WO2013154017A1 - 塩化ビニルモノマーの製造方法 - Google Patents

塩化ビニルモノマーの製造方法 Download PDF

Info

Publication number
WO2013154017A1
WO2013154017A1 PCT/JP2013/060289 JP2013060289W WO2013154017A1 WO 2013154017 A1 WO2013154017 A1 WO 2013154017A1 JP 2013060289 W JP2013060289 W JP 2013060289W WO 2013154017 A1 WO2013154017 A1 WO 2013154017A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonium
vinyl chloride
chloride monomer
type zeolite
producing
Prior art date
Application number
PCT/JP2013/060289
Other languages
English (en)
French (fr)
Inventor
昌紀 島田
香織 竹本
直伸 片田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2014510131A priority Critical patent/JP5836480B2/ja
Publication of WO2013154017A1 publication Critical patent/WO2013154017A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7034MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing a vinyl chloride monomer in the organic chemical industry.
  • Polyvinyl chloride resin is excellent in mechanical strength, chemical resistance, and the like, and has been conventionally used in various applications such as piping materials and building materials.
  • a vinyl chloride monomer as a raw material for producing this polyvinyl chloride resin has been conventionally produced by thermally decomposing 1,2-dichloroethane synthesized by a direct chlorination method or an oxychlorination method of ethylene.
  • thermal decomposition reaction in order to obtain sufficient reaction efficiency, a high-temperature and high-pressure condition of 500 ° C. and 15 atm is required, so that high-performance equipment is required, which is not economical and the process is complicated. (See Patent Documents 1 to 3).
  • the present invention includes a step of deammonia-treating ammonium-type zeolite by heating in an inert gas, and then lowering the temperature in the inert gas to obtain a hydrogen-type zeolite, and a solid acid catalyst containing the hydrogen-type zeolite. And a step of producing vinyl chloride monomer by dehydrating 2-chloroethanol by catalytic reaction. It is preferable to further include a step of preparing the ammonium zeolite by ion exchange of sodium zeolite in an aqueous ammonium salt solution.
  • the aqueous ammonium salt solution may be one or two or more ammonium salt aqueous solutions selected from ammonium nitrate aqueous solution, ammonium sulfate, ammonium acetate, ammonium chloride aqueous solution, triammonium phosphate, diammonium hydrogen phosphate, and ammonium dihydrogen phosphate. preferable.
  • the ammonium salt aqueous solution is more preferably an ammonium chloride aqueous solution.
  • the ammonium salt aqueous solution is more preferably an ammonium dihydrogen phosphate aqueous solution.
  • the pore diameter of the ammonium zeolite is preferably an oxygen 12-membered ring or more, and the pore structure of the ammonium zeolite is preferably a one-dimensional linear shape.
  • the ammonium zeolite is preferably ammonium mordenite.
  • the silica / alumina ratio of the ammonium zeolite is preferably 5 or more and less than 70.
  • vinyl chloride monomer can be obtained with higher yield and higher selectivity than conventional solid acid catalysts.
  • the reaction form is not particularly limited, and can be carried out in any reaction form.
  • fixed bed type for example, fixed bed gas phase flow type, fixed bed liquid phase flow type
  • fluidized bed type for example, fluid bed gas phase flow type, fluid bed liquid phase flow type
  • moving bed type for example, moving bed
  • the equipment that can be realized include a gas phase flow type, a moving bed liquid phase flow type), a suspension bed batch type, a suspension bed continuous type, a stirring tank type, and a bubble column type.
  • a fixed bed gas phase flow type, a fixed bed liquid phase flow type, and a stirring tank type are suitable.
  • 2-chloroethanol used in this method any one produced by any conventionally known method can be used.
  • a product produced by adding hypochlorous acid generated by blowing chlorine into water to ethylene can be used.
  • the purity of 2-chloroethanol is not particularly limited, and a product produced by a known method may be used as it is without purification.
  • it is preferably 50 to 100 wt. %, More preferably 85 to 100 wt%.
  • 2-Chloroethanol used as a raw material may be either a gas or a liquid, but since a dehydration reaction of ethanol is usually performed in a gas phase, a gas is suitable.
  • 2-chloroethanol is preferably vaporized by a vaporizer.
  • 2-chloroethanol may be used without being diluted, or may be used after being diluted with an inert gas. Although it does not specifically limit as an inert gas used for dilution, Although nitrogen, helium, argon, etc. are mentioned, Nitrogen is more preferable from a viewpoint of manufacturing economically.
  • the dehydration reaction of 2-chloroethanol may be performed under normal pressure or under pressure. For example, about 5 to 0.1 MPa can be mentioned.
  • the supply amount or supply rate of 2-chloroethanol to the reaction system can be appropriately adjusted depending on, for example, the volume of the catalyst, the temperature, the pressure, the properties of 2-chloroethanol, and the like. For example, in both cases where the liquid and the gas are used, the rate is about 0.1 to 10 g / hour.
  • Solid acid catalyst a catalyst containing a hydrogen-type zeolite whose temperature is lowered in an inert gas as it is after heat treatment of the ammonium-type zeolite in an inert gas is used. Ammonium type zeolite is deammoniated to hydrogen type zeolite by this heat treatment.
  • the content of the hydrogen type zeolite in the solid acid catalyst is preferably 50 to 100 wt%, and more preferably 80 to 100 wt%.
  • the heat treatment (deammonization treatment) of the ammonium type zeolite is preferably performed in an inert gas at a temperature of 600 ° C. or lower.
  • the temperature is preferably about 500 ° C. (eg, 350 to 500 ° C.).
  • the heating time is preferably long in order to advance sufficient deammonification.
  • an inert gas in the said heat processing Although it does not specifically limit as an inert gas in the said heat processing, Although nitrogen, helium, argon etc. are mentioned, Nitrogen is more preferable from a viewpoint of manufacturing economically.
  • the flow rate of the inert gas is preferably large in order to promote sufficient deammonia.
  • ammonium type zeolite used in this reaction a commercially available sodium type zeolite treated with an aqueous ammonium salt solution such as an aqueous ammonium nitrate solution, an ammonium sulfate solution, an ammonium acetate solution, or an aqueous ammonium chloride solution can be used.
  • an aqueous ammonium salt solution such as an aqueous ammonium nitrate solution, an ammonium sulfate solution, an ammonium acetate solution, or an aqueous ammonium chloride solution.
  • ammonium chloride is preferable.
  • ammonium type zeolite used in this reaction a commercially available sodium type zeolite obtained by ion exchange treatment with an aqueous ammonium salt solution containing phosphorus by a conventionally known method can be used.
  • the ammonium salt aqueous solution containing phosphorus include a triammonium phosphate aqueous solution, a diammonium hydrogen phosphate aqueous solution, and an ammonium dihydrogen phosphate aqueous solution.
  • an aqueous solution of ammonium dihydrogen phosphate and an aqueous solution of diammonium hydrogen phosphate are preferred.
  • an aqueous solution of ammonium dihydrogen phosphate that produces a sodium salt that is more easily dissolved in water is more preferable.
  • the zeolite In view of the size of the 2-chloroethanol molecule, the zeolite needs to have a pore diameter of 12 or more oxygen rings.
  • a reaction gas called a super cage can stay inside the pores, particularly where the multi-dimensionally oriented pores intersect, an overreaction in which the reaction further proceeds from the reaction target is likely to occur.
  • the pore structure is preferably a linear one-dimensional orientation.
  • Such a crystal structure of a zeolite having a one-dimensional pore having a 12-membered oxygen ring can be represented by a three-letter structure code defined by the International Zeolite Society.
  • mordenite having a MOR structure is preferable because of its availability.
  • the amount of catalyst varies depending on the reaction type. For example, in the case of a fixed bed gas phase flow system, it is suitable to use about 10 to 1000 parts by weight with respect to 100 parts by weight of 2-chloroethanol that reacts for 1 minute. Further, it is preferable to use about 50 to 500 parts by weight. In the case of a stirring tank type, it is suitable to use about 100 to 1000 parts by weight with respect to 100 parts by weight of 2-chloroethanol, and more preferably about 200 to 500 parts by weight.
  • the hydrogen-type zeolite to be subjected to the reaction may be a hydrogen-type zeolite obtained by heating the ammonium-type zeolite in an inert gas and then reducing the temperature to the reaction temperature in the inert gas as it is.
  • a hydrogen-type zeolite that has been heat-treated in an inert gas and then reduced in temperature in the inert gas and stored at room temperature (about 20 to 30 ° C.) may be used.
  • the hydrogen-type zeolite to be used for the reaction is a commercially available sodium-type zeolite that is ion-exchanged by a conventionally known method with an aqueous ammonium salt solution containing phosphorus. It may be a hydrogen type zeolite whose temperature is lowered to the reaction temperature.
  • the reaction temperature is preferably 160 ° C. or higher and lower than 300 ° C. to suppress the generation of by-products.
  • the reaction time varies depending on the reaction mode, in the case of a fixed bed gas phase flow system, the contact time with the catalyst is suitably about 0.1 to 3 seconds, preferably about 0.5 to 2 seconds. In the case of a stirred tank reactor, about 10 to 120 minutes is suitable, and preferably about 30 to 60 minutes.
  • the vinyl chloride monomer obtained by the reaction can be recovered by methods known in the art and may be further purified. For example, a method such as liquefaction separation of by-products by cooling is exemplified. Further, it may be subjected to polymerization as it is without being recovered and purified.
  • a flow-type catalytic reactor was used, and the catalyst used was filled in a quartz straight tube (inner diameter 10 mm).
  • the reaction gas and reaction solution were gas chromatograph (manufactured by Shimadzu Corporation, trade name GC-2010), capillary column (manufactured by Agilent J & W, trade name DB-1, 30 m ⁇ 0.25 m (inner diameter), film thickness 1.0 ⁇ m), Quantification was performed using a flame ionization detector (FID).
  • the 2-chloroethanol conversion rate and vinyl chloride monomer selectivity were calculated by the following equations.
  • ⁇ 2-Chloroethanol conversion (%) [ ⁇ Supply 2-chloroethanol amount (mol) ⁇ - ⁇ Detected 2-chloroethanol amount (mol) ⁇ ] / ⁇ Supply 2-chloroethanol amount (mol) ⁇ ⁇ 100 ⁇
  • Vinyl chloride monomer selectivity (%) Vinyl chloride monomer amount (mol) / ⁇ each product amount (mol) x carbon number / 2 ⁇ x 100
  • ⁇ each product amount (mol) ⁇ number of carbons / 2 ⁇ is the sum of values obtained in each product, and expressed as [ ⁇ ⁇ each product amount (mol) ⁇ number of carbons / 2 ⁇ ]. You can also.
  • the carbon number is the number of carbon atoms contained in each product molecule.
  • Example 1 After stirring 1.5 g of sodium mordenite having a silica / alumina ratio of 18 at 7.5 ° C. in an aqueous 3.4 mol / L ammonium chloride solution at 38 ° C. for 2 hours, washing with pure water twice and 120 ° C. for 16 hours. Dried. By performing the above operation three times in total, sodium mordenite was converted to ammonium type. 0.6 g of the prepared ammonium-type mordenite was filled in a quartz reaction tube having an inner diameter of 10 mm, and heat-treated at 500 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the temperature was lowered to 270 ° C.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that the treatment temperature of the sodium type mordenite with the aqueous ammonium chloride solution was room temperature.
  • the reaction product was analyzed by gas chromatography, 2-chloroethanol conversion was 21% and vinyl chloride monomer selectivity was 40% after 1 hour of reaction.
  • Example 3 The reaction was conducted in the same manner as in Example 2 except that the reaction temperature was 180 ° C.
  • the reaction product was analyzed by gas chromatography. As a result, after 1 hour of reaction, the conversion of 2-chloroethanol was 4.3% and the selectivity of vinyl chloride monomer was 77%.
  • Example 4 The reaction was performed in the same manner as in Example 3 except that ion exchange was performed with an aqueous ammonium nitrate solution.
  • the reaction product was analyzed by gas chromatography. As a result, after 1 hour of reaction, the conversion of 2-chloroethanol was 3.8% and the selectivity of vinyl chloride monomer was 81%.
  • Example 5 The reaction was performed in the same manner as in Example 3 except that ion exchange was performed with an aqueous ammonium acetate solution.
  • the conversion of 2-chloroethanol was 4.3% and the vinyl chloride monomer selectivity was 69% after 1 hour of the reaction.
  • Example 6 The reaction was carried out in the same manner as in Example 3 except that sodium type mordenite having a silica / alumina ratio of 50 synthesized by the method described in Japanese Patent No. 4639713 was used as sodium type mordenite.
  • the reaction product was analyzed by gas chromatography. As a result, after 1 hour of reaction, the conversion of 2-chloroethanol was 2.4% and the selectivity of vinyl chloride monomer was 87%.
  • Example 7 After stirring 1.5 g of sodium mordenite having a silica / alumina ratio of 18 in 7.5 mL of a 3.4 mol / L ammonium dihydrogen phosphate aqueous solution at room temperature for 2 hours, it was washed twice with pure water at 120 ° C. Dried for 16 hours. By performing the above operation three times in total, sodium mordenite was converted to ammonium type. 0.6 g of the prepared ammonium-type mordenite was filled in a quartz reaction tube having an inner diameter of 10 mm, and heat-treated at 500 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the temperature was lowered to 270 ° C.
  • Example 8 After stirring 1.5 g of sodium mordenite having a silica / alumina ratio of 18 in 7.5 mL of a 3.4 mol / L ammonium dihydrogen phosphate aqueous solution at room temperature for 2 hours, it was washed twice with pure water at 120 ° C. Dried for 16 hours. By performing the above operation three times in total, sodium mordenite was converted to ammonium type. 0.6 g of the prepared ammonium-type mordenite was filled in a quartz reaction tube having an inner diameter of 10 mm, and heat-treated at 500 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the temperature was lowered to a reaction temperature of 180 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

固体酸触媒による触媒反応により、2-クロロエタノールを脱水して塩化ビニルモノマーを製造する方法であって、固体酸触媒が水素型ゼオライトであり、水素型ゼオライトが、アンモニウム型ゼオライトを不活性ガス中での加熱処理後、そのまま不活性ガス中で温度を下げた水素型ゼオライトである、塩化ビニルモノマーの製造方法を提供する。

Description

塩化ビニルモノマーの製造方法
 本発明は、有機化学工業における塩化ビニルモノマーの製造方法に関する。
 ポリ塩化ビニル樹脂は、機械的強度、耐薬品性等に優れており、従来から配管材料、建築材料等の各種用途に用いられている。このポリ塩化ビニル樹脂の製造原料である塩化ビニルモノマーは、従来エチレンの直接塩素化法やオキシクロリネーション法によって合成された1,2-ジクロロエタンを熱分解することにより製造されてきた。
 しかし、このような熱分解反応において、充分な反応効率を得るためには500℃15気圧という高温高圧条件を要し、そのため高性能な設備が必要となり経済的ではなく、また工程も煩雑であった(特許文献1~3参照)。
 このような従来の塩化ビニルモノマーの合成法を見直し改善する方法として、固体酸触媒による触媒反応により2-クロロエタノールを脱水する方法が考え出された。この方法によれば、これまでよりも低反応温度かつ低圧力で塩化ビニルモノマーを合成することが可能となる(特許文献4参照)。
特開平5-262682号公報 特開平6-80593号公報 WO2006/098466号公報 特願2011-76985号明細書
 固体酸としてゼオライトを用いる場合、水素型のゼオライトが使用されるが、現在市販されている水素型ゼオライトをそのまま用いた反応では、転化率及び選択率が十分ではなく、より高い転化率及び選択率となるような条件を探索する必要がある。本発明は、上記課題を鑑みなされたものであり、より高い転化率及び選択率を示す触媒を調製することを目的とする。
 本発明は、アンモニウム型ゼオライトを不活性ガス中での加熱により脱アンモニア処理した後、そのまま不活性ガス中で温度を下げて水素型ゼオライトとする工程と、上記水素型ゼオライトを含む固体酸触媒による触媒反応により、2-クロロエタノールを脱水して塩化ビニルモノマーを製造する工程とを含む、塩化ビニルモノマーの製造方法を提供する。
 上記アンモニウム型ゼオライトを、ナトリウム型ゼオライトをアンモニウム塩水溶液中でイオン交換することにより調製する工程をさらに含むことが好ましい。
 上記アンモニウム塩水溶液は、硝酸アンモニウム水溶液、硫酸アンモニウム、酢酸アンモニウム、塩化アンモニウム水溶液、リン酸三アンモニウム、リン酸水素二アンモニウム及びリン酸二水素アンモニウムから選ばれる一種または二種以上のアンモニウム塩水溶液であることが好ましい。
 上記アンモニウム塩水溶液は、塩化アンモニウム水溶液であることがより好ましい。
 また、上記アンモニウム塩水溶液は、リン酸二水素アンモニウム水溶液であることがより好ましい。
 さらに、上記アンモニウム型ゼオライトの細孔径は、酸素12員環以上であることが好ましく、また、上記アンモニウム型ゼオライトの細孔構造は、1次元の直線状であることが好ましい。特に、上記アンモニウム型ゼオライトは、アンモニウム型モルデナイトであることが好ましい。
 さらにまた、上記アンモニウム型ゼオライトのシリカ/アルミナ比は、5以上70未満であることが好ましい。
 本発明によれば、従来の固体酸触媒と比較して、より高収率かつ高選択率で塩化ビニルモノマーを得ることが可能となる。
 [塩化ビニルモノマーの製造方法]
 本発明の塩化ビニルモノマーの製造方法では、2-クロロエタノールを、固体酸触媒による触媒反応を利用して脱水する。
 本発明の塩化ビニルモノマーの製造方法では、その反応形式は特に限定されず、任意の反応形式で行うことができる。例えば固定床式(例えば、固定床気相流通式、固定床液相流通式)、流動床式(例えば、流動床気相流通式、流動床液相流通式)、移動床式(例えば移動床気相流通式、移動床液相流通式)、懸濁床回分式、懸濁床連続式、攪拌槽式、気泡塔式等が実現し得る設備として挙げられる。なかでも、固定床気相流通式、固定床液相流通式及び攪拌槽式が適している。
 <2-クロロエタノール>
 この方法で用いる2-クロロエタノールは、従来公知の任意の方法により製造したもののいずれをも用いることができる。例えば、水中に塩素を吹き込むことにより発生させた次亜塩素酸を、エチレンに付加させることにより、製造したものを用いることができる。2-クロロエタノールの純度は特に限定されず、公知の方法によって製造したものを、精製することなくそのまま用いてもよいが、効率的に塩化ビニルモノマーを製造するという観点から、好ましくは50~100wt%、さらに好ましくは85~100wt%のものが挙げられる。
 原料として用いる2-クロロエタノールは、気体又は液体のいずれでもよいが、エタノールの脱水反応は、通常、気相で行われることから、気体のものが適している。例えば、2-クロロエタノールを気化器により気化させて用いることが好ましい。なお、2-クロロエタノールは、希釈せずに用いてもよいし、不活性ガスにより希釈して用いてもよい。希釈に用いる不活性ガスとしては、特に限定されないが、窒素、ヘリウム、アルゴン、等が挙げられるが、経済的に製造するという観点から窒素がより好ましい。
 2-クロロエタノールの脱水反応は、常圧下で行ってもよいし、加圧下で行ってもよい。例えば、5~0.1MPa程度が挙げられる。
 2-クロロエタノールの反応系への供給量又は供給速度は、例えば、触媒の容積、温度、圧力、2-クロロエタノールの性状等によって適宜調整することができる。例えば、液体及び気体で供給する場合のいずれにおいても、0.1~10g/時程度が挙げられる。
 <固体酸触媒>
 固体酸触媒としては、アンモニウム型ゼオライトを不活性ガス中での加熱処理後、そのまま不活性ガス中で温度を下げた水素型ゼオライトを含むものを用いる。アンモニウム型ゼオライトは、この加熱処理により、脱アンモニアされ水素型ゼオライトとなる。固体酸触媒中の上記水素型ゼオライトの含有量は、50~100wt%が好ましく、80~100wt%がさらに好ましい。
 アンモニウム型ゼオライトの加熱処理(脱アンモニア処理)は不活性ガス中、600℃以下の温度で行うことが好ましい。好ましくは500℃程度(例えば350~500℃)である。加熱時間は、十分な脱アンモニアを進めるためには長い方が好ましい。
 上記加熱処理における不活性ガスとしては、特に限定されないが、窒素、ヘリウム、アルゴン等が挙げられるが、経済的に製造するという観点から窒素がより好ましい。
 不活性ガスの流量は、十分な脱アンモニアを進めるためには多い方が好ましい。
 また、本反応で用いるアンモニウム型ゼオライトとしては、市販のナトリウム型ゼオライトをアンモニウム塩水溶液、例えば硝酸アンモニウム水溶液や硫酸アンモニウム、酢酸アンモニウム、塩化アンモニウム水溶液により従来公知の方法で処理したものを用いることができる。イオン交換処理後の残留物の影響や取り扱いの容易さから考え、塩化アンモニウムが好ましい。
 また、本反応で用いるアンモニウム型ゼオライトとしては、市販のナトリウム型ゼオライトをリンを含むアンモニウム塩水溶液で従来公知の方法によりイオン交換処理したものを用いることができる。リンを含むアンモニウム塩水溶液としては、リン酸三アンモニウム水溶液、リン酸水素二アンモニウム水溶液、リン酸二水素アンモニウム水溶液が挙げられる。安定性の観点からリン酸二水素アンモニウム水溶液、及びリン酸水素二アンモニウム水溶液が好ましい。またイオン交換後に生成するナトリウム塩の取り除きやすさを考慮し、より水に溶解しやすいナトリウム塩を生成するリン酸二水素アンモニウム水溶液がより好ましい。
 ゼオライトとしては、2-クロロエタノール分子の大きさを考慮すると、酸素12員環以上の細孔径を持つ必要がある。また細孔内部、特に多次元に配向する細孔が交わる所にスーパーケージと呼ばれる反応ガスが滞留できる構造が存在する場合、反応目的物から更に反応が進んでしまう過反応が起こりやすくなるため、細孔構造としては直線状の1次元配向で有ることが好ましい。このような酸素12員環の1次元細孔をもつゼオライトの結晶構造としては、国際ゼオライト学会が定めたアルファベット3文字の構造コードで表すと、AFI、ATO、ATS、CFI、GME、GON、IFR、LTL、MOR、MTW、OFF、SFE、SFH、SFN、SSF、SSY、*STOなどがあり、その中でも入手の容易さからMOR構造を持つモルデナイトが好ましい。
 触媒量は反応形式によって異なるが、例えば固定床気相流通式であれば、1分間に反応する2-クロロエタノール100重量部に対して、10~1000重量部程度使用することが適しており、さらに50~500重量部程度用いることが好ましい。攪拌槽式であれば2-クロロエタノール100重量部に対して、100~1000重量部程度使用することが適しており、さらに、200~500重量部程度用いることが好ましい。
 反応に供する水素型ゼオライトは、アンモニウム型ゼオライトを不活性ガス中で加熱処理後、そのまま不活性ガス中で反応温度まで温度を下げた水素型ゼオライトであってもよい。また、アンモニウム型ゼオライトを不活性ガス中で加熱処理後、そのまま不活性ガス中で温度を下げ、例えば常温(20~30℃程度)で保存しておいた水素型ゼオライトであってもよい。
 また、反応に供する水素型ゼオライトは、市販のナトリウム型ゼオライトをリンを含むアンモニウム塩水溶液で従来公知の方法によりイオン交換処理したアンモニウム型ゼオライトを不活性ガス中で加熱処理後、そのまま不活性ガス中で反応温度まで温度を下げた水素型ゼオライトであってもよい。また、市販のナトリウム型ゼオライトをリンを含むアンモニウム塩水溶液で従来公知の方法によりイオン交換処理したアンモニウム型ゼオライトを不活性ガス中で加熱処理後、そのまま不活性ガス中で温度を下げ、不活性ガス中で例えば常温(20~30℃程度)で保存しておいた水素型ゼオライトであってもよい。
 反応温度は副生成物の発生を抑えるため、160℃以上300℃未満が好ましい。
 反応時間は反応形式によって異なるが、固定床式気相流通式であれば触媒との接触時間で0.1~3秒程度が適しており、好ましくは0.5~2秒程度である。攪拌槽式反応装置であれば、10~120分程度が適しており、好ましくは30~60分程度である。
 反応によって得られた塩化ビニルモノマーは、当該分野で公知の方法により回収することができ、さらに精製してもよい。例えば冷却による副生成物の液化分離のような方法が例示される。
 また、回収及び精製することなく、そのまま重合に付してもよい。
 以下に本発明の塩化ビニルモノマーの製造方法の実施例を説明する。
 2-クロロエタノールの脱水反応は、流通式触媒反応装置を用い、触媒は石英製の直管(内径10mm)に充填したものを用いた。
 反応ガスおよび反応液は、ガスクロマトグラフ(島津製作所製、商品名GC-2010)、キャピラリーカラム(Agilent J&W社製、商品名DB-1、30m×0.25m(内径)、膜厚1.0μm)、水素炎イオン化検出器(FID)を用いて定量した。
 2-クロロエタノール転化率及び塩化ビニルモノマー選択率を下式で算出した。
  ・2―クロロエタノール転化率(%)
 =[{供給2-クロロエタノール量(mol)}-{検出2-クロロエタノール量(mol)}]/{供給2-クロロエタノール量(mol)}×100
  ・塩化ビニルモノマー選択率(%)
 =塩化ビニルモノマー量(mol)/{各生成物量(mol)×炭素数/2}×100
 ここで、{各生成物量(mol)×炭素数/2}とは、各生成物において得られる値の和であり、[Σ{各生成物量(mol)×炭素数/2}]と表すこともできる。炭素数は、各生成物分子に含まれている炭素原子の数である。
 実施例1
 シリカ/アルミナ比18のナトリウム型モルデナイト1.5gを38℃で3.4mol/Lの塩化アンモニウム水溶液7.5mL中で2時間攪拌した後、純水で2回洗浄を行い、120℃で16時間乾燥させた。以上の操作を計3回行うことにより、ナトリウム型モルデナイトをアンモニウム型へ変換した。調製したアンモニウム型モルデナイト0.6gを内径10mmの石英製反応管に充填し、窒素雰囲気下500℃で2時間加熱処理した。その後窒素を流したまま反応温度270℃まで温度を下げ、気化させた2-クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
 反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2-クロロエタノール転化率17%、塩化ビニルモノマー選択率46%であった。
 実施例2
 ナトリウム型モルデナイトの塩化アンモニウム水溶液による処理温度を室温としたこと以外は、実施例1と同様にして反応を行った。
 反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2-クロロエタノール転化率21%、塩化ビニルモノマー選択率40%であった。
 実施例3
 反応温度を180℃とした以外は実施例2と同様にして反応を行った。
 反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2-クロロエタノール転化率4.3%、塩化ビニルモノマー選択率77%であった。
 実施例4
 イオン交換を硝酸アンモニウム水溶液により行った以外は実施例3と同様にして反応を行った。
 反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2-クロロエタノール転化率3.8%、塩化ビニルモノマー選択率81%であった。
 実施例5
 イオン交換を酢酸アンモニウム水溶液により行った以外は実施例3と同様にして反応を行った。
 反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2-クロロエタノール転化率4.3%、塩化ビニルモノマー選択率69%であった。
 実施例6
 ナトリウム型モルデナイトとして特許第4639713号に記載の方法により合成したシリカ/アルミナ比50のナトリウム型モルデナイトを使用した以外は実施例3と同様にして反応を行った。
 反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2-クロロエタノール転化率2.4%、塩化ビニルモノマー選択率87%であった。
 実施例7
 シリカ/アルミナ比18のナトリウム型モルデナイト1.5gを室温で3.4mol/Lのリン酸二水素アンモニウム水溶液7.5mL中で2時間攪拌した後、純水で2回洗浄を行い、120℃で16時間乾燥させた。以上の操作を計3回行うことにより、ナトリウム型モルデナイトをアンモニウム型へ変換した。調製したアンモニウム型モルデナイト0.6gを内径10mmの石英製反応管に充填し、窒素雰囲気下500℃で2時間加熱処理した。その後窒素を流したまま反応温度270℃まで温度を下げ、気化させた2-クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
 反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2-クロロエタノール転化率15.5%、塩化ビニルモノマー選択率48%であった。
 実施例8
 シリカ/アルミナ比18のナトリウム型モルデナイト1.5gを室温で3.4mol/Lのリン酸二水素アンモニウム水溶液7.5mL中で2時間攪拌した後、純水で2回洗浄を行い、120℃で16時間乾燥させた。以上の操作を計3回行うことにより、ナトリウム型モルデナイトをアンモニウム型へ変換した。調製したアンモニウム型モルデナイト0.6gを内径10mmの石英製反応管に充填し、窒素雰囲気下500℃で2時間加熱処理した。その後窒素を流したまま反応温度180℃まで温度を下げ、気化させた2-クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度180℃の条件下にて反応させた。
 反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2-クロロエタノール転化率10.7%、塩化ビニルモノマー選択率86%であった。
 比較例
 シリカ/アルミナ比18の水素型モルデナイト0.6gを内径10mmの石英管に充填し、窒素中270℃で45分間処理した。次に、気化させた2-クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
 反応生成物をガスクロマトグラフで分析したところ、反応経過時間1時間後において、2-クロロエタノール転化率9.0%、塩化ビニルモノマー選択率8.4%であった。
 本発明によれば、より高収率、高選択率で塩化ビニルモノマーを製造することができる塩化ビニルモノマーの製造方法を提供することができる。

Claims (9)

  1. アンモニウム型ゼオライトを不活性ガス中での加熱により脱アンモニア処理した後、そのまま不活性ガス中で温度を下げて水素型ゼオライトとする工程と、
     該水素型ゼオライトを含む固体酸触媒による触媒反応により、2-クロロエタノールを脱水して塩化ビニルモノマーを製造する工程と
    を含む、塩化ビニルモノマーの製造方法。
  2.  前記アンモニウム型ゼオライトを、ナトリウム型ゼオライトをアンモニウム塩水溶液中でイオン交換することにより調製する工程をさらに含む、請求項1に記載の塩化ビニルモノマーの製造方法。
  3.  前記アンモニウム塩水溶液が、塩化アンモニウム水溶液、硝酸アンモニウム水溶液、硫酸アンモニウム、酢酸アンモニウム、リン酸三アンモニウム、リン酸水素二アンモニウム及びリン酸二水素アンモニウムから選ばれる一種または二種以上のアンモニウム塩水溶液である、請求項2に記載の塩化ビニルモノマーの製造方法。
  4.  前記アンモニウム塩水溶液が、塩化アンモニウム水溶液である、請求項3に記載の塩化ビニルモノマーの製造方法。
  5.  前記アンモニウム塩水溶液が、リン酸二水素アンモニウム水溶液である、請求項3に記載の塩化ビニルモノマーの製造方法。
  6.  前記アンモニウム型ゼオライトの細孔径が酸素12員環以上である、請求項1から5の何れか1項に記載の塩化ビニルモノマーの製造方法。
  7.  前記アンモニウム型ゼオライトの細孔構造が1次元の直線状である、請求項1から6の何れか1項に記載の塩化ビニルモノマーの製造方法。
  8.  前記アンモニウム型ゼオライトがアンモニウム型モルデナイトである、請求項6又は7に記載の塩化ビニルモノマーの製造方法。
  9.  前記アンモニウム型ゼオライトのシリカ/アルミナ比が5以上70未満である、請求項1から8の何れか1項に記載の塩化ビニルモノマーの製造方法。
PCT/JP2013/060289 2012-04-13 2013-04-04 塩化ビニルモノマーの製造方法 WO2013154017A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014510131A JP5836480B2 (ja) 2012-04-13 2013-04-04 塩化ビニルモノマーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012091967 2012-04-13
JP2012-091967 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013154017A1 true WO2013154017A1 (ja) 2013-10-17

Family

ID=49327585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060289 WO2013154017A1 (ja) 2012-04-13 2013-04-04 塩化ビニルモノマーの製造方法

Country Status (2)

Country Link
JP (1) JP5836480B2 (ja)
WO (1) WO2013154017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023505709A (ja) * 2019-12-12 2023-02-10 中国科学院大▲連▼化学物理研究所 1,2-ジクロロエタンの分解による塩化ビニル製造用の触媒、製造方法、使用及び再生方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215243A (ja) * 2008-03-11 2009-09-24 Tosoh Corp エチレンの製法
JP2009234983A (ja) * 2008-03-27 2009-10-15 Tosoh Corp エチレンの製造方法
JP2010235487A (ja) * 2009-03-31 2010-10-21 Sekisui Chem Co Ltd 塩化ビニルモノマーの製造方法及び塩化ビニル樹脂
JP2012214433A (ja) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd 塩化ビニルモノマーの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215243A (ja) * 2008-03-11 2009-09-24 Tosoh Corp エチレンの製法
JP2009234983A (ja) * 2008-03-27 2009-10-15 Tosoh Corp エチレンの製造方法
JP2010235487A (ja) * 2009-03-31 2010-10-21 Sekisui Chem Co Ltd 塩化ビニルモノマーの製造方法及び塩化ビニル樹脂
JP2012214433A (ja) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd 塩化ビニルモノマーの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023505709A (ja) * 2019-12-12 2023-02-10 中国科学院大▲連▼化学物理研究所 1,2-ジクロロエタンの分解による塩化ビニル製造用の触媒、製造方法、使用及び再生方法
JP7360551B2 (ja) 2019-12-12 2023-10-12 中国科学院大▲連▼化学物理研究所 1,2-ジクロロエタンの分解による塩化ビニル製造用の触媒及び製造方法

Also Published As

Publication number Publication date
JPWO2013154017A1 (ja) 2015-12-17
JP5836480B2 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
RU2630675C2 (ru) Катализатор и способ получения уксусной кислоты и диметилового эфира
TW201441189A (zh) 羰基化方法(二)
JP6909225B2 (ja) オリゴシランの製造方法
CN102951998A (zh) 一种乙烯一步法制备乙二醇的方法
JP6182989B2 (ja) 1,3,3,3−テトラフルオロプロペンの製造方法
JP5836480B2 (ja) 塩化ビニルモノマーの製造方法
CN103772136B (zh) 六氟乙烷的生产工艺
JP2019526588A (ja) 1,3−シクロヘキサンジメタノールの製造方法
JP2012211097A (ja) 塩化ビニルモノマーの製造方法
JP2015067555A (ja) 塩化ビニルモノマーの製造方法
JP5767559B2 (ja) 塩化ビニルモノマーの製造方法
JP5883753B2 (ja) 塩化ビニルモノマーの製造方法
JP5902885B2 (ja) 芳香族ヨード化化合物の製造方法
JP2015086184A (ja) 塩化ビニルモノマーの製造方法
JP5916506B2 (ja) オレフィンの製造方法
JP2015086185A (ja) メチルアセチレンの製造方法
CN108516932A (zh) 三氯乙烯制备三氟乙酰氯的方法
JP2015067553A (ja) エチレンの製造方法
CN105646191B (zh) 一种制备芳香二甲酰氯的方法
JP2014144941A (ja) 塩化ビニルモノマーの製造方法
CN114315507B (zh) 制备1-氯-3,3,3-三氟丙烯或/和z-1,3-二氯-3,3-二氟丙烯的方法
JP6721434B2 (ja) 1,5−ジブロモナフタレンの製造方法
CN103288781A (zh) 一种制备环氧氯丙烷的方法
JP2021120354A (ja) 1,2,2,2−テトラフルオロエチルメチルエーテルの製造方法
JP5669362B2 (ja) パラジクロロベンゼンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775621

Country of ref document: EP

Kind code of ref document: A1