WO2013153972A1 - アルミニウム合金製内面溝付き伝熱管 - Google Patents

アルミニウム合金製内面溝付き伝熱管 Download PDF

Info

Publication number
WO2013153972A1
WO2013153972A1 PCT/JP2013/059747 JP2013059747W WO2013153972A1 WO 2013153972 A1 WO2013153972 A1 WO 2013153972A1 JP 2013059747 W JP2013059747 W JP 2013059747W WO 2013153972 A1 WO2013153972 A1 WO 2013153972A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer tube
aluminum alloy
tube
diffusion
Prior art date
Application number
PCT/JP2013/059747
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
良行 大谷
聡史 若栗
康人 原
紘一 石田
洋一 兒島
Original Assignee
古河スカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社 filed Critical 古河スカイ株式会社
Priority to JP2014510116A priority Critical patent/JP6105561B2/ja
Priority to KR1020147031665A priority patent/KR20140146184A/ko
Priority to CN201380019372.2A priority patent/CN104246417B/zh
Priority to IN8791DEN2014 priority patent/IN2014DN08791A/en
Publication of WO2013153972A1 publication Critical patent/WO2013153972A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes or tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes or tubes with decorated walls with helical guides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/10Fastening; Joining by force joining

Definitions

  • the present invention relates to a heat transfer tube with an inner surface groove made of an aluminum alloy used as a heat transfer tube of a cross fin type heat exchanger used in a domestic air conditioner, a commercial air conditioner, a heat pump type hot water heater and the like. is there.
  • a general cross fin type (also known as fin and tube type) heat exchanger inserts a heat transfer tube into an open insertion hole of an aluminum radiation fin, and then has a larger inside diameter than the inside of the heat transfer tube.
  • a mandrel for tube expansion having an outer diameter is pushed in to expand the diameter of the heat transfer tube, and the outer peripheral surface of the heat transfer tube and the insertion hole of the aluminum radiation fin are brought into close contact (tube expansion processing: FIG. 2). Thereafter, the heat transfer tube integrated with the aluminum radiation fin is bent into a hairpin shape, and a heat transfer tube (U-shaped tube) bent in a separate U shape is joined by torch brazing to complete (Non-patent Document 1).
  • a heat transfer tube used in a cross fin type heat exchanger is one in which HFC or the like flows as a refrigerant in the tube to perform heat exchange.
  • the heat transfer tube has a rib-shaped fin with a cross-sectional shape of a trapezoid or triangle on the inner surface of the tube ( In the following, the efficiency of heat exchangers and energy savings have been promoted by using “inner grooved heat transfer tubes”).
  • the inner surface grooved heat transfer tube has a groove depth, a bottom wall thickness (a thickness of a base portion of the protruding fin), a fin shape (vertical angle, etc.) shown in FIG.
  • An internally grooved heat transfer tube having various fin shapes that define the lead angle of the protruding fin shown in FIG.
  • Patent Document 1 angle of fin arrangement with respect to the longitudinal direction of the tube
  • Patent Document 2 It is said that the heat transfer performance of the internally grooved heat transfer tube is excellent because the surface area inside the tube is larger than that of a smooth tube without fins, and a uniform refrigerant liquid film is formed in the tube by this groove.
  • copper-based materials such as copper and copper alloys have been mainly used for internally grooved heat transfer tubes
  • aluminum-based materials such as aluminum and aluminum alloys have been used to meet demands for reducing material costs and weight. (Hereinafter referred to as an aluminum alloy) has been studied.
  • the heat transfer tube has a two-layer structure, and an Al—Mn-based alloy is used for the inner layer of the tube.
  • an internally grooved heat transfer tube clad with an Al—Zn alloy has been proposed as a sacrificial anticorrosive layer.
  • Patent Document 5 the improvement of tube expansion workability is studied by using an alloy obtained by adding Zn to JIS3003 as a skin material.
  • Patent Document 1 Patent Document 2
  • Patent Document 3 has a description for improving the corrosion resistance of an aluminum alloy heat transfer tube, but the problem of cracking and fin crushing at the time of hairpin bending is not solved.
  • Patent Document 4 is characterized in that the outer surface is covered with a skin material having a lower potential than the core material in order to improve corrosion resistance.
  • Patent Document 5 does not improve the problem of cracking during hairpin bending. Further, since Cu and Fe are added to the skin material, the corrosion resistance of the skin material is deteriorated, and the expected sacrificial anticorrosive effect may not be obtained. Further, since a core material made of an alloy corresponding to JIS 3003 is used as the core material, the problem of fin crushing has not been solved.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aluminum alloy internally grooved heat transfer tube excellent in hairpin bending workability. It is another object of the present invention to provide an aluminum alloy internally grooved heat transfer tube excellent in corrosion resistance. It is another object of the present invention to provide an aluminum alloy internally grooved heat transfer tube that is less prone to fin collapse.
  • the present inventors have excellent hairpin bending workability and fin crushing by making the alloy component of the core material into a specific type and content. It has been found that materials that are difficult to generate can be provided. Furthermore, it has been found that by making the Zn distribution of the sacrificial anticorrosive layer within a specific range, a material excellent in hairpin bending workability, hardly causing fin crushing, and excellent in corrosion resistance can be provided.
  • Mn 0.8 to 1.8 mass% (hereinafter, mass% is simply described as%)
  • a heat transfer tube made of an aluminum alloy containing Cu: 0.3 to 0.8% and Si: 0.02 to 0.2%, with the balance being Al and inevitable impurities; and
  • the heat transfer tube is an aluminum alloy inner surface grooved heat transfer tube, wherein the heat transfer tube has an average crystal grain size of 150 ⁇ m or less.
  • the surface Zn concentration is 0.5% or more and the average surface Zn concentration is 1 to 12% on the surface of the heat transfer tube.
  • a Zn diffusion whose concentration at an arbitrary surface is within ⁇ 50% of the average surface Zn concentration and whose Zn diffusion depth from the surface (hereinafter also referred to as “Zn diffusion layer thickness”) is 100 to 300 ⁇ m.
  • An aluminum alloy internally grooved heat transfer tube characterized by having a layer.
  • a third invention according to claim 3 is the heat transfer tube according to claim 2, wherein Mn: 0.8 to 1.8%, Cu: 0.3 to 0.8%, and Si: 0.02
  • An aluminum alloy comprising a heat transfer tube made of an aluminum alloy containing ⁇ 0.2%, the balance being Al and inevitable impurities, and the cross-sectional average crystal grain size of the heat transfer tube being 150 ⁇ m or less
  • An aluminum alloy inner grooved heat transfer tube characterized in that an alloy heat transfer tube is used as a core, an outer surface thereof is clad with an Al—Zn alloy as a skin material, and further subjected to Zn diffusion heat treatment.
  • the difference in hardness between the core material and the skin material after the Zn diffusion heat treatment is 15 Hv or less. It is a heat transfer tube with an inner surface groove.
  • the skin material contains Zn: 1.0 to 7.0%, and Mn: 0.3 to 1. It is an aluminum alloy internally grooved heat transfer tube characterized by containing 0.5% and the balance being made of Al and inevitable impurities.
  • Mn 0.8 to 1.8%
  • Cu 0.3 to 0.8%
  • Si 0.02
  • An aluminum alloy comprising a heat transfer tube made of an aluminum alloy containing ⁇ 0.2%, the balance being Al and inevitable impurities, and the cross-sectional average crystal grain size of the heat transfer tube being 150 ⁇ m or less
  • This is an aluminum alloy internally grooved heat transfer tube characterized in that Zn is thermally sprayed on the outer surface of the alloy heat transfer tube and further subjected to Zn diffusion heat treatment.
  • the coverage ratio of the sprayed Zn to the outer surface of the heat transfer tube is 90% or more. It is a heat transfer tube.
  • the geometric center of the cross section of the heat transfer tube An angle formed by each geometrical center between adjacent lines connecting the centers of a plurality of Zn spray guns is 120 ° or less.
  • the aluminum-tube inner surface grooved heat transfer tube of the present invention has the effect of being able to suppress cracking during hairpin bending. Moreover, it has favorable corrosion resistance and has the effect that fin crushing is difficult to occur.
  • the heat transfer tube assumed in the present embodiment is used, for example, in a heat exchanger for an air conditioner for general households, and has an outer diameter of, for example, ⁇ 4.0 to ⁇ 9.54 mm, bottom wall It is a small diameter thin tube with a thickness of about 0.3 to 0.6 mm.
  • an alloy having an appropriate strength and relatively excellent workability (extrudability, drawability, rollability) for obtaining a small-diameter thin-walled tube for example, Al— Based on Mn-based A3003 alloy (Al-1.0 to 1.5% Mn-0.05 to 0.20% Cu alloy), refinement of crystal grains and improvement of strength by adjusting additive elements
  • An aluminum alloy that prevents cracking and fin collapse during hairpin bending is obtained.
  • Mn is a main additive element for improving the strength of 3000 series alloys, and has the effect of giving solid solution, part of which is precipitated and imparting strength, and if the addition amount is less than 0.8%, the heat transfer tube The strength as is insufficient. On the other hand, if it exceeds 1.8%, the effect of improving the strength is saturated, and the amount of coarse intermetallic compound is increased, so that defects such as cracks are likely to occur in the manufacturing process of the tube. Therefore, the amount of Mn added is in the range of 0.8 to 1.8%. A more preferred range is 1.0 to 1.5%.
  • Cu is an element that has the effect of further improving the strength by dissolving in aluminum and does not impair the workability. Further, Cu has a function of making the pitting corrosion potential noble, and can increase the difference in pitting corrosion between the Zn diffusion layer and the central portion of the tube where Zn is not diffused, thereby enhancing the sacrificial anticorrosive action. If the added amount is less than 0.3%, the strength is insufficient, and the crushing of the groove due to mechanical expansion cannot be prevented, and further, the noxification of the pitting potential is insufficient and the sacrificial anticorrosive action is low. If it exceeds 0.8%, extrudability, drawability, and corrosion resistance deteriorate. Therefore, the Cu addition amount is set in the range of 0.3 to 0.8%. A more preferred range is 0.4 to 0.6%.
  • Si When Si is contained in an Al—Mn—Cu alloy, it forms an Al—Mn—Si or Al—Mn—Si—Cu intermetallic compound, and has the effect of improving strength. On the other hand, these intermetallic compounds play a role of inhibiting recrystallization during hot extrusion. When the amount of addition exceeds 0.2%, the average crystal grain size becomes 150 ⁇ m or more, and the skin becomes rough during hairpin bending. Cause breakage. On the other hand, since Si is an element unavoidably present in the aluminum alloy, it is practically difficult to regulate it to 0.02% or less. Therefore, the addition amount of Si is set to 0.02 to 0.2%. A more preferred range is 0.02 to 0.1%.
  • Impurities include Fe, Mg, Zn and the like, but these do not impair the effects of the present invention as long as Fe is 0.6% or less, Mg is 0.2% or less, and Zn is 0.3% or less.
  • Ti, Cr, Zr may be contained because it has the effect of uniformly refining the ingot structure. However, if it exceeds 0.2%, a giant intermetallic compound is formed or the extrudability is lowered.
  • the content is preferably 0.2% or less. If it is this range, the effect of the heat exchanger tube in this embodiment will not be inhibited. This content may be 0 to 0.1% or 0 to 0.05%.
  • the amounts of various components used in the heat transfer tube or sacrificial anticorrosive layer in this embodiment may be the values described in S1 to S11 and K1 to K8 in the examples described later, and are within the range of those values. May be.
  • An aluminum alloy clad tube according to an embodiment of the present invention is provided with a Zn-diffused layer by clad and drawn with an Al—Zn alloy as a skin material and then subjected to Zn diffusion heat treatment. Since the Zn diffusion layer has a lower pitting corrosion potential than the portion of the pipe material where Zn is not diffused, the sacrificial anticorrosive action can prevent the pipe material and improve the durability of the pipe material.
  • the conditions of the diffusion heat treatment are adjusted so that the surface Zn concentration after the Zn diffusion heat treatment is, for example, 0.5 to 12%.
  • the surface Zn concentration is the Zn concentration when an arbitrary point on the surface is measured by an analyzer such as EPMA (X-ray microanalyzer). If the surface Zn concentration is lower than 0.5%, the sacrificial anticorrosive effect is not sufficient, and deep corrosion occurs early. On the other hand, if the surface Zn concentration is higher than 12%, the corrosion rate is increased. Therefore, the surface Zn concentration is set to 0.5 to 12%. A more preferred range is 0.5 to 10.0%, and a further preferred range is 3.0 to 5.0%.
  • the thickness of the Zn diffusion layer of the aluminum alloy clad tube according to the embodiment of the present invention is 100 to 300 ⁇ m.
  • the Zn diffusion layer thickness is a depth at which Zn is diffused from the surface in the plate thickness direction by the Zn diffusion treatment.
  • the thickness of the Zn diffusion layer according to the embodiment of the present invention was a distance (thickness) from the surface of the tube material until the Zn concentration reached 0.05%.
  • the Zn diffusion layer acts as a sacrificial anticorrosion layer for the entire tube. If the thickness of the Zn diffusion layer is too small, the sacrificial anticorrosion layer disappears at an early stage. If the Zn diffusion layer is too thick, the Zn gradient becomes gentle and the sacrificial anticorrosive effect is not sufficient. Therefore, the thickness of the Zn diffusion layer is set to 100 to 300 ⁇ m.
  • the Zn diffusion layer thickness may be 150 to 250 ⁇ m.
  • Zn lowers the potential of the skin material so that it acts as a sacrificial anode, and improves the corrosion resistance of the heat transfer tube. If the added amount is less than 1.0%, the potential difference from the core material is insufficient and the effect of sacrificial corrosion protection cannot be obtained, and if it exceeds 7.0%, the self-corrosion resistance is lowered. Therefore, the added amount of Zn is set in the range of 1.0 to 7.0%. A more preferable range is 4.0 to 5.5%.
  • Mn is a main additive element for improving the strength. If the added amount is less than 0.3%, the strength is insufficient, and the strength difference from the core material becomes large. As a result, micro cracks on the surface that cause cracks during the hairpin bending process occur during the production of the blank tube. On the other hand, when the addition amount is more than 1.5%, the potential of the skin material becomes noble, and it is difficult to secure a potential difference from the core material. Therefore, the amount of Mn added is in the range of 0.3 to 1.5%. A more preferred range is 0.6 to 1.0%.
  • Si, Fe, Cu, etc. as impurities in the cladding material of the clad tube, but these do not hinder the effect of the present invention if Si is 0.5% or less, Fe is 0.6% or less, and Cu is 0.2% or less. Absent.
  • Ti, Cr, Zr may be contained because it has the effect of uniformly refining the ingot structure. However, if it exceeds 0.2%, a giant intermetallic compound is formed or the extrudability is lowered.
  • the content is preferably 0.2% or less. If it is this range, the effect of the heat exchanger tube in this embodiment will not be inhibited. This content may be 0 to 0.1% or 0 to 0.05%.
  • the thickness of the cladding material of these cladding tubes is not particularly specified, but is preferably 5 to 30% with respect to the total thickness. If the thickness of the skin material is less than 5% of the total thickness, the effective period of the sacrificial anticorrosive layer in use as a heat exchanger is insufficient, and if it exceeds 30%, the strength of the heat transfer tube is lowered. A more preferred range is 6 to 15%.
  • the hardness difference between the core material and the skin material is 15 Hv or less. More preferably, it is 10 Hv or less.
  • the aluminum alloy spray tube used in the embodiment of the present invention is provided with a Zn diffused layer by performing Zn diffusion heat treatment after Zn spraying on the outer surface thereof. Since the Zn diffusion layer has a lower pitting corrosion potential than the portion of the pipe material where Zn is not diffused, the sacrificial anticorrosive action can prevent the pipe material and improve the durability of the pipe material.
  • the aluminum alloy spray tube is preferably subjected to Zn diffusion heat treatment at 400 to 550 ° C. for 30 minutes to 10 hours after spraying a Zn component of pure Zn or Zn—Al alloy.
  • the amount of sprayed Zn is 5 to 28 g / m 2 . If the amount of sprayed Zn is too small, it is difficult to uniformly deposit Zn on the surface of the tube. If the amount of sprayed Zn is too large, the amount of Zn after the Zn diffusion heat treatment becomes too large, resulting in an increase in corrosion rate. Therefore, the Zn spraying amount is set to 5 to 28 g / m 2 .
  • Zn thermal spraying amount is desirably 5 ⁇ 25g / m 2, and more preferably 8 ⁇ 20g / m 2.
  • the surface Zn concentration after the Zn diffusion heat treatment is 0.5 to 15%.
  • the surface Zn concentration is the Zn concentration when an arbitrary point on the surface is measured by an analyzer such as EPMA. If the surface Zn concentration is too low, the sacrificial anticorrosive effect is not sufficient, and in some of them, deep corrosion occurs at an early stage, and if the surface Zn concentration is too high, the corrosion rate is increased. The wall thickness is extremely reduced.
  • the average surface Zn concentration after the Zn diffusion heat treatment is 1 to 12%, and the Zn diffusion layer thickness is 100 to 300 ⁇ m.
  • the average surface Zn concentration is an average value when at least four arbitrary points separated from each other by 5 mm or more on the surface are measured.
  • the Zn diffusion layer thickness is the depth at which Zn is diffused from the surface in the plate thickness direction by the Zn diffusion treatment, and the Zn diffusion layer thickness in the embodiment of the present invention is such that the Zn concentration is 0.05% from the tube surface. The distance to be.
  • the average Zn concentration and the Zn diffusion layer thickness represent the amount of the sacrificial anticorrosion layer of the entire tube.
  • the average Zn concentration and the Zn diffusion layer thickness are too small, the sacrificial anticorrosion layer disappears at an early stage.
  • the average Zn concentration is 1 to 12%, a more preferable range is 0.5 to 10.0%, and a further preferable range is 3.0 to 5.0%.
  • the thickness of the Zn diffusion layer is 100 to 300 ⁇ m, and may be 150 to 250 ⁇ m.
  • the Zn concentration on the arbitrary surface after the Zn diffusion heat treatment is within ⁇ 50% of the average surface Zn concentration. If the surface Zn concentration is too high with respect to the average surface Zn concentration, only that portion is preferentially corroded and the thickness is extremely reduced. In order to avoid this, it is necessary that the Zn concentration on an arbitrary surface be within ⁇ 50% of the average surface Zn concentration. Further, it is more preferable that the difference is within ⁇ 30%.
  • the Zn coverage by thermal spraying is 0% when no Zn is attached and 100% when Zn is attached to the entire surface.
  • the Zn coverage is 90% or more. More preferably, it is 95% or more.
  • a combined billet of the Al—Mn—Cu alloy in the heat transfer tube of the present embodiment in which a sacrificial anticorrosion alloy plate is bent cylindrically outside the cylindrical billet, is produced and heated to 350 to 600 ° C. in a heating furnace. Perform homogenization. Thereafter, the billet is extruded by an indirect extruder to obtain a two-layer clad extruded tube. Next, the extruded tube is drawn to a predetermined outer diameter and thickness to obtain a two-layer clad elementary tube (smooth tube). For this drawing process, it is desirable to use a draw block type continuous drawing machine with high productivity.
  • the cylindrical sacrificial anticorrosive billet is heated to 350 to 600 ° C., and a cylindrical core billet hollow billet is extruded into the inside thereof. It is also possible to obtain a two-layer clad blank (smooth tube).
  • a two-layer clad sheet obtained by clad rolling a sacrificial anti-corrosion material sheet on one side of an aluminum alloy core material sheet is formed into a tubular shape, and then the sheet abutting surface is welded to form a two-layer clad electric resistance tube. Also good.
  • a Zn diffusion layer that is, a sacrificial anticorrosion layer can be obtained by subjecting the two-layer clad tube produced as described above to diffusion heat treatment.
  • a diffusion heat treatment is performed to obtain a Zn diffusion layer, that is, A sacrificial anticorrosion layer may be formed.
  • the angle formed by the lines at the center of the circumferential cross section it is preferable that it is 120 degrees or less.
  • the angle formed by the lines at the center of the circumferential cross section is more preferably 90 ° or less.
  • a method of increasing the number of Zn spray guns from 2 guns generally used in flat tubes to 3 guns or more, a method of rotating a tube after spraying, and spraying in several times examples include a method of rotating a tube or a spray gun.
  • the Zn spraying may be performed after rolling to form grooves on the inner surface of the heat transfer tube.
  • the raw pipe (smooth pipe) on which the sacrificial anticorrosive layer is formed in this way be subjected to annealing softening treatment in advance.
  • the annealing temperature is 300 to 400 ° C. and the time is 2 to 8 hours.
  • the inner surface grooved heat transfer tube of the present embodiment can be manufactured in various dimensions according to the use of the heat exchanger, but when used in a domestic air conditioner, the outer diameter ⁇ 4 from the viewpoint of productivity in manufacturing the tube.
  • the outer diameter is preferably 9.95 mm or less from the viewpoint of reducing the size and weight of the heat exchanger.
  • the bottom wall thickness t (see FIG. 4) is preferably 0.3 mm or more from the viewpoint of pressure resistance, and 0.6 mm or less from the viewpoint of miniaturization and weight reduction of the heat exchanger.
  • the height H of the inner surface ridge fin is 0.1 to 0.4 mm
  • the apex angle ⁇ of the inner surface ridge fin is 10 to 40 °
  • the number of inner surface ridge fins is 40 or more
  • the lead angle ⁇ inner surface protrusion
  • the angle formed between the strip fin and the longitudinal direction of the pipe is preferably 20 ° or more.
  • annealing softening treatment may be performed. This is for removing the processing distortion introduced at the time of rolling and facilitating hairpin bending (meandering bending). Annealing may be performed at 300 to 400 ° C. for about 2 to 8 hours.
  • the inner surface grooved heat transfer tube of the present embodiment manufactured in this way is brought into close contact with the insertion hole of the aluminum heat radiating fin by tube expansion processing (FIG. 2).
  • tube expansion processing FOG. 2
  • the pipe expanding process can improve production efficiency by a hydraulic pipe expanding method in which an internal pressure is applied to the pipe by hydraulic pressure or water pressure instead of a mechanical pipe expanding method using a mandrel.
  • Example 1 Next, the present invention will be described in more detail based on examples.
  • the alloys shown in Table 1 were cast by continuous casting, and an extruded tube having an outer diameter of 47 mm and a wall thickness of 3.5 mm was obtained by an indirect extrusion method.
  • the extruded tube was subjected to a drawing process using a draw block type continuous drawing machine to obtain a drawn tube having an outer diameter of 10 mm and a wall thickness of 0.45 mm.
  • the drawn tube thus obtained is annealed and softened at 360 ° C. for 2 hours, and then a floating plug, a rod and a plug with a grooved plug are inserted, and a floating die, a machining head, and a molding die are inserted.
  • the inner surface is grooved by outer diameter, the outer diameter is ⁇ 7mm, the bottom wall thickness is 0.35mm, the height H of the ridge fin is 0.22mm, the number of ridge fins is 50, the apex angle ⁇
  • a heat transfer tube with an inner groove with an angle of 15 ° and a lead angle ⁇ of 35 ° was produced. Furthermore, the annealing softening process was finally performed at 360 degreeC for 2 hours, and the heat exchanger tube with an internal groove was completed.
  • (B) Average crystal grain size A test piece for microstructural observation was cut out from the obtained heat transfer tube with inner groove, and the average crystal grain size was measured. Specifically, the average crystal grain size was measured in the two directions of the tube thickness direction and the circumferential direction using an intersection method, and the average value was obtained.
  • Examples S1 to S11 are within the scope of the present invention, and are all excellent in mechanical properties, fin crushing amount, average crystal grain size, and occurrence of cracks during hairpin bending.
  • the comparative examples S12 and S15 have low strength, the amount of crushed fins is large and desired heat transfer characteristics cannot be obtained.
  • S13 and S14 were not able to be produced due to the occurrence of drawing breaks during drawing.
  • the average crystal grain size of S16 exceeded 150 ⁇ m, cracking occurred during hairpin bending.
  • S17 has fine crystal grains and does not generate cracks at the time of hairpin bending, but has a problem that the manufacturing cost increases because the amount of Si is extremely low.
  • Example 2 An alloy for skin material shown in Table 3 is cast by continuous casting, and an alloy having an outer diameter of 47 mm, a wall thickness of 3.5 mm, and a cladding rate of 10% is obtained by indirect extrusion using a combination of the alloy shown in Table 1 and Table 4 as a core material. Got the tube. The extruded tube was subjected to a drawing process using a draw block type continuous drawing machine to obtain a drawn tube having an outer diameter of 10 mm and a wall thickness of 0.45 mm. Furthermore, Zn diffusion heat treatment was performed.
  • the drawn tube thus obtained is annealed and softened at 360 ° C. for 2 hours, and then a floating plug, a rod and a plug with a grooved plug are inserted, and a floating die, a machining head, and a molding die are inserted.
  • the inner surface is grooved by outer diameter, the outer diameter is ⁇ 7mm, the bottom wall thickness is 0.35mm, the height H of the ridge fin is 0.22mm, the number of ridge fins is 50, the apex angle ⁇
  • a heat transfer tube with an inner groove with an angle of 15 ° and a lead angle ⁇ of 35 ° was produced. Furthermore, the annealing softening process was finally performed at 360 degreeC for 2 hours, and the heat exchanger tube with an internal groove was completed.
  • (B) Cross-sectional hardness
  • the hardness of the core material and the skin material of the heat transfer tube with the inner surface groove having the outer diameter of ⁇ 7 mm was measured.
  • the hardness was measured with a load of 50 g using a micro Vickers hardness meter (Akashi Seisakusho Co., Ltd.) after polishing the cross section of the grooved tube with resin.
  • Example 3 The S10 alloy shown in Table 1 was cast by continuous casting, and an extruded tube having an outer diameter of 47 mm and a wall thickness of 3.5 mm was obtained by an indirect extrusion method. The extruded tube was subjected to a drawing process using a draw block type continuous drawing machine to obtain a drawn tube having an outer diameter of 10 mm and a wall thickness of 0.45 mm.
  • the drawn tube thus obtained is annealed and softened at 360 ° C. for 2 hours, and then a floating plug, a rod and a plug with a grooved plug are inserted, and a floating die, a machining head, and a molding die are inserted.
  • the inner surface is grooved by passing it through, the outer diameter: ⁇ 7 mm, the bottom wall thickness: 0.35 mm, the height H of the ridge fins: 0.22 mm, the number of ridge fins is 50, the apex angle ⁇
  • a heat transfer tube with an inner groove with an angle of 15 ° and a lead angle ⁇ of 35 ° was produced. Furthermore, the annealing softening process was finally performed at 360 degreeC for 2 hours, and the heat exchanger tube with an internal groove
  • the inner grooved heat transfer tube thus obtained was subjected to shot blasting, Zn spraying, and Zn diffusion heat treatment to complete the inner grooved heat transfer tube having a Zn diffusion layer.
  • Table 6 shows Zn spraying and Zn diffusion heat treatment conditions.
  • (B) Zn coverage In order to measure the Zn coverage after the Zn diffusion heat treatment, a SEM COMPO image was used. A white image can be obtained if Zn is coated, and a black image can be obtained if the underlying Al is exposed. The Zn coverage was calculated by image analysis of the image.
  • Y1 to Y9 did not cause penetration corrosion and exhibited good corrosion resistance. Since Y10 and 12 are less than the lower limit of the surface Zn concentration and Y14 is less than the lower limit of the average surface Zn concentration, sacrificial anticorrosion did not act effectively and some of them penetrated early. Since Y11 and 13 exceeded the upper limit of the surface Zn concentration, and Y15 exceeded the upper limit of the average surface Zn concentration, the sacrificial layer was consumed quickly, and some of them penetrated early. Since Y16 and 17 exceeded the upper limit of the Zn concentration difference, corrosion was concentrated and some of them penetrated early.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Extrusion Of Metal (AREA)
  • Metal Extraction Processes (AREA)
PCT/JP2013/059747 2012-04-13 2013-03-29 アルミニウム合金製内面溝付き伝熱管 WO2013153972A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014510116A JP6105561B2 (ja) 2012-04-13 2013-03-29 アルミニウム合金製内面溝付き伝熱管
KR1020147031665A KR20140146184A (ko) 2012-04-13 2013-03-29 알루미늄 합금으로 제조된 내면홈을 가지는 전열관
CN201380019372.2A CN104246417B (zh) 2012-04-13 2013-03-29 内面带有沟槽的铝合金制导热管
IN8791DEN2014 IN2014DN08791A (en:Method) 2012-04-13 2013-03-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012092193 2012-04-13
JP2012-092193 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013153972A1 true WO2013153972A1 (ja) 2013-10-17

Family

ID=49327540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059747 WO2013153972A1 (ja) 2012-04-13 2013-03-29 アルミニウム合金製内面溝付き伝熱管

Country Status (5)

Country Link
JP (1) JP6105561B2 (en:Method)
KR (1) KR20140146184A (en:Method)
CN (1) CN104246417B (en:Method)
IN (1) IN2014DN08791A (en:Method)
WO (1) WO2013153972A1 (en:Method)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142174A (ja) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd 内面螺旋溝付管およびその製造方法と熱交換器
JP2014142175A (ja) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd 内面螺旋溝付管およびその製造方法と熱交換器
JP2014142173A (ja) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd 内面螺旋溝付管およびその製造方法と熱交換器
JP2014142172A (ja) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd 内面螺旋溝付管およびその製造方法と熱交換器
JP2015038414A (ja) * 2013-07-18 2015-02-26 三菱アルミニウム株式会社 熱交換器の製造方法
EP2871432A1 (en) * 2013-11-06 2015-05-13 BSH Hausgeräte GmbH Heat pump for a household appliance
WO2015068092A1 (en) 2013-11-06 2015-05-14 BSH Hausgeräte GmbH Heat pump for a household appliance
WO2019186071A1 (fr) * 2018-03-27 2019-10-03 Systemair Ac Sas Echangeur haute performance anti-givre
JP7627936B2 (ja) 2021-03-05 2025-02-07 Njt銅管株式会社 Al系内面溝付伝熱管及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860313A (ja) * 1994-08-24 1996-03-05 Furukawa Electric Co Ltd:The 強度と転造成形性に優れたアルミニウム合金管の製造方法
JP2004124166A (ja) * 2002-10-02 2004-04-22 Denso Corp 耐食性および加工性に優れた自動車配管用アルミニウム合金管材およびその製造方法
JP2006152380A (ja) * 2004-11-30 2006-06-15 Denso Corp 耐エロージョン・コロージョン性と一般耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP2010085066A (ja) * 2008-10-02 2010-04-15 Mitsubishi Alum Co Ltd フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JP2010085065A (ja) * 2008-10-02 2010-04-15 Mitsubishi Alum Co Ltd フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JP2010255015A (ja) * 2009-04-21 2010-11-11 Sumitomo Light Metal Ind Ltd アルミニウム合金製熱交換器の溶接チューブ用クラッド材およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124451A (zh) * 2005-02-17 2008-02-13 住友轻金属工业株式会社 热交换器用铝合金硬钎焊散热片材料
JP2011007383A (ja) * 2009-06-24 2011-01-13 Sumitomo Light Metal Ind Ltd アルミニウム合金製熱交換器および該熱交換器に使用する冷媒通路管の製造方法
WO2012008463A1 (ja) * 2010-07-13 2012-01-19 古河スカイ株式会社 アルミニウム合金製内面溝付き伝熱管
CN102286679A (zh) * 2011-09-02 2011-12-21 上海交通大学 用于热交换器的稀土铝合金及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860313A (ja) * 1994-08-24 1996-03-05 Furukawa Electric Co Ltd:The 強度と転造成形性に優れたアルミニウム合金管の製造方法
JP2004124166A (ja) * 2002-10-02 2004-04-22 Denso Corp 耐食性および加工性に優れた自動車配管用アルミニウム合金管材およびその製造方法
JP2006152380A (ja) * 2004-11-30 2006-06-15 Denso Corp 耐エロージョン・コロージョン性と一般耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP2010085066A (ja) * 2008-10-02 2010-04-15 Mitsubishi Alum Co Ltd フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JP2010085065A (ja) * 2008-10-02 2010-04-15 Mitsubishi Alum Co Ltd フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JP2010255015A (ja) * 2009-04-21 2010-11-11 Sumitomo Light Metal Ind Ltd アルミニウム合金製熱交換器の溶接チューブ用クラッド材およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142174A (ja) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd 内面螺旋溝付管およびその製造方法と熱交換器
JP2014142175A (ja) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd 内面螺旋溝付管およびその製造方法と熱交換器
JP2014142173A (ja) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd 内面螺旋溝付管およびその製造方法と熱交換器
JP2014142172A (ja) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd 内面螺旋溝付管およびその製造方法と熱交換器
JP2018134683A (ja) * 2012-12-27 2018-08-30 三菱アルミニウム株式会社 内面螺旋溝付捻り加工管と熱交換器
JP2015038414A (ja) * 2013-07-18 2015-02-26 三菱アルミニウム株式会社 熱交換器の製造方法
EP2871432A1 (en) * 2013-11-06 2015-05-13 BSH Hausgeräte GmbH Heat pump for a household appliance
WO2015068092A1 (en) 2013-11-06 2015-05-14 BSH Hausgeräte GmbH Heat pump for a household appliance
WO2019186071A1 (fr) * 2018-03-27 2019-10-03 Systemair Ac Sas Echangeur haute performance anti-givre
FR3079604A1 (fr) * 2018-03-27 2019-10-04 Systemair Ac Sas Echangeur haute performance anti-givre
JP7627936B2 (ja) 2021-03-05 2025-02-07 Njt銅管株式会社 Al系内面溝付伝熱管及びその製造方法

Also Published As

Publication number Publication date
IN2014DN08791A (en:Method) 2015-05-22
CN104246417A (zh) 2014-12-24
KR20140146184A (ko) 2014-12-24
JPWO2013153972A1 (ja) 2015-12-17
JP6105561B2 (ja) 2017-03-29
CN104246417B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6105561B2 (ja) アルミニウム合金製内面溝付き伝熱管
JP6154610B2 (ja) アルミニウム合金製内面溝付き伝熱管
JP6154611B2 (ja) アルミニウム合金製内面溝付き伝熱管
JP5464659B2 (ja) 破壊強度および曲げ加工性に優れた熱交換器用銅管
JP5574595B2 (ja) フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JP2010085065A (ja) フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
CN107109531A (zh) 换热器用内面带槽管及其制造方法
JP2010185646A (ja) フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JP2016028219A (ja) 押出性に優れた内面溝付管
WO2018225552A1 (ja) アルミニウム合金管形状中空形材及び熱交換器用配管材
JP5990496B2 (ja) 熱交換器用りん脱酸銅管
JP5792696B2 (ja) 高強度銅合金管
JP6244213B2 (ja) 熱交換器用銅管
JP7627936B2 (ja) Al系内面溝付伝熱管及びその製造方法
JP4347145B2 (ja) 熱交換器用アルミニウム合金押出チューブ及び熱交換器
JP2013224768A (ja) 内面溝付き2層クラッドアルミニウム合金管、及び、熱交換器、並びに、内面溝付き2層クラッドアルミニウム合金管の製造方法
JP2013011419A (ja) エアコン用アルミニウム合金製内面溝付き管の製造方法
JP6518804B2 (ja) 熱交換器用アルミニウム合金管の製造方法
JP6402043B2 (ja) 高強度銅合金管
JP2010185647A (ja) フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JP5885572B2 (ja) ろう付接合用アルミニウム合金製クラッド管及び該アルミニウム合金製クラッド管を適用する熱交換器
CN117396621A (zh) 用于内表面带有直线槽的挤出毛坯管的铝合金和内表面带有直线槽的挤出毛坯管以及内表面带有螺旋槽的管和换热器的制造方法
JP2014025112A (ja) 熱交換器フィン用アルミニウム合金板
WO2015111182A1 (ja) 熱交換器フィン用アルミニウム合金板
JP2013023711A (ja) Al−Zn合金を外皮材とした2層クラッド管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201406699

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20147031665

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13775866

Country of ref document: EP

Kind code of ref document: A1