフレームLFの厚さバラツキに起因する部品の実装バラツキを弾性体フィルムLAFの厚さ変化により吸収することができる。このように本実施の形態1によれば、半導体チップCHP1に加わるクランプ力を緩和することができる。この結果、半導体チップCHP1の割れ、欠け、あるいは、ひび割れなどに代表される破損を防止することができる。
 <変形例1>
 続いて、前記実施の形態1における流量センサFS1の変形例1について説明する。前記実施の形態1では、例えば、図9に示すように、封止体の外縁部の一部を構成する長辺方向(X方向)に沿って、複数の痕跡TCが等間隔で並ぶように形成されている。そして、封止体の外縁部の一部を構成する短辺方向(Y方向)(気体が流れる方向と並行する方向)に着目すると、平面視において、半導体チップCHP1と重ならず、半導体チップCHP1の外側領域に痕跡TCが形成されている。これに対し、本変形例1では、上述した複数の痕跡TCに加えて、さらに、半導体チップCHP1と平面的に重なる封止体の裏面にも痕跡TC2が形成されている例について説明する。
 図22は、本変形例1における流量センサFS1を裏面側から見た平面図である。図22に示すように、本変形例1における流量センサFS1は、樹脂MRからなる封止体の裏面に複数の痕跡TCおよび痕跡TC2が形成されている。これらの痕跡TCおよび痕跡TC2は、樹脂封止工程後、突き出しピンEJPNで封止体を突き上げることにより、封止体を下金型から離型する際に形成される痕跡である。
 この場合、本変形例1においても、平面視において、半導体チップCHP1と重ならず、半導体チップCHP1の外側領域の封止体(樹脂MR)の裏面に突き出しピンEJPNを押し当てた痕跡TCが形成されている。したがって、本変形例1においても、前記実施の形態1と同様に、離型の際に封止体に加わる変形を小さくすることができる結果、封止体に加わる変形によって、半導体チップCHP1に形成されているダイヤフラムDFが破壊されることを防止することができることがわかる。
 ただし、本変形例1では、図22に示すように、半導体チップCHP1と平面的に重なる樹脂MR(封止体)の裏面にも突き出しピンEJPNによる痕跡TC2が形成されている。このことは、本変形例1では、離型の際、半導体チップCHP1と平面的に重なる樹脂MR(封止体)の裏面にも突き出しピンEJPNを押し当てていることを意味する。この場合、半導体チップCHP1に形成されているダイヤフラムDFが突き出しピンEJPNによる荷重で破壊されることが懸念されるが、封止体の下金型BMからの離型を以下に示すように工夫することで、離型性を向上させているので、この点について説明する。
 例えば、本変形例1では、封止体を下金型BMから離型する際、まず、半導体チップCHP1と重ならず、半導体チップCHP1の外側領域の封止体(樹脂MR)の裏面に突き出しピンEJPNを押し当てることにより、封止体(樹脂MR)を下金型BMからわずかに離型する(第1段階)。そして、封止体(樹脂MR)が下金型BMから離れた後、上述した突き出しピンEJPNによる突き出しに加えて、さらに、半導体チップCHP1と平面的に重なる樹脂MR(封止体)の裏面にも突き出しピンEJPNによる突き出しも加える(第2段階)。このようにして、本変形例1における封止体の下金型BMからの離型を実施することができる。
 この場合、まず、第1段階の離型により、封止体(樹脂MR)の周辺部(外縁部)近傍を突き出しピンEJPNで突き上げることになるから、突き出しピンEJPNによる突き上げ位置と接続部の位置が近づくことになり、これによって、接続部が離型しやすくなるとともに、離型しにくい接続部が支点となる封止体の変形も抑制できる。そして、一端、第1段階の離型が終了すると、接続部の離型が完了していることから、接続部が支点となる封止体の変形は生じにくくなる。このため、今度は、第2段階の離型によって、半導体チップCHP1と平面的に重なる樹脂MR(封止体)の裏面にも突き出しピンEJPNによる突き出しも加える。この結果、本変形例1によれば、封止体を突き出す突き出しピンEJPNの数が多くなる結果、封止体の裏面に加わる荷重を均一化することができ、封止体(樹脂MR)をスムーズに離型することができる。つまり、本変形例1では、封止体(樹脂MR)の下金型BMからの離型を第1段階と第2段階の組合せで行なうことにより、半導体チップCHP1に形成されているダイヤフラムDFの離型時の破壊を防止しつつ、封止体(樹脂MR)の下金型BMからの離型性をさらに向上させることができるのである。
 <変形例2>
 次に、前記実施の形態1における流量センサFS1の変形例2について説明する。前記実施の形態1では、例えば、図8(b)や図8(c)に示すように、チップ搭載部TAB1上に接着材ADH1を介して半導体チップCHP1を配置する例について説明した。本変形例2では、半導体チップCHP1とチップ搭載部TAB1の間に板状構造体PLTを挿入する例について説明する。
 図23は、本変形例2において、樹脂封止後の流量センサFS1の構造を示す図である。図23において、図23(a)は、樹脂封止後の流量センサFS1の構造を示す平面図であり、図23(b)は、図23(a)のA-A線で切断した断面図であり、図23(c)は、図23(a)のB-B線で切断した断面図である。
 図23(b)や図23(c)に示すように、本変形例2における流量センサFS1は、半導体チップCHP1の下層および半導体チップCHP2の下層にわたって板状構造体PLTが形成されていることがわかる。この板状構造体PLTは、例えば、矩形形状をしており、平面視において、半導体チップCHP1および半導体チップCHP2を内包するような外形寸法を有している。
 具体的に、図23(b)に示すように、チップ搭載部TAB1およびチップ搭載部TAB2上に板状構造体PLTが配置されている。この板状構造体PLTは、例えば、接着材ADH3を用いてチップ搭載部TAB1やチップ搭載部TAB2に接着されているが、ペースト材料を使用して接合することもできる。そして、この板状構造体PLT上には、接着材ADH1を介して半導体チップCHP1が搭載されているとともに、接着材ADH2を介して半導体チップCHP2が搭載されている。このとき、板状構造体PLTが金属材料から形成されている場合には、半導体チップCHP1とワイヤで接続することができるとともに、半導体チップCHP2とワイヤで接続することもできる。なお、チップ搭載部TAB1およびチップ搭載部TAB2上には、上述した板状構造体PLTの他にコンデンサやサーミスタなどの部品を搭載することもできる。
 上述した板状構造体PLTは、主に、流量センサFS1の剛性向上や外部からの衝撃に対する緩衝材として機能する。さらに、板状構造体PLTが導電材料から構成される場合には、半導体チップCHP1(パッドPD1)や半導体チップCHP2(パッドPD2)と電気的に接続し、グランド電位(基準電位)の供給に使用することもできるし、グランド電位の安定化を図ることもできる。例えば、板状構造体PLTは、金属材料などの剛性の高い材料を使用する場合、流量センサFS1の剛性向上を図ることができる。一方、樹脂材料などの剛性が低い材料を使用する場合には、樹脂封止工程において、上金型UMと下金型BMの間にクランプした部品の実装バラツキを板状構造体PLTの変形によって吸収することができる。
 板状構造体PLTは、例えば、PBT樹脂、ABS樹脂、PC樹脂、ナイロン樹脂、PS樹脂、PP樹脂、フッ素樹脂などの熱可塑性樹脂や、エポキシ樹脂、フェノール樹脂、ウレタン樹脂などの熱硬化性樹脂から構成することができる。この場合、板状構造体PLTは、主に、外部の衝撃から半導体チップCHP1や半導体チップCHP2を保護する緩衝材として機能させることができる。
 一方、板状構造体PLTは、鉄合金、アルミニウム合金、あるいは、銅合金などの金属材料をプレス加工することにより形成することもできるし、ガラス材料から形成することもできる。特に、板状構造体PLTを金属材料から形成する場合には、流量センサFS1の剛性を高めることができる。さらには、板状構造体PLTを半導体チップCHP1や半導体チップCHP2と電気的に接続し、板状構造体PLTをグランド電位の供給やグランド電位の安定化に利用することもできる。
 なお、板状構造体PLTを熱可塑性樹脂や熱硬化性樹脂から構成する場合、熱可塑性樹脂や熱硬化性樹脂には、ガラス、タルク、シリカ、マイカなどの無機フィラー、カーボンなどの有機フィラーを充填することができる。そして、板状構造体PLTは、トランスファ成形法により金型内に樹脂を充填してモールド成形することもできるし、ロール加工によってシート形状品を任意に積層して形成することもできる。
 このように構成されている本変形例2における流量センサFS1においても、前記実施の形態1と同様の離型工程を実現することができる。例えば、図17に示すように、半導体チップCHP1に形成された露出している流量検出部FDU上を流れる気体の進行方向と並行する任意断面において、中央部近傍に配置されている半導体チップCHP1と重ならずに半導体チップCHP1の外側領域に配置された突き出しピンEJPNを下金型BMから突き上げることにより、封止体を下金型BMから離型することができる。これにより、本変形例2においても、半導体チップCHP1と重なる領域に突き出しピンEJPNを配置して封止体の下金型BMからの離型を行なう場合に比べて、離型の際に封止体に加わる変形を小さくすることができる。この結果、封止体に加わる変形によって、半導体チップCHP1に形成されているダイヤフラムDFが破壊されることを防止することができ、これによって、流量センサFS1の歩留まり向上、引いては、流量センサFS1の製造コストの低減を図ることができる。この結果、本変形例2における流量センサFS1では、封止体の裏面領域のうち、半導体チップCHP1と重ならずに半導体チップCHP1の外側領域となる領域に突き出しピンEJPNによる痕跡が残ることになる。
 (実施の形態2)
 前記実施の形態1では、例えば、図8(b)に示すように、半導体チップCHP1と半導体チップCHP2を備える2チップ構造の流量センサFS1を例に挙げて説明した。本発明の技術的思想は、これに限らず、例えば、流量検出部と制御部(制御回路)を一体的に形成した1つの半導体チップを備える1チップ構造の流量センサにも適用することができる。本実施の形態2では、本発明の技術的思想を1チップ構造の流量センサに適用する場合を例に挙げて説明する。
 <実施の形態2における流量センサの実装構成>
 図24は、本実施の形態2における流量センサFS2の実装構成を示す図であり、樹脂で封止した後の構成を示す図である。特に、図24(a)は、本実施の形態2における流量センサFS2の実装構成を示す平面図である。図24(b)は、図24(a)のA-A線で切断した断面図であり、図24(c)は、図24(a)のB-B線で切断した断面図である。特に、図24(b)は、露出している流量検出部FDU上を流れる気体の進行方向と並行する一断面を示しており、図24(b)において、気体は、例えば、X軸を左側から右側に向って流れるものとする。
 まず、図24(a)に示すように、本実施の形態2における流量センサFS2は、矩形形状をした樹脂MRを含む封止体を有し、樹脂MRからリードLD2が突き出ている。そして、樹脂MRの上面(表面)から半導体チップCHP1の一部が露出している。特に、半導体チップCHP1には、流量検出部FDUと、この流量検出部FDUを制御する制御部が形成されている。具体的に、半導体チップCHP1に形成されている流量検出部FDUは、配線WL1によって、制御部と電気的に接続されている。この制御部は、図24(a)においては、樹脂MRに覆われているため、図示されていないが、樹脂MRの内部に配置されている。つまり、本実施の形態2における流量センサFS2においては、流量検出部FDUと制御部が一体的に形成された半導体チップCHP1を有し、樹脂MRから流量検出部FDUが露出する構成をしていることになる。
 次に、図24(b)に示すように、本実施の形態2における流量センサFS2は、チップ搭載部TAB1上に接着材ADH1を介して半導体チップCHP1が搭載されていることがわかる。このとき、半導体チップCHP1の上面(表面、主面)には、流量検出部FDUが形成されており、この流量検出部FDUと相対する半導体チップCHP1の裏面にダイヤフラムDF(薄板部)が形成されている。一方、ダイヤフラムDFの下方に存在するチップ搭載部TAB1の底部には開口部OP1が形成されている。
 なお、半導体チップCHP1とチップ搭載部TAB1とを接着している接着材ADH1は、例えば、エポキシ樹脂やポリウレタン樹脂などの熱硬化性樹脂、ポリイミド樹脂やアクリル樹脂などの熱可塑性樹脂を使用することができる。
 ここで、図24(b)に示すように、本実施の形態2における流量センサFS2では、半導体チップCHP1の側面および上面の一部およびチップ搭載部TAB1の一部を覆うように樹脂MRが形成されている。
 このとき、本実施の形態2では、半導体チップCHP1の裏面に形成されたダイヤフラムDFの下方にあるチップ搭載部TAB1の底部に開口部OP1を形成し、さらに、チップ搭載部TAB1の裏面を覆う樹脂MRに開口部OP2を設けている。
 これにより、本実施の形態2による流量センサFS2によれば、ダイヤフラムDFの内部空間は、チップ搭載部TAB1の底部に形成された開口部OP1および樹脂MRに形成された開口部OP2を介して流量センサFS2の外部空間と連通することになる。この結果、ダイヤフラムDFの内部空間の圧力と、流量センサFS2の外部空間の圧力とを等しくすることができ、ダイヤフラムDF上に応力が加わることを抑制できる。さらに、本実施の形態2でも、図24(b)に示すように、樹脂MRの上面SUR(MR)が半導体チップCHP1の上面SUR(CHP)よりも高くなるように形成されている。
 なお、図24(c)に示すように、チップ搭載部TAB1上に接着材ADH1を介して半導体チップCHP1が搭載されているが、この半導体チップCHP1の上面に流量検出部FDUおよび制御部CUが形成されていることがわかる。つまり、本実施の形態2では、半導体チップCHP1に流量検出部FDUと制御部CUが一体的に形成されていることがわかる。さらに、半導体チップCHP1の上面にパッドPDが形成されており、このパッドPDとリードLD2がワイヤWによって電気的に接続されている。そして、半導体チップCHP1の上面に形成されている制御部CUおよびパッドPDと、ワイヤWは、樹脂MRで封止されている。
 このように構成されている本実施の形態2における流量センサFS2においても、前記実施の形態1と同じ思想の離型工程を実現することができる。例えば、半導体チップCHP1に形成された露出している流量検出部FDU上を流れる気体の進行方向と並行する任意断面において、中央部近傍に配置されている半導体チップCHP1と重ならずに半導体チップCHP1の外側領域に配置された突き出しピンを下金型から突き上げることにより、封止体を下金型から離型することができる。これにより、本実施の形態2においても、半導体チップCHP1と重なる領域に突き出しピンを配置して封止体の下金型からの離型を行なう場合に比べて、離型の際に封止体に加わる変形を小さくすることができる。この結果、封止体に加わる変形によって、半導体チップCHP1に形成されているダイヤフラムDFが破壊されることを防止することができる。これにより、流量センサFS2の歩留まり向上、引いては、流量センサFS2の製造コストの低減を図ることができる。この結果、本実施の形態2における流量センサFS2でも、封止体の裏面領域のうち、半導体チップCHP1と重ならずに半導体チップCHP1の外側領域となる領域に突き出しピンによる痕跡が残ることになる。
 図25は、本実施の形態2における流量センサFS2を裏面側から見た平面図である。図25に示すように、本実施の形態2における流量センサFS2は、樹脂MRからなる矩形形状の封止体を有しており、この樹脂MRから複数のリードLD2が突き出ている。そして、樹脂MRからなる封止体の内部には、図25での破線で示すように、半導体チップCHP1が埋め込まれており、この半導体チップCHP1に形成されているダイヤフラムと連通する開口部OP1および開口部OP2が形成されている。開口部OP1は、半導体チップCHP1が搭載されているチップ搭載部に設けられており、開口部OP2は、封止体を構成する樹脂MRに設けられている。図25からわかるように、開口部OP2の径は、開口部OP1の径よりも大きくなっている。
 そして、図25に示すように、流量センサFS2を構成する封止体の裏面には、突き出しピンによる複数の痕跡TCが残存している。具体的には、図25に示すように、封止体の外縁部の周囲を囲むように、複数の痕跡TCが等間隔で並んでいることがわかる。そして、本実施の形態2でも、平面視において、半導体チップCHP1と重ならず、半導体チップCHP1の外側領域に痕跡TCが形成されていることがわかる。言い換えれば、平面視において、半導体チップCHP1と封止体の外縁領域とにより挟まれた領域に痕跡TCが形成されていることがわかる。したがって、本実施の形態2における流量センサFS2には、樹脂封止工程後に実施された突き出しピンによる離型工程の痕跡TCが残存することとなり、最終製品である流量センサFS2の裏面を見れば、樹脂封止工程後の離型工程において、封止体のどの位置に突き出しピンが押し当てられたかを特定することができる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 上述した前記実施の形態で説明した流量センサは、気体の流量を測定するデバイスであるが、具体的な気体の種類は限定されるものではなく、空気、LPガス、炭酸ガス(COガス)、フロンガスなどの任意の気体の流量を測定するデバイスに幅広く適用することができる。
 また、上述した前記実施の形態では、気体の流量を測定する流量センサについて説明したが、本発明の技術的思想はこれに限定されるものではなく、湿度センサなどの半導体素子の一部を露出させた状態で樹脂封止する半導体装置にも幅広く適用することができる。
 本発明は、例えば、流量センサなどの半導体装置を製造する製造業に幅広く利用することができる。
 1 CPU
 2 入力回路
 3 出力回路
 4 メモリ
 ADH1 接着材
 ADH2 接着材
 ADH3 接着材
 AHL 位置決め孔
 APN 位置決めピン
 AR 領域
 BM 下金型
 BR1 下流測温抵抗体
 BR2 下流測温抵抗体
 BS(MR) 下面
 CHP1 半導体チップ
 CHP2 半導体チップ
 CNV 凹形状部
 CVX1 凸形状部
 CVX2 凸形状部
 DF ダイヤフラム
 DM ダムバー
 EJA イジェクタ領域
 EJPN 突き出しピン
 EPLT 突き出しピンプレート
 FDU 流量検出部
 FS1 流量センサ
 FS2 流量センサ
 FSP 流量センサ
 HCB ヒータ制御ブリッジ
 HR 発熱抵抗体
 IP1 入れ駒
 LAF 弾性体フィルム
 LD1 リード
 LD2 リード
 LF リードフレーム
 MR 樹脂
 OP1 開口部
 OP2 開口部
 PD パッド
 PD1 パッド
 PD2 パッド
 PD3 パッド
 PJ プランジャ
 PLT 板状構造体
 PS 電源
 Q 気体流量
 R1 抵抗体
 R2 抵抗体
 R3 抵抗体
 R4 抵抗体
 SP1 第1空間
 SPR バネ
 SUR(BM) 上面
 SUR(CHP) 上面
 SUR(EJ) 上面
 SUR(MR) 上面
 TAB1 チップ搭載部
 TAB2 チップ搭載部
 TC 痕跡
 TC2 痕跡
 Tr トランジスタ
 TSB 温度センサブリッジ
 UM 上金型
 UR1 上流測温抵抗体
 UR2 上流測温抵抗体
 Vref1 参照電圧
 Vref2 参照電圧
 W ワイヤ
 W1 ワイヤ
 W2 ワイヤ
 W3 ワイヤ
 WL1 配線

Claims (14)

  1.  第1チップ搭載部と、
     前記第1チップ搭載部上に配置された第1半導体チップと、を備え、
     前記第1半導体チップは、
     第1半導体基板の主面上に形成された流量検出部と、
     前記第1半導体基板の前記主面とは反対側の裏面のうち、前記流量検出部と相対する領域に形成されたダイヤフラムとを有し、
     前記第1半導体チップに形成されている前記流量検出部を露出した状態で、前記第1半導体チップの一部が、樹脂を含む封止体で封止されている流量センサの製造方法であって、
     (a)前記第1チップ搭載部を有する基材を用意する工程と、
     (b)前記第1半導体チップを用意する工程と、
     (c)前記第1チップ搭載部上に前記第1半導体チップを搭載する工程と、
     (d)前記(c)工程後、前記第1半導体チップに形成されている前記流量検出部を露
    出させつつ、前記第1半導体チップの一部を前記封止体で封止する工程と、を備え、
     前記(d)工程は、
     (d1)上金型と、突き出しピンが挿入された下金型とを用意する工程と、
     (d2)前記(d1)工程後、前記第1半導体チップの上面に前記上金型の一部を押し当て、かつ、前記上金型と前記第1半導体チップの間に前記流量検出部を囲む第1空間を形成しながら、前記上金型と前記下金型とで、前記第1半導体チップを搭載した前記基材を、第2空間を介して挟み込む工程と、
     (d3)前記(d2)工程後、前記第2空間に前記樹脂を流し込む工程と、
     (d4)前記(d3)工程後、前記樹脂を硬化させて前記封止体を形成する工程と、
     (d5)前記(d4)工程後、前記封止体を前記下金型から離型する工程と、を有し、
     前記(d5)工程は、露出している前記流量検出部上を流れる気体の進行方向と並行する任意断面において、前記第1半導体チップと重ならずに前記第1半導体チップの外側領域に配置された前記突き出しピンを前記下金型から突き上げることにより、前記封止体を前記下金型から離型する流量センサの製造方法。
  2.  請求項1に記載の流量センサの製造方法であって、
     前記基材には、前記第1チップ搭載部の周囲にダムバーが配置されており、
     前記突き出しピンは、露出している前記流量検出部上を流れる気体の進行方向と並行する任意断面において、前記第1半導体チップの外側領域で、かつ、前記ダムバーの内側領域に配置されている流量センサの製造方法。
  3.  請求項2に記載の流量センサの製造方法であって、
     前記ダムバーには、位置決め孔が設けられ、
     前記下金型には、前記位置決め孔に対応した位置に位置決めピンが設けられ、
     前記(d2)工程は、前記ダムバーに設けられている前記位置決め孔に、前記下金型に設けられた位置決めピンを挿入することにより、前記基材を前記下金型に固定する流量センサの製造方法。
  4.  請求項1に記載の流量センサの製造方法であって、
     前記突き出しピンを挿入する前記下金型に設けられた挿入孔の径は、前記突き出しピンの径よりも大きく、
     前記(d3)工程では、前記挿入孔と前記突き出しピンの間の隙間の一部に前記樹脂が入り込み、これによって、前記(d4)工程では、前記封止体の下面に第1凸形状部が形成される流量センサの製造方法。
  5.  請求項1に記載の流量センサの製造方法であって、
     前記(d3)工程において、前記突き出しピンの先端部の高さは、前記下金型の上面の高さよりも高く、これによって、前記(d4)工程では、前記封止体の下面に、底面が前記封止体の下面よりも内部に入り込んだ凹部が形成される流量センサの製造方法。
  6.  請求項1に記載の流量センサの製造方法であって、
     前記(d3)工程において、前記突き出しピンの先端部の高さは、前記下金型の上面の高さよりも低く、これによって、前記(d4)工程では、前記封止体の下面に第2凸形状部が形成される流量センサの製造方法。
  7.  請求項1に記載の流量センサの製造方法であって、
     前記突き出しピンは、露出している前記流量検出部上を流れる気体の進行方向と並行する任意断面において、前記第1半導体チップの一端部と前記封止体の外壁の間に設けられている流量センサの製造方法。
  8.  請求項1に記載の流量センサの製造方法であって、
     前記突き出しピンは、露出している前記流量検出部上を流れる気体の進行方向と並行する任意断面において、前記第1チップ搭載部と重ならずに前記第1チップ搭載部の外側領域に設けられている流量センサの製造方法。
  9.  請求項1に記載の流量センサの製造方法であって、
     前記第1半導体チップは、さらに、前記流量検出部を制御する制御回路部を有している流量センサの製造方法。
  10.  請求項1に記載の流量センサの製造方法であって、さらに、
     (e)前記(c)工程前に、前記流量検出部を制御する制御回路部を有する第2半導体チップを用意する工程を備え、
     前記(a)工程で用意される前記基材は、第2チップ搭載部を有し、
     前記(c)工程は、前記第2チップ搭載部上に前記第2半導体チップを搭載し、
     前記(d)工程は、前記第2半導体チップを前記封止体で封止し、
     前記(d2)工程は、前記上金型の底面を前記第1半導体チップに押し当てることにより、前記流量検出部を囲む前記第1空間を形成しながら、前記上金型と前記下金型とで、前記第1半導体チップおよび前記第2半導体チップを搭載した前記基材を、前記第2空間を介して挟み込む流量センサの製造方法。
  11.  (a)第1チップ搭載部と、
     (b)前記第1チップ搭載部上に配置された第1半導体チップと、を備え、
     前記第1半導体チップは、
     (b1)第1半導体基板の主面上に形成された流量検出部と、
     (b2)前記第1半導体基板の前記主面とは反対側の裏面のうち、前記流量検出部と相対する領域に形成されたダイヤフラムとを有し、
     前記第1半導体チップに形成されている前記流量検出部を露出した状態で、前記第1半導体チップの一部が、樹脂を含む封止体で封止されており、
     露出している前記流量検出部上を流れる気体の進行方向と並行する任意断面において、前記封止体の下面のうち、前記第1半導体チップと重ならずに前記第1半導体チップの外側領域に対応する領域に、凹部、あるいは、凸部が形成されている流量センサ。
  12.  請求項11に記載の流量センサであって、
     前記第1半導体チップは、さらに、前記流量検出部を制御する制御部を有している流量センサ。
  13.  請求項11に記載の流量センサであって、
     さらに、
    (c)第2チップ搭載部と、
    (d)前記第2チップ搭載部上に配置された第2半導体チップと、を備え、
     前記第2半導体チップは、第2半導体基板の主面上に形成された制御部であって、前記流量検出部を制御する前記制御部を有し、
     前記第2半導体チップは、前記封止体で封止されている流量センサ。
  14.  請求項11に記載の流量センサであって、
     前記第1チップ搭載部と前記第1半導体チップの間に板状構造体が挿入されている流量センサ。
PCT/JP2013/060888 2012-04-12 2013-04-11 流量センサおよびその製造方法 WO2013154144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13775539.3A EP2837918B1 (en) 2012-04-12 2013-04-11 Flow rate sensor and method for making same
US14/391,782 US9580303B2 (en) 2012-04-12 2013-04-11 Flow sensor and method for manufacturing the same
CN201380030748.XA CN104364614B (zh) 2012-04-12 2013-04-11 流量传感器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012091288A JP5965706B2 (ja) 2012-04-12 2012-04-12 流量センサの製造方法
JP2012-091288 2012-04-12

Publications (1)

Publication Number Publication Date
WO2013154144A1 true WO2013154144A1 (ja) 2013-10-17

Family

ID=49327702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060888 WO2013154144A1 (ja) 2012-04-12 2013-04-11 流量センサおよびその製造方法

Country Status (5)

Country Link
US (1) US9580303B2 (ja)
EP (1) EP2837918B1 (ja)
JP (1) JP5965706B2 (ja)
CN (1) CN104364614B (ja)
WO (1) WO2013154144A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917399A (zh) * 2015-06-08 2015-09-16 浙江华晶整流器有限公司 一种绝缘型半桥整流模块
US20160172316A1 (en) * 2014-12-10 2016-06-16 Seiko Instruments Inc. Mold for resin sealing, manufacturing method therefor, and semiconductor device
CN106949940A (zh) * 2015-10-08 2017-07-14 罗伯特·博世有限公司 用于感测流动的流体介质至少一个流动特性的传感器装置
JP2018040661A (ja) * 2016-09-07 2018-03-15 日本精機株式会社 液面検出装置、及び液面検出装置の製造方法
EP3176543A4 (en) * 2014-07-30 2018-03-21 Hitachi Automotive Systems, Ltd. Circuit board mounting structure and sensor using same
US10407101B2 (en) 2014-12-22 2019-09-10 Nippon Steel Corporation Structural member

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973371B2 (ja) 2013-03-21 2016-08-23 日立オートモティブシステムズ株式会社 熱式流量計
JP6065818B2 (ja) * 2013-12-03 2017-01-25 株式会社デンソー モールドパッケージの製造方法
JP6420671B2 (ja) * 2015-01-21 2018-11-07 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6016965B2 (ja) * 2015-03-02 2016-10-26 三菱電機株式会社 電子機器ユニット及びその製造金型装置
JP2017015420A (ja) * 2015-06-29 2017-01-19 日立オートモティブシステムズ株式会社 物理量検出装置
NL2015091B1 (en) * 2015-07-06 2017-01-30 Besi Netherlands Bv Mould, moulding press and method for encapsulating electronic components mounted on a carrier using elastomeric micro-pillars.
JP2017020982A (ja) * 2015-07-15 2017-01-26 日立オートモティブシステムズ株式会社 熱式空気流量計
JP2017101955A (ja) * 2015-11-30 2017-06-08 アズビル株式会社 測定装置及び測定装置の製造方法
US9899290B2 (en) * 2016-03-23 2018-02-20 Nxp Usa, Inc. Methods for manufacturing a packaged device with an extended structure for forming an opening in the encapsulant
DE102017218893A1 (de) * 2017-10-23 2019-04-25 Robert Bosch Gmbh Sensoranordnung zur Bestimmung wenigstens eines Parameters eines durch einen Messkanal strömenden fluiden Mediums
CN107738418B (zh) * 2017-11-08 2023-07-14 江苏星科精密模具有限公司 一种深筋包紧顶块二次停止机械扣机
DE102018003133A1 (de) * 2018-04-17 2019-10-17 Infineon Technologies Ag Sensorvorrichtung, sensormodul, spritzgusswerkzeug und verfahren zur herstellung eines sensormoduls

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022314A (ja) * 1996-07-08 1998-01-23 Hitachi Ltd 半導体樹脂封止用金型
JP2004074713A (ja) 2002-08-21 2004-03-11 Hitachi Chem Co Ltd 半導体モールド用離型シート
JP2009058230A (ja) * 2007-08-29 2009-03-19 Denso Corp センサ装置の製造方法及びセンサ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216173A (ja) * 1999-01-26 2000-08-04 Matsushita Electronics Industry Corp 半導体装置の製造装置
JP3897478B2 (ja) * 1999-03-31 2007-03-22 松下電器産業株式会社 樹脂封止型半導体装置の製造装置及びその製造方法
TW447096B (en) * 2000-04-01 2001-07-21 Siliconware Precision Industries Co Ltd Semiconductor packaging with exposed die
JP5255900B2 (ja) 2008-05-15 2013-08-07 アピックヤマダ株式会社 モールド金型及びその製造方法
JP5208099B2 (ja) * 2009-12-11 2013-06-12 日立オートモティブシステムズ株式会社 流量センサとその製造方法、及び流量センサモジュール
JP5876669B2 (ja) * 2010-08-09 2016-03-02 ルネサスエレクトロニクス株式会社 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022314A (ja) * 1996-07-08 1998-01-23 Hitachi Ltd 半導体樹脂封止用金型
JP2004074713A (ja) 2002-08-21 2004-03-11 Hitachi Chem Co Ltd 半導体モールド用離型シート
JP2009058230A (ja) * 2007-08-29 2009-03-19 Denso Corp センサ装置の製造方法及びセンサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2837918A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176543A4 (en) * 2014-07-30 2018-03-21 Hitachi Automotive Systems, Ltd. Circuit board mounting structure and sensor using same
US20160172316A1 (en) * 2014-12-10 2016-06-16 Seiko Instruments Inc. Mold for resin sealing, manufacturing method therefor, and semiconductor device
US10850334B2 (en) * 2014-12-10 2020-12-01 Ablic Inc. Mold for resin sealing a semiconductor chip, and semiconductor device having resin-sealed semiconductor chip
US10407101B2 (en) 2014-12-22 2019-09-10 Nippon Steel Corporation Structural member
CN104917399A (zh) * 2015-06-08 2015-09-16 浙江华晶整流器有限公司 一种绝缘型半桥整流模块
CN104917399B (zh) * 2015-06-08 2017-06-16 浙江华晶整流器有限公司 一种绝缘型半桥整流模块
CN106949940A (zh) * 2015-10-08 2017-07-14 罗伯特·博世有限公司 用于感测流动的流体介质至少一个流动特性的传感器装置
JP2018040661A (ja) * 2016-09-07 2018-03-15 日本精機株式会社 液面検出装置、及び液面検出装置の製造方法

Also Published As

Publication number Publication date
EP2837918A1 (en) 2015-02-18
CN104364614B (zh) 2017-03-15
EP2837918A4 (en) 2015-12-02
US20150107353A1 (en) 2015-04-23
JP2013221742A (ja) 2013-10-28
JP5965706B2 (ja) 2016-08-10
CN104364614A (zh) 2015-02-18
EP2837918B1 (en) 2020-09-16
US9580303B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
JP5965706B2 (ja) 流量センサの製造方法
JP6220914B2 (ja) センサモジュール
JP5916637B2 (ja) 流量センサおよびその製造方法
CN106813736B (zh) 流量传感器
JP5763575B2 (ja) 流量センサおよびその製造方法
EP3012598B1 (en) Thermal flowmeter manufacturing method
JP5456815B2 (ja) 流量センサおよびその製造方法
JP5220955B2 (ja) 流量センサ
JP6045644B2 (ja) 流量センサおよびその製造方法
JP5820342B2 (ja) 流量センサおよびその製造方法
JP6012833B2 (ja) 半導体装置およびその製造方法並びに流量センサおよび湿度センサ
JP6129225B2 (ja) 流量センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013775539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14391782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE