WO2013153992A1 - ハードディスク用基板の製造方法 - Google Patents

ハードディスク用基板の製造方法 Download PDF

Info

Publication number
WO2013153992A1
WO2013153992A1 PCT/JP2013/060093 JP2013060093W WO2013153992A1 WO 2013153992 A1 WO2013153992 A1 WO 2013153992A1 JP 2013060093 W JP2013060093 W JP 2013060093W WO 2013153992 A1 WO2013153992 A1 WO 2013153992A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
plating film
electroless nip
substrate
nip plating
Prior art date
Application number
PCT/JP2013/060093
Other languages
English (en)
French (fr)
Inventor
元 石田
展彰 迎
隆広 吉田
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to CN201380030518.3A priority Critical patent/CN104350542A/zh
Priority to SG11201406439XA priority patent/SG11201406439XA/en
Priority to US14/391,296 priority patent/US9297078B2/en
Publication of WO2013153992A1 publication Critical patent/WO2013153992A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73913Composites or coated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/858Producing a magnetic layer by electro-plating or electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Definitions

  • the present invention relates to a method for manufacturing a hard disk substrate.
  • electroless NiP plating is performed on a machined aluminum or aluminum alloy substrate to form a plating film on the surface of the substrate, which is used as a base of a magnetic film (See Patent Document 1).
  • the surface of the plating film formed by electroless NiP plating is very rough, which places a heavy burden on the polishing process, and because there is a lot of polishing allowance, the thickness of the plating film must also be increased, which increases productivity. Worsening the environment and increasing the environmental burden.
  • a plating film having a smooth surface is obtained by adding a brightener such as an organic sulfur compound to an electroless plating bath.
  • a plating film containing sulfur has low acid corrosion resistance.
  • defects such as corrosion pits are present on the surface of the plating film. There is a risk that it will occur, and techniques such as printed circuit boards cannot be applied as they are.
  • the acid corrosion resistance of the plating film is poor, Ni in the plating film will be preferentially eluted excessively even during washing of strong acid, which may cause problems in subsequent processes of the hard disk substrate. is there.
  • the present invention has been made in view of the above points.
  • the object of the present invention is for a hard disk, which can obtain a smooth plating film surface by electroless NiP plating and does not deteriorate acid corrosion resistance. It is to supply a substrate.
  • the method for producing a hard disk substrate of the present invention that solves the above problems is a method for producing a hard disk substrate having an electroless NiP plating film, the first electroless NiP plating containing an additive having a smoothing action
  • a substrate on which a lower layer of an electrolytic NiP plating film is formed is immersed in a second electroless NiP plating bath to form an upper layer of the electroless NiP plating film having an acid corrosion resistance of 4 ⁇ m or more.
  • a plating step is a method for producing a hard disk substrate having an electroless NiP plating film, the first electroless NiP plating containing an additive having a smoothing action
  • the substrate is immersed in the first electroless NiP plating bath containing an additive having a smoothing action such as an organic sulfur compound, and the surface of the substrate is electroless NiP plated. Since the lower layer of the film is formed, the surface roughness of the lower layer can be reduced, and the surface of the lower layer can be smoothed.
  • an additive having a smoothing action such as an organic sulfur compound
  • the substrate on which the lower layer of the electroless NiP plating film is formed is immersed in a second electroless NiP plating bath having acid corrosion resistance, and the upper layer of the electroless NiP plating film is formed on the smoothed surface of the lower layer. Since it forms, the surface roughness of an upper layer can be made small and the surface of an upper layer can be smoothed. And since the surface of a lower layer is coat
  • the load of the polishing process can be reduced and the productivity of the hard disk substrate can be improved.
  • the polishing waste liquid discharged from the polishing process can be reduced, the polishing allowance can be reduced, and the film thickness of the plating film can be reduced, so that the environmental load can be reduced.
  • the plating film thickness of the upper layer of the electroless NiP plating film is set to 4 ⁇ m or more.
  • the generation of a certain pit can be suppressed. Therefore, a smooth hard disk substrate can be obtained, and it is possible to prevent the corrosion of the lower plating film from starting from the pits formed in the upper layer of the electroless NiP plating film and preventing deterioration of the acid corrosion resistance. .
  • the present invention since the number of pits formed on the upper layer of the electroless NiP plating film can be reduced, it is possible to prevent a decrease in recording capacity when a hard disk recording device is provided.
  • FIG. 6 is a graph showing the measurement results of the number of pits in Example 2-1 to Example 2-4 and Comparative Examples 2-1 and 2.
  • the hard disk substrate manufacturing method includes a substrate forming step in which an aluminum blank material is ground to form a substrate, a plating step in which an electroless NiP plating is applied to the substrate to form an electroless NiP plating film on the substrate surface, and an electroless A polishing step of polishing the surface of the substrate on which the NiP plating film is formed to give a mirror surface; and a cleaning step of cleaning the polished plating film.
  • the plating steps are (1) degreasing step, (2) water washing, (3) etching treatment, (4) water washing, (5) desmutting treatment, (6) water washing, (7) primary zincate Treatment, (8) water washing, (9) dezudiing treatment, (10) water washing, (11) secondary zincate treatment, (12) water washing, (13) electroless NiP plating, (14) water washing, (15) drying, (16) Annealing can be performed, and the (13) electroless NiP plating can be performed in two stages, a first plating process and a second plating process.
  • the substrate is immersed in a first electroless NiP plating bath containing an additive having a smoothing action to form a lower layer of the electroless NiP plating film on the substrate surface.
  • an electroless NiP plating film having an average surface roughness smaller than the average surface roughness of the aluminum blank material can be formed.
  • An organic sulfur compound can be used as an additive having a smoothing action.
  • This additive with smoothing action is deposited on the convex part of the aluminum blank with irregularities, and delays the growth of the electroless NiP plating compared with other parts, thereby reducing the influence of the irregularities on the aluminum blank material Thus, it is considered that a smooth plating film can be obtained.
  • the substrate on which the lower layer of the electroless NiP plating film is formed in the first plating step is immersed in a second electroless NiP plating bath having acid corrosion resistance, and electroless having acid corrosion resistance
  • the upper layer of the NiP plating film is formed.
  • the plating film thickness of the upper layer of the electroless NiP plating film is 4 ⁇ m or more.
  • a plating bath to which no organic sulfur compound is added can be used.
  • having acid corrosion resistance is sufficient if it has acid corrosion resistance comparable to that of an electroless NiP plating film that has been conventionally used.
  • a single-layer electroless NiP plating film is formed in a single plating process, so that the plating film thickness is, for example, about 10 to 15 ⁇ m, and the electroless NiP plating in the present embodiment.
  • the film thickness is thicker than the upper layer of the film. Therefore, even if a pinhole is generated at the initial stage of plating deposition, it is less likely to be blocked by the subsequent growth of the plating film and appear as pits on the surface of the plating film. Moreover, even if it remains in the plating film as a void, it is present in the vicinity of the interface with the aluminum blank material, so that it is unlikely to appear as a pit on the surface of the plating film by polishing.
  • the lower layer is formed by the first plating step
  • the upper layer is formed by the second plating step
  • the electroless NiP plating film has a two-layer structure of the lower layer and the upper layer. Yes.
  • an oxide film is formed on the surface of the lower plating film during the transition from the first plating process for forming the lower layer to the second plating process for forming the upper layer.
  • deposition of an inactive portion where an oxide film is formed during electroless NiP plating of the upper layer is delayed, pinholes and voids are generated, and pit defects may frequently occur on the polished substrate surface.
  • the pinhole becomes a pit.
  • the void appears on the surface of the upper plating film, and the void appears on the surface of the upper plating film as pits by polishing.
  • the plating thickness of the upper layer of the electroless NiP plating film is less than 4 ⁇ m, many pits are generated in the upper layer of the electroless NiP plating film, and the corrosion of the lower plating film occurs due to the pit as a starting point.
  • the corrosion resistance is deteriorated, or the number of locations where data cannot be recorded when the magnetic recording layer is formed increases, and the recording capacity as the hard disk recording device may be reduced.
  • the thickness of the upper layer of the electroless NiP plating film is set to 4 ⁇ m or more, and pinholes and voids due to the oxide film generated near the interface with the lower layer at the early stage of plating deposition of the upper layer are formed on the upper layer.
  • the plating film is formed or polished, it is suppressed from appearing on the surface of the upper plating film as pits. Therefore, a smooth hard disk substrate can be obtained, and it is possible to prevent the corrosion of the lower plating film from starting from the pits in the upper layer of the electroless NiP plating film and thereby preventing the acid corrosion resistance from deteriorating. Further, when the hard disk recording apparatus is used, it is possible to prevent the recording capacity from being lowered.
  • a water-soluble nickel salt is used as a nickel ion supply source.
  • this water-soluble nickel salt nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, nickel sulfamate, and the like can be used.
  • the concentration in the plating bath is preferably 1 to 30 g / L as metallic nickel.
  • Complexing agents include dicarboxylic acids or alkali salts thereof such as tartaric acid, malic acid, citric acid, succinic acid, malonic acid, glycolic acid, gluconic acid, oxalic acid, phthalic acid, fumaric acid, maleic acid, lactic acid, or these It is preferable to use two or more sodium salts, potassium salts and ammonium salts, and at least one of them is oxydicarboxylic acid.
  • the concentration of the complexing agent is preferably 0.01 to 2.0 mol / L.
  • hypophosphorous acid or hypophosphites such as sodium hypophosphite and potassium hypophosphite.
  • concentration of the reducing agent is preferably 5 to 80 g / L.
  • the first electroless NiP plating to which a brightener such as an organic sulfur compound is added as an additive having a smoothing action It is preferable to perform electroless NiP plating using a bath. By this treatment, an electroless NiP plating film having an average surface roughness smaller than the average surface roughness of the aluminum blank material can be formed.
  • the organic sulfur compound may contain a sulfur atom in the structural formula, for example, thiourea, sodium thiosulfate, sulfonate, isothiazolone compound, sodium lauryl sulfate, 2,2'-dipyridyl disulfide, 2,2 ' -Dithiodibenzoic acid, bisdisulfide and the like can be used, and these can be used alone or in combination of two or more. More preferably, the organic sulfur compound contains nitrogen, and examples thereof include thiourea, isothiazolone compounds, 2,2'-dipyridyl disulfide, and bisdisulfide.
  • the addition amount of the organic sulfur compound is preferably 0.01 to 20 ppm, particularly preferably 0.1 to 5 ppm. If the amount is too small, there is no smoothing effect of the plating film, and if it is too much, no further effect is recognized.
  • Such brighteners of organic sulfur compounds are less toxic than brighteners containing Cd, As, Tl, etc. and are often suitable for actual use.
  • the first electroless NiP plating bath further includes pH adjusters such as acids, alkalis and salts, preservatives for preventing mold bathing during storage, buffers for suppressing pH fluctuations, and pinholes. It is preferable to contain a surfactant for suppressing the generation and a stabilizer for suppressing the decomposition of the plating bath.
  • pH adjusters such as acids, alkalis and salts, preservatives for preventing mold bathing during storage, buffers for suppressing pH fluctuations, and pinholes. It is preferable to contain a surfactant for suppressing the generation and a stabilizer for suppressing the decomposition of the plating bath.
  • the second plating step it is preferable to perform electroless NiP plating using a second electroless NiP plating bath that does not contain an organic sulfur compound.
  • the plating film thickness of the upper layer of the electroless NiP plating film formed in the second plating step is 4 ⁇ m or more.
  • the second electroless NiP plating bath is usually used in the manufacture of a hard disk substrate and has acid corrosion resistance in the polishing step after the plating step. Furthermore, it has acid corrosion resistance in the strong acid washing step.
  • the substrate is immersed in the first electroless NiP plating bath containing an additive having a smoothing action such as an organic sulfur compound, and the surface of the substrate is electroless NiP plated. Since the lower layer of the film is formed, the surface roughness of the lower layer can be reduced, and the surface of the lower layer can be smoothed.
  • an additive having a smoothing action such as an organic sulfur compound
  • the substrate on which the lower layer of the electroless NiP plating film is formed is immersed in a second electroless NiP plating bath having acid corrosion resistance, and the upper layer of the electroless NiP plating film is formed on the smoothed surface of the lower layer. Since it forms, the surface roughness of an upper layer can be made small and the surface of an upper layer can be smoothed. And since the surface of a lower layer is coat
  • a smooth hard disk substrate can be obtained, the load of the polishing process can be reduced, and the productivity of the hard disk substrate can be improved.
  • the polishing waste liquid discharged from the polishing process can be reduced, the polishing allowance can be reduced, and the film thickness of the plating film can be reduced, so that the environmental load can be reduced.
  • the plating film thickness of the upper layer of the electroless NiP plating film is set to 4 ⁇ m or more. Therefore, pinholes and voids generated in the vicinity of the interface with the lower layer in the early stage of plating deposition of the upper layer can be suppressed from appearing as pits on the surface of the upper plating film after the upper layer plating film is formed or polished. Therefore, a smooth hard disk substrate can be obtained, and it is possible to prevent deterioration of acid corrosion resistance due to corrosion from the pits. Further, when the hard disk recording apparatus is used, it is possible to prevent the recording capacity from being lowered.
  • Example 1 Example 1 was carried out in order to observe the surface roughness of the upper layer in the first plating process and the second plating process.
  • desmutting with nitric acid was performed at 20 ° C. for 30 seconds, and a primary zincate treatment was performed at 20 ° C. for 30 seconds using a known zincate treatment solution.
  • dezincification with nitric acid was performed at 20 ° C. for 30 seconds, and then secondary zincate was performed at 20 ° C. for 30 seconds.
  • Example 1-1 In the first plating step for forming a lower layer on the surface of the substrate, a known malic acid-succinic acid electroless NiP plating bath to which 1 ppm of 2,2′-dipyridyl disulfide is added as an organic sulfur compound is used. A plating treatment with a plating film thickness of 10 ⁇ m was performed at 90 ° C. for 90 minutes. The surface roughness of the electroless NiP plating film was measured with an atomic force microscope (AFM) manufactured by Veeco (the roughness is shown as an average roughness Ra by 10 ⁇ m square). As a result, the surface roughness value was 2.3 nm.
  • AFM atomic force microscope
  • the second plating step for forming the upper layer after washing the lower surface of the electroless NiP plating film a known malic acid-succinic acid electroless NiP plating bath to which no organic sulfur compound is added is used.
  • a plating treatment with a plating film thickness of 2 ⁇ m was performed at 85 ° C. for 20 minutes, so that the total plating film thickness on the substrate surface was 12 ⁇ m.
  • the acid corrosion resistance was determined by immersing the electroless NiP plating film in Example 1-1, Comparative Example 1-1, and Comparative Example 1-2 in nitric acid (concentration 30%, temperature 40 ° C.) for 5 minutes, and then the surface after immersion. was measured by counting the number of corrosion pits in the field of view.
  • FIG. 1 is a diagram showing the measurement results of Example 1-1 and Comparative Examples 1-1 and 2.
  • Example 1-1 the surface roughness Ra after plating was 2.6 nm, and the number of corrosion pits was 1250 (pieces / mm 2 ). In Comparative Example 1-1, the surface roughness Ra after plating was 14.8 nm, and the number of corrosion pits was 1125 (pieces / mm 2 ). In Comparative Example 1-2, the surface roughness Ra after plating was 2.1 nm, and the number of corrosion pits was 72875 (pieces / mm 2 ).
  • Comparative Example 1-1 since the plating process was performed using an electroless NiP plating bath having acid corrosion resistance in the plating step, the number of corrosion pits was smaller than that in Example 1, but no organic sulfur compound was contained. Therefore, the surface roughness Ra is rougher than that of Example 1-1, and in FIG. 1, a plurality of fine irregularities can be observed on the surface of the plating film. Therefore, in Comparative Example 1-1, it is expected that a great load is required for the polishing process.
  • Example 1 shows that the surface roughness Ra after plating is small and smooth, the number of corrosion pits is small, and it has high acid corrosion resistance. .
  • Example 1-2 A plurality of types of organic sulfur compounds were prepared and plated under the same plating conditions as in Example 1-1 to prepare samples Nos. 1 to 6.
  • Table 1 below is a table showing the names, structural formulas, and addition amounts of the added organic sulfur compounds.
  • the surface roughness of the electroless NiP plating film was measured by an atomic force microscope (AFM) manufactured by Veeco (the roughness is shown as an average roughness Ra by 10 ⁇ m square).
  • FIG. 2 is a diagram showing the measurement results of the surface roughness of each sample and the comparative example.
  • the comparative example in FIG. 2 is the above-described comparative example 1-1.
  • the surface roughness (Ra) was large (14.8 nm), indicating that the surface was rougher than the samples of sample numbers 1 to 6.
  • the present example to which the organic sulfur-based compound is added that is, the samples of sample numbers 1 to 6, have a small surface roughness (Ra) and a smoother surface than the comparative example.
  • samples Nos. 2, 4, and 5 have a small surface roughness (Ra) and a remarkable smoothing effect. This is expected to be influenced by nitrogen contained in the organic sulfur compound.
  • Example 1-3 Samples were prepared using the organic sulfur compounds, dipyridyl disulfide, thiourea, and isothiazolone, which had a particularly high smoothing effect in Example 1-2, as additives. Then, (1) surface roughness, (2) nodule height, and (3) waviness, which are indicators of smoothness, were measured to confirm the effect.
  • the added amount 0.00 ppm
  • the added amount 0.25 ppm to 1.50 ppm
  • the surface roughness is as low as 1/3 at the maximum.
  • Nodule height As examples, a sample in which the addition amount of dipyridyl disulfide was 1.0 ppm, a sample in which the addition amount of thiourea was 0.75 ppm, and a sample in which the addition amount of isothiazolone was 0.5 ppm were prepared. And the nodule height and the nodule diameter were measured using the ultra-deep shape measuring microscope (VK-851 by Keyence Corporation). As a comparative example, the nodule height and nodule diameter of Comparative Example 1-1 described above were measured.
  • Table 3 below is a table showing the measurement results of the nodule height and nodule diameter of each example and comparative example, and FIG. 4 is a diagram showing the correlation between the measurement results.
  • each example to which the organic sulfur compound was added had a reduced nodule height relative to the nodule diameter as compared with the comparative example to which no organic sulfur compound was added.
  • Example 2 was carried out in order to observe the occurrence state of pits that are considered to be generated due to an oxide film on the lower plating surface when plating is performed by the first plating process and the second plating process.
  • desmutting treatment was performed using nitric acid at 20 ° C. for 30 seconds, and primary zincating treatment was performed at 20 ° C. for 30 seconds using a known alkaline zincate treatment solution. Furthermore, after dezyering treatment using nitric acid at 20 ° C. for 30 seconds, secondary zincating treatment was carried out at 20 ° C. for 30 seconds using the same zincate treatment solution as the primary zincate.
  • Example 2-1 Using an electroless Ni-P plating solution with no organic sulfur compound added, the first plating process is performed at 85 ° C for 120 minutes to form a lower layer of an electroless NiP plating film with a plating thickness of 10 ⁇ m. did. And after washing the surface of the lower layer of the obtained electroless NiP plating film with pure water, using an electroless Ni-P plating solution to which no organic sulfur compound is further added, in the second plating step, Plating treatment was performed to form an upper layer of the electroless NiP plating film having a plating film thickness of 4 ⁇ m on the lower layer of the electroless NiP plating film. That is, the lower plating film thickness of the electroless NiP plating film was 10 ⁇ m, and the upper plating film thickness was 4 ⁇ m.
  • Example 2-2 Plating was performed in the same manner as in Example 2-1, and the upper plating film thickness was 5 ⁇ m.
  • Example 2-3 Plating was performed in the same manner as in Example 2-1, and the upper plating film thickness was 6 ⁇ m.
  • Example 2-4 Plating was performed in the same manner as in Example 2-1, so that the upper plating film thickness was 9 ⁇ m.
  • the present invention is a manufacturing method for solving the above-described pits generated by forming an electroless NiP plating film into a two-layer structure.
  • the cause of this pit is an oxide film formed on the surface of the lower plating film, and does not depend on the smoothness of the lower electroless NiP plating film.
  • an electroless NiP plating bath that does not contain an additive having a smoothing action was used to form the lower layer electroless NiP plating film.
  • ⁇ Measurement results> For the measurement of the number of pits on the surface of the electroless NiP plating film after the above polishing process, a magnetic disk surface inspection device (manufactured by Hitachi High-Technologies Corporation, RS1390) is used. The number of pits with a width of 0.2 ⁇ m or more existing in the entire region with a radius of 13.5 mm to 47.2 mm was measured. Table 5 and FIG. 6 show the measurement results.
  • Comparative Example 2-2 where the plating film thickness is 10 ⁇ m, the number of pits is 2.0 (pieces / surface).
  • the film thickness from the base interface is thick (10 ⁇ m)
  • the cause is not limited to this, but it is presumed to be caused by, for example, contamination in the plating solution.
  • the number of pits in Comparative Example 2-2 and Examples 2-1 to 4 is compared, they are almost the same. Therefore, the pits in Examples 2-1 to 4 are considered to be caused by the occurrence of other than the oxide film generated on the lower surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 本発明は、無電解NiPめっきにより平滑なめっき皮膜の表面を得ることができ、酸耐食性も悪化することがないハードディスク用基板を得ることを課題とする。 本発明のハードディスク用基板の製造方法は、無電解NiPめっき皮膜を有するハードディスク用基板の製造方法であって、平滑化作用を有する添加剤を含有する第1の無電解NiPめっき浴に基板を浸漬して該基板の表面に、該表面よりも平均表面粗さが小さい前記無電解NiPめっき皮膜の下層を形成する。そして、無電解NiPめっき皮膜の下層が形成された基板を、第2の無電解NiPめっき浴に浸漬して酸耐食性を有するめっき膜厚が4μm以上の無電解NiPめっき皮膜の上層を形成する。

Description

ハードディスク用基板の製造方法
 本発明は、ハードディスク用基板の製造方法に関するものである。
 ハードディスク用基板の製造方法として、機械加工されたアルミニウム又はアルミニウム合金の基板上に無電解NiPめっきを施して、基板表面にめっき皮膜を形成し、磁性皮膜の下地とすることが行われている(特許文献1を参照)。
 ここで、ハードディスク記録装置の高記録密度化のためには、記録/再生ヘッドの浮上高さをなるべく低くすることが必要である。したがって、無電解NiPめっきによるめっき皮膜を形成した後に、遊離砥粒を使用した研磨によりそのめっき皮膜の表面を平滑化する研磨工程が行われている。
特開平3-236476号公報
 しかしながら、無電解NiPめっきによるめっき皮膜の表面は非常に粗く、研磨工程に多大なる負荷が掛かっており、また、研磨代も多いことから、めっき皮膜の厚みも厚くしなければならず、生産性の悪化および環境負荷の増大を招いている。
 このような観点から、無電解NiPめっきによって形成されるめっき皮膜の表面をなるべく平滑なものとし、研磨工程による負荷を軽減することが望まれている。例えば、プリント基板等にめっき皮膜を形成する方法では、無電解めっき浴に有機硫黄系化合物等の光沢剤を添加することによって、平滑な表面を有するめっき皮膜を得ることが行われている。
 ところが、一般的に硫黄を含有するめっき皮膜は、酸耐食性が低く、特に、研磨工程において強酸の研磨剤を使用するハードディスク用基板の製造方法においては、めっき皮膜の表面に腐食ピット等の欠陥が発生するおそれがあり、プリント基板等の技術をそのまま適用することはできない。また、さらには、めっき皮膜の酸耐食性が悪いと、強酸の洗浄時にも、めっき皮膜中のNiが優先的に過度に溶出してしまい、ハードディスク用基板のその後の工程に不具合を生じさせるおそれがある。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、無電解NiPめっきにより平滑なめっき皮膜の表面を得ることができ、酸耐食性も悪化することがないハードディスク用基板を供給することである。
 上記課題を解決する本発明のハードディスク用基板の製造方法は、無電解NiPめっき皮膜を有するハードディスク用基板の製造方法であって、平滑化作用を有する添加剤を含有する第1の無電解NiPめっき浴に基板を浸漬して該基板の表面に、該表面よりも平均表面粗さが小さい前記無電解NiPめっき皮膜の下層を形成する第1のめっき工程と、該第1のめっき工程により前記無電解NiPめっき皮膜の下層が形成された基板を、第2の無電解NiPめっき浴に浸漬して酸耐食性を有するめっき膜厚が4μm以上の前記無電解NiPめっき皮膜の上層を形成する第2のめっき工程と、を含むことを特徴としている。
 上記したハードディスク用基板の製造方法によれば、有機硫黄系化合物等の平滑化作用を有する添加剤を含有する第1の無電解NiPめっき浴に基板を浸漬して基板の表面に無電解NiPめっき皮膜の下層を形成するので、下層の表面粗さを小さくすることができ、下層の表面を平滑化することができる。
 そして、その無電解NiPめっき皮膜の下層が形成された基板を、酸耐食性を有する第2の無電解NiPめっき浴に浸漬して、下層の平滑化された表面に無電解NiPめっき皮膜の上層を形成するので、上層の表面粗さを小さくすることができ、上層の表面を平滑化することができる。そして、酸耐食性を有する上層によって下層の表面を被覆するため、研磨工程や洗浄工程における酸耐食性を悪化させることがない。
 したがって、研磨工程の負荷を低減でき、ハードディスク用基板の生産性を向上させることができる。そして、研磨工程から排出される研磨廃液を低減でき、また、研磨代を少なくすることができ、めっき皮膜の膜厚も薄くできることから、環境負荷の低減も可能となる。
 そして、上記した本発明のハードディスク用基板の製造方法によれば、無電解NiPめっき皮膜の上層のめっき膜厚を4μm以上とするので、研磨工程によって、無電解NiPめっき皮膜の上層に凹み欠陥であるピットが生じるのを抑制することができる。したがって、平滑なハードディスク用基板を得ることができ、無電解NiPめっき皮膜の上層に形成されたピットを起点に下層めっき皮膜の腐蝕が発生して酸耐食性の悪化するのを未然に防ぐことができる。また、本発明によれば、無電解NiPめっき皮膜の上層に形成されるピットの数を減らすことができるので、ハードディスク記録装置としたときに、記録容量の低下を防ぐことができる。
実施例1-1と比較例1-1、2の測定結果を示す図。 実施例1-2の測定結果を示した図。 実施例1-3の表面粗度の測定結果を示した図。 実施例1-3のノジュールの径と高さの測定結果を示す図。 実施例1-3のうねりの測定結果を示す図。 実施例2-1~実施例2-4と比較例2-1、2におけるピット個数の測定結果を示すグラフ。
 以下、本実施の形態について詳細に説明する。
 ハードディスク用基板の製造方法は、アルミブランク材を研削して基板を形成する基板形成工程と、基板に無電解NiPめっきを施して基板表面に無電解NiPめっき皮膜を形成するめっき工程と、無電解NiPめっき皮膜が形成された基板表面を研磨し鏡面に仕上げる研磨工程と、研磨されためっき皮膜を洗浄する洗浄工程と、を含む。
 上記各工程の内、めっき工程は、(1)脱脂工程、(2)水洗、(3)エッチング処理、(4)水洗、(5)脱スマット処理、(6)水洗、(7)1次ジンケート処理、(8)水洗、(9)脱ジンケート処理、(10)水洗、(11)2次ジンケート処理、(12)水洗、(13)無電解NiPめっき、(14)水洗、(15)乾燥、(16)焼鈍を行うことができ、上記(13)無電解NiPめっきが第1のめっき工程と第2のめっき工程の2段階に分けて行うことができる。
 第1のめっき工程では、平滑化作用を有する添加剤を含有する第1の無電解NiPめっき浴に基板を浸漬して、基板表面に無電解NiPめっき皮膜の下層を形成する。この処理により、アルミブランク材の平均表面粗さよりも小さい平均表面粗さを有する無電解NiPめっき皮膜を形成することができる。なお、平滑化作用を有する添加剤には有機硫黄系化合物を用いることができる。
 この平滑化作用を有する添加剤は、凹凸を有するアルミブランク材の凸部分に堆積し、無電解NiPめっきの成長を他の部分よりも遅らせることで、アルミブランク材の凹凸の影響を低減する作用により、平滑なめっき皮膜を得ることができると考えられる。
 第2のめっき工程では、第1のめっき工程により無電解NiPめっき皮膜の下層が形成された基板を、酸耐食性を有する第2の無電解NiPめっき浴に浸漬して、酸耐食性を有する無電解NiPめっき皮膜の上層を形成する。無電解NiPめっき皮膜の上層のめっき膜厚は、4μm以上とする。酸耐食性を有する無電解NiPめっき皮膜を形成するためには、有機硫黄系化合物を添加しないめっき浴を用いることができる。
 なお、酸耐食性を有するとは、従来使用されている無電解NiPめっき皮膜程度の酸耐食性を有していればよい。このためには有機硫黄系化合物をめっき浴に積極的に添加しないことが好ましいが、コンタミ程度で酸耐食性に影響を及ぼさない程度の混入であれば許容される。
 従来の無電解NiPめっきは、1回のめっき工程で単層の無電解NiPめっき皮膜を形成していたので、めっき膜厚が例えば10~15μm程度であり、本実施の形態における無電解NiPめっき皮膜の上層と比較して膜厚が厚い。したがって、めっき析出初期にピンホールが発生しても、その後のめっき皮膜の成長により塞がれて、ピットとしてめっき皮膜表面に現れる可能性は低い。また、ボイドとしてめっき膜中に残留しても、アルミブランク材との界面の付近に存在しているので、研磨によりピットとしてめっき皮膜表面に現れる可能性は低い。
 一方、本実施の形態における無電解NiPめっきは、第1のめっき工程により下層を形成し、第2のめっき工程により上層を形成して、無電解NiPめっき皮膜を下層と上層の2層構造としている。
 しかし、上記の2層構造とする製造方法においては、下層を形成する第1のめっき工程から上層を形成する第2のめっき工程へ移行する間に、下層のめっき皮膜表面に酸化膜が形成され、上層の無電解NiPめっき時に酸化膜が形成された不活性な箇所の析出が遅れ、ピンホールやボイドが発生し、研磨後の基板表面にピット欠陥が多発する可能性がある。
 したがって、下層のめっき皮膜表面に酸化膜などの不活性な箇所が存在することによって、上層のめっき析出初期に下層との界面付近にピンホールやボイドが発生した場合に、ピンホールは、ピットとして上層のめっき皮膜表面に現れ、ボイドは、研磨によりピットとして上層のめっき皮膜表面に現れるおそれがある。特に、無電解NiPめっき皮膜の上層のめっき膜厚が4μm未満の場合には、無電解NiPめっき皮膜の上層にピットが多数発生し、そのピットを起点に下層めっき皮膜の腐蝕が発生して酸耐食性の悪化するおそれや、磁気記録層を形成した際にデータが記録できない箇所が増加して、ハードディスク記録装置としての記録容量が低下するおそれがある。
 そこで、本実施の形態では、無電解NiPめっき皮膜の上層のめっき膜厚を4μm以上の厚さとし、上層のめっき析出初期に下層との界面付近に発生した酸化膜起因のピンホールやボイドが上層のめっき皮膜の形成後や研磨により、ピットとして上層のめっき皮膜表面に現れるのを抑制している。したがって、平滑なハードディスク用基板を得ることができ、無電解NiPめっき皮膜の上層のピットを起点に下層めっき皮膜の腐蝕が発生して酸耐食性の悪化するのを未然に防ぐことができる。また、ハードディスク記録装置としたときに、記録容量の低下を防ぐことができる。
 第1及び第2の無電解NiPめっき浴には、ニッケルイオンの供給源として水溶性のニッケル塩が用いる。この水溶性のニッケル塩としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル、スルファミン酸ニッケル、などを用いることができる。めっき浴中における濃度としては、金属ニッケルとして1~30g/Lであることが好ましい。
 錯化剤としては、ジカルボン酸またはそのアルカリ塩、例えば酒石酸、リンゴ酸、クエン酸、コハク酸、マロン酸、グリコール酸、グルコン酸、シュウ酸、フタル酸、フマル酸、マレイン酸、乳酸、またはこれらのナトリウム塩、カリウム塩、アンモニウム塩を2種類以上用い、かつそのうち少なくとも1種類はオキシジカルボン酸であることが好ましい。錯化剤の濃度としては、0.01~2.0mol/L であることが好ましい。
 還元剤としては、次亜燐酸、または次亜燐酸ナトリウムや次亜燐酸カリウムなどの次亜燐酸塩を用いることが好ましい。還元剤の濃度としては、5~80g/L であることが好ましい。
 第1のめっき工程では、下層となる無電解NiPめっき皮膜の表面を平滑にするため、平滑化作用を有する添加剤として、有機硫黄系化合物等の光沢剤を添加した第1の無電解NiPめっき浴を使用して無電解NiPめっきを行うことが好ましい。この処理により、アルミブランク材の平均表面粗さよりも小さい平均表面粗さを有する無電解NiPめっき皮膜を形成することができる。
 有機硫黄化合物としては、構造式に硫黄原子を含有すれば良く、例えば、チオ尿素、チオ硫酸ナトリウム、スルホン酸塩、イソチアゾロン系化合物、ラウリル硫酸ナトリウム、2,2’-ジピリジルジスルフィド、2,2’-ジチオジ安息香酸、ビスジスルフィドなどを用いることができ、これらは1種類を単独で又は2種類以上を併用して使用することができる。より好ましくは、有機硫黄系化合物には、窒素が含まれているものが良く、チオ尿素、イソチアゾロン系化合物、2,2’-ジピリジルジスルフィド、ビスジスルフィドが挙げられる。有機硫黄系化合物の添加量は、0.01~20ppm、特に0.1~5ppm であることが好ましく、少なすぎるとめっき皮膜の平滑効果が無く、多すぎてもそれ以上の効果が認められない。
 このような有機硫黄系化合物の光沢剤はCd、As、Tl等を含む光沢剤に比べて毒性が低く、実際の使用に適する場合が多い。
 第1の無電解NiPめっき浴には、さらに酸、アルカリ、塩などのpH調整剤、貯蔵中にめっき浴のカビ発生を防止するための防腐剤、pHの変動を抑制する緩衝剤、ピンホール発生を抑制するための界面活性剤、めっき浴の分解を抑制するための安定剤を含有させることが好ましい。
 第2のめっき工程では、有機硫黄系化合物を含有しない第2の無電解NiPめっき浴を使用して、無電解NiPめっきを行うことが好ましい。第2のめっき工程で形成される無電解NiPめっき皮膜の上層のめっき膜厚は、4μm以上とされる。第2の無電解NiPめっき浴は、ハードディスク用基板の製造において通常用いられているものであり、めっき工程後の研磨工程における酸耐食性を有している。更に、強酸の洗浄工程における酸耐食性をも有している。
 上記したハードディスク用基板の製造方法によれば、有機硫黄系化合物等の平滑化作用を有する添加剤を含有する第1の無電解NiPめっき浴に基板を浸漬して基板の表面に無電解NiPめっき皮膜の下層を形成するので、下層の表面粗さを小さくすることができ、下層の表面を平滑化することができる。
 そして、その無電解NiPめっき皮膜の下層が形成された基板を、酸耐食性を有する第2の無電解NiPめっき浴に浸漬して、下層の平滑化された表面に無電解NiPめっき皮膜の上層を形成するので、上層の表面粗さを小さくすることができ、上層の表面を平滑化することができる。そして、酸耐食性を有する上層によって下層の表面を被覆するため、研磨工程や洗浄工程における酸耐食性を悪化させることがない。
 したがって、平滑なハードディスク用基板を得ることができ、研磨工程の負荷を低減でき、ハードディスク用基板の生産性を向上させることができる。そして、研磨工程から排出される研磨廃液を低減でき、また、研磨代を少なくすることができ、めっき皮膜の膜厚も薄くできることから、環境負荷の低減も可能となる。
 そして、上記したハードディスク用基板の製造方法によれば、無電解NiPめっき皮膜の上層のめっき膜厚を4μm以上の厚さとしている。そのため、上層のめっき析出初期に下層との界面付近に発生したピンホールやボイドが、上層のめっき皮膜形成後や研磨により、ピットとして上層のめっき皮膜表面に現れるのを抑制することができる。したがって、平滑なハードディスク用基板を得ることができ、ピットから腐蝕が発生して酸耐食性の悪化するのを未然に防ぐことができる。また、ハードディスク記録装置としたときに、記録容量の低下を防ぐことができる。
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例1]
 実施例1は、第1のめっき工程と第2のめっき工程による上層の表面粗度の状態を観察するために実施したものである。
<前処理工程>
 基板である平均表面粗さRa=15nmの市販の3.5インチアルミニウムサブストレート(95mm-内径25mmφ)を、公知のリン酸ソーダと界面活性剤からなる脱脂液を用いて50℃、2分間脱脂処理した後に、硫酸とリン酸を含有する公知のエッチング液を使用して70℃、2分間エッチング処理した。
 さらに、硝酸で脱スマット処理を20℃で30秒間行い、公知のジンケート処理液を用いて、20℃で30秒間、1次ジンケート処理した。次いで、硝酸を用いて脱ジンケート処理を20℃で30秒間行った後に、20℃で30秒間、2次ジンケート処理を行った。
<めっき条件>
(実施例1-1)
 上記基板の表面に下層を形成する第1のめっき工程では、有機硫黄系化合物として2,2’-ジピリジルジスルフィド 1ppmを添加した公知のリンゴ酸-コハク酸系無電解NiPめっき浴を用いて、85℃、90分間、めっき膜厚10μmのめっき処理を行った。無電解NiPめっき皮膜の表面粗さをVeeco社製 原子間力顕微鏡(AFM)により測定した(粗さは、10μm角による平均粗さRaとして示す)。その結果、表面粗さの値は、2.3nmであった。
 そして、無電解NiPめっき皮膜の下層の表面を洗浄した後、上層を形成する第2のめっき工程では、有機硫黄系化合物を添加しない公知のリンゴ酸-コハク酸系無電解NiPめっき浴を用いて、85℃、20分間、めっき膜厚2μmのめっき処理を行い、基板表面のトータルのめっき膜厚を12μmとした。
(比較例1-1)
 上記有機硫黄系化合物を添加しない公知のリンゴ酸-コハク酸系無電解NiPめっき浴を用いて、85℃、120分間、めっき膜厚12μmのめっき処理を行った。すなわち、有機硫黄系化合物が未含有の酸耐食性を有する無電解NiPめっき浴を用いてめっき処理を行った。
(比較例1-2)
 上記有機硫黄系化合物を1ppm添加した公知のリンゴ酸-コハク酸系無電解NiP浴を用いて、85℃、120分間、めっき膜厚12μmのめっき処理を行った。すなわち、有機硫黄系化合物を含有する無電解NiPめっき浴を用いてめっき処理を行った。
(測定結果)
 実施例1-1、比較例1-1、比較例1-2における無電解NiPめっき皮膜の表面粗さをVeeco社製 原子間力顕微鏡(AFM)により測定した(粗さは、10μm角による平均粗さRaとして示す)。
 さらに、視覚的な確認のため、めっき皮膜の表面を光学顕微鏡により撮影した。また、酸耐食性は、実施例1-1、比較例1-1、比較例1-2における無電解NiPめっき皮膜を硝酸(濃度30%、温度40℃)に5分間浸漬させ、浸漬後の表面を光学顕微鏡により撮影し、視野内の腐食ピット個数をカウントすることにより、計測した。
 図1は、実施例1-1と比較例1-1、2の測定結果を示す図である。
 実施例1-1では、めっき後の表面粗さRaは2.6nmであり、腐食ピット個数は1250(個/mm)であった。比較例1-1では、めっき後の表面粗さRaは14.8nmであり、腐食ピット個数は1125(個/mm)であった。そして、比較例1-2では、めっき後の表面粗さRaは2.1nmであり、腐食ピット個数は72875(個/mm)であった。
 比較例1-1の場合、めっき工程において、酸耐食性を有する無電解NiPめっき浴を用いてめっき処理を行ったので、腐食ピット個数は実施例1よりも少ないが、有機硫黄系化合物が未含有であるので、表面粗さRaが実施例1-1よりも粗くなっており、図1では、めっき皮膜の表面に複数の微細な凹凸を観察することができる。したがって、比較例1-1では、研磨工程に多大なる負荷が必要とされることが予想される。
 そして、比較例1-2の場合、めっき工程において、有機硫黄系化合物を含有する無電解NiPめっき浴を用いてめっき処理を行ったので、表面粗さRaは実施例1-1よりも小さく、図1では表面に凹凸を観察することはできない。しかしながら、実施例1-1と比較して腐食ピット個数が極めて多く、酸耐食性が低いことがわかる。したがって、研磨工程で腐食ピット等の欠陥の発生が予測され、また、洗浄工程でNiP皮膜中のNiが過度に溶出してハードディスク用基板のその後の工程に影響を与えることが予測される。
 これら比較例1-1、2に対して、実施例1は、めっき後の表面粗さRaは小さく、平滑であり、また、腐食ピット個数も少なく、高い酸耐食性を有していることがわかる。
(実施例1-2)
 複数種類の有機硫黄系化合物を用意し、実施例1-1と同じめっき条件でめっき処理を行い、試料番号1~6の試料を作製した。下記の表1は、添加した有機硫黄系化合物の名前、構造式、添加量を示した表である。
Figure JPOXMLDOC01-appb-T000001
 そして、実施例1-1と同様に、無電解NiPめっき皮膜の表面粗さをVeeco社製 原子間力顕微鏡(AFM)により測定した(粗さは、10μm角による平均粗さRaとして示す)。
 図2は、各試料及び比較例の表面粗度の測定結果を示した図である。
 図2の比較例は、上記した比較例1-1である。比較例は、有機硫黄系化合物を添加していないので、表面粗度(Ra)が大きく(14.8nm)、試料番号1~6の各試料に比べて表面が粗いことが分かる。一方、有機硫黄系化合物を添加している本実施例、すなわち、試料番号1~6の各試料は、表面粗度(Ra)が小さく、比較例に比べて表面が平滑であることがわかる。そして、その中でも特に、試料番号2、4、5の試料は、表面粗度(Ra)が小さく、平滑化の効果が著しい。これは、有機硫黄系化合物に含まれる窒素が影響していると予想される。
(実施例1-3)
 上記した実施例1-2で平滑化効果の特に高かった有機硫黄系化合物、ジピリジルジスルフィド、チオ尿素、イソチアゾロンについて、それぞれ添加剤として用いて試料を作製した。そして、平滑性の指標となる、(1)表面粗度、(2)ノジュール高さ、(3)うねりを測定してその効果を確認した。
(1)表面粗度の測定
 各添加剤の添加量を0ppm~1.5ppmの範囲で0.25ppmずつ変化させた試料を作製した。そして、実施例1-1と同様に、各試料の無電解NiPめっき皮膜の表面粗さをVeeco社製 原子間力顕微鏡(AFM)により測定した(粗さは、10μm角による平均粗さRaとして示す)。下記の表2は、各試料の表面粗度の測定結果を示した表であり、図3は、表2の結果をグラフ化した図である。
Figure JPOXMLDOC01-appb-T000002
 表2及び図3に示されるように、有機硫黄系化合物を添加していないもの(添加量=0.00ppm)に比べて、添加したもの(0.25ppm~1.50ppm)は、例えばチオ尿素の場合、表面粗度が最大で1/3程度まで低くなっていることが分かる。
(2)ノジュール高さ
 実施例として、ジピリジルジスルフィドの添加量を1.0ppmとした試料と、チオ尿素の添加量を0.75ppmとした試料と、イソチアゾロンの添加量を0.5ppmとした試料を作製した。そして、超深度形状測定顕微鏡(キーエンス社製 VK-851)を用いて、ノジュール高さとノジュール径を測定した。比較例として、上記した比較例1-1のノジュール高さとノジュール径を測定した。
 下記の表3は、各実施例及び比較例のノジュール高さとノジュール径の測定結果を示した表であり、図4は、測定結果の相関を示した図である。
Figure JPOXMLDOC01-appb-T000003
 図4に示すように、有機硫黄系化合物を添加した各実施例は、有機硫黄系化合物を添加しなかった比較例と比べて、ノジュール径に対するノジュール高さが低減されていることが分かる。
(3)うねりの測定
 各添加剤の添加量を0ppm~1.5ppmの範囲で0.25ppmずつ変化させた試料を作製した。そして、平坦度測定装置(KLA-Tencor社製Opti flat)を用いて、各試料の表面における波長5mmのうねり(Wa)を測定した。うねり(Wa)は、5mm以上の波長における、高さ(Z)の絶対値平均を算出したものであり、JISB0601に示される算術平均うねり(Wa)を基に算出した。下記の表4は、各試料の添加量に応じた表面のうねりの測定結果を示す表であり、図5は、表4の結果をグラフ化した図である。
Figure JPOXMLDOC01-appb-T000004
 表4及び図5に示されるように、有機硫黄系化合物を添加していないもの(添加量=0.00ppm)に比べて、添加したもの(0.25ppm~1.50ppm)の方が、うねりが低減し、より平滑な表面が得られることが分かった。
 以上より、(1)表面粗度、(2)ノジュール高さ、(3)うねりのすべての指標において、有機硫黄系化合物を添加しないものよりも、窒素を含有する有機硫黄系化合物を添加したものの方が、平滑化効果が高いことが分かった。これにより、研磨工程での負荷を低減でき、ハードディスク用基板の生産性を向上させることができると考えられる。
[実施例2]
 実施例2は、第1のめっき工程と第2のめっき工程によりめっきをした際に下層めっき表面の酸化膜起因で発生すると考えられるピットの発生状態を観察するために実施したものである。
<前処理工程>
 平均表面粗さRa=15nmの市販の3.5インチアルミニウムサブストレートを、公知のリン酸ソーダと界面活性剤からなる脱脂液を用いて50℃、2分間脱脂処理した後に、硫酸とリン酸を含有する公知のエッチング液を使用して70℃、2分間エッチング処理をした。
 次いで、硝酸を用いて脱スマット処理を20℃で30秒間行い、公知のアルカリ性ジンケート処理液を用いて、20℃で30秒間、1次ジンケート処理をした。さらに、硝酸を用いて脱ジンケート処理を20℃で30秒間行った後に、1次ジンケートと同一のジンケート処理液を用いて、20℃で30秒間、2次ジンケート処理を行った。
<めっき工程>
(実施例2-1)
 有機硫黄系化合物を添加しない無電解Ni-Pめっき液を用いて、第1のめっき工程では85℃、120分間のめっき処理を行い、めっき膜厚が10μmの無電解NiPめっき皮膜の下層を形成した。そして、得られた無電解NiPめっき皮膜の下層の表面を純水で洗浄した後、更に有機硫黄系化合物を添加しない無電解Ni-Pめっき液を用いて、第2のめっき工程で85℃のめっき処理を行い、無電解NiPめっき皮膜の下層の上に、めっき膜厚が4μmの無電解NiPめっき皮膜の上層を形成した。すなわち、無電解NiPめっき皮膜の下層のめっき膜厚を10μm、上層のめっき膜厚を4μmとした。
(実施例2-2)
 実施例2-1と同様の方法でめっき処理を行い、上層のめっき膜厚を5μmとした。
(実施例2-3)
 実施例2-1と同様の方法でめっき処理を行い、上層のめっき膜厚を6μmとした。
(実施例2-4)
 実施例2-1と同様の方法でめっき処理を行い、上層のめっき膜厚9μmとした。
(比較例2-1)
 実施例2-1と同様の方法でめっき処理を行い、上層のめっき膜厚を3μmとした。
(比較例2-2)
 有機硫黄系化合物を添加しない無電解Ni-Pめっき液を用いて、85℃、120分間のめっき処理を行い、めっき膜厚が10μmの単層の無電解NiPめっき皮膜を形成した。
 本発明は、無電解NiPめっき膜を2層構造にすることによって発生する上記のピットを解決するための製造方法である。このピットの発生原因は、上記の通り、下層のめっき皮膜表面に形成される酸化膜であり、下層の無電解NiPめっき皮膜の平滑性に依らないため、本実施例においては、模擬的な試験として、下層の無電解NiPめっき皮膜の形成には、平滑化作用を有する添加剤を含有しない無電解NiPめっき浴を用いた。
<研磨工程>
 上記実施例2-1~4および比較例2-1、2にて得られた無電解NiPめっき皮膜の表面を、ウレタン製発泡研磨パッドと遊離砥粒を分散させた研磨液を用いて2段階で精密研磨加工することにより鏡面に仕上げた。その際、1段階目の研磨には、加工速度の速いアルミナ砥粒を分散させた研磨液を用い、2段階目の研磨には、更に粒径の小さなコロイダルシリカ砥粒を分散させた研磨液を用いた。これらの研磨方法を用いて、表面から1.6μmを研磨し、水洗、乾燥した。
<測定結果>
 上記研磨加工後の無電解NiPめっき皮膜の表面におけるピット個数の計測には、磁気ディスク表面検査装置(株式会社日立ハイテクノロジーズ製、RS1390)を用いて、3.5インチハードディスク用基板の片側の基板表面における半径13.5mm~47.2mmまでの全領域に存在する幅0.2μm以上のピットの個数を計測した。そして、表5および図6に、その測定結果を示した。
Figure JPOXMLDOC01-appb-T000005
 上層のめっき膜厚が3μmである比較例2-1の場合は、ピット個数が5.2(個/面)であり、上層めっき膜厚を4μm以上とした場合に比べて多くなっている。したがって、ハードディスクドライブに組み込んだ際の、書き込みエラー箇所が増加するものと考えられる。
 そして、めっき膜厚が10μmの単層である比較例2-2の場合、ピット個数が2.0(個/面)となっている。比較例2-2は、下地界面からの膜厚が厚い(10μm)ので、酸化膜に起因する欠陥以外が発生原因と考えられる。原因はこれに限定されないが、例えばめっき液中のコンタミに起因するものであると推測される。比較例2-2と実施例2-1~4のピット個数を比較すると、ほぼ同じとなっている。したがって、実施例2-1~4のピットは、下層表面に発生する酸化膜以外が発生原因と考えられる。以上のことから、無電解NiPめっき皮膜を上層と下層の2段階構造とした場合に発生する酸化膜起因のピットを抑制することができており、上層のめっき膜厚を4μm以上の厚さとすることによって、ピットの発生を抑制できたことがわかる。

Claims (1)

  1.  無電解NiPめっき皮膜を有するハードディスク用基板の製造方法であって、
     平滑化作用を有する添加剤を含有する第1の無電解NiPめっき浴に基板を浸漬して該基板の表面に、該表面よりも平均表面粗さが小さい前記無電解NiPめっき皮膜の下層を形成する第1のめっき工程と、
     該第1のめっき工程により前記無電解NiPめっき皮膜の下層が形成された基板を、第2の無電解NiPめっき浴に浸漬して酸耐食性を有するめっき膜厚が4μm以上の前記無電解NiPめっき皮膜の上層を形成する第2のめっき工程と、を含むことを特徴とするハードディスク用基板の製造方法。
PCT/JP2013/060093 2012-04-10 2013-04-02 ハードディスク用基板の製造方法 WO2013153992A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380030518.3A CN104350542A (zh) 2012-04-10 2013-04-02 用于制造硬盘基片的方法
SG11201406439XA SG11201406439XA (en) 2012-04-10 2013-04-02 Method for producing hard disk substrate
US14/391,296 US9297078B2 (en) 2012-04-10 2013-04-02 Method for producing hard disk substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-089682 2012-04-10
JP2012089682A JP5890235B2 (ja) 2012-04-10 2012-04-10 ハードディスク用基板の製造方法

Publications (1)

Publication Number Publication Date
WO2013153992A1 true WO2013153992A1 (ja) 2013-10-17

Family

ID=49327560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060093 WO2013153992A1 (ja) 2012-04-10 2013-04-02 ハードディスク用基板の製造方法

Country Status (6)

Country Link
US (1) US9297078B2 (ja)
JP (1) JP5890235B2 (ja)
CN (1) CN104350542A (ja)
SG (1) SG11201406439XA (ja)
TW (1) TW201411612A (ja)
WO (1) WO2013153992A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150099143A1 (en) * 2013-04-05 2015-04-09 Toyo Kohan Co., Ltd. Method for production of hard disk substrate and hard disk substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128020A (ja) * 1985-11-28 1987-06-10 Toshikatsu Watabe 非晶質カ−ボン被膜を有する記憶媒体用デイスク
JP2011134419A (ja) * 2009-12-25 2011-07-07 Fuji Electric Device Technology Co Ltd 磁気記録媒体用ディスク基板及びその製造方法
WO2012046712A1 (ja) * 2010-10-07 2012-04-12 東洋鋼鈑株式会社 ハードディスク用基板の製造方法及びハードディスク用基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2027496A6 (es) 1989-10-12 1992-06-01 Enthone Metodo para precipitar una capa metalica no electrica lisa sobre un substrato de aluminio.
US5141778A (en) * 1989-10-12 1992-08-25 Enthone, Incorporated Method of preparing aluminum memory disks having a smooth metal plated finish
US20060289311A1 (en) * 2002-09-10 2006-12-28 Brink Damon D Method for making a base plate for suspension assembly in hard disk drive
JP4408210B2 (ja) * 2002-10-31 2010-02-03 昭和電工株式会社 垂直磁気記録媒体の製造方法
CN1277250C (zh) * 2004-05-13 2006-09-27 周照耀 化学腐蚀降低信息记录薄膜材料介质噪声的方法及其应用
US8585811B2 (en) * 2010-09-03 2013-11-19 Omg Electronic Chemicals, Llc Electroless nickel alloy plating bath and process for depositing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128020A (ja) * 1985-11-28 1987-06-10 Toshikatsu Watabe 非晶質カ−ボン被膜を有する記憶媒体用デイスク
JP2011134419A (ja) * 2009-12-25 2011-07-07 Fuji Electric Device Technology Co Ltd 磁気記録媒体用ディスク基板及びその製造方法
WO2012046712A1 (ja) * 2010-10-07 2012-04-12 東洋鋼鈑株式会社 ハードディスク用基板の製造方法及びハードディスク用基板

Also Published As

Publication number Publication date
US20150125598A1 (en) 2015-05-07
SG11201406439XA (en) 2014-11-27
JP2013218764A (ja) 2013-10-24
TW201411612A (zh) 2014-03-16
US9297078B2 (en) 2016-03-29
CN104350542A (zh) 2015-02-11
JP5890235B2 (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
CN110121745B (zh) 硬盘基片以及使用该硬盘基片的硬盘装置
JP5705230B2 (ja) ハードディスク用基板の製造方法及びハードディスク用基板
JP5153405B2 (ja) 磁気ディスク用ガラス基板の製造方法および磁気ディスク製造方法
JP5890235B2 (ja) ハードディスク用基板の製造方法
JP5890236B2 (ja) ハードディスク用基板の製造方法
US9127170B2 (en) Plating pretreatment solution and method for producing aluminum substrate for hard disk devices using same
US20150099143A1 (en) Method for production of hard disk substrate and hard disk substrate
JP3533880B2 (ja) 無電解ニッケルめっき液及び無電解ニッケルめっき方法
JP2011134419A (ja) 磁気記録媒体用ディスク基板及びその製造方法
JP4228902B2 (ja) 磁気記録媒体及びその基板の製造方法
JP2005206866A (ja) 無電解メッキの前処理方法、該方法を含む磁気記録媒体用基板の製造方法、並びに該製造方法で製造される磁気記録媒体用基板
US6531047B1 (en) Surface modification method for an aluminum substrate
JPH0752030A (ja) 陽極酸化処理基盤及び研磨方法
JP4161869B2 (ja) 磁気記録媒体及びその基板の製造方法
JPH11175963A (ja) 磁気ディスク用アルミニウム合金基板及び磁気ディスク
JP2004342294A (ja) 垂直磁気記録媒体用基板およびその製造方法
JP2001295060A (ja) アルミニウム基板の表面改質方法
JP2542188C (ja)
JP2008282432A (ja) 磁気記録媒体用アルミニウム合金製基板およびその製造方法
JPH11106857A (ja) 磁気ディスク用アルミニウム合金基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14391296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775091

Country of ref document: EP

Kind code of ref document: A1