WO2013153571A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2013153571A1
WO2013153571A1 PCT/JP2012/002477 JP2012002477W WO2013153571A1 WO 2013153571 A1 WO2013153571 A1 WO 2013153571A1 JP 2012002477 W JP2012002477 W JP 2012002477W WO 2013153571 A1 WO2013153571 A1 WO 2013153571A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
voltage value
predetermined
capacitor
alternating current
Prior art date
Application number
PCT/JP2012/002477
Other languages
English (en)
French (fr)
Inventor
藤田 悟
山田 隆二
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112012000487.6T priority Critical patent/DE112012000487T5/de
Priority to PCT/JP2012/002477 priority patent/WO2013153571A1/ja
Priority to CN201280005298.4A priority patent/CN103718447B/zh
Priority to JP2013525054A priority patent/JP5565527B2/ja
Priority to US13/939,852 priority patent/US9571001B2/en
Publication of WO2013153571A1 publication Critical patent/WO2013153571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a power converter that compensates for voltage fluctuations or power outages of an AC power supply and supplies a stable voltage to a load.
  • FIG. 6 shows an alternating current using a semiconductor switching element (hereinafter referred to as a bidirectional switching element) that compensates for the voltage drop of the alternating current power supply and supplies a constant voltage to the load and can control the on / off of the bidirectional current.
  • a bidirectional switching element a semiconductor switching element that compensates for the voltage drop of the alternating current power supply and supplies a constant voltage to the load and can control the on / off of the bidirectional current.
  • a step-up chopper circuit Patent Document 1, FIG. 17 is shown.
  • the AC boost chopper circuit is connected in parallel to a first series circuit in which a first reactor 4 and a first bidirectional switching element 6 are connected in series, and the first bidirectional switching element 6.
  • Two bidirectional switching elements 5 and a capacitor 3 are connected in series.
  • the load voltage Vout (the voltage across the capacitor 3) is maintained by alternately turning on and off the two bidirectional switching elements 5 and 6 even when the voltage Vin of the AC power supply 1 decreases. Can do.
  • the load voltage Vout is determined by the on / off ratio of the two bidirectional switching elements 5 and 6.
  • FIG. 7 is a configuration example of a bidirectional switching element used in an AC boost chopper.
  • FIG. 7A shows two reverse-blocking IGBTs connected in reverse parallel with a reverse polarity voltage having a breakdown voltage equivalent to the forward polarity.
  • FIG. 7B shows a circuit in which a reverse breakdown voltage is provided by connecting a diode in series to a normal IGBT having no reverse breakdown voltage and further connected in reverse parallel.
  • a diode is connected in parallel to the IGBT, and a reverse conducting element is further connected in reverse series.
  • FIG. 7D shows the same connection as FIG. 7C, but uses a MOSFET as the switching element.
  • MOSFET differs from IGBT in that it has a resistance characteristic in which current and forward voltage drop are proportional. Therefore, theoretically, the forward voltage drop can be brought close to zero by increasing the parallel number. Further, since the MOSFET conducts in the reverse direction when a voltage is applied to the gate, the forward voltage drop can be made smaller than that of the parallel diode depending on conditions. In particular, MOSFETs using SiC (silicon carbide) are being put into practical use in recent years, and a significant forward voltage drop is expected.
  • SiC silicon carbide
  • the AC boost chopper circuit has the following two problems.
  • the first problem is that there is a limit to the amount of voltage compensation for the voltage drop of the AC power supply.
  • the input current Iin flows as much as the step-up ratio of the load current Iout. For example, if the power supply voltage Vin drops to [1/5] of the rated value, the input current Iin instantaneously becomes five times the rated value. For this reason, the current tolerance of the semiconductor switching element used for the bidirectional switching element is required to be five times. The reactor must not be saturated even when the current flows. For this reason, as the voltage range to be compensated becomes wider, the semiconductor switching element and the reactor become larger and the cost also increases. For this reason, 50% to 100% of the power supply voltage is practically used as the compensation range, and 50% or less is out of compensation.
  • the second problem is that a surge voltage is generated when the bidirectional switching element is cut off, and in the worst case, the elements constituting the load and the AC boost chopper circuit are destroyed.
  • the generation factors of the surge voltage are due to the current interruption of the switching element during normal operation, and due to the all-off operation of the switching element during device protection, and the latter is particularly problematic.
  • the former is well known, and generates a high dI / dt (dI is the amount of current change and dt is time) when the switching element is turned off. ) Surge voltage is generated.
  • the bidirectional switching elements 5 and 6 in the event of an accident such as a load short circuit during the boosting operation, the bidirectional switching elements 5 and 6 must be stopped to ensure safety. However, when the bidirectional switching elements 5 and 6 are simultaneously turned off during the conversion operation, there is no path for consuming the energy stored in the reactor 4, so that a surge voltage is generated in the bidirectional switching element 5 or 6.
  • the wiring inductance can be improved to some extent, for example, by shortening the wiring between the switching elements.
  • the inductance of the latter reactor 4 is determined by the circuit conditions, and the wiring inductance (several tens of nH to several hundreds of nH) is determined. Very large and surge voltage is high.
  • FIG. 8 shows the configuration.
  • the inverter 42 supplies the energy of the capacitors 35 and 36 to the load 2 via the transformer 31, thereby compensating the voltage corresponding to the fluctuation of the power supply voltage Vin and loading the load.
  • the voltage Vout is kept constant, and the energy of the capacitors 35 and 36 is charged or regenerated by the inverter 43.
  • the inverter 43 supplies the energy of the capacitors 35 and 36 to the load 2.
  • a constant voltage can be supplied to the load against a wide range of fluctuations in the power supply voltage Vin.
  • a voltage compensating transformer 31 (insulating transformer with a commercial frequency of 50 to 60 Hz) is required, the volume and weight of the device There is a problem in terms of cost. Further, since the power for voltage compensation passes through the two inverters, another problem arises that the loss of the power converter becomes larger than that of the AC boost chopper.
  • a matrix converter device 50 of Patent Document 3 shown in FIG. 9 includes a matrix converter 46, an input filter 47, and a rectifying snubber circuit 48.
  • the rectifying snubber circuit 48 is connected to the input side and the output side of the matrix converter 46.
  • the input filter 47 is composed of, for example, a reactor and a capacitor.
  • FIG. 9 shows an example applied to a three-phase matrix converter, the rectifying snubber circuit 48 has the same effect even with a single-phase or three-phase AC boost chopper.
  • the surge voltage is generated by the energy accumulated in the inductance on the power supply side (here, the component of the input filter 47) and the inductance on the load side (here, the motor 49). appear.
  • the generated surge voltage is rectified through the rectifier circuit 51 or 52, and charging the capacitor 53 suppresses the voltage increase on the power supply side and the load side, thereby preventing overvoltage.
  • the discharge circuit 56 consumes energy to prevent overvoltage.
  • an overvoltage is detected by the voltage detection circuit 57 and the semiconductor switching element 54 is turned on, so that energy is consumed by the resistor 55.
  • each problem can be solved by changing or adding a circuit.
  • the two problems described above are solved at the same time, but also another problem may occur. there were.
  • an object of the present invention is to supply a constant voltage to a load against a wide range of voltage fluctuations of an AC power supply while avoiding an increase in size, cost, and efficiency, and a surge voltage of a bidirectional switching element. It is in providing the power converter device which can suppress.
  • a power conversion device includes a first series circuit in which a first reactor and a first bidirectional switching element are connected in series, and a second serial switching element connected in parallel to the first bidirectional switching element.
  • a series storage element connected in parallel with the series switching element and connected in series with the first and second storage elements, and connected in parallel with the series storage element and connected in series with the first and second rectifier elements.
  • a connected first series rectifier element and a second reactor connected from a midpoint of the 2N switching elements to a connection point of the second bidirectional switching element and the capacitor;
  • the connection point of the first and second power storage elements is connected to the connection point of the first bidirectional switching element and the first capacitor, and the connection points of the first and second rectifying elements are
  • a connection point is connected to a connection point between the first bidirectional switching element and the second bidirectional switching element, converts an alternating current applied to the first series circuit, and outputs it from both ends of the capacitor. It is characterized by that.
  • the AC power supply voltage is stepped up and down to keep the voltage of the capacitor (both ends of the load) constant. Can be maintained.
  • the energy stored in the first reactor is absorbed by the series storage element via the series rectifier element, thereby protecting the bidirectional switching element from the surge voltage. can do.
  • the power conversion device of the present invention can avoid an increase in size and cost of the device.
  • the power conversion device further includes a second series rectifying element connected in parallel with the first rectifying element and connecting the third and fourth rectifying elements in series.
  • the connection point of the rectifying element 4 is connected to the connection point of the second bidirectional switching element and the capacitor.
  • the energy accumulated in the inductance component on the load side can be quickly absorbed, and the surge voltage of the bidirectional switching element can be more reliably suppressed.
  • the power conversion device includes a voltage detection unit that detects the AC voltage value, a drive control unit that drives the first and second bidirectional switching elements, and the first and second switching elements, respectively.
  • the drive control unit turns off the first bidirectional switching element when the AC voltage value detected by the voltage detection means is within a predetermined first voltage range, and the second A first mode in which the bidirectional switching element is turned on, the 2N switching elements are driven to boost the alternating current, and the voltage of the series storage element is maintained at a predetermined voltage value; and the alternating voltage value Is a predetermined second voltage range lower than the first voltage range, the first and second bidirectional switching elements are driven to boost the alternating current and give the capacitor to the predetermined voltage range.
  • the voltage range is lower than 2
  • the first and second bidirectional switching elements are turned off, the 2N switching elements are driven, and the voltage of the capacitor is set to a predetermined value by the electric power stored in the series storage element.
  • the AC voltage value is higher than the first voltage range, the first bidirectional switching element is turned off and the second bidirectional switching element is driven.
  • the AC is stepped down to maintain the voltage of the capacitor at a predetermined voltage value, and the 2N switching elements are driven to step up the AC, and the series storage Characterized in that it comprises a fourth mode to maintain the voltage of the child to a predetermined voltage value.
  • the voltage of the capacitor (both ends of the load) can be kept constant by increasing / decreasing the AC power supply voltage against a wide range of voltage fluctuations of the AC power supply.
  • each mode passes through the minimum necessary bidirectional switching element and semiconductor switching element, it is possible to avoid a decrease in efficiency.
  • the drive control unit when the drive control unit is within a predetermined third voltage range in which the AC voltage value is lower than the second voltage range and within a predetermined time,
  • the second bidirectional switching element is turned off, the first bidirectional switching element is driven to boost the alternating current, the voltage of the series storage element is maintained at a predetermined voltage value, and the 2N switching elements
  • a fifth mode is provided in which an element is driven and the voltage of the capacitor is maintained at a predetermined voltage value by electric power stored in the series storage element.
  • the voltage of the capacitor (both ends of the load) can be kept constant even when an instantaneous voltage drop occurs in the AC power supply.
  • the power conversion device of the present invention allows a large current to flow for a very short time, it is possible to avoid an increase in the size and cost of the reactor.
  • the drive control unit is configured such that the AC voltage value is within the third voltage range and within a predetermined time, and the AC voltage phase is a voltage of the capacitor.
  • the first and second bidirectional switching elements are driven to boost the alternating current, and the 2N switching elements are driven to store the electric power stored in the series storage element.
  • a sixth mode for maintaining the voltage of the capacitor at a predetermined voltage value is provided.
  • the power conversion device described above even if the power storage element has a small capacity, it is stored in the power storage element by driving the first and second bidirectional switching elements and supplying power from the alternating current. Can compensate for the lack of power. Therefore, the sixth mode can compensate for the instantaneous voltage drop more reliably than the fifth mode.
  • the 2N switching elements and the series storage element can be reduced in size.
  • the power conversion device further includes frequency detection means for detecting the AC frequency, and the drive control unit has the AC voltage value equal to or greater than the third voltage range, and the frequency detection means. Is detected to deviate from a predetermined frequency range, the second bidirectional switching element is turned off, the first bidirectional switching element is driven to step up and down the alternating current, and the series storage element And maintaining the voltage of the capacitor at a predetermined voltage value by driving the 2N switching elements and using the electric power stored in the series storage element. It is characterized by.
  • the voltage of the capacitor (both ends of the load) can be kept constant even when the AC power supply frequency becomes abnormal.
  • the power converter according to the present invention further includes a third bidirectional switching element connected from a connection point of the 2N switching elements to a connection point of the first and second power storage elements. .
  • the operation of driving the 2N switching elements in the first to seventh modes is performed by using, among the 2N switching elements, an upper arm side switching element, a lower arm side switching element, or By replacing the operation to drive any one of the third bidirectional switching elements, the output voltage to the capacitor can be made three levels. Therefore, the power conversion device of the present invention has a small amplitude value of the voltage applied to the semiconductor switching element, and therefore can be highly efficient by reducing the switching loss. Moreover, since dI / dt of the current flowing through the second reactor is reduced, the second reactor can be reduced in size.
  • the power conversion device of the present invention it is possible to supply a constant voltage to a load against a wide range of voltage fluctuations of an AC power source without increasing the size, cost, and efficiency of the device, and bidirectional An excellent effect of achieving both suppression of the surge voltage of the switching element can be achieved.
  • FIG. 3 is a diagram showing a main circuit of first to third embodiments of the present invention.
  • FIG. 3 is a diagram illustrating a drive control unit according to first to third embodiments of the present invention. It is a figure which shows the main circuit of 4th Embodiment of this invention. It is a figure which shows the drive control part of 4th Embodiment of this invention. It is a circuit diagram which shows 5th Embodiment of this invention. It is a circuit diagram which shows 6th Embodiment of this invention. It is a circuit diagram which shows 7th Embodiment of this invention.
  • 1 is a circuit diagram showing an embodiment of prior art 1.
  • FIG. FIG. 6 is a circuit diagram showing a first configuration example of a bidirectional switching element in Conventional Technology 1.
  • FIG. 6 is a circuit diagram showing a second configuration example of a bidirectional switching element in Conventional Technology 1.
  • FIG. 12 is a circuit diagram showing a third configuration example of the bidirectional switching element in the related art 1.
  • FIG. 10 is a circuit diagram showing a fourth configuration example of a bidirectional switching element in Conventional Technology 1.
  • FIG. 6 is a circuit diagram showing an embodiment of prior art 2.
  • FIG. 10 is a circuit diagram showing an embodiment of Prior Art 3.
  • FIG. 1A shows a power conversion apparatus according to Embodiment 1 of the present invention, where the same reference numerals as those in FIG. 6 denote the same components, and the basic configuration is the same as that of the conventional one shown in FIG. is there.
  • FIG. 1B shows a drive control unit that generates a control signal for operating the power conversion apparatus according to the first embodiment of the present invention.
  • the power conversion device includes a step-up / step-down chopper unit 10, an inverter unit 20a, a rectification unit 30a, first to third voltage detection means 61 to 63, and a drive control unit 71.
  • the step-up / step-down chopper unit 10 includes a first series circuit in which a first reactor 4 and a first bidirectional switching element 6 are connected in series.
  • the step-up / down chopper unit 10 is connected in parallel to the first bidirectional switching element 6 and is configured by a second series circuit in which the second bidirectional switching element 5 and the first capacitor 3 are connected in series. .
  • the inverter unit 20a includes a series switching element in which first and second semiconductor switching elements 24 and 25 having diodes connected in antiparallel are connected in series.
  • the inverter unit 20a includes a series storage element that is connected in parallel to the series semiconductor switching elements 24 and 25 and has first and second storage elements 21 and 22 connected in series.
  • the inverter unit 20 a includes a second reactor 7 connected from the midpoint of the semiconductor switching elements 24 and 25 to the connection point between the second bidirectional switching element 5 and the first capacitor 3.
  • the inverter unit 20 a is configured such that the connection point between the storage elements 21 and 22 is connected to the connection point between the first bidirectional switching element 6 and the capacitor 3.
  • the rectifying unit 30a includes a first series rectifying element in which the first and second rectifying elements 11 and 12 are connected in series. A connection point between the first series rectifying elements 11 and 12 is connected to a connection point between the bidirectional switching element 6 and the bidirectional switching element 5. The first series rectifying elements 11 and 12 are connected in parallel with the series power storage elements 21 and 22 to form a snubber circuit.
  • the detection terminals of the first voltage detection means 61 are connected to both ends of the AC power supply 1.
  • the detection terminals of the second voltage detection means 62 are connected to both ends of the capacitor 3.
  • the detection terminals of the third voltage detection means 63 are connected to both ends of the series storage elements 21 and 22.
  • the drive control unit 71 includes a voltage range determination unit 72, a voltage adjustment unit 74, and a gate drive circuit 75.
  • the output terminal of the first voltage detection means 61 is connected to the voltage range determination means 72.
  • Output terminals of the second voltage detecting means 62 and the third voltage detecting means 63 are connected to the voltage adjusting means 74.
  • the output terminal of the voltage range determination unit 72 is connected to the voltage adjustment unit 74.
  • the output terminal of the voltage adjusting means 74 is connected to the gate drive circuit 75.
  • a plurality of output terminals of the gate drive circuit 75 are connected to the switching elements 5, 6, 24, 25.
  • a control signal for maintaining the voltage of the capacitor 3 at a predetermined effective voltage value is generated.
  • the voltage value used as a target value is not limited to a voltage effective value.
  • the control signal generating means in the drive control unit 71 will be described later.
  • the switching elements 5, 6, 24, and 25 are driven when the control signal generated by the drive control unit 71 is input to the control terminal. By driving each of the switching elements 5, 6, 24, 25, at least one of the energy accumulated in the reactor 4 and the first and second power storage elements 21, 22 is supplied to the capacitor 3. Then, the voltage of the capacitor 3 is maintained at a predetermined voltage effective value.
  • the voltage range determination unit 72 of the drive control unit 71 determines which voltage range the voltage effective value of the AC power supply 1 detected by the voltage detection unit 61 is in.
  • One operation mode is selected from a plurality of operation modes according to the determination result of the voltage range determination means 72.
  • the threshold value used for determining the voltage range by the voltage range determining unit 72 and the voltage value detected by the voltage detecting unit 61 will be described using a voltage effective value. It is not limited to. Details of each operation mode will be described later.
  • the voltage adjusting means 74 generates two sets of control signals, that is, a control signal for the bidirectional switching elements 5 and 6 and a control signal for the semiconductor switching elements 24 and 25.
  • the two sets of control signals are generated by the first or second function described later.
  • the control signal for the bidirectional switching elements 5 and 6 is further added with a third function according to the operation mode.
  • a control signal for maintaining the voltage of the capacitor 3 detected by the voltage detection means 62 at a predetermined effective voltage value is generated.
  • a control signal for maintaining the voltage across the power storage elements 21 and 22 detected by the voltage detection unit 63 at a predetermined effective voltage value is generated.
  • the control signal generated in the first and second functions is generated by replacing it with a control signal that always turns on or off at least one of the bidirectional switching elements 5 and 6.
  • the gate drive circuit 75 converts the two sets of control signals generated by the voltage adjusting means 74 into signals for driving the switching elements 5, 6, 24, and 25, and outputs them to the control terminals.
  • the drive control unit shown in FIG. 1B is an example of logic for selecting an operation mode and generating and outputting a control signal for the switching element. Therefore, the present invention is not limited to the block diagram shown in FIG. 1B as long as the effect according to the present invention can be exhibited.
  • the operation mode 1 is selected when the voltage effective value of the AC power source 1 detected by the first voltage detection unit 61 is determined by the voltage range determination unit 72 to be within the predetermined first voltage range.
  • the first voltage range is, for example, 90% to 110% of the rated voltage effective value.
  • the bidirectional switching element 6 is turned off and the bidirectional switching element 5 is turned on by a control signal generated by adding the third function to the first function.
  • the voltage of the AC power source 1 is directly applied to the capacitor 3.
  • the semiconductor switching elements 24 and 25 are exclusively turned on and off by the control signal generated by the second function, so that the voltage of the capacitor 3 is boosted and supplied to the storage elements 21 and 22. In this way, using the energy of the capacitor 3, the drive control unit 71 maintains the voltage across the power storage elements 21 and 22 at a predetermined effective voltage value.
  • the effective voltage value of the AC power source 1 detected by the first voltage detection unit 61 is within a predetermined second voltage range lower than the first voltage range by the voltage range determination unit 72. It is selected when judged.
  • the second voltage range is, for example, 50% to 90% of the rated voltage effective value.
  • the bidirectional switching elements 5 and 6 are exclusively turned on / off by the control signal generated by the first function, and the voltage of the AC power supply 1 is boosted and supplied to the capacitor 3. In this way, using the energy of the AC power supply 1, the drive control unit 71 maintains the voltage of the capacitor 3 at a predetermined effective voltage value.
  • the semiconductor switching elements 24 and 25 are exclusively turned on and off by the control signal generated by the second function, so that the voltage of the capacitor 3 is boosted and supplied to the storage elements 21 and 22. In this way, using the energy of the capacitor 3, the drive control unit 71 maintains the voltage across the power storage elements 21 and 22 at a predetermined effective voltage value.
  • the operation mode 3 is selected when the voltage effective value of the AC power source 1 detected by the first voltage detection unit 61 is determined by the voltage range determination unit 72 to be lower than the second voltage range.
  • the voltage range lower than the second voltage range is, for example, 0% to 50% of the rated voltage effective value.
  • the bidirectional switching elements 5 and 6 are turned off by a control signal generated by adding the third function to the first function. As a result, the capacitor 3 is disconnected from the AC power source 1.
  • the semiconductor switching elements 24 and 25 are exclusively turned on and off by the control signal generated by the first function, thereby supplying the energy of the power storage elements 21 and 22 to the capacitor 3.
  • the drive control unit 71 maintains the voltage of the capacitor 3 at a predetermined effective voltage value using the energy of the power storage elements 21 and 22.
  • the operation mode 4 is selected when the voltage effective value of the AC power supply 1 detected by the first voltage detection unit 61 is determined by the voltage range determination unit 72 to be higher than the predetermined first voltage range. .
  • a voltage range higher than the predetermined first voltage range is assumed to be higher than 110% of the rated voltage effective value, for example.
  • an AC power supply is provided by turning off the bidirectional switching element 6 and turning on / off the bidirectional switching element 5 by a control signal generated by adding the third function to the first function. 1 is stepped down and supplied to the capacitor 3. In this way, using the energy of the AC power supply 1, the drive control unit 71 maintains the voltage of the capacitor 3 at a predetermined effective voltage value.
  • the semiconductor switching elements 24 and 25 are exclusively turned on and off by the control signal generated by the second function, so that the voltage of the capacitor 3 is boosted and supplied to the storage elements 21 and 22. In this way, using the energy of the capacitor 3, the drive control unit 71 maintains the voltage across the power storage elements 21 and 22 at a predetermined effective voltage value.
  • the power conversion device of the present invention maintains the voltage of the storage elements 21 and 22 at a predetermined effective voltage value by the drive control unit 71 driving the semiconductor switching elements 24 and 25 in preparation for the operation at the time of voltage compensation. To do. Once the storage elements 21 and 22 are charged, energy corresponding to the leakage current may be supplied. Therefore, the passing current of the semiconductor switching elements 24 and 25 is extremely small, and the loss is negligible.
  • the terminals S and V and the terminal Vi of the inverter unit 20a have the same potential. That is, the potential of the AC power supply 1 is fixed with respect to the neutral point potential of the power storage elements 21 and 22. Accordingly, the rectifying elements 11 and 12 and the storage elements 21 and 22 operate as a snubber circuit (so-called clamp snubber circuit) of the bidirectional switching elements 5 and 6. Therefore, since the power converter device of this invention can absorb the energy at the time of bidirectional
  • the power conversion device of the present invention always turns off the bidirectional switching element 6 during the step-down operation, and performs the chopper operation of the power supply voltage Vin by the bidirectional switching element 5. Further, the energy stored in the reactor 4 when the bidirectional switching element 5 is off is regenerated to the power source via the inverter unit 20a. At this time, the power passing through the inverter is only the voltage compensation, and the loss can be reduced.
  • the operation of the power conversion device according to the second embodiment includes the operation modes 1 to 4 of the first embodiment, and further includes the operation mode 5.
  • the operation mode 5 is selected when the following two conditions are satisfied.
  • the first condition is that the voltage effective value of the AC power supply 1 detected by the voltage detection means 61 is determined by the voltage range determination means 72 to be within a predetermined third voltage range lower than the second voltage range. This is the case.
  • the predetermined third voltage range lower than the second voltage range is, for example, 10% to 50% of the rated voltage effective value.
  • the second condition is that the voltage drop of the AC power supply 1 is within a predetermined time.
  • the predetermined time is, for example, several tens of ms to 1 s.
  • the operation mode 3 is selected as described above when the voltage effective value of the AC power supply 1 detected by the first voltage detection unit 61 is in the following two states. State 1: It is within the third voltage range beyond the predetermined time. State 2: Lower than the third voltage range.
  • the bidirectional switching element 5 is turned off and the bidirectional switching element 6 is turned on / off by a control signal generated by adding the third function to the second function, whereby the AC power supply 1 is boosted and supplied to the storage elements 21 and 22.
  • drive control unit 71 maintains the voltage of power storage elements 21, 22 at a predetermined effective voltage value.
  • the semiconductor switching elements 24 and 25 are exclusively turned on and off by the control signal generated by the first function, so that the voltages of the power storage elements 21 and 22 are boosted and supplied to the capacitor 3. In this way, the drive control unit 71 maintains the voltage of the capacitor 3 at a predetermined effective voltage value using the energy of the power storage elements 21 and 22.
  • a so-called double converter operation is performed in which the rectification unit 30a converts AC to DC and the inverter 20a converts DC to AC.
  • the total power passes through the two converters (the rectifying unit 30a and the inverter unit 20a), so that the loss is increased as compared with the AC boost chopper operation.
  • the instantaneous voltage drop assumed in the second embodiment is usually a few tens of ms to 1 s. Therefore, the increase in loss due to the double converter operation is not a problem.
  • the thermal time constant of the switching element and the reactor is longer than the assumed instantaneous voltage drop time. Therefore, the reactor 4 and the bidirectional switching element 6 are not destroyed.
  • this apparatus it is also possible to use this apparatus as an uninterruptible power supply apparatus by making the electrical storage elements 21 and 22 into a battery.
  • the operation of the power conversion device according to the third embodiment includes the operation modes 1 to 4 of the first embodiment, and further includes the operation mode 6.
  • the power conversion device according to the third embodiment may further include an operation mode 5.
  • the operation mode 6 is selected when the following three conditions are satisfied.
  • the first condition is a case where the voltage effective value of the AC power source 1 detected by the voltage detection unit 61 is determined by the voltage range determination unit 72 to be within the third voltage range.
  • the second condition is that the voltage drop of the AC power supply 1 is within a predetermined time.
  • the third condition is that the voltage phase of the AC power supply 1 detected by the first voltage detection means 61 is synchronized with the voltage phase of the capacitor 3.
  • the synchronization detection means is a known technique and will not be described.
  • the operation mode 3 is selected as described above when the voltage effective value of the AC power supply 1 detected by the first voltage detection means 61 is in the following three states. Further, only in the case of the state 3, the operation mode 5 may be selected. State 1: It is within the third voltage range beyond the predetermined time. State 2: Lower than the third voltage range. State 3: not synchronized with the voltage phase of the capacitor 3
  • the bidirectional switching elements 5 and 6 are exclusively turned on / off by the control signal generated by the first function, and the voltage of the AC power supply 1 is boosted and supplied to the capacitor 3. In this way, the step-up / down chopper unit 10 supplies power from the AC power supply 1 to the capacitor 3.
  • the semiconductor switching elements 24 and 25 are exclusively turned on and off by the control signal generated by the first function, thereby supplying the energy of the power storage elements 21 and 22 to the capacitor 3. In this way, the inverter unit 20 a supplies power from the power storage elements 21 and 22 to the capacitor 3.
  • the step-up / step-down chopper unit 10 and the inverter unit 20a share the supplied power and maintain the voltage of the capacitor 3 at a predetermined effective voltage value.
  • the power storage elements 21 and 22 have a small capacity, by operating the buck-boost chopper unit 10 at the same time and supplying power from the AC power supply 1, the shortage of power stored in the power storage elements can be compensated. it can. Therefore, the operation mode 6 can compensate for the instantaneous voltage drop more reliably than the operation mode 5.
  • the storage elements 21 and 22 can be reduced in capacity only when the complete power failure compensation function (operation mode 3) is omitted. That is, the power converter can be reduced in size and cost.
  • the semiconductor switching elements 24 and 25 can be reduced in size.
  • FIGS. 2A and 2B show a power converter according to Embodiment 4 of the present invention.
  • the basic configuration of the power conversion apparatus according to the fourth embodiment is the same as that of the first embodiment.
  • a frequency detection unit 64 and a frequency determination unit 73 are provided.
  • the detection terminals of the frequency detection means 64 are connected to both ends of the AC power source 1.
  • the frequency determination unit 73 is provided in the drive control unit 71.
  • the output terminal of the frequency detection means 64 is connected to the frequency determination means 73, and the output terminal of the frequency determination means 73 is connected to the voltage adjustment means 74.
  • the operation of the power conversion apparatus according to the fourth embodiment includes the operation modes 1 to 4 of the first embodiment, and further includes the operation mode 7.
  • the power conversion device according to the fourth embodiment may further include operation modes 5 and 6.
  • the operation mode 7 is selected when the following two conditions are satisfied.
  • the first condition is a case where the voltage effective value of the AC power source 1 detected by the first voltage detection unit 61 is determined by the voltage range determination unit 72 to be equal to or greater than a predetermined second voltage range.
  • the second condition is that the voltage of the AC power supply 1 detected by the frequency detection means 64 is determined by the frequency determination means 73 to be out of a predetermined frequency range.
  • the voltage range equal to or higher than the second voltage range is set to, for example, 50% or more of the rated voltage effective value.
  • the predetermined frequency range is, for example, a rated frequency ⁇ 0.2 Hz.
  • the operation mode 7 is selected in preference to the operation mode selection by the voltage range determination unit 72. Furthermore, the voltage of the AC power supply 1 detected by the frequency detection means 64 is in a state of deviating from a predetermined frequency range, and the effective voltage value of the AC power supply 1 detected by the first voltage detection means 61 is Is lower than the second voltage range, the operation mode 3 is selected as described above.
  • the bidirectional switching element 5 is turned off and the bidirectional switching element 6 is turned on / off by a control signal generated by adding the third function to the second function, whereby the AC power supply 1 is boosted and supplied to the storage elements 21 and 22.
  • drive control unit 71 maintains the voltage of power storage elements 21, 22 at a predetermined effective voltage value.
  • the semiconductor switching elements 24 and 25 are exclusively turned on and off by the control signal generated by the first function, so that the voltages of the power storage elements 21 and 22 are boosted and supplied to the capacitor 3. In this way, the drive control unit 71 maintains the voltage of the capacitor 3 at a predetermined effective voltage value using the energy of the power storage elements 21 and 22.
  • a double converter operation is performed as in the third embodiment.
  • This double converter operation can make the load voltage constant even when the AC power supply voltage and the load voltage are not synchronized, for example, when the power supply frequency is abnormal. Further, in the power conversion device according to the fourth embodiment, since the voltage phase of the AC power supply 1 and the voltage phase of the load are short time (0 to several s) until resynchronization, the loss does not become a problem.
  • FIG. 3 shows a power conversion apparatus according to Embodiment 5 of the present invention.
  • the drive control unit 71 is different from the first embodiment corresponding to the main circuit, but the drawing is omitted.
  • the basic configuration of the power conversion device according to the fifth embodiment is the same as that of the first embodiment, and the rectifying unit 30a is replaced with a rectifying unit 30b.
  • the rectifying unit 30b is connected to the first series rectifying element in parallel, and includes a second series rectifying element in which the third and fourth rectifying elements 13 and 14 are connected in series. A connection point between the third and fourth rectifying elements 13 and 14 is connected to a connection point between the bidirectional switching element 5 and the capacitor 3.
  • the second series rectifying element is connected in parallel with the series storage element to constitute a snubber circuit.
  • the operation of the power conversion device according to the fifth embodiment is the same as the operation modes 1 to 7 of the first to fourth embodiments.
  • the energy stored in the inductance component of the load is absorbed by the snubber circuit. Since this energy absorption operation is quicker than the operation by the parasitic diodes of the semiconductor switching elements 24 and 25 via the reactor 7, the surge voltage can be suppressed more reliably.
  • FIG. 4 shows a power conversion apparatus according to Embodiment 6 of the present invention.
  • the drive control unit 71 is different from the first embodiment corresponding to the main circuit, but the drawing is omitted.
  • the basic configuration of the power conversion device according to the sixth embodiment is the same as that of the fifth embodiment, in which the inverter unit 20a is replaced with an inverter unit 20b.
  • the inverter unit 20b includes a third bidirectional switching element 23 in addition to the inverter unit 20a.
  • Bidirectional switching element 23 is connected to the connection point of power storage elements 21 and 22 and the connection point of semiconductor switching elements 24 and 25 to form a three-level inverter.
  • the configuration of the inverter unit 20b is not limited to this as long as the AC potential is fixed with respect to the DC potential as described above.
  • the basic operation of the power conversion apparatus according to the sixth embodiment is the same as the operation modes 1 to 7 of the first to fourth embodiments.
  • the difference from the operation of the first embodiment is that the inverter unit 20b operates as a generally known three-level inverter.
  • the inverter unit 20b is configured by a three-level inverter, and the voltage amplitude value at the time of switching and the voltage applied to the reactor 7 are halved. Therefore, the loss reduction of the semiconductor switching elements 24 and 25 and the reactor 7 Miniaturization is possible.
  • FIG. 5 shows a power conversion apparatus according to Embodiment 6 of the present invention.
  • the drive control unit 71 is different from the first embodiment corresponding to the main circuit, but the drawing is omitted.
  • Example 7 The power converter according to Example 7 is obtained by applying Example 5 to a three-phase circuit, and the basic configuration is the same as that of Example 5.
  • the step-up / step-down chopper unit 10 and the inverter unit 20 a are each configured to be three-phase and V-connected, and the connection point of the storage elements 21 and 22 is connected to the V-phase output.
  • the configuration of the inverter unit 20c is not limited to this.
  • the inverter unit 20c may be three-leveled and V-connected as shown in FIG.
  • the basic operation of the power converter according to the seventh embodiment is the same as that of the operation modes 1 to 7 of the first to fourth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

 大型化、高コスト化、効率低下を回避しつつ、交流電源の広範囲の電圧変動に対して負荷に一定の電圧を供給し、かつ、双方向スイッチング素子のサージ電圧を抑制できる電力変換装置を提供するため、昇降圧チョッパ部10、インバータ部20a、整流部30a、第1~第3の電圧検出手段61~63、駆動制御部71で装置を構成する。駆動制御部71の電圧調節手段74は、電圧検出手段61が検出した電圧検出値に応じて、コンデンサ3の電圧実効値を一定にするための制御信号を生成する。前記制御信号により、昇降圧チョッパ部10、インバータ部20aのスイッチング素子が駆動されることで、コンデンサ3の電圧実効値が一定に制御される。整流部30aは、双方向スイッチング素子5,6がオフ時に、リアクトル4に蓄えられたエネルギーを蓄電素子21,22に吸収させることでサージ電圧を抑制する。

Description

電力変換装置
 本発明は交流電源の電圧変動、あるいは停電を補償し、安定した電圧を負荷に供給する電力変換装置に関する。
 図6に交流電源の電圧低下を補償し、一定の電圧を負荷に供給する、双方向の電流のオンオフを制御可能な半導体スイッチング素子(以下、これを双方向スイッチング素子と称する)を使用した交流昇圧チョッパ回路(特許文献1,図17)を示す。
 前記交流昇圧チョッパ回路は、第1のリアクトル4と第1の双方向スイッチング素子6を直列に接続した第1の直列回路と、前記第1の双方向スイッチング素子6と並列に接続されて、第2の双方向スイッチング素子5とコンデンサ3が直列に接続されている。
 前記交流昇圧チョッパ回路では、二つの双方向スイッチング素子5,6を交互にオンオフさせることで、交流電源1の電圧Vinが低下したとしても、負荷電圧Vout(コンデンサ3の両端電圧)を維持することができる。負荷電圧Voutは、二つの双方向スイッチング素子5,6のオン/オフの比率で決定される。
 例えば電源電圧Vinが定格の80%に低下した場合に、負荷電圧Voutを定格の100%にするための昇圧比は[1.0/0.8]である。よって、双方向スイッチング素子5のオン比率は[0.8]、双方向スイッチング素子6のオン比率は[0.2(=1-0.8)]となる。
 図7は、交流昇圧チョッパに用いられる双方向スイッチング素子の構成例である。図7Aは逆極性の電圧に対し順極性と同等の耐圧を持たせた逆阻止IGBTを2個逆並列に接続したものである。図7Bは逆方向耐圧を持たない通常のIGBTにダイオードを直列に接続することにより逆方向耐圧を持たせた回路を、さらに逆並列に接続したものである。図7CはIGBTに並列にダイオードを接続し、逆導通素子としたものをさらに逆直列に接続したものである。図7Dは図7Cと同じ接続であるが、スイッチング素子にMOSFETを用いたものである。
 MOSFETはIGBTと異なり、電流と順電圧降下が比例する抵抗特性を持つため、理論上は並列数を増やすことで順電圧降下を限りなく零に近づけることができる。また、MOSFETは、ゲートに電圧を与えられると逆方向にも導通するので、条件によっては並列ダイオードよりも順電圧降下を小さくすることができる。特に近年SiC(シリコンカーバイド)を用いたMOSFETが実用化されつつあり、大幅な順電圧降下が見込まれている。
 ところで、前記交流昇圧チョッパ回路は、下記2点の問題が知られている。
 1点目の問題は、交流電源の電圧低下に対する電圧補償量に限度があることである。昇圧動作において、入力電流Iinは負荷電流Ioutの昇圧比倍流れる。例えば、電源電圧Vinが定格時の[1/5]まで低下したとすると入力電流Iinは瞬時に定格の5倍になる。そのため、双方向スイッチング素子に用いる半導体スイッチング素子の電流耐量は5倍必要になる。また、リアクトルは前記電流が流れても飽和しないようにしなければならない。このため、補償する電圧範囲が広くなるにつれて半導体スイッチング素子やリアクトルが大型化し、コストも上昇する。このようなことから、実用上は電源電圧の50%~100%を補償範囲として使用し、50%以下は補償外としている。
 しかし、瞬時電圧低下時の電圧低下量は一定である保証はなく、負荷装置の故障リスクを抑えるには補償する電圧範囲を広くするのが望ましいものの、電源電圧がゼロまで低下するような短時間停電の際には負荷に電力供給することができない。また、降圧動作はできないため、電源電圧Vinが負荷電圧Voutよりも高くなるような電圧上昇は補償できない。さらに、電源周波数異常時など交流電源電圧と負荷電圧が同期していない場合には負荷に電力供給できない。従って、交流昇圧チョッパ回路は構成が簡単であるが、負荷の要求する電源品質、信頼度のレベルに対して課題がある。
 2点目の問題は、双方向スイッチング素子の遮断時にサージ電圧が発生し、最悪の場合、負荷および交流昇圧チョッパ回路を構成する素子を破壊してしまうことである。サージ電圧の発生要因としては、通常運転動作中におけるスイッチング素子の電流遮断時によるものと、装置保護時におけるスイッチング素子の全オフ動作によるものがあり、特に後者が問題となる。前者は周知のことであるが、スイッチング素子のターンオフ時に高いdI/dt(dIは電流変化量,dtは時間)を発生し、スイッチング素子周辺の配線インダクタンスによるL×dI/dt(Lは配線インダクタンス)のサージ電圧が発生する。
 後者について説明すると、昇圧動作中に、例えば負荷短絡のようになんらかの事故が起きた場合には、安全を確保するために双方向スイッチング素子5,6を停止しなければならない。しかし、変換動作中に双方向スイッチング素子5,6を同時にオフにした場合、リアクトル4に蓄積されたエネルギーを消費する経路がなくなるため、双方向スイッチング素子5または6にサージ電圧が発生する。配線インダクタンスについては例えばスイッチング素子間の配線を短くするなどである程度改善は可能であるが、後者のリアクトル4のインダクタンスは回路条件により決まるものであり、配線インダクタンス(数10nH~数100nH)に対して非常に大きく、サージ電圧も高い。
 1点目の問題を解決する方法として、例えば特許文献2に示すような電力変換装置が知られている。図8に構成を示す。電源電圧Vinが一定範囲内で変動した場合にはインバータ42により、トランス31を経由してコンデンサ35,36のエネルギーを負荷2に供給することで、電源電圧Vin変動分の電圧を補償して負荷電圧Voutを一定にし、かつインバータ43により、コンデンサ35,36のエネルギーを充電または回生する。一方で、電源電圧Vinが補償範囲外の電圧に低下した場合は、インバータ43により、コンデンサ35,36のエネルギーを負荷2に供給する。
 この装置では電源電圧Vinの広範囲の変動に対して一定電圧を負荷に供給できるが、電圧補償用のトランス31(50~60Hzの商用周波数の絶縁トランス)が必要であるため、装置の体積、重量、コスト面で問題がある。また、電圧補償分の電力が2つのインバータを通るため、交流昇圧チョッパよりも電力変換器の損失が大きくなるという別な問題が生じる。
 2点目の問題を解決する方法として、例えば特許文献3に示すような整流スナバ回路が知られている。図9に示す特許文献3のマトリクスコンバータ装置50は、マトリクスコンバータ46、入力フィルタ47、整流スナバ回路48で構成される。整流スナバ回路48はマトリクスコンバータ46の入力側および出力側に接続される。入力フィルタ47は例えばリアクトルとコンデンサで構成される。図9は三相のマトリックスコンバータに適用した例であるが、整流スナバ回路48は、単相または三相の交流昇圧チョッパでも同じ効果を奏する。
 前述の装置保護時にスイッチング素子を全オフする際には、電源側のインダクタンス(ここでは入力フィルタ47の構成部品)および負荷側のインダクタンス(ここではモータ49)に蓄積されたエネルギーにより、サージ電圧が発生する。発生したサージ電圧は整流回路51または52を通して整流され、コンデンサ53を充電することにより、電源側および負荷側の電圧上昇が抑制され、過電圧を防止する。また、電源側および負荷側のインダクタンス成分により発生したエネルギーが大きく、コンデンサ53の直流電圧が所定値よりも上昇する場合には、放電回路56でエネルギーを消費することで、過電圧を防止する。動作としては、電圧検出回路57で過電圧を検知し、半導体スイッチング素子54をオンすることで、抵抗55でエネルギーを消費する。
特許第3902030号公報 特開平11-178216号公報 特開2007-221844号公報
 背景技術で述べたとおり、各問題に対して、それぞれ回路を変更または追加することで解決できるが、上述した2点の問題を同時に解決するものではないばかりか、別の問題点が生じるケースもあった。
 従って、本発明の目的は、大型化、高コスト化、効率低下を回避しつつ、交流電源の広範囲の電圧変動に対して負荷に一定の電圧を供給し、かつ、双方向スイッチング素子のサージ電圧を抑制できる電力変換装置を提供することにある。
 本発明に係る電力変換装置は、第1のリアクトルと第1の双方向スイッチング素子を直列に接続した第1の直列回路と、前記第1の双方向スイッチング素子と並列に接続されて、第2の双方向スイッチング素子とコンデンサを直列に接続した第2の直列回路と、ダイオードが逆並列に接続された2N個(但し、Nは自然数)のスイッチング素子を直列に接続した直列スイッチング素子と、この直列スイッチング素子と並列に接続されて、第1および第2の蓄電素子を直列に接続した直列蓄電素子と、この直列蓄電素子と並列に接続されて、第1および第2の整流素子を直列に接続した第1の直列整流素子と、前記2N個のスイッチング素子の中点から前記第2の双方向スイッチング素子とコンデンサとの接続点に接続された第2のリアクトルとを有し、前記第1および第2の蓄電素子の接続点は、前記第1の双方向スイッチング素子と前記第1のコンデンサの接続点に接続され、前記第1および第2の整流素子の接続点は、前記第1の双方向スイッチング素子と前記第2の双方向スイッチング素子の接続点に接続され、前記第1の直列回路に印加された交流を変換して前記コンデンサの両端から出力することを特徴とする。
 上述した電力変換装置によれば、第1,第2の双方向スイッチング素子および/または、2N個のスイッチング素子を駆動することにより、交流電源電圧を昇降圧してコンデンサ(負荷両端)の電圧を一定に維持することができる。
 更に、第1,第2の双方向スイッチング素子遮断時に、第1のリアクトルに蓄積されたエネルギーを、直列整流素子を介して直列蓄電素子で吸収することで、双方向スイッチング素子をサージ電圧から保護することができる。
 また、本発明の電力変換装置は、装置の大型化、高コスト化を回避できる。
 本発明に係る電力変換装置は、さらに前記第1の整流素子と並列に接続されて、第3および第4の整流素子を直列に接続した第2の直列整流素子を備え、前記第3および第4の整流素子の接続点は、前記第2の双方向スイッチング素子と前記コンデンサの接続点に接続されることを特徴とする。
 上述した電力変換装置によれば、負荷側のインダクタンス成分に蓄積されたエネルギーを速やかに吸収でき、より確実に双方向スイッチング素子のサージ電圧を抑制することができる。
 本発明に係る電力変換装置は、前記交流の電圧値を検出する電圧検出手段と、前記第1および第2の双方向スイッチング素子、前記第1および第2のスイッチング素子をそれぞれ駆動する駆動制御部とを具備し、前記駆動制御部は、前記電圧検出手段が検出した交流の電圧値が所定の第1の電圧範囲内であるとき、前記第1の双方向スイッチング素子をオフし、前記第2の双方向スイッチング素子をオンするとともに、前記2N個のスイッチング素子を駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第1モードと、前記交流の電圧値が前記第1の電圧範囲より低い所定の第2の電圧範囲であるとき、前記第1および第2の双方向スイッチング素子を駆動して前記交流を昇圧して前記コンデンサに与えて所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第2モードと、前記交流の電圧値が前記第2の電圧範囲より低いとき、前記第1および第2の双方向スイッチング素子をオフするとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第3モードと、前記交流の電圧値が前記第1の電圧範囲より高いとき、前記第1の双方向スイッチング素子をオフし、前記第2の双方向スイッチング素子を駆動して前記交流を降圧し、前記コンデンサの電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第4モードとを備えることを特徴とする。
 上述した電力変換装置によれば、交流電源の広範囲な電圧変動に対して、交流電源電圧を昇降圧してコンデンサ(負荷両端)の電圧を一定に維持することができる。
 また、前記各モードは、必要最低限の双方向スイッチング素子および半導体スイッチング素子を通過させるため、効率低下を回避できる。
 本発明に係る電力変換装置は、前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲より低い所定の第3の電圧範囲内であり、かつ所定の時間内であるとき、前記第2の双方向スイッチング素子をオフし、前記第1の双方向スイッチング素子を駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第5モードを備えることを特徴とする。
 上述した電力変換装置によれば、交流電源で瞬時電圧低下が起きた場合でも、コンデンサ(負荷両端)の電圧を一定に維持することができる。
 また、本発明の電力変換装置は、大電流が流れるのはごく短期間のため、リアクトルの大型化、高コスト化を回避できる。
 本発明に係る電力変換装置は、前記駆動制御部は、前記交流の電圧値が前記第3の電圧範囲内であり、かつ所定の時間内であり、かつ前記交流の電圧位相が前記コンデンサの電圧位相と同期しているとき、前記第1および第2の双方向スイッチング素子を駆動して前記交流を昇圧するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第6モードを備えることを特徴とする。
 上述した電力変換装置によれば、前記蓄電素子が小容量であっても、第1,第2の双方向スイッチング素子を駆動させて前記交流から電力を供給することで、前記蓄電素子に蓄えられた電力の不足分を補うことができる。よって、第6モードは第5モードより確実に、瞬時電圧低下を補償することができる。もしくは、前記2N個のスイッチング素子および前記直列蓄電素子を小型化できる。
 本発明に係る電力変換装置は、さらに前記交流の周波数を検出する周波数検出手段を備え、前記駆動制御部は、前記交流の電圧値が前記第3の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチング素子をオフし、前記第1の双方向スイッチング素子を駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする。
 上述した電力変換装置によれば、交流電源周波数が異常となった場合でも、コンデンサ(負荷両端)の電圧を一定に維持することができる。
 本発明に係る電力変換装置は、さらに前記2N個のスイッチング素子の接続点から前記第1および第2の蓄電素子の接続点に接続された第3の双方向スイッチング素子を備えることを特徴とする。
 上述した電力変換装置によれば、前記第1~7モードにおける前記2N個のスイッチング素子を駆動する動作を、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動する動作に置き換えることで、前記コンデンサへの出力電圧を3レベル化することができる。従って、本発明の電力変換装置は、半導体スイッチング素子に印加される電圧の振幅値が小さくなるため、スイッチング損失の低減による高効率化ができる。また、前記第2のリアクトルを流れる電流のdI/dtが低減されるため、前記第2のリアクトルを小型化できる。
 本発明の電力変換装置によれば、装置の大型化、高コスト化、効率低下をすることなく、交流電源の広範囲の電圧変動に対して負荷に一定の電圧を供給すること、および、双方向スイッチング素子のサージ電圧を抑制することを両立するという優れた効果を奏し得る。
本発明の第1~3の実施形態の主回路を示す図である。 本発明の第1~3の実施形態の駆動制御部を示す図である。 本発明の第4実施形態の主回路を示す図である。 本発明の第4実施形態の駆動制御部を示す図である。 本発明の第5実施形態を示す回路図である。 本発明の第6実施形態を示す回路図である。 本発明の第7実施形態を示す回路図である。 従来技術1の実施形態を示す回路図である。 従来技術1における双方向スイッチング素子の第1の構成例を示す回路図である。 従来技術1における双方向スイッチング素子の第2の構成例を示す回路図である。 従来技術1における双方向スイッチング素子の第3の構成例を示す回路図である。 従来技術1における双方向スイッチング素子の第4の構成例を示す回路図である。 従来技術2の実施形態を示す回路図である。 従来技術3の実施形態を示す回路図である。
 以下、添付図面を参照して本発明の実施の形態を説明する。
 図1Aは本発明の実施例1による電力変換装置を示すものあって、図6と同一の符号を付した部分は同一物を表わし、基本的な構成は図6に示す従来のものと同様である。また、図1Bは本発明の実施例1による電力変換装置を動作させるための制御信号を生成する駆動制御部を示すものである。
 次に、上記した実施例1の回路構成を説明する。
 本発明の実施例1による電力変換装置は、昇降圧チョッパ部10、インバータ部20a、整流部30a、第1~第3の電圧検出手段61~63、駆動制御部71で構成される。
 昇降圧チョッパ部10は、第1のリアクトル4と第1の双方向スイッチング素子6を直列に接続した第1の直列回路を備える。昇降圧チョッパ部10は、第1の双方向スイッチング素子6と並列に接続されて、第2の双方向スイッチング素子5と第1のコンデンサ3を直列に接続した第2の直列回路で構成される。
 インバータ部20aは、ダイオードが逆並列に接続された第1、第2の半導体スイッチング素子24,25を直列に接続した直列スイッチング素子を備える。このインバータ部20aは、前記直列半導体スイッチング素子24,25と並列に接続されて、第1、第2の蓄電素子21,22を直列に接続した直列蓄電素子を備える。また、インバータ部20aは、半導体スイッチング素子24,25の中点から第2の双方向スイッチング素子5と第1のコンデンサ3との接続点に接続された第2のリアクトル7を備える。そして、インバータ部20aは、蓄電素子21,22の接続点が、第1の双方向スイッチング素子6とコンデンサ3の接続点に接続されて構成される。
 前記整流部30aは、第1、第2の整流素子11,12を直列に接続した第1の直列整流素子で構成される。この第1の直列整流素子11,12の接続点は、双方向スイッチング素子6と双方向スイッチング素子5の接続点に接続される。また、第1の直列整流素子11,12は、直列蓄電素子21,22と並列に接続されて、スナバ回路を構成する。
 第1の電圧検出手段61の検出端子は交流電源1の両端に接続される。第2の電圧検出手段62の検出端子はコンデンサ3の両端に接続される。第3の電圧検出手段63の検出端子は直列蓄電素子21,22の両端に接続される。
 駆動制御部71は、電圧範囲判定手段72、電圧調節手段74、ゲート駆動回路75を備えている。
 第1の電圧検出手段61の出力端子は電圧範囲判定手段72に接続される。第2の電圧検出手段62および第3の電圧検出手段63の出力端子は電圧調節手段74に接続される。電圧範囲判定手段72の出力端子は電圧調節手段74に接続される。電圧調節手段74の出力端子はゲート駆動回路75に接続される。ゲート駆動回路75の複数の出力端子は各スイッチング素子5,6,24,25に接続される。
 次に、上述した実施例1に係る電力変換装置の動作を概略的に説明する。
 駆動制御部71において、コンデンサ3の電圧を所定の電圧実効値に維持するための制御信号が生成される。以下、コンデンサ3の電圧を所定の電圧実効値に維持する場合について記述するが、目標値として使用する電圧値は電圧実効値に限定されるものではない。駆動制御部71における制御信号の生成手段は後述する。
 各スイッチング素子5,6,24,25は、駆動制御部71で生成された制御信号が制御端子に入力されることで駆動される。各スイッチング素子5,6,24,25が駆動されることで、リアクトル4および第1、第2の蓄電素子21,22に蓄積されたエネルギーの少なくとも一方がコンデンサ3に供給される。すると、コンデンサ3の電圧は所定の電圧実効値に維持される。
 続いて、駆動制御部71の動作を詳細に説明する。駆動制御部71の電圧範囲判定手段72は電圧検出手段61によって検出された交流電源1の電圧実効値がどの電圧範囲にあるかを判定する。電圧範囲判定手段72の判定結果によって複数ある動作モードの中から一つの動作モードが選択される。以下、電圧範囲判定手段72による電圧範囲の判定に使用される閾値、および、電圧検出手段61によって検出される電圧値は、電圧実効値を使用した場合について記述するが、これらは、電圧実効値に限定されるものではない。各動作モードの詳細は後述する。
 電圧調節手段74では、双方向スイッチング素子5,6用の制御信号、および、半導体スイッチング素子24,25用の制御信号の二組の制御信号が生成される。この二組の制御信号は、後述する第1、または、第2の機能で生成される。また、双方向スイッチング素子5,6用の制御信号は、前記動作モードに応じて、さらに第3の機能が付加される。
 第1の機能では、電圧検出手段62によって検出されたコンデンサ3の電圧を所定の電圧実効値に維持するための制御信号を生成する。第2の機能では、電圧検出手段63によって検出された蓄電素子21,22の両端電圧を所定の電圧実効値に維持するための制御信号を生成する。第3の機能では、前記第1、第2の機能において生成される制御信号を、双方向スイッチング素子5,6の少なくとも一方のスイッチング素子を常時オンまたは常時オフさせる制御信号に置き換えて生成する。
 ゲート駆動回路75は、電圧調節手段74で生成された二組の制御信号を各スイッチング素子5,6,24,25駆動用の信号に変換して、制御端子に出力する。
 図1Bに示す駆動制御部は上述したように、動作モードを選択し、スイッチング素子の制御信号を生成して出力するための論理の一例である。従って、本発明に係る効果を発揮することができれば、図1Bに示すブロック図に限定されるものではない。
 次に、上述した実施例1の各動作モードを説明する。
<動作モード1>
 動作モード1は、第1の電圧検出手段61によって検出された交流電源1の電圧実効値が、電圧範囲判定手段72によって、所定の第1の電圧範囲内であると判定された場合に選択される。ここでは第1の電圧範囲を例えば定格電圧実効値の90%~110%とする。
 昇降圧チョッパ部10では、第1の機能に第3の機能が付加されて生成される制御信号により、双方向スイッチング素子6がオフされ、双方向スイッチング素子5がオンされる。これにより、交流電源1の電圧は、コンデンサ3に直接印加される。
 インバータ部20aでは、第2の機能で生成される制御信号により、半導体スイッチング素子24,25が排他的にオンオフされることで、コンデンサ3の電圧を昇圧して蓄電素子21,22に供給する。このようにして、コンデンサ3のエネルギーを使って、駆動制御部71が蓄電素子21,22の両端電圧を所定の電圧実効値に維持する。
<動作モード2>
 動作モード2は、第1の電圧検出手段61によって検出された交流電源1の電圧実効値が、電圧範囲判定手段72によって、第1の電圧範囲より低い所定の第2の電圧範囲内であると判定された場合に選択される。ここでは第2の電圧範囲を例えば定格電圧実効値の50%~90%とする。
 昇降圧チョッパ部10では、第1の機能で生成される制御信号により、双方向スイッチング素子5,6が排他的にオンオフされることで交流電源1の電圧を昇圧してコンデンサ3に供給する。このようにして、交流電源1のエネルギーを使って、駆動制御部71がコンデンサ3の電圧を所定の電圧実効値に維持する。
 インバータ部20aでは、第2の機能で生成される制御信号により、半導体スイッチング素子24,25が排他的にオンオフされることでコンデンサ3の電圧を昇圧して蓄電素子21,22に供給する。このようにして、コンデンサ3のエネルギーを使って、駆動制御部71が蓄電素子21,22の両端電圧を所定の電圧実効値に維持する。
<動作モード3>
 動作モード3は、第1の電圧検出手段61によって検出された交流電源1の電圧実効値が、電圧範囲判定手段72によって、第2の電圧範囲より低いと判定された場合に選択される。ここでは第2の電圧範囲より低い電圧範囲を例えば定格電圧実効値の0%~50%とする。
 昇降圧チョッパ部10では、第1の機能に第3の機能が付加されて生成される制御信号により、双方向スイッチング素子5,6がオフされる。これにより、コンデンサ3が交流電源1から切り離された状態にする。
 インバータ部20aでは、第1の機能で生成される制御信号により、半導体スイッチング素子24,25が排他的にオンオフされることで蓄電素子21,22のエネルギーをコンデンサ3に供給する。このようにして、蓄電素子21,22のエネルギーを使って、駆動制御部71がコンデンサ3の電圧を所定の電圧実効値に維持する。
<動作モード4>
 動作モード4は、第1の電圧検出手段61によって検出された交流電源1の電圧実効値が、電圧範囲判定手段72によって、所定の第1の電圧範囲より高いと判定された場合に選択される。ここでは所定の第1の電圧範囲より高い電圧範囲を例えば定格電圧実効値の110%より高いとする。
 昇降圧チョッパ部10では、第1の機能に第3の機能が付加されて生成される制御信号により、双方向スイッチング素子6がオフされるとともに双方向スイッチング素子5がオンオフされることで交流電源1の電圧を降圧してコンデンサ3に供給する。このようにして、交流電源1のエネルギーを使って、駆動制御部71がコンデンサ3の電圧を所定の電圧実効値に維持する。
 インバータ部20aでは、第2の機能で生成される制御信号により、半導体スイッチング素子24,25が排他的にオンオフされることでコンデンサ3の電圧を昇圧して蓄電素子21,22に供給する。このようにして、コンデンサ3のエネルギーを使って、駆動制御部71が蓄電素子21,22の両端電圧を所定の電圧実効値に維持する。
 次に、上述した実施例1の効果を説明する。
 大多数の負荷装置において、一定量、例えば±10%の入力電源電圧実効値の変動が許容されている。このとき、本発明の電力変換装置は、双方向スイッチング素子5をオン、双方向スイッチング素子6をオフすることで、交流電源1の電圧がコンデンサ3に印加されるので、スイッチング損失が全く発生しない。
 同時に、本発明の電力変換装置は、電圧補償時の動作に備え、駆動制御部71が半導体スイッチング素子24,25を駆動することで、蓄電素子21、22の電圧を所定の電圧実効値に維持する。一旦、蓄電素子21、22が充電されれば漏れ電流相当のエネルギーを供給すればよい。よって、半導体スイッチング素子24、25の通過電流は極めて小さく、その損失は無視できる程度になる。
 本発明の電力変換装置は、端子S,Vおよびインバータ部20aの端子Viが同電位である。すなわち、交流電源1の電位は、蓄電素子21,22の中性点の電位に対して固定されている。従って、整流素子11,12と蓄電素子21、22は双方向スイッチング素子5,6のスナバ回路(いわゆるクランプスナバ回路)として動作する。よって、本発明の電力変換装置は、双方向スイッチング素子5,6遮断時のエネルギー、または双方向スイッチング素子全オフ時のリアクトルのエネルギーを吸収することができるため、サージ電圧を抑制できる。
 本発明の電力変換装置は、降圧動作時、双方向スイッチング素子6を常にオフとし、双方向スイッチング素子5によって電源電圧Vinのチョッパ動作をする。また、双方向スイッチング素子5がオフの際の、リアクトル4に蓄積されたエネルギーは、インバータ部20aを介して電源に回生される。このとき、インバータを通過する電力は電圧補償分だけであり、損失を低減することができる。
 実施例2による電力変換装置の構成は実施例1と同様であるので省略する。
 実施例2による電力変換装置の動作は実施例1の動作モード1~4を備え、さらに、動作モード5を備える。
<動作モード5>
 動作モード5は、次の二つの条件を満たすと選択される。第1の条件は、電圧検出手段61によって検出された交流電源1の電圧実効値が、電圧範囲判定手段72によって、第2の電圧範囲より低い所定の第3の電圧範囲内であると判定された場合である。ここでは第2の電圧範囲より低い所定の第3の電圧範囲を例えば定格電圧実効値の10%~50%とする。第2の条件は、交流電源1の電圧低下が所定の時間内であることである。ここでは前記所定の時間を例えば数10ms~1sとする。なお、実施例2では、第1の電圧検出手段61によって検出された交流電源1の電圧実効値が次の二つの状態の時、前述したとおり動作モード3が選択される。
    状態1:前記所定の時間を超えて第3の電圧範囲内にある。
    状態2:第3の電圧範囲より低い。
 昇降圧チョッパ部10では、第2の機能に第3の機能が付加されて生成される制御信号により、双方向スイッチング素子5がオフされるとともに双方向スイッチング素子6がオンオフされることで交流電源1の電圧を昇圧して蓄電素子21,22に供給する。このようにして、交流電源1のエネルギーを使って、駆動制御部71が蓄電素子21,22の電圧を所定の電圧実効値に維持する。
 インバータ部20aでは、第1の機能で生成される制御信号により、半導体スイッチング素子24,25が排他的にオンオフされることで蓄電素子21,22の電圧を昇圧してコンデンサ3に供給する。このようにして、蓄電素子21,22のエネルギーを使って、駆動制御部71がコンデンサ3の電圧を所定の電圧実効値に維持する。
 上述した実施例2では、図1A,1Bに示した電力変換装置において、整流部30aで交流から直流に変換し、インバータ部20aで直流から交流に変換する、いわゆるダブルコンバータ動作をする。このダブルコンバータ動作は、全電力が2つの変換器(整流部30aおよびインバータ部20a)を通過するため、交流昇圧チョッパ動作時よりも損失が増加する。しかしながら、上述した実施例2で想定される瞬時電圧低下は、通常、数10ms~1sと短時間である。よってダブルコンバータ動作による損失増加は問題にならない。
 また、スイッチング素子やリアクトルの熱時定数は、想定される瞬時電圧低下時間よりも大きい。よって、リアクトル4と双方向スイッチング素子6が破壊することはない。なお、蓄電素子21,22をバッテリとすることで、本装置を無停電電源装置として使用することも可能である。
 実施例3による電力変換装置の構成は実施例1と同様であるので省略する。
 実施例3による電力変換装置の動作は実施例1の動作モード1~4を備え、さらに、動作モード6を備える。実施例3による電力変換装置はさらに動作モード5を備えていてもよい。
<動作モード6>
 動作モード6は、次の三つの条件を満たすと選択される。第1の条件は、電圧検出手段61によって検出された交流電源1の電圧実効値が、電圧範囲判定手段72によって、第3の電圧範囲内であると判定された場合である。第2の条件は、交流電源1の電圧低下が所定の時間内であることである。第3の条件は、第1の電圧検出手段61によって検出された交流電源1の電圧位相がコンデンサ3の電圧位相と同期していることである。同期検出手段は公知技術であり、説明は省略する。なお、実施例3では、第1の電圧検出手段61によって検出された交流電源1の電圧実効値が次の三つの状態の時、前述したとおり動作モード3が選択される。また、状態3の場合に限り、動作モード5が選択されても良い。
    状態1:前記所定の時間を超えて第3の電圧範囲内にある。
    状態2:第3の電圧範囲より低い。
    状態3:コンデンサ3の電圧位相と同期していない。
 昇降圧チョッパ部10では、第1の機能で生成される制御信号により、双方向スイッチング素子5,6が排他的にオンオフされることで交流電源1の電圧を昇圧してコンデンサ3に供給する。このようにして、昇降圧チョッパ部10は、交流電源1からコンデンサ3に電力を供給する。
 インバータ部20aでは、第1の機能で生成される制御信号により、半導体スイッチング素子24,25が排他的にオンオフされることで蓄電素子21,22のエネルギーをコンデンサ3に供給する。このようにして、インバータ部20aは蓄電素子21,22からコンデンサ3に電力を供給する。
 上述した実施例3では、昇降圧チョッパ部10とインバータ部20aが供給電力を分担してコンデンサ3の電圧を所定の電圧実効値に維持する。
 なお、蓄電素子21,22が小容量であっても、昇降圧チョッパ部10を同時に動作させ、交流電源1から電力を供給することで、蓄電素子に蓄えられた電力の不足分を補うことができる。よって、動作モード6は動作モード5より確実に、瞬時電圧低下を補償できる。また、蓄電素子21,22は、完全停電の補償機能(動作モード3)を省略する場合に限り、小容量化することができる。すなわち、電力変換装置の小型化、低コスト化が可能となる。さらに、半導体スイッチング素子24,25を小型化できるという効果も有する。
 図2A,2Bは本発明の実施例4による電力変換装置を示すものである。
 実施例4による電力変換装置の基本的な構成は実施例1と同様である。実施例4では、実施例1の構成に加え、周波数検出手段64および周波数判定手段73を備える。
 周波数検出手段64の検出端子は交流電源1の両端に接続される。周波数判定手段73は、駆動制御部71に設けられている。周波数検出手段64の出力端子は周波数判定手段73に接続され、周波数判定手段73の出力端子は、電圧調節手段74に接続される。
 実施例4による電力変換装置の動作は実施例1の動作モード1~4を備え、さらに、動作モード7を備える。実施例4による電力変換装置はさらに動作モード5,6を備えていてもよい。
<動作モード7>
 動作モード7は、次の二つの条件を満たすと選択される。第1の条件は、第1の電圧検出手段61によって検出された交流電源1の電圧実効値が、電圧範囲判定手段72によって、所定の第2の電圧範囲以上であると判定された場合である。第2の条件は、周波数検出手段64によって検出された交流電源1の電圧が、周波数判定手段73によって、所定の周波数範囲を逸脱していると判定されることである。ここでは第2の電圧範囲以上の電圧範囲を例えば定格電圧実効値の50%以上とする。また、所定の周波数範囲を例えば定格周波数±0.2Hzとする。なお、周波数判定手段73によって、所定の周波数範囲を逸脱していると判定された場合、電圧範囲判定手段72による動作モードの選択より優先して動作モード7が選択される。さらに、周波数検出手段64によって検出された交流電源1の電圧が、所定の周波数範囲を逸脱している状態であり、かつ、第1の電圧検出手段61によって検出された交流電源1の電圧実効値が第2の電圧範囲より低い場合は、前述したとおり動作モード3が選択される。
 昇降圧チョッパ部10では、第2の機能に第3の機能が付加されて生成される制御信号により、双方向スイッチング素子5がオフされるとともに双方向スイッチング素子6がオンオフされることで交流電源1の電圧を昇圧して蓄電素子21,22に供給する。このようにして、交流電源1のエネルギーを使って、駆動制御部71が蓄電素子21,22の電圧を所定の電圧実効値に維持する。
 インバータ部20aでは、第1の機能で生成される制御信号により、半導体スイッチング素子24,25が排他的にオンオフされることで蓄電素子21,22の電圧を昇圧してコンデンサ3に供給する。このようにして、蓄電素子21,22のエネルギーを使って、駆動制御部71がコンデンサ3の電圧を所定の電圧実効値に維持する。
 上述した実施例4では、実施例3と同様にダブルコンバータ動作する。このダブルコンバータ動作は、例えば電源周波数異常時など、交流電源電圧と負荷電圧が同期していない場合でも負荷電圧を一定にすることができる。また、実施例4の電力変換装置では、交流電源1の電圧位相と負荷の電圧位相が再同期するまでの短時間(0~数s)であるので、その損失は問題にならない。
 図3は本発明の実施例5による電力変換装置を示すものである。なお、駆動制御部71は主回路に対応して実施例1とは異なるものとなるが、図面は省略する。
 実施例5による電力変換装置の基本的な構成は実施例1と同様であり、整流部30aを整流部30bに置き換えたものである。
 整流部30bは第1の直列整流素子と並列に接続されて、第3、第4の整流素子13,14を直列に接続した第2の直列整流素子で構成される。第3、第4の整流素子13,14の接続点は、双方向スイッチング素子5とコンデンサ3の接続点に接続される。また、第2の直列整流素子は、直列蓄電素子と並列に接続されることで、スナバ回路を構成する。
 実施例5による電力変換装置の動作は実施例1~4の動作モード1~7と同様である。
 上述した実施例5では、事故発生時等に各半導体スイッチング素子5,6,24,25が全オフした場合、負荷のインダクタンス成分に蓄積されたエネルギーがスナバ回路によって吸収される。このエネルギーの吸収動作は、リアクトル7を介した半導体スイッチング素子24,25の寄生ダイオードによる動作より速やかなため、より確実にサージ電圧を抑制することができる。
 図4は本発明の実施例6による電力変換装置を示すものである。なお、駆動制御部71は主回路に対応して実施例1とは異なるものとなるが、図面は省略する。
 実施例6による電力変換装置の基本的な構成は実施例5と同様であり、インバータ部20aをインバータ部20bに置き換えたものである。
 インバータ部20bはインバータ部20aに加え、第3の双方向スイッチング素子23を備える。双方向スイッチング素子23は蓄電素子21,22の接続点と半導体スイッチング素子24,25の接続点に接続され、3レベルインバータを構成する。なお、インバータ部20bの構成は、前述のように交流電位が直流電位に対して固定されていればよく、これに限定されるものではない。
 実施例6による電力変換装置の基本的な動作は実施例1~4の動作モード1~7と同様である。実施例1の動作との相違点は、インバータ部20bが一般に知られた3レベルインバータとして動作することである。
 上述した実施例6では、インバータ部20bが3レベルインバータで構成され、スイッチング時の電圧振幅値およびリアクトル7に印加する電圧が半分になるため、半導体スイッチング素子24,25の損失低減およびリアクトル7の小型化ができる。
 図5は本発明の実施例6による電力変換装置を示すものである。なお、駆動制御部71は主回路に対応して実施例1とは異なるものとなるが、図面は省略する。
 実施例7による電力変換装置は、実施例5を三相回路に適用したものであり、基本的な構成は実施例5と同様である。
 図5に示した例では昇降圧チョッパ部10とインバータ部20aを、それぞれ三相かつV結線化し、蓄電素子21,22の接続点がV相出力と接続されて構成される。なお、インバータ部20cの構成もこれに限定されるものではなく、例えば図4に示したように3レベル化し、かつV結線としたものであってもよい。
 実施例7による電力変換装置の基本的な動作は実施例1~4の動作モード1~7と同様である。
 上述した実施例7においても、交流電源の広範囲の電圧変動に対する電圧補償、および、双方向スイッチング素子のサージ電圧抑制の両立を実現できる。
1:交流電源
2:負荷
3:コンデンサ
4,7:リアクトル
5,6,23:双方向スイッチング素子
10:昇降圧チョッパ部
11~14:整流素子
20a~20c:インバータ部
21,22:蓄電素子
24,25:半導体スイッチング素子
30a、30b:整流部
61~63:電圧検出手段
64:周波数検出手段
71:駆動制御部
72:電圧範囲判定手段
73:周波数判定手段
74:電圧調節手段
75:ゲート駆動回路
100:電力変換装置
 

Claims (21)

  1.  第1のリアクトルと第1の双方向スイッチを直列に接続した第1の直列回路と、
     前記第1の双方向スイッチと並列に接続されて、第2の双方向スイッチとコンデンサを直列に接続した第2の直列回路と、
     ダイオードが逆並列に接続された2N個(但し、Nは自然数)のスイッチング素子を直列に接続した直列スイッチング素子と、
     この直列スイッチング素子と並列に接続されて、第1および第2の蓄電素子を直列に接続した直列蓄電素子と、
     この直列蓄電素子と並列に接続されて、第1および第2の整流素子を直列に接続した第1の直列整流素子と、
     前記2N個のスイッチング素子の中点から前記第2の双方向スイッチとコンデンサとの接続点に接続された第2のリアクトルと
    を有し、
     前記第1および第2の蓄電素子の接続点は、前記第1の双方向スイッチと前記第1のコンデンサの接続点に接続され、
     前記第1および第2の整流素子の接続点は、前記第1の双方向スイッチと前記第2の双方向スイッチの接続点に接続され、
     前記第1の直列回路に印加された交流を変換して前記コンデンサの両端から出力することを特徴とする電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     さらに前記第1の整流素子と並列に接続されて、第3および第4の整流素子を直列に接続した第2の直列整流素子を備え、
     前記第3および第4の整流素子の接続点は、前記第2の双方向スイッチと前記コンデンサの接続点に接続されることを特徴とする電力変換装置。
  3.  前記交流の電圧値を検出する電圧検出手段と、
     前記第1および第2の双方向スイッチ、前記第1および第2のスイッチング素子をそれぞれ駆動する駆動制御部と
    を具備し、
     前記駆動制御部は、前記電圧検出手段が検出した交流の電圧値が所定の第1の電圧範囲内であるとき、前記第1の双方向スイッチをオフし、前記第2の双方向スイッチをオンするとともに、前記2N個のスイッチング素子を駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第1モードと、
     前記交流の電圧値が前記第1の電圧範囲より低い所定の第2の電圧範囲内であるとき、前記第1および第2の双方向スイッチング素子を駆動して前記交流を昇圧して前記コンデンサに与えて所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第2モードと、
     前記交流の電圧値が前記第2の電圧範囲より低いとき、前記第1および第2の双方向スイッチング素子をオフするとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第3モードと、
     前記交流の電圧値が前記第1の電圧範囲より高いとき、前記第1の双方向スイッチをオフし、前記第2の双方向スイッチを駆動して前記交流を降圧し、前記コンデンサの電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第4モードと
    を備えることを特徴とする請求項1または2に記載の電力変換装置。
  4.  前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲より低い所定の第3の電圧範囲内であり、かつ所定の時間内であるとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第5モードを備えることを特徴とする請求項3に記載の電力変換装置。
  5.  前記駆動制御部は、前記交流の電圧値が前記第3の電圧範囲内であり、かつ所定の時間内であり、かつ前記交流の電圧位相が前記コンデンサの電圧位相と同期しているとき、前記第1および第2の双方向スイッチング素子を駆動して前記交流を昇圧するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第6モードを備えることを特徴とする請求項3に記載の電力変換装置。
  6.  前記駆動制御部は、前記交流の電圧値が前記第3の電圧範囲内であり、かつ所定の時間内であり、かつ前記交流の電圧位相が前記コンデンサの電圧位相と同期しているとき、前記第1および第2の双方向スイッチング素子を駆動して前記交流を昇圧するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第6モードを備えることを特徴とする請求項4に記載の電力変換装置。
  7.  請求項1または2に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  8.  請求項3に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  9.  請求項4に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  10.  請求項5に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  11.  請求項6に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子を駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  12.  請求項1または2に記載の電力変換装置であって、
     さらに前記2N個のスイッチング素子の接続点から前記第1および第2の蓄電素子の接続点に接続された第3の双方向スイッチを備えることを特徴とする電力変換装置。
  13.  前記交流の電圧値を検出する電圧検出手段と、
     前記第1および第2の双方向スイッチ、前記第1および第2のスイッチング素子をそれぞれ駆動する駆動制御部と
    を具備し、
     前記駆動制御部は、前記電圧検出手段が検出した交流の電圧値が所定の第1の電圧範囲内であるとき、前記第1の双方向スイッチをオフし、前記第2の双方向スイッチをオンするとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第1モードと、
     前記交流の電圧値が前記第1の電圧範囲より低い所定の第2の電圧範囲内であるとき、前記第1および第2の双方向スイッチング素子を駆動して前記交流を昇圧して前記コンデンサに与えて所定の電圧値に維持するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第2モードと、
     前記交流の電圧値が前記第2の電圧範囲より低いとき、前記第1および第2の双方向スイッチング素子をオフするとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第3モードと、
     前記交流の電圧値が前記第1の電圧範囲より高いとき、前記第1の双方向スイッチをオフし、前記第2の双方向スイッチを駆動して前記交流を降圧し、前記コンデンサの電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持する第4モードと
    を備えることを特徴とする請求項12に記載の電力変換装置。
  14.  前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲より低い所定の第3の電圧範囲内であり、かつ所定の時間内であるとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第5モードを備えることを特徴とする請求項13に記載の電力変換装置。
  15.  前記駆動制御部は、前記交流の電圧値が前記第3の電圧範囲内であり、かつ所定の時間内であり、かつ前記交流の電圧位相が前記コンデンサの電圧位相と同期しているとき、第1の双方向スイッチおよび第1のリアクトルのそれぞれの定格電流値を超えない範囲で、前記第1および第2の双方向スイッチング素子を駆動して前記交流を昇圧するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第6モードを備えることを特徴とする請求項13に記載の電力変換装置。
  16.  前記駆動制御部は、前記交流の電圧値が前記第3の電圧範囲内であり、かつ所定の時間内であり、かつ前記交流の電圧位相が前記コンデンサの電圧位相と同期しているとき、第1の双方向スイッチおよび第1のリアクトルのそれぞれの定格電流値を超えない範囲で、前記第1および第2の双方向スイッチング素子を駆動して前記交流を昇圧するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第6モードを備えることを特徴とする請求項14に記載の電力変換装置。
  17.  請求項12に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  18.  請求項13に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  19.  請求項14に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  20.  請求項15に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
  21.  請求項16に記載の電力変換装置であって、
     さらに前記交流の周波数を検出する周波数検出手段を備え、
     前記駆動制御部は、前記交流の電圧値が前記第2の電圧範囲以上であり、かつ前記周波数検出手段が所定の周波数範囲を逸脱していることを検出したとき、前記第2の双方向スイッチをオフし、前記第1の双方向スイッチを駆動して前記交流を昇降圧し、前記直列蓄電素子の電圧を所定の電圧値に維持するとともに、前記2N個のスイッチング素子のうち、上アーム側スイッチング素子、下アーム側スイッチング素子、または、前記第3の双方向スイッチング素子のいずれか一つをオンするように駆動して前記直列蓄電素子に蓄えられた電力によって前記コンデンサの電圧を所定の電圧値に維持する第7モードを備えることを特徴とする電力変換装置。
     
PCT/JP2012/002477 2012-04-10 2012-04-10 電力変換装置 WO2013153571A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112012000487.6T DE112012000487T5 (de) 2012-04-10 2012-04-10 Leistungsumwandlungseinrichtung
PCT/JP2012/002477 WO2013153571A1 (ja) 2012-04-10 2012-04-10 電力変換装置
CN201280005298.4A CN103718447B (zh) 2012-04-10 2012-04-10 功率转换设备
JP2013525054A JP5565527B2 (ja) 2012-04-10 2012-04-10 電力変換装置
US13/939,852 US9571001B2 (en) 2012-04-10 2013-07-11 Power conversion device, including serial switching element, that compensates for voltage fluctuations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002477 WO2013153571A1 (ja) 2012-04-10 2012-04-10 電力変換装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/939,852 Continuation US9571001B2 (en) 2012-04-10 2013-07-11 Power conversion device, including serial switching element, that compensates for voltage fluctuations

Publications (1)

Publication Number Publication Date
WO2013153571A1 true WO2013153571A1 (ja) 2013-10-17

Family

ID=49327187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002477 WO2013153571A1 (ja) 2012-04-10 2012-04-10 電力変換装置

Country Status (5)

Country Link
US (1) US9571001B2 (ja)
JP (1) JP5565527B2 (ja)
CN (1) CN103718447B (ja)
DE (1) DE112012000487T5 (ja)
WO (1) WO2013153571A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7571145B2 (ja) 2020-01-21 2024-10-22 アイティーティー マニュファクチャーリング エンタープライジズ エルエルシー マトリックスコンバータの制御回路にdc電源を供給するための装置および方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014209332A1 (de) * 2014-05-16 2015-11-19 Senvion Gmbh Windenergieanlage mit verbessertem Überspannungsschutz
CN104022712B (zh) * 2014-06-19 2017-07-21 兰州交通大学 矿用机车直流转交流逆变器及转矩控制系统
CN104065324B (zh) * 2014-07-01 2016-09-21 北京航空航天大学 基于前置变换器级联三电平逆变器的三相交流电机功率驱动控制器
JP6459113B2 (ja) * 2014-07-18 2019-01-30 パナソニックIpマネジメント株式会社 スイッチ装置及びそれを用いた負荷制御システム
CN104601025B (zh) * 2015-01-15 2017-04-12 燕山大学 一种三相Buck‑boost升降压型三电平逆变器
US10239526B2 (en) * 2015-03-30 2019-03-26 GM Global Technology Operations LLC Adaptive cruise control system
US10097010B2 (en) * 2016-04-19 2018-10-09 Infineon Technologies Ag Control of freewheeling voltage
US20180083490A1 (en) * 2016-09-22 2018-03-22 Apple Inc. Single-Isolation Wireless Power Converter
US11121573B1 (en) 2016-09-22 2021-09-14 Apple Inc. Low-profile power converter
TWI690144B (zh) * 2018-11-14 2020-04-01 國家中山科學研究院 三臂式整流與變流電路
TWI672004B (zh) * 2018-12-11 2019-09-11 矽統科技股份有限公司 頻率偵測器
CN111342502B (zh) * 2020-03-31 2022-06-14 科华恒盛股份有限公司 基于双向变换器的Forsmark效应抑制方法及装置
NO347044B1 (en) * 2021-10-11 2023-04-24 Kongsberg Maritime As Onboard medium-voltage vessel electric charging apparatus and method for onboard charging.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145893A (ja) * 1990-10-08 1992-05-19 Toshiba F Ee Syst Eng Kk インバータの制御回路
JPH11178216A (ja) * 1997-12-11 1999-07-02 Hitachi Ltd 無停電電源装置
JP3902030B2 (ja) * 2001-11-27 2007-04-04 富士電機ホールディングス株式会社 電力変換装置の制御方法
JP2007221844A (ja) * 2006-02-14 2007-08-30 Yaskawa Electric Corp マトリクスコンバータ装置及びその保護装置
JP2010074869A (ja) * 2008-09-16 2010-04-02 Panasonic Corp 電力変換装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916329A (en) * 1987-10-05 1990-04-10 Square D Company Uninterruptible power supply
US5057990A (en) * 1990-05-02 1991-10-15 Zdzislaw Gulczynski Bidirectional switching power apparatus with AC or DC output
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
DE10131961A1 (de) * 2001-07-02 2003-01-23 Siemens Ag N-Punkt-Stromrichterschaltung
JP2003230276A (ja) * 2002-01-30 2003-08-15 Fuji Electric Co Ltd 電力変換装置の制御方法
TWI291282B (en) * 2002-06-03 2007-12-11 Fuji Electric Co Ltd Power converter
US7064969B2 (en) * 2003-02-21 2006-06-20 Distributed Power, Inc. Monopolar DC to bipolar to AC converter
US7705489B2 (en) * 2006-09-08 2010-04-27 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
EP1971018A1 (de) * 2007-03-13 2008-09-17 SMA Solar Technology AG Schaltungsvorrichtung zum transformatorlosen Umwandeln einer Gleichspannung in eine Wechselspannung mittels zweier DC/DC Wandler und einem AC/DC Wandler
DE102007028078B4 (de) * 2007-06-15 2009-04-16 Sma Solar Technology Ag Vorrichtung zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz und Gleichspannungswandler für eine solche Vorrichtung
CN101656659B (zh) * 2008-08-19 2012-05-23 中兴通讯股份有限公司 一种混合业务流的缓存处理方法、存储转发方法及装置
JP5097063B2 (ja) * 2008-09-11 2012-12-12 大阪瓦斯株式会社 電力変換装置
CN102150342B (zh) * 2009-03-05 2014-08-20 东芝三菱电机产业系统株式会社 不间断电源设备
US8385091B2 (en) * 2009-08-20 2013-02-26 Electric IT Corporation 3-phase high-power UPS
JP2012044824A (ja) * 2010-08-23 2012-03-01 Fuji Electric Co Ltd 電力変換装置
US9762115B2 (en) * 2011-02-03 2017-09-12 Viswa N. Sharma Bidirectional multimode power converter
JP6065262B2 (ja) * 2012-10-12 2017-01-25 富士電機株式会社 電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145893A (ja) * 1990-10-08 1992-05-19 Toshiba F Ee Syst Eng Kk インバータの制御回路
JPH11178216A (ja) * 1997-12-11 1999-07-02 Hitachi Ltd 無停電電源装置
JP3902030B2 (ja) * 2001-11-27 2007-04-04 富士電機ホールディングス株式会社 電力変換装置の制御方法
JP2007221844A (ja) * 2006-02-14 2007-08-30 Yaskawa Electric Corp マトリクスコンバータ装置及びその保護装置
JP2010074869A (ja) * 2008-09-16 2010-04-02 Panasonic Corp 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7571145B2 (ja) 2020-01-21 2024-10-22 アイティーティー マニュファクチャーリング エンタープライジズ エルエルシー マトリックスコンバータの制御回路にdc電源を供給するための装置および方法

Also Published As

Publication number Publication date
JPWO2013153571A1 (ja) 2015-12-17
US9571001B2 (en) 2017-02-14
US20130294124A1 (en) 2013-11-07
CN103718447A (zh) 2014-04-09
DE112012000487T5 (de) 2014-01-23
CN103718447B (zh) 2017-06-23
JP5565527B2 (ja) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5565527B2 (ja) 電力変換装置
US7964990B2 (en) Power supply apparatus
JP5282855B2 (ja) 交流−交流変換装置
US10998830B2 (en) Power conversion device and three-phase power conversion device
JP4882266B2 (ja) 交流−交流変換装置
JP5538658B2 (ja) 電力変換装置
TWI538351B (zh) 不斷電電源裝置
US9692310B2 (en) Power converter
JP2014079144A (ja) 電源装置
US6940188B2 (en) Electric power converting device
EP1511166B1 (en) Power converter
JP5569249B2 (ja) 無停電電源装置
WO2013054567A1 (ja) 電力変換装置
US9705362B2 (en) Power converter
JP2010119239A (ja) Smes装置、smes用インターフェース装置及びその駆動方法
KR20220145892A (ko) 무정전 전원 시스템
CA2978837A1 (en) Power storage device
JP6025663B2 (ja) 無停電電源装置
KR100844290B1 (ko) 전압 자유형 무정전 전원장치
JP2005192332A (ja) 無停電電力供給機能を付加した交流電圧制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013525054

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120004876

Country of ref document: DE

Ref document number: 112012000487

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874009

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12874009

Country of ref document: EP

Kind code of ref document: A1