WO2013153901A1 - 三元共重合体及びそれを用いた成形体 - Google Patents

三元共重合体及びそれを用いた成形体 Download PDF

Info

Publication number
WO2013153901A1
WO2013153901A1 PCT/JP2013/057106 JP2013057106W WO2013153901A1 WO 2013153901 A1 WO2013153901 A1 WO 2013153901A1 JP 2013057106 W JP2013057106 W JP 2013057106W WO 2013153901 A1 WO2013153901 A1 WO 2013153901A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclooctene
norbornene
polymerization
mol
terpolymer
Prior art date
Application number
PCT/JP2013/057106
Other languages
English (en)
French (fr)
Inventor
敬之 八重樫
敏雄 中根
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2013153901A1 publication Critical patent/WO2013153901A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to a ternary copolymer obtained by polymerizing ethylene, norbornene, and cyclooctene, and a molded product obtained by molding the ternary copolymer.
  • the cyclic olefin resin is a resin having a cyclic olefin skeleton in the main chain, and has high transparency, low birefringence, high heat distortion temperature, light weight, dimensional stability, low water absorption, hydrolysis resistance, and chemical resistance. It is a resin with many features such as low dielectric constant, low dielectric loss, and no environmental load substances. For this reason, cyclic olefin resins are used in a wide variety of fields where these characteristics are required (see, for example, Patent Document 1).
  • cyclic olefin resins a cyclic olefin resin obtained by copolymerizing a cyclic olefin monomer (for example, norbornene) and an ⁇ -olefin (for example, ethylene) is preferably used.
  • a cyclic olefin resin obtained by copolymerizing a cyclic olefin monomer (for example, norbornene) and an ⁇ -olefin (for example, ethylene) is preferably used.
  • the present invention provides a ternary copolymer that is a cyclic olefin resin and has properties superior to those of conventionally known cyclic olefin resins, and a molded body formed by molding the ternary copolymer. Objective.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, the inventors found that a terpolymer obtained by polymerizing ethylene, norbornene and cyclooctene has excellent toughness, and completed the present invention. More specifically, the present invention provides the following.
  • the ternary copolymer of the present invention is a cyclic olefin resin and has toughness superior to that of conventional cyclic olefin resins.
  • the terpolymer of the present invention is obtained by polymerizing ethylene, norbornene and cyclooctene.
  • a binary copolymer obtained by polymerizing ethylene and norbornene is conventionally known, but further becomes a ternary copolymer containing a repeating unit derived from cyclooctene. Also has excellent toughness.
  • the terpolymer of the present invention is composed of ethylene, norbornene, and cyclooctene, and does not substantially contain a repeating unit derived from another monomer.
  • “Substantially free of repeating units derived from other monomers” means that even if repeating units derived from other monomers are included, the amount is very small and the terpolymer is excellent. It refers to the case with toughness.
  • the trace amount means that the content of repeating units derived from other monomers is 0.1 mol% or less.
  • the ternary copolymer of the present invention may be any of a random copolymer, a block copolymer, an alternating copolymer, and a periodic copolymer, but imparts excellent toughness to the ternary copolymer. From the viewpoint, a random copolymer is preferable.
  • the terpolymer has excellent toughness because the molecular weight between the entanglement points of the ternary copolymer is smaller than that of the binary copolymer obtained by polymerizing ethylene and norbornene.
  • the molecular weight between entanglement points of a polymer such as a copolymer can be generally determined from the following formula (I).
  • a region where the change in storage elastic modulus when the dynamic viscoelasticity measurement is performed is flat or smooth is called a rubber-like flat region, and a storage elastic modulus in this region is called a rubber-like flat elastic modulus.
  • the rubbery flat region is often not clear.
  • the vertical axis represents the loss tangent (tan ⁇ ), and the horizontal axis represents the frequency (the frequency of vibration stimulation applied to the polymer during dynamic viscoelasticity measurement, expressed as ⁇ T , where ⁇ T is a shift factor)
  • the frequency of the minimum value (first minimum value) of the loss tangent is read, and the storage elastic modulus at this frequency is defined as a rubber-like flat elastic modulus.
  • G 0 N ( ⁇ RT) / Me (I) (G 0 N in the formula (I) is a rubber-like flat elastic modulus, ⁇ is a density, R is a gas constant, T is a temperature, and Me is a molecular weight between entanglement points.)
  • the value of the molecular weight between the entanglement points of the terpolymer of the present invention is such that ethylene and norbornene are adjusted by adjusting the introduction amount (hereinafter referred to as charge amount) at the time of polymerization of the raw material thioclooctene to a specific range. And the molecular weight between the entanglement points of the binary copolymer.
  • the specific range can be confirmed by graphing the relationship between the amount of cyclooctene charged and the molecular weight between entanglements (for example, a graph with the horizontal axis representing the amount of cyclooctene charged and the vertical axis representing the molecular weight between entangled points). .
  • the amount of cyclooctene charged is a value when the sum of the amount of norbornene and the amount of cyclooctene charged is 100 mol%.
  • Increasing the amount of cyclooctene charged is considered to mean that the content ratio of repeating units derived from cyclooctene in the ternary copolymer is increased, and conversely, reducing the amount of cyclooctene charged is It is considered that the content ratio of the repeating unit derived from cyclooctene in the ternary copolymer is lowered. Therefore, it is considered that there is a certain correlation between the content ratio of cyclooctene in the ternary copolymer and the molecular weight between the entanglement points.
  • the amount of cyclooctene charged is preferably 0.1 mol% or more.
  • the density of the terpolymer of the present invention will degree 1.01 g / cm 3 or more 1.02 g / cm 3 or less.
  • the glass transition point of the terpolymer of the present invention is not particularly limited, and the content ratio of repeating units derived from norbornene in the ternary copolymer, the content ratio of repeating units derived from cyclooctene, and derived from ethylene
  • the glass transition point of the ternary copolymer is determined according to the content ratio of the repeating unit.
  • a repeating unit derived from a cyclic olefin contained in a binary copolymer binary copolymer of ethylene and norbornene
  • the content of cyclooctene can be estimated.
  • content of the repeating unit derived from the cyclic olefin in the said binary copolymer or ternary copolymer can be derived
  • NMR nuclear magnetic resonance apparatus
  • the melt volume flow rate of the terpolymer of the present invention is not particularly limited, and the content ratio of repeating units derived from norbornene in the terpolymer, the content ratio of repeating units derived from cyclooctene, and ethylene
  • the melt volume flow rate of the terpolymer is determined according to the content ratio of the derived repeating unit.
  • the ternary copolymer of the present invention tends to have a lower melt volume flow rate and an increased molecular weight as compared with a binary copolymer obtained by polymerizing norbornene and ethylene.
  • Melt volume flow rate of the terpolymers of the present invention is preferably 30 cm 3 / 10min or less, more preferably 1.0 ⁇ 20.0cm 3 / 10min.
  • the melt volume flow rate a value measured at 260 ° C. and a load of 2.16 kg in accordance with JIS K 7210 is used.
  • the method for producing the ternary copolymer is not particularly limited.
  • the terpolymer of the present invention can be produced by reacting ethylene, norbornene and cyclooctene in the presence of a catalyst by a conventionally known polymerization method such as a liquid phase polymerization method or a gas phase polymerization method. Whatever polymerization method is adopted, the polymerization conditions for the terpolymer of the present invention may be set appropriately by a conventionally known method.
  • the production method of the ternary copolymer will be described by taking as an example the case of producing the terpolymer of the present invention by a solution polymerization method.
  • Norbornene and cyclooctene and a polymerization solvent are introduced into a reactor such as a continuous polymerization apparatus.
  • the polymerization solvent used is not particularly limited, and examples thereof include aliphatic hydrocarbons such as hexane, heptane, and octane, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and decahydronaphthalene (hereinafter referred to as decalin).
  • Aromatic hydrocarbons such as benzene, xylene and toluene can be used.
  • Two or more kinds of solvents may be mixed to form a polymerization solvent.
  • the amount of norbornene introduced into the reactor and the amount of cyclooctene are not particularly limited and can be appropriately adjusted. If the amount of norbornene charged is increased, the content of repeating units derived from norbornene contained in the ternary copolymer can be increased. Further, if the amount of cyclooctene charged is increased, the content of repeating units derived from cyclooctene contained in the ternary copolymer can be increased.
  • the proportion of the cyclooctene charged is larger than the proportion of the norbornene charged, a decrease in yield, an increase in manufacturing cost, and a significant decrease in the glass transition point are assumed.
  • the total amount of norbornene and cyclooctene is 100 mol%, norbornene is more than 50 mol% and 99.9 mol% or less, and cyclooctene is 0.1 mol% or more and 50 mol% or less.
  • the ratio of the cyclooctene charge is lower than the ratio of the norbornene charge.
  • the catalyst is further introduced into the reactor.
  • the introduction method is not particularly limited, it may be introduced into the reactor in a state where the catalyst is dissolved in a solvent (solution state) or may be introduced into the reactor in a state where the catalyst is dispersed in a solvent (suspension state). Many.
  • concentration of the catalyst contained in the solution or the like in this case is not particularly limited and may be set as appropriate.
  • the type of catalyst is not particularly limited, and conventionally known catalysts such as Ziegler-Natta, metathesis, and metallocene catalysts can be used.
  • the amount of the catalyst charged is not particularly limited and can be set as appropriate.
  • the method for introducing the cocatalyst into the reactor is the same as the method for introducing the catalyst into the reactor.
  • the metallocene catalyst is a compound having a structure in which a transition metal such as titanium, zirconium, nickel, hafnium or the like is sandwiched by an unsaturated cyclic compound containing a ⁇ -electron cyclopentadienyl group or a substituted cyclopentadienyl group.
  • the metallocene catalyst is often used in combination with a promoter such as an aluminum compound such as an alkylaluminoxane, an alkylaluminum, an aluminum halide, and an alkylaluminum halide.
  • Ethylene is introduced into a reactor in which norbornene and cyclooctene and a polymerization solvent are introduced.
  • ethylene is introduced into the reactor in a gaseous state.
  • concentration of gaseous ethylene the number of moles of ethylene contained per liter of gas
  • pressure of ethylene when ethylene is introduced the repeating unit derived from ethylene contained in the terpolymer
  • the amount can be adjusted. For example, increasing the ethylene concentration by increasing the ethylene concentration or increasing the ethylene pressure can increase the content of repeating units derived from ethylene contained in the terpolymer. it can.
  • the temperature in the reactor is increased to a predetermined polymerization temperature, and the pressure in the reactor is increased to a predetermined polymerization pressure. To increase. And a ternary copolymer is manufactured on condition of predetermined
  • Polymerization conditions such as polymerization temperature, polymerization pressure, and polymerization time are not particularly limited, and may be adjusted as appropriate. By adjusting these conditions, the content of the repeating unit derived from norbornene contained in the terpolymer, the content of the repeating unit derived from cyclooctene, and the content of the repeating unit derived from ethylene are adjusted. Can do.
  • the gas chromatogram of the pre-polymerization solution contained in the reactor containing all the raw materials and the gas chromatogram of the solution contained in the post-polymerization reactor are analyzed, and the conversion rate of the monomer to the polymer (polymerization)
  • the amount of monomer used in the process can be derived.
  • the polymerization temperature is adjusted in the range of room temperature to 120 ° C.
  • the conversion rate of norbornene or cyclooctene tends to increase, and by adopting a lower polymerization temperature, the conversion rate of ethylene tends to increase.
  • the polymerization pressure is adjusted in the range of 0.2 MPa to 2 MPa.
  • the conversion rate of ethylene tends to increase, and by adopting a lower polymerization pressure, the conversion rate of norbornene or cyclooctene tends to increase.
  • the polymerization time is 3 minutes or more.
  • the conversion of norbornene, cyclooctene and ethylene tends to increase.
  • the polymerization reaction is advanced as described above, and the catalyst is deactivated after the polymerization reaction is completed.
  • the catalyst can be deactivated by a method of adding alcohol.
  • the molded body of the present invention is a molded body formed by molding the terpolymer of the present invention.
  • the type of the molded body is not particularly limited, and examples thereof include an injection molded body, a film, a sheet, a tube, a pipe, and a bottle, and a film is preferable.
  • the method for producing the molded article of the present invention is not particularly limited, and the molded article of the present invention can be produced using conventionally known molding methods, molding conditions, and the like.
  • conventionally known molding methods include molding methods such as extrusion molding, multilayer extrusion molding, injection molding, injection compression molding, gas assist method injection molding, rotational molding, hot press molding, blow molding, and foam molding.
  • extrusion molding it is particularly preferable to use extrusion molding.
  • a method of continuously forming a film, a sheet, a tube, a fiber or the like is collectively referred to as extrusion molding, and a single-screw extruder is often used for the molding process.
  • the molded article of the present invention has excellent mechanical properties as compared with a molded article obtained by molding a binary copolymer obtained by polymerizing norbornene and ethylene.
  • the film physical properties such as breaking strength, breaking elongation, and folding resistance are excellent.
  • a film formed by molding the terpolymer of the present invention is particularly suitably used for an optical film, a packaging film, a medical film, an industrial film, and the like.
  • the supply amount of ethylene is 0.6 to 0.8 L / h (ethylene supply pressure 7 atm)
  • toluene is used as the solvent
  • the norbornene concentration is 1.50 mol / L
  • the cyclooctene concentration is 0.38 mol / L. Adjusted to L.
  • the total amount of the polymerization solution was 80 mL (77 mL was a mixed solution of a monomer, a catalyst, and a cocatalyst using toluene as a solvent, and 3 mL was decalin).
  • the catalyst concentration was adjusted to 0.125 ⁇ mol / L and the promoter concentration was adjusted to 6.63 mmol / L and polymerized, the catalyst activity became a value shown in Table 1.
  • the temperature in the polymerization apparatus was kept at 100 ° C., and the polymerization proceeded under the polymerization time conditions shown in Table 1. At that time, decalin was added as an internal standard as described above. After the polymerization, a part of the polymerization solution was taken out in order to calculate the conversion rate, and the remaining polymerization solution was put into a methanol solution (300 mL) containing about 5 mL of hydrochloric acid to be quenched. Then, the precipitated polymer was filtered, washed with methanol 5 times or more, and vacuum-dried at 70 ° C. for 3 hours or more to obtain a powdery polymer.
  • a gas chromatogram was obtained for the polymerization solution taken out from the polymerization apparatus by the same method as described above.
  • Table 2 shows peak area data of gas chromatograms before and after polymerization for decalin, norbornene and cyclooctene.
  • the glass transition points of the copolymers 1 to 8 were measured by a DSC method (method described in JIS K7121) at a temperature rising rate of 20 ° C./min. Further, since the peak of the glass transition point was 1, it was confirmed that the copolymers 1 to 8 are random copolymers.
  • the supply amount of ethylene was 0.6 to 0.8 L / h (ethylene supply pressure 7 atm), toluene was used as a solvent, and the total amount of the polymerization solution was 80 mL.
  • the total concentration of norbornene and cyclooctene was adjusted to 1.88 mol / L (the content of cyclooctene contained in the combination of norbornene and cyclooctene was 20 mol% in copolymer 9, copolymer 10 Is 10 mol%, and the copolymer 11 is 0 mol%).
  • the promoter concentration was adjusted to be 6.63 mmol / L so that the catalyst concentration was 0.125 ⁇ mol / L.
  • the raw material was supplied to the polymerization apparatus as described above.
  • the temperature in the polymerization apparatus was kept at 100 ° C., and the polymerization was advanced under the condition of a polymerization time of 15 minutes. Thereafter, the polymerization solution was quenched by adding it to a methanol solution (300 mL) containing about 5 mL of hydrochloric acid. Then, the precipitated polymer was filtered, washed with methanol 5 times or more, and vacuum-dried at 70 ° C. for 3 hours or more to obtain a powdery polymer.
  • the glass transition points (Tg) of the copolymers 9 to 11 obtained as described above were determined by the same method as described above.
  • Copolymer 9: Tg 120.0 ° C.
  • Copolymer 10: Tg 12.5.degree.
  • Copolymer 11: Tg 18.7 ° C.
  • Measuring apparatus AVANCE400 manufactured by Bruker (resonance frequency of hydrogen atom: 400 MHz) Sample tube diameter: 5mm Measurement temperature: 108 ° C Measurement method: Power gate system Pulse width: 6.0 ⁇ sec Delay time: 2.0 sec Data capture time: 1.088 sec Observation frequency range: 10000Hz Decoupling: Complete decouple count: 16000 times Chemical shift reference: Tetrachloroethane triplet center peak is 74.0 ppm.
  • FIG. 1 shows a graph represented by the following formula (II) and plots representing the copolymers 9 to 11.
  • Norbornene content (mol%) (Tg (° C.) / 4) +14 (II)
  • the glass transition point of the copolymer 9 is 133.6 ° C.
  • the glass transition point of the copolymer 9 is 120 ° C. Therefore, the difference in glass transition point is 13.6 ° C.
  • the glass transition point of polyethylene is ⁇ 118 ° C.
  • the cyclooctene content of the copolymer 10 is 5.2 mol%.
  • the plot of the copolymer 11 which does not use cyclooctene as a raw material exists on the graph represented by Formula (II).
  • the dynamic viscoelasticity of the copolymers 9 to 16 was measured in a temperature range of 170 ° C. to 230 ° C. using a parallel plate type melt rheometer. Specifically, loss elastic modulus (G ′′), storage elastic modulus (G ′), and loss tangent (tan ⁇ ) were derived. A master curve was created based on this result, and the minimum value of tan ⁇ was determined. The position where tan ⁇ is minimized is considered as a rubber-like flat portion, and the storage elastic modulus at the frequency giving the minimum value of tan ⁇ is taken as the rubber-like flat elastic modulus, and the molecular weight between the entanglement points is calculated.
  • FIG. 2 shows master curves of the copolymers 9 to 11 and 15.
  • Table 3 shows the glass transition points (measured in the same manner as described above), number average molecular weights (measured under the following conditions), rubbery flat elastic modulus, and interentangle molecular weights of the copolymers 9 to 16. .
  • Apparatus TDA302 detector manufactured by Viscotek + Pump autosampler apparatus Detector: RI used
  • Solvent Chloroform column: PL Gel Mixed-C (300 mm ⁇ 7.5 mm ⁇ ⁇ 5 ⁇ m gel) manufactured by VARIAN Flow rate: 1 mL / min Temperature: 40 ° C Sample concentration: 1.67 mg / mL Injection volume: 100 ⁇ L Standard sample: monodisperse polystyrene
  • the ethylene concentration is 1.4 mol / L
  • the norbornene concentration is 5.5 mol / L
  • the cyclooctene concentration is 1.5 mol / L (copolymer 17), and 0.15 mol / L (copolymer 18). Or 0 mol / L (copolymer 19), and the ratio of hydrogen to ethylene was adjusted to 0.13.
  • Table 4 shows the content of cyclooctene contained in the mixture of norbornene and cyclooctene, that is, the amount of charged cyclooctene.
  • the raw material was supplied to the continuous polymerization apparatus as described above.
  • the temperature in the continuous polymerization apparatus was kept at 90 ° C., and polymerization was advanced.
  • the polymerization solvent and unreacted norbornene and cyclooctene were removed by reducing the pressure in the continuous polymerization apparatus while maintaining a high temperature.
  • the obtained mixture was extruded into a strand shape, and the formed extrudate was cut to obtain pellets having a length of about 3 mm and a diameter of about 2 mm.
  • melt volume flow rate (MVR) of the copolymers 17 to 19 was measured according to JIS K 7210 (260 ° C., 2.16 kg load). The results are shown in Table 4.
  • the compression portion has a valley diameter that is tapered, and the inclination is the same angle.

Abstract

 従来公知の環状オレフィン樹脂よりもさらに優れた性質を有する三元共重合体、及び上記三元共重合体を成形してなる成形体を提供する。 エチレンと、ノルボルネンと、シクロオクテンとを共重合する。本発明の三元共重合体の製造においては、上記ノルボルネンの仕込み量と上記シクロオクテンの仕込み量との合計を100モル%としたときに、ノルボルネンを50モル%超99.9モル%以下、シクロオクテンを0.1モル%以上50モル%未満であることが好ましい。本発明の成形体は、上記三元共重合体を成形することで得られる。

Description

三元共重合体及びそれを用いた成形体
 本発明は、エチレンとノルボルネンとシクロオクテンとを重合してなる三元共重合体、及び上記三元共重合体を成形してなる成形体に関する。
 環状オレフィン樹脂は、主鎖に環状オレフィンの骨格を有する樹脂であり、高透明性、低複屈折性、高熱変形温度、軽量性、寸法安定性、低吸水性、耐加水分解性、耐薬品性、低誘電率、低誘電損失、環境負荷物質を含まない等、多くの特徴をもつ樹脂である。このため、環状オレフィン樹脂は、これらの特徴が必要とされる多種多様な分野に用いられている(例えば、特許文献1参照)。
 そして、環状オレフィン樹脂の中でも、環状オレフィンモノマー(例えば、ノルボルネン)と、α-オレフィン(例えば、エチレン)とを、共重合することで得られる環状オレフィン樹脂が好ましく用いられている。
特開2004-156048号公報
 本発明は、環状オレフィン樹脂であって、従来公知の環状オレフィン樹脂よりもさらに優れた性質を有する三元共重合体、及び上記三元共重合体を成形してなる成形体を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、エチレンとノルボルネンとシクロオクテンとを重合してなる三元共重合体が優れた靭性を有することを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。
 (1) エチレンと、ノルボルネンと、シクロオクテンとを重合してなる三元共重合体。
 (2) ノルボルネンの仕込み量とシクロオクテンの仕込み量との合計を基準として、ノルボルネンを50モル%超99.9モル%以下、シクロオクテンを0.1モル%以上50モル%未満用いて重合してなる(1)に記載の三元共重合体。
 (3) (1)又は(2)に記載の三元共重合体を成形してなる成形体。
 本発明の三元共重合体は、環状オレフィン樹脂であって、従来の環状オレフィン樹脂よりも優れた靭性を有する。
ノルボルネンとエチレンとを重合してなる二元共重合体のガラス転移点と、実施例で製造した三元共重合体のガラス転移点との関係の一例を表す図である。 実施例で作成したマスターカーブを示す図である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
<三元共重合体>
 本発明の三元共重合体は、エチレンとノルボルネンとシクロオクテンとを重合してなる。エチレンとノルボルネンとを重合してなる二元共重合体は従来から知られているが、さらにシクロオクテンに由来する繰り返し単位を含む三元共重合体になることで、上記二元共重合体よりも優れた靭性を有する。
 本発明の三元共重合体は、エチレン、ノルボルネン、シクロオクテンから構成され、実質的に他のモノマーに由来する繰り返し単位を含まない。「実質的に他のモノマーに由来する繰り返し単位を含まない」とは、その他のモノマーに由来する繰り返し単位が含まれていても、その量が微量であって、三元共重合体が優れた靭性を有する場合を指す。微量とは、その他のモノマーに由来する繰り返し単位の含有量が0.1モル%以下であることを指す。
 本発明の三元共重合体の構造は特に限定されない。したがって、本発明の三元共重合体はランダム共重合体、ブロック共重合体、交互共重合体、及び周期的共重合体のいずれでもよいが、優れた靭性を三元共重合体に付与する観点からランダム共重合体であることが好ましい。
 三元共重合体は、三元共重合体の絡み合い点間分子量が、エチレンとノルボルネンとを重合してなる二元共重合体よりも小さいため優れた靭性を有するといえる。共重合体等の高分子の絡み合い点間分子量は、一般的に下記式(I)から求めることができる。
 通常、動的粘弾性測定を行った場合における貯蔵弾性率の変化が平坦又はなだらかになる領域をゴム状平坦領域と呼び、この領域での貯蔵弾性率をゴム状平坦弾性率と呼ぶ。しかし、環状オレフィンに由来する繰り返し単位を含む共重合体の場合にはゴム状平坦領域が明瞭ではない場合が多い。そこで、縦軸に損失正接(tanδ)、横軸に周波数(動的粘弾性測定の際に高分子に与える振動刺激の周波数を表し、ωαで表される。αはシフトファクターである)としたときの、損失正接の極小値(最初の極小値)の周波数を読み取り、この周波数での貯蔵弾性率をゴム状平坦弾性率とする。
 
=(ρRT)/Me   (I)
(式(I)中のG はゴム状平坦弾性率、ρは密度、Rは気体定数、Tは温度、Meは絡み合い点間分子量である。)
 
 本発明の三元共重合体の絡み合い点間分子量の値は、原料であるシオクロオクテンの重合時の導入量(以後、仕込み量とする)を特定の範囲に調整することで、エチレンとノルボルネンとの二元共重合体の絡み合い点間分子量よりも大幅に小さくすることができる。特定の範囲については、シクロオクテンの仕込み量と絡み合い点間分子量との関係をグラフ化することで確認できる(例えば、横軸をシクロオクテンの仕込み量、縦軸を絡み合い点間分子量とするグラフ)。なお、シクロオクテンの仕込み量は、ノルボルネンの仕込み量とシクロオクテンの仕込み量との合計を100モル%としたときの値である。
 シクロオクテンの仕込み量を多くすることは、三元共重合体中のシクロオクテンに由来する繰り返し単位の含有比率が高まることを意味すると考えられ、逆に、シクロオクテンの仕込み量を少なくすることは、三元共重合体中のシクロオクテンに由来する繰り返し単位の含有比率が低くなることを意味すると考えられる。したがって、三元共重合体中のシクロオクテンの含有比率と絡み合い点間分子量との間に一定の相関関係が存在すると考えられる。
 例えば、三元共重合体の数平均分子量が40000以上50000以下の範囲の場合には、シクロオクテンの仕込み量は0.1モル%以上であることが好ましい。
 本発明の三元共重合体の密度は、1.01g/cm以上1.02g/cm以下程度になる。
 本発明の三元共重合体のガラス転移点は特に限定されず、三元共重合体中のノルボルネンに由来する繰り返し単位の含有比率、シクロオクテンに由来する繰り返し単位の含有比率、及びエチレンに由来する繰り返し単位の含有比率に応じて、三元共重合体のガラス転移点が決まる。
 理論的には、三元共重合体中の1モル%のノルボルネンに由来する繰り返し単位が、シクロオクテンに由来する繰り返し単位に置き換わると、三元共重合体のガラス転移点が1.195℃低下する(例えば、2005 IUPAC Pure and Applied Chemistry 77, 801-814、R.M. Waymouth. Tetrahedron,60(2004),7147-7155から確認可能)。したがって、本発明の三元共重合体のガラス転移点と同じガラス転移点を有する二元共重合体(エチレンとノルボルネンとの二元共重合体)に含まれる環状オレフィンに由来する繰り返し単位の含有量と、上記本発明の三元共重合体に含まれる環状オレフィンに由来する繰り返し単位の含有量とを比較することで、シクロオクテンの含有量を見積もることができる。なお、上記二元共重合体や三元共重合体中の環状オレフィンに由来する繰り返し単位の含有量は、核磁気共鳴装置(NMR)を用いて導出することができる。
 本発明の三元共重合体のメルトボリュームフローレートは特に限定されず、三元共重合体中のノルボルネンに由来する繰り返し単位の含有比率、シクロオクテンに由来する繰り返し単位の含有比率、及びエチレンに由来する繰り返し単位の含有比率に応じて、三元共重合体のメルトボリュームフローレートが決まる。本発明の三元共重合体は、ノルボルネンとエチレンとを重合してなる二元共重合体と比較して、メルトボリュームフローレートが低くなる傾向にあり、分子量が増加している。本発明の三元共重合体のメルトボリュームフローレートは、好ましくは30cm/10min以下、より好ましくは1.0~20.0cm/10minである。なお、本明細書において、メルトボリュームフローレートとしては、JIS K 7210に準拠して、260℃、2.16kg荷重にて測定された値を用いる。
<三元共重合体の製造方法>
 三元共重合体の製造方法は特に限定されない。液相重合法、気相重合法等の従来公知の重合方法で、エチレンとノルボルネンとシクロオクテンとを触媒存在下で反応させることで本発明の三元共重合体を製造することができる。どのような重合方法を採用したとしても、本発明の三元共重合体の重合条件は、従来公知の方法で適宜好ましい条件を設定すればよい。以下、溶液重合法で本発明の三元共重合体を製造する場合を例に、三元共重合体の製造方法を説明する。
 ノルボルネン及びシクロオクテンと重合溶媒とを連続重合装置等の反応器に導入する。ここで、使用される重合溶媒は特に限定されず、例えば、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素、シクロヘキサン、メチルシクロヘキサン、デカヒドロナフタレン(以下、デカリンと記載)等の脂環族炭化水素、ベンゼン、キシレン、トルエン等の芳香族炭化水素等を使用できる。また、2種類以上の溶媒を混合して重合溶媒としてもよい。
 反応器に導入されるノルボルネンの量やシクロオクテンの量は特に限定されず、適宜調整することができる。ノルボルネンの仕込み量を多くすれば三元共重合体に含まれるノルボルネンに由来する繰り返し単位の含有量を多くすることができる。また、シクロオクテンの仕込み量を多くすれば三元共重合体中に含まれるシクロオクテンに由来する繰り返し単位の含有量を多くすることができる。
 ただし、シクロオクテン仕込み量の割合をノルボルネン仕込み量の割合より多くすると、収率の低下、製造コストの上昇、ガラス転移点の大幅な低下が想定される。これらを考慮すると、ノルボルネンの仕込み量とシクロオクテンの仕込み量の合計を100モル%とした場合、ノルボルネンを50モル%超99.9モル%以下、シクロオクテンを0.1モル%以上50モル%未満として、シクロオクテン仕込み量の割合をノルボルネン仕込み量の割合より低くすることが好ましい場合がある。
 反応器には、さらに触媒が導入される。導入方法は特に限定されないが、触媒を溶媒に溶かした状態(溶液状態)で反応器に導入したり、触媒を溶媒に分散させた状態(懸濁状態)で反応器に導入したりすることが多い。この場合の溶液等に含まれる触媒の濃度は特に限定されず適宜設定すればよい。
 触媒の種類は特に限定されず、チーグラー・ナッタ系、メタセシス系、メタロセン系触媒等の従来周知の触媒を用いることができる。触媒の仕込み量も特に限定されず適宜設定することができる。また、アルミニウム化合物やホウ素化合物等を助触媒として、触媒とともに反応器に導入してもよい。なお、助触媒を反応器に導入する方法は、触媒を反応器に導入する方法と同様である。
 本発明においてはメタロセン系触媒を使用することが好ましい。メタロセン触媒とは、チタン、ジルコニウム、ニッケル、ハフニウム等の遷移金属をπ電子系のシクロペンタジエニル基又は置換シクロペンタジエニル基等を含有する不飽和環状化合物ではさんだ構造の化合物である。メタロセン触媒は、アルキルアルミノキサン、アルキルアルミニウム、アルミニウムハライド、アルキルアルミニウムハライド等のアルミニウム化合物等の助触媒と組合せて用いる場合が多い。
 ノルボルネン及びシクロオクテンと重合溶媒とが導入された反応器に、エチレンを導入する。通常、エチレンは気体の状態で反応器に導入される。この気体状エチレンの濃度(気体1Lあたりに含まれるエチレンのモル数)や、エチレンを導入する際のエチレンの圧力を制御することで、三元共重合体に含まれるエチレンに由来する繰り返し単位の量を調整することができる。例えば、エチレンの濃度を高めたり、エチレンの圧力を高めたりして、エチレンの仕込み量を多くすることで、三元共重合体に含まれるエチレンに由来する繰り返し単位の含有量を多くすることができる。
 上記のようにして原料であるノルボルネン、シクロオクテン、エチレンが、触媒とともに反応器内に存在する状態で、反応器内の温度を所定の重合温度まで高め、反応器内の圧力を所定の重合圧力まで高める。そして、所定の重合時間の条件で三元共重合体の製造を行う。
 重合温度、重合圧力、重合時間等の重合条件は特に限定されず、適宜調整すればよい。これらの条件を調整することでも三元共重合体に含まれるノルボルネンに由来する繰り返し単位の含有量、シクロオクテンに由来する繰り返し単位の含有量、エチレンに由来する繰り返し単位の含有量を調整することができる。
 例えば、原料を全て含んだ反応器内に含まれる重合前の溶液のガスクロマトグラムと、重合後の反応器内に含まれる溶液のガスクロマトグラムとを分析して、モノマーのポリマーへの転化率(重合に使用されたモノマー量)を導出することができる。重合条件を調整して、このモノマーの転化率を調整することで、三元共重合体中のノルボルネンに由来する繰り返し単位の含有量やシクロオクテンに由来する繰り返し単位の含有量を調整することができる。
 一般的に、重合温度は室温以上120℃以下の範囲で調整される。この重合温度の範囲内でより高い重合温度を採用することで、ノルボルネンやシクロオクテンの転化率が高まる傾向にあり、より低い重合温度を採用することでエチレンの転化率が高まる傾向にある。
 一般的に、重合圧力は0.2MPa以上2MPa以下の範囲で調整される。この重合圧力の範囲内でより高い重合圧力を採用することで、エチレンの転化率が高まる傾向にあり、より低い重合圧力を採用することでノルボルネンやシクロオクテンの転化率が高まる傾向にある。
 一般的に、重合時間は3分以上である。この重合時間の範囲内で、より長い重合時間を採用することで、ノルボルネン、シクロオクテン、エチレンの転化率が高まる傾向にある。
 上記のようにして、重合反応を進め、重合反応が完了した後に触媒を失活させる。例えば、アルコールを添加する方法で触媒を失活させることができる。
<成形体>
 本発明の成形体は、本発明の三元共重合体を成形してなる成形体である。成形体の種類は特に限定されず、例えば、射出成形体、フィルム、シート、チューブ、パイプ、ボトル等が挙げられるが、フィルムが好ましい。
 本発明の成形体の製造方法は特に限定されず、従来公知の成形方法、成形条件等を用いて本発明の成形体を製造することができる。従来公知の成形方法としては、例えば、押出成形、多層押出成形、射出成形、射出圧縮成形、ガスアシスト法射出成形、回転成形、熱プレス成形、ブロー成形、発泡成形等の成形方法が挙げられる。これらの成形方法のなかでは、押出成形を用いるのが特に好ましい。一般に、フィルム、シート、チューブ、繊維等を連続的に成形加工する方法が押出成形と総称され、単軸押出機が成形加工によく用いられる。
 本発明の成形体は、ノルボルネンとエチレンとを重合してなる二元共重合体を成形してなる成形体と比較して、優れた機械的物性を有する。特に、本発明の成形体がフィルムである場合には、破断強度、破断伸度、耐折回数等のフィルム物性に優れる。本発明の三元共重合体を成形してなるフィルムは、光学フィルム、包装用フィルム、医療用フィルム、工業用フィルム等に特に好適に用いられる。
 本発明を実施例等に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。
<実施例>
 以下の評価1~4を行った。
[評価1]
 共重合体1~8の合成について説明する。先ず、エチレン、ノルボルネン、シクロオクテン、デカリン(ガスクロマトグラフィーの内部標準物質として)、及び重合溶媒(炭化水素系溶媒)をオートクレーブ重合装置に供給した。また、同時に重合触媒としてジルコニウム系メタロセン触媒、助触媒としてポリメチルアルミノキサン(PMAO)からなる触媒系を重合装置に供給した。ここで、エチレンの供給量は0.6~0.8L/h(エチレンの供給圧力7atm)、溶媒にトルエンを用い、ノルボルネンの濃度が1.50mol/L、シクロオクテンの濃度が0.38mol/Lになるよう調整した。その際、重合溶液の全量が80mL(77mLが、トルエンを溶媒とするモノマー、触媒、及び助触媒の混合溶液、3mLがデカリン)になるようにした。また、触媒濃度は0.125μmol/Lになるよう、助触媒濃度は6.63mmol/Lになるよう調整し、重合すると、触媒活性が表1に示す値となった。
 重合前に重合装置から上記成分を含む溶液を0.1g取り出し、これに0.9gのメタノールを加え、不溶分を取り除き、不溶分が取り除かれたものをサンプルとしてガスクロマトグラムを取得した。デカリン、ノルボルネン、シクロオクテンに関する重合前後のクロマトグラムのピーク面積のデータを表2に示した。
(ガスクロマトグラフィーの取得条件)
装置:HEWLETT PACKARD社製、「HP6890 GC」
カラム:VARIAN製 CP-Sil 長さ30m、内径0.25mm、膜厚0.25μm
キャリアガス:ヘリウム
インジェクション温度:280℃
カラム温度:50℃で10分保持後、昇温速度10℃/分で250℃まで加熱し、250℃で10分保持
検出器:FID
打ち込み量:1μL
スプリット比:50:1
 重合装置内の温度を100℃に保ち、表1に示す重合時間の条件で重合を進めた。その際、上述のように内部標準物質としてデカリンを加えた。重合後、転化率を算出するために重合溶液を一部取り出した後、残りの重合溶液を約5mLの塩酸を含むメタノール溶液(300mL)に投入しクエンチさせた。それから析出したポリマーをろ別し、メタノールで5回以上洗浄し、70℃、3時間以上真空乾燥させることで粉末状のポリマーを得た。
 重合装置から取り出した重合溶液について、上記と同様の方法でガスクロマトグラムを取得した。デカリン、ノルボルネン、シクロオクテンに関する重合前後のガスクロマトグラムのピーク面積のデータを表2に示した。
 また、表2のデータに基づき、ノルボルネンの転化率、シクロオクテンの転化率は、デカリンを内部標準物質として、ノルボルネン及びシクロオクテンの重合前後のガスクロマトグラムのピーク面積の変化より算出し、表1に上記転化率をまとめた。
 また、共重合体1~共重合体8のガラス転移点をDSC法(JIS K7121記載の方法)によって昇温速度20℃/分の条件で測定した。また、ガラス転移点のピークが1点であったことから、共重合体1~共重合体8は、ランダム共重合体であることが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、ノルボルネン、シクロオクテンのいずれもが消費されていることから三元共重合体が得られていることが確認できる。また、重合時間を長くすることでシクロオクテンの転化率が多くなることが確認された。
[評価2]
 共重合体9~11の合成について説明する。先ず、エチレン、ノルボルネン、シクロオクテン、及び重合溶媒(炭化水素系溶媒)を重合装置に供給した(共重合体11の製造においてはシクロオクテンを加えなかった)。また、同時に重合触媒としてジルコニウム系メタロセン触媒、助触媒としてポリメチルアルミノキサン(PMAO)からなる触媒系をオートクレーブ重合装置に供給した。ここで、エチレンの供給量は0.6~0.8L/h(エチレンの供給圧力7atm)、溶媒にトルエンを用い、重合溶液全量を80mLとした。ノルボルネンとシクロオクテンの合計濃度が1.88mol/Lになるよう調整した(ノルボルネンとシクロオクテンとを合わせたものに含まれるシクロオクテンの含有量が共重合体9では20モル%、共重合体10では10モル%、共重合体11では0モル%)。また、触媒濃度は0.125μmol/Lとなるよう、助触媒濃度は6.63mmol/Lになるよう調整した。上記のようにして原料を重合装置に供給した。重合装置内の温度を100℃に保ち、重合時間15分の条件で重合を進めた。その後、重合溶液を約5mLの塩酸を含むメタノール溶液(300mL)に投入しクエンチさせた。それから析出したポリマーをろ別し、メタノールで5回以上洗浄し、70℃、3時間以上真空乾燥させることで粉末状のポリマーを得た。
 上記のようにして得られた共重合体9~11のガラス転移点(Tg)を上記と同様の方法で求めた。
共重合体9:Tg=120.0℃
共重合体10:Tg=125.4℃
共重合体11:Tg=128.7℃
 また、上記のようにして得られた共重合体9~11の環状オレフィンに由来する繰り返し単位の含有量を、13C-NMRスペクトル測定の結果から求めた。
共重合体9:47.4モル%
共重合体10:46.9モル%
共重合体11:46.3モル%
13C-NMRスペクトルの測定)
 共重合体40mgを1,1,2,2-テトラクロロエタン-d0.6mLに100℃にて溶解させてサンプルを作製し、以下の条件で13C-NMRスペクトルを測定した。
測定装置:Bruker社製AVANCE400 (水素原子の共鳴周波数:400MHz)
サンプルチューブ径:5mm
測定温度:108℃
測定方法:パワーゲート方式
パルス幅:6.0μsec
遅延時間:2.0sec
データ取り込み時間:1.088sec
観測周波数幅:10000Hz
デカップリング:完全デカップル
積算回数:16000回
ケミカルシフトのリファレンス:テトラクロロエタンのトリプレットの中央ピークを74.0ppmとする。
 エチレンとノルボルネンとを重合してなる二元共重合体は、ガラス転移点(Tg)とノルボルネンの含有量(モル%)との関係が下記式(II)で表される(Ruchats D., Fink G., Macromolecules 31,4681-4683(1998))。図1には、下記式(II)で表されるグラフと、共重合体9~11を表すプロットを示す。
 
ノルボルネンの含有量(モル%)=(Tg(℃)/4)+14  (II)
 
 共重合体9の環状オレフィン含有量の全てが、ノルボルネンの含有量の場合にはガラス転移点が133.6℃になる。しかし、共重合体9のガラス転移点は120℃である。したがって、ガラス転移点の差は13.6℃になる。また、ポリエチレンのガラス転移点が-118℃であるので(Wiely-Interscience Publication発行、POLYMER HANDBOOK 4th Edition(ISBN 0-471-16628-6) VI/206 (1999))、エチレンとノルボルネン(Pure and Applied Chemistry 77,801-814(2005))、及びエチレンとシクロオクテン(Tetrahedron 60,7147-7155(2004))を重合してなる二元共重合体のガラス転移点と共重合体に含まれるノルボルネンもしくはシクロオクテンの組成(モル%)の関係は、関係式(III)及び関係式(IV)のようになる。
 
Tg(℃)=4.725×ノルボルネンの含有量(モル%)-118   (III)
Tg(℃)=3.530×シクロオクテンの含有量(モル%)-118   (IV)
 
 したがって、関係式(III)と関係式(IV)で得られたガラス転移点と共重合体に含まれるノルボルネンもしくはシクロオクテンの組成(モル%)の関係での傾きの差より、ノルボルネン由来の繰り返し単位1モル%が、シクロオクテン由来の繰り返し単位に変わると、ガラス転移点が1.195℃低下するから、共重合体9のシクロオクテン含有量は11.4モル%であると考えられる。共重合体10についても同様に考えると、共重合体10のシクロオクテン含有量は5.2モル%である。なお、原料としてシクロオクテンを用いていない共重合体11のプロットは、式(II)で表されるグラフ上にある。
[評価3]
 共重合体12~16の合成について説明する。表3に示す量のシクロオクテンを用いた以外は共重合体9~11と同様の方法で共重合体を製造した。
 パラレルプレート型溶融レオメータを用いて、170℃から230℃の温度範囲で、共重合体9~16の動的粘弾性測定を行った。具体的には損失弾性率(G’’)、貯蔵弾性率(G’)、損失正接(tanδ)を導出した。この結果をもとにマスターカーブを作成し、tanδの極小値を求めた。tanδが極小になる位置をゴム状平坦部と考え、tanδの極小値を与える周波数での貯蔵弾性率をゴム状平坦弾性率とし、絡み合い点間分子量を算出した。なお、図2に共重合体9~11、15のマスターカーブを示した。
 また、表3には、共重合体9~16のガラス転移点(上記と同様の方法で測定)、数平均分子量(下記条件で測定)、ゴム状平坦弾性率、絡み合い点間分子量を示した。
(数平均分子量の測定条件)
装置:Viscotek製 TDA302検出器+Pump autosampler装置
検出器:RIを使用
溶媒:クロロホルム
カラム:VARIAN社製 PL Gel Mixed-C(300mm×7.5mmφ×5μmゲル)
流速:1mL/分
温度:40℃
試料濃度:1.67mg/mL
注入量:100μL
標準試料:単分散ポリスチレン
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、ノルボルネンとエチレンとシクロオクテンとの三元共重合体になることで、絡み合い点間分子量が低くなることが確認された。今回得られたポリマーの数平均分子量がほぼ同じことから、絡み合い点数は絡み合い点間分子量の小さい三元共重合体の方が多いことより、ノルボルネンとエチレンとシクロオクテンとの三元共重合体になることで靭性が高まるといえる。
[評価4]
 共重合体17~19の合成について説明する。先ず、エチレン、ノルボルネン、シクロオクテン、水素、及び重合溶媒(炭化水素系溶媒)を連続重合装置に供給した(共重合体19の製造においてはシクロオクテンを加えなかった)。また、同時に重合触媒としてジルコノセン系メタロセン触媒、助触媒としてポリメチルアルミノキサン(PMAO、10質量%トルエン溶液)からなる触媒系を連続重合装置に供給した。ここで、エチレンの濃度が1.4mol/L、ノルボルネンの濃度が5.5mol/L、シクロオクテン濃度が1.5mol/L(共重合体17)、0.15mol/L(共重合体18)、又は0mol/L(共重合体19)、水素対エチレンの比率が0.13になるよう調整した。ノルボルネンとシクロオクテンとを合わせたものに含まれるシクロオクテンの含有量、即ち、シクロオクテン仕込み量は表4に示す通りであった。上記のようにして原料を連続重合装置に供給した。連続重合装置内の温度を90℃に保ち、重合を進めた。その後、高温に保ちながら連続重合装置内を減圧することによって、重合溶媒並びに未反応のノルボルネン及びシクロオクテンを除去した。溶融状態にある共重合体に0.5質量%の酸化防止剤(商品名イルガノックス1010、チバスペシャルティケミカルズ社製)及び0.3質量%の滑剤(ペンタエリスリトールテトラステアレート)を添加し、十分に混合して、溶融状態の混合物を得た。得られた混合物をストランド状に押し出し、形成された押出物を切断して、長さ約3mm、直径約2mmのペレットを得た。
 上記のようにして得られたペレットを用い、共重合体17~19のガラス転移点(Tg)を上記と同様の方法で求めた。結果を表4に示す。
 上記のようにして得られたペレットを用い、共重合体17~19のメルトボリュームフローレート(MVR)をJIS K 7210に準拠して測定した(260℃、2.16kg荷重)。結果を表4に示す。
 上記のようにして得られたペレットを原料として、以下の押出機及びスクリュを使用して、フィルムを得た。
<フィルム製造装置>
 押出機:株式会社プラスチック工学研究所製の単軸押出機
 ダイス:300mm巾コートハンガーダイ
 スクリュ:FH=6.0mm、MH=2.6mmの圧縮比2スクリュ、又はFH=6.0mm、MH=1.7mmの圧縮比3スクリュ。ただし、以下の条件は、いずれのスクリュにおいても共通:D=32mm、L=960mm、P=32mm、W=3.2mm、D1=31.8mm、計量部でのシリンダーとスクリュとの間隔=0.5mm
 いずれのスクリュにおいても、圧縮部は谷径がテーパーになっており、傾斜は同角度であった。
[フィルム押出条件]
 基本温度設定:230℃(C1)、270℃(C2~C6、H、AD)、260℃(ダイス)、130℃(冷却ロール)
 基本回転数:50~150rpm(100rpmで圧縮比2スクリュを使用したときの押出量:20kg/時)
 フィルム厚み:100μm
<フィルム評価方法>
・引張試験
 得られたフィルムについて、JIS K 7127に準拠し、以下の条件で破断強度及び破断伸度を測定した。結果を表4に示す。
 試験片:2号形試験片
 引張速度:50mm/min
 ロードセル:100kgf
 チャック間距離:50mm
・MIT耐折強さ試験
 得られたフィルムについて、JIS P 8115)に準拠し、以下の条件で耐折回数を測定した。結果を表4に示す。
 試験片寸法:幅15mm、長さ約110mm、厚さ100μm
 試験速度:175cpm
 折り曲げ角度:135°
 荷重:1.0kgf
Figure JPOXMLDOC01-appb-T000004
 表4に示す通り、ノルボルネンとエチレンとシクロオクテンとの三元共重合体になることで、メルトボリュームフローレートが低くなり、分子量が増加することが確認された。上記三元共重合体から得られたフィルムは、破断強度、破断伸度、及び耐折回数の値が高く、優れたフィルム物性を有することが確認された。

Claims (3)

  1.  エチレンと、ノルボルネンと、シクロオクテンとを重合してなる三元共重合体。
  2.  ノルボルネンの仕込み量とシクロオクテンの仕込み量との合計を100モル%としたときに、ノルボルネンを50モル%超99.9モル%以下、シクロオクテンを0.1モル%以上50モル%未満用いて重合してなる請求項1に記載の三元共重合体。
  3.  請求項1又は2に記載の三元共重合体を成形してなる成形体。
PCT/JP2013/057106 2012-04-11 2013-03-13 三元共重合体及びそれを用いた成形体 WO2013153901A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012089953 2012-04-11
JP2012-089953 2012-04-11

Publications (1)

Publication Number Publication Date
WO2013153901A1 true WO2013153901A1 (ja) 2013-10-17

Family

ID=49327475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057106 WO2013153901A1 (ja) 2012-04-11 2013-03-13 三元共重合体及びそれを用いた成形体

Country Status (1)

Country Link
WO (1) WO2013153901A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183075A (ja) * 2018-04-17 2019-10-24 三井化学株式会社 環状オレフィン系共重合体を含む成形材料および成形体
WO2019208239A1 (ja) * 2018-04-24 2019-10-31 日本ゼオン株式会社 開環共重合体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345612A (ja) * 1989-07-08 1991-02-27 Hoechst Ag シクロオレフィン系ポリマーの製造方法
JPH06271628A (ja) * 1993-02-12 1994-09-27 Hoechst Ag シクロオレフィンコポリマーの製造法
JPH08507801A (ja) * 1993-02-12 1996-08-20 ヘキスト・アクチェンゲゼルシャフト 引裂強さが大きくて光学減衰の少ないシクロオレフィンコポリマー
US5635573A (en) * 1992-12-01 1997-06-03 Exxon Chemical Patents Inc. Method for preparing alpha-olefin/cycloolefin copolymers
JP2001506293A (ja) * 1996-12-17 2001-05-15 ティコナ・ゲーエムベーハー シクロオレフィンコポリマーの製造方法
JP2001506689A (ja) * 1996-12-17 2001-05-22 ティコナ・ゲーエムベーハー シクロオレフィンコポリマー類の製造法
WO2007060723A1 (ja) * 2005-11-24 2007-05-31 Polyplastics Co., Ltd. シクロオレフィン系共重合体
JP2013064114A (ja) * 2011-08-30 2013-04-11 Polyplastics Co ポリマー溶液、キャストフィルム、膜及び繊維

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345612A (ja) * 1989-07-08 1991-02-27 Hoechst Ag シクロオレフィン系ポリマーの製造方法
US5635573A (en) * 1992-12-01 1997-06-03 Exxon Chemical Patents Inc. Method for preparing alpha-olefin/cycloolefin copolymers
JPH06271628A (ja) * 1993-02-12 1994-09-27 Hoechst Ag シクロオレフィンコポリマーの製造法
JPH08507801A (ja) * 1993-02-12 1996-08-20 ヘキスト・アクチェンゲゼルシャフト 引裂強さが大きくて光学減衰の少ないシクロオレフィンコポリマー
JP2001506293A (ja) * 1996-12-17 2001-05-15 ティコナ・ゲーエムベーハー シクロオレフィンコポリマーの製造方法
JP2001506689A (ja) * 1996-12-17 2001-05-22 ティコナ・ゲーエムベーハー シクロオレフィンコポリマー類の製造法
WO2007060723A1 (ja) * 2005-11-24 2007-05-31 Polyplastics Co., Ltd. シクロオレフィン系共重合体
JP2013064114A (ja) * 2011-08-30 2013-04-11 Polyplastics Co ポリマー溶液、キャストフィルム、膜及び繊維

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUCHMEISER ET AL.: "A Catalyst for the Simultaneous Ring-Opening Metathesis Polymerization/Vinyl Insertion Polymerization", ANGEW. CHEM. INT. ED, vol. 50, 15 March 2011 (2011-03-15), pages 3566 - 3571 *
MANIVANNAN ET AL.: "Switching the mechanism of polymerization from vinyl addition to metathesis using single-site catalysts", MACROMOL. RAPID COMMUN., vol. 21, 8 March 2000 (2000-03-08), pages 968 - 972 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183075A (ja) * 2018-04-17 2019-10-24 三井化学株式会社 環状オレフィン系共重合体を含む成形材料および成形体
JP7010757B2 (ja) 2018-04-17 2022-01-26 三井化学株式会社 環状オレフィン系共重合体を含む成形材料および成形体
WO2019208239A1 (ja) * 2018-04-24 2019-10-31 日本ゼオン株式会社 開環共重合体
CN112004856A (zh) * 2018-04-24 2020-11-27 日本瑞翁株式会社 开环共聚物
EP3786209A4 (en) * 2018-04-24 2022-03-09 Zeon Corporation RING OPEN COPOLYMER
CN112004856B (zh) * 2018-04-24 2023-07-18 日本瑞翁株式会社 开环共聚物

Similar Documents

Publication Publication Date Title
EP2961780B1 (en) Polymer resins with improved processability and melt fracture characteristics
EP2877502B1 (en) Process for preparing a polyethylene resin
US9290593B2 (en) Polyolefin and preparation method thereof
KR101077071B1 (ko) 내충격성이 우수한 에틸렌 공중합체
WO1994018250A1 (en) Polyethylene, thermoplastic resin composition containing the same, and process for producing polyethylene
CN102816269B (zh) 一种高熔体强度丙烯/乙烯共聚物及其制备方法
JPS63154753A (ja) ポリエチレン系組成物
KR101528603B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
CN112724301B (zh) 一种聚乙烯树脂及其制备方法和其注射吹塑的中空制品
EP0318190A2 (en) Polyolefin composition
RU2632204C2 (ru) Полиэтиленовая композиция
US20230399426A1 (en) Medium density polyethylene compositions with broad orthogonal composition distribution
CN112119100B (zh) 聚乙烯组合物
JP2006241451A (ja) ポリエチレン組成物
WO2013153901A1 (ja) 三元共重合体及びそれを用いた成形体
CN106674722B (zh) 一种聚丙烯吹塑膜及其制备方法
CN1717448A (zh) 用于生产小型容器的聚乙烯吹塑组合物
CN114736321B (zh) 一种改性环烯烃共聚物釜内合金及其制备方法
CN1729247A (zh) 用于生产大型容器的聚乙烯吹塑组合物
JP4596510B2 (ja) ポリエチレン組成物
JP2007039541A (ja) 熱可塑性エラストマーおよび成形体
JP7130819B2 (ja) 二次電池セパレータ用ポリエチレン樹脂、その製造方法、及びそれを適用したセパレータ
CN109414919A (zh) 导电性膜及其制造方法
JP2668414B2 (ja) エチレン/多環モノマー共重合体およびその製法
CN101526631B (zh) 注射成型物制光学部件及用于形成其的树脂组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP