WO2013152599A1 - 压缩机、具有该压缩机的空调系统以及热泵热水器系统 - Google Patents

压缩机、具有该压缩机的空调系统以及热泵热水器系统 Download PDF

Info

Publication number
WO2013152599A1
WO2013152599A1 PCT/CN2012/086194 CN2012086194W WO2013152599A1 WO 2013152599 A1 WO2013152599 A1 WO 2013152599A1 CN 2012086194 W CN2012086194 W CN 2012086194W WO 2013152599 A1 WO2013152599 A1 WO 2013152599A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure chamber
high pressure
cylinder
compressor
low pressure
Prior art date
Application number
PCT/CN2012/086194
Other languages
English (en)
French (fr)
Inventor
魏会军
李万涛
Original Assignee
国家节能环保制冷设备工程技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家节能环保制冷设备工程技术研究中心 filed Critical 国家节能环保制冷设备工程技术研究中心
Priority to US14/391,384 priority Critical patent/US10041482B2/en
Priority to EP12874116.2A priority patent/EP2837828B1/en
Priority to CA2870096A priority patent/CA2870096C/en
Priority to AU2012376626A priority patent/AU2012376626B2/en
Publication of WO2013152599A1 publication Critical patent/WO2013152599A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/04Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to the field of air conditioners and heat pumps, and more particularly to a compressor, an air conditioning system having the same, and a heat pump water heater system.
  • BACKGROUND OF THE INVENTION In the prior art, a two-stage enthalpy compressor having a double rotor has different refrigerant pressures and flow rates at different stages in a medium-pressure gas flow passage after performing air-enhancement and enthalpy, and a cross-sectional area of the pressure gas flow passage therein is different.
  • An object of the present invention is to provide a compressor capable of improving compressor efficiency and energy efficiency, and reducing energy consumption, an air conditioning system having the same, and a heat pump water heater system.
  • the present invention provides a compressor comprising: a low pressure compression assembly having a low pressure chamber, a low pressure compression assembly for drawing and compressing a gas to form a first pressurized gas; a medium pressure chamber; a low pressure chamber exhaust runner, the first pressurized gas
  • the low pressure compression assembly is discharged into the medium pressure chamber;
  • the enthalpy assembly is configured to deliver a second pressurized gas into the medium pressure chamber, and the second pressurized gas is mixed with the first pressurized gas in the medium pressure chamber to form a mixed pressurized gas;
  • a high pressure compression assembly comprising a high pressure chamber, the high pressure compression assembly sucks and compresses the mixed pressurized gas to form a third pressurized gas;
  • the medium pressure gas flow passage transports the mixed pressurized gas from the intermediate pressure chamber to the high pressure compression assembly;
  • a third pressurized gas is discharged from the high pressure compression assembly;
  • the medium pressure gas flow passage includes a low pressure chamber exhaust runner side flow passage section
  • the medium pressure gas flow path further includes an intermediate flow path section, and the intermediate flow path section is located between the low pressure chamber exhaust flow passage side flow passage section and the high pressure chamber suction flow passage side flow passage section, wherein the low pressure chamber exhaust
  • the minimum cross-sectional area of the flow channel side flow passage section and the minimum cross-sectional area ratio of the intermediate flow passage section are between 1.2 and 2
  • the minimum cross-sectional area ratio H 3 of the segments is between 1.2 and 2.
  • the ratio of the area of the low pressure chamber exhaust runner to the area of the high pressure chamber exhaust runner is 1.2.
  • the ratio of the minimum cross-sectional area H of the medium-pressure gas flow path to the minimum cross-sectional area H of the low-pressure chamber exhaust flow path is greater than 1.2. Further, the ratio of the volume V 3 ⁇ 4 of the high pressure chamber to the volume V is of the low pressure chamber is between 0.8 and 0.9.
  • the compressor includes a crankshaft having a first eccentric portion and a second eccentric portion;
  • the low pressure compression assembly includes a low pressure cylinder and a low pressure roller disposed on the first eccentric portion in the low pressure cylinder, the low pressure cylinder and the low pressure roller A low pressure chamber is formed therebetween;
  • the high pressure compression assembly includes a high pressure cylinder and a high pressure roller disposed in the second eccentric portion in the high pressure cylinder, and a high pressure chamber is formed between the high pressure cylinder and the high pressure roller.
  • the eccentric amount of the first eccentric portion and the second eccentric portion are the same; the height of the high pressure cylinder is smaller than the height of the low pressure cylinder.
  • the eccentric amount of the first eccentric portion is smaller than the eccentric amount of the second eccentric portion; the height of the high pressure cylinder is the same as the height of the low pressure cylinder.
  • the ratio of the cylinder height of the low pressure cylinder to the cylinder inner diameter ranges from 0.4 to 0.55; the ratio of the cylinder height of the high pressure cylinder to the cylinder inner diameter ranges from 0.4 to 0.55; the eccentric amount of the first eccentric portion and the low pressure cylinder
  • the ratio of the inner diameter of the cylinder is in the range of 0.1 0.2; the ratio of the eccentricity of the second eccentric portion to the inner diameter of the cylinder of the high pressure cylinder is within 0.1 0.2.
  • the compressor further comprises: a lower flange disposed under the low pressure compression assembly, a lower side of the lower flange including a lower flange cavity; a lower cover disposed under the lower flange and covered by the lower flange On the cavity, a medium pressure chamber is formed together with the lower flange.
  • the compressor further comprises: an intermediate cylinder disposed between the low pressure compression assembly and the high pressure compression assembly, the intermediate cylinder facing the high pressure compression assembly including an intermediate cylinder cavity; the pump body partition disposed in the high pressure compression assembly and the middle The cylinders are disposed between the cylinders and form a medium pressure chamber together with the intermediate cylinders.
  • the compressor further includes: a housing assembly accommodating the low pressure compression assembly and the high pressure compression assembly; and an intermediate housing disposed outside the housing assembly, the inner space of the intermediate housing forming an intermediate pressure chamber.
  • the present invention also provides an air conditioning system including the aforementioned compressor.
  • the present invention also provides a heat pump water heater system including the aforementioned compressor.
  • the minimum cross-sectional area of the flow path side of the low-pressure chamber exhaust flow passage and the minimum cross-sectional area of the flow passage section of the high-pressure chamber suction passage side Better than the set range, pressure pulsation and flow rate of the refrigerant
  • the movement is relatively small, which can improve the first-stage exhaust and the second-stage intake fullness, increase the air supply, thereby improving compressor efficiency and energy efficiency, and reducing energy consumption.
  • FIG. 1 is a schematic structural view of a compressor according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional structural view of an upper flange of a compressor according to a first embodiment of the present invention
  • Figure 4 is a cross-sectional structural view of a high pressure cylinder of a compressor according to a first embodiment of the present invention
  • Figure 5 is a schematic view of the right side of Figure 4
  • Figure 6 is a schematic view of the left side of Figure 4
  • FIG. 8 is a left side structural view of FIG. 7
  • FIG. 9 is a cross-sectional view of a low pressure cylinder of a compressor according to a first embodiment of the present invention
  • FIG. Fig. 10 is a schematic view of the right side view of Fig. 9; Fig.
  • FIG. 11 is a left side view of Fig. 9;
  • Fig. 12 is a cross-sectional structural view of the lower flange of the compressor according to the first embodiment of the present invention;
  • Figure 12 is a schematic view of the left-side structure of Figure 12;
  • Figure 15 is a schematic exploded view of the low-pressure and high-pressure compression assembly of the compressor according to the first embodiment of the present invention;
  • Figure 16 is a schematic view of the compressor according to the first embodiment of the present invention;
  • FIG. 17 is a diagram showing the ratio of H 2 changes according to the area of the energy efficiency with a first embodiment of the compressor of the embodiment of the present invention
  • Figure 18 is a schematic diagram showing the change of the maximum relative air supply amount of the compressor according to the first embodiment of the present invention as a ratio change
  • Figure 19 is a schematic diagram showing the change of the energy efficiency ratio of the compressor according to the first embodiment of the present invention
  • the first embodiment of the compressor has a maximum relative air supply amount as a function of the ratio change
  • Fig. 21 is a graph showing the energy efficiency ratio of the compressor according to the first embodiment of the present invention!
  • Fig. 22 is a schematic diagram showing the maximum relative air supply amount of the compressor according to the first embodiment of the present invention as a function of the ratio R 2 ;
  • Fig. 21 is a graph showing the energy efficiency ratio of the compressor according to the first embodiment of the present invention!
  • Fig. 22 is a schematic diagram showing the maximum relative air supply amount of the compressor according to the first embodiment of the present invention as
  • FIG. 23 is a diagram showing the energy efficiency ratio of the compressor according to the first embodiment of the present invention as a function of the ratio
  • R 2 24 is a schematic structural view of a compressor according to a second embodiment of the present invention
  • FIG. 25 is a schematic structural view of a compressor according to a third embodiment of the present invention.
  • the compressor of the first embodiment mainly includes a housing assembly, a motor, a low pressure compression assembly, a tamper assembly, a lower flange 3, a high pressure compression assembly, a pump body partition 11, an upper flange 14, a liquid separator 1, and the like.
  • the housing assembly includes an upper housing 18a, an intermediate housing 17 and a lower housing 18b.
  • the motor is disposed inside the housing assembly and is mainly composed of a stator 15 and a rotor 16.
  • the low pressure compression assembly mainly includes a low pressure cylinder 2 and a low pressure roller 10 disposed in the low pressure cylinder 2.
  • a cavity is disposed below the lower flange 3, and the lower cover 4 is disposed on the cavity of the lower flange 3 to define a medium pressure chamber.
  • the high pressure compression assembly mainly includes a high pressure cylinder 12 and a high pressure roller 13 disposed in the high pressure cylinder 12.
  • the reinforced component mainly comprises a reinforced sealing ring 5, a reinforced pump body suction pipe 6, a reinforced casing suction pipe 7 and a reinforced curved pipe 8.
  • the liquid separator 1 is fixed to the intermediate casing 17 by welding, and the low pressure cylinder 2 is fixed to the lower flange 3 by screws, and the liquid separator 1 communicates with the low pressure cylinder 2 through the suction pipe.
  • the lower cover 4 is fixed to the lower flange 3 by screws.
  • the reinforced casing suction pipe 7 is welded to the casing 17, and the reinforced pump body suction pipe 6 is pressed against the inner wall of the boring port 23 of the low pressure cylinder 2 by the reinforced sealing ring 5 with its interference fit.
  • the ⁇ bend 8 is in communication with the reinforced casing suction pipe 7 and the enthalpy pump suction pipe 6 by welding.
  • the high pressure cylinder 12 is fixed to the upper flange assembly 14 by screws, and simultaneously with the pump body partition 11 connected.
  • the upper flange assembly 14 is welded to the intermediate housing 17.
  • the crankshaft 9 passes through the lower flange 3, the low pressure cylinder 2, the lower cover 4, the pump body partition 11, the high pressure cylinder 12, the upper flange 14, and the low pressure roller 10 is placed on the lower eccentric portion of the crankshaft 9, the high pressure roller 13 sets are placed on the upper eccentric portion of the crankshaft 9.
  • the compressor exhaust pipe 19 is welded to the upper casing 18a, the upper casing 18a is sealingly welded to the upper portion of the intermediate casing 17, and the lower casing 18b is sealingly welded to the lower portion of the intermediate casing 17.
  • the flow of the refrigerant in the compressor of the first embodiment is briefly described as follows: Under the drag of the motor, the low pressure compression assembly and the high pressure compression assembly of the compressor are operated, and the low pressure refrigerant returning from the system passes through the dispenser 1 to the low pressure.
  • the cylinder 2 is compressed to form a first intermediate pressure refrigerant.
  • the first intermediate pressure refrigerant compressed by the low pressure compression assembly is discharged to the lower flange through the low pressure cylinder exhaust port 21 of the low pressure cylinder 2 and the lower flange exhaust port 31 on the lower flange 3 shown in FIGS. 13 to 14. 3 in the medium pressure chamber formed together with the lower cover 4.
  • the second intermediate pressure refrigerant enters the boosting elbow 8 through an intermediate pressure circuit of the system, and then enters the booster pump body suction pipe 6, which flows through the tapping port 23 on the low pressure cylinder 2 shown in Figs.
  • the medium pressure chamber mixed with the first intermediate pressure refrigerant to form a mixed medium pressure refrigerant, and the mixed medium pressure refrigerant sequentially passes through the first intermediate pressure gas flow passage 32 on the lower flange 3 and the second intermediate pressure on the low pressure cylinder 2
  • the gas flow path 22 and the third intermediate pressure gas flow path 111 on the pump body separator 11 are sucked into the high pressure cylinder 12 through the high pressure cylinder suction port 121 of the high pressure cylinder 12, and are compressed into a high pressure refrigerant by a high pressure compression assembly, and the high pressure refrigerant passes.
  • the high pressure cylinder exhaust port 122 of the upper high pressure cylinder 12 and the upper flange exhaust port 141 of the upper flange 14 are discharged into the upper space surrounded by the upper flange 14, the intermediate casing 17, and the upper casing 18a, and It is discharged from the exhaust pipe 19 into the evaporator or condenser of the system to complete a two-stage compression of the compressor and to carry out the work of increasing the enthalpy.
  • the directions of the arrows in Figure 1 represent the flow of refrigerant in the compressor.
  • the low pressure chamber exhaust runner is composed of the low pressure cylinder exhaust port 21 and the lower flange exhaust port 31 on the low pressure cylinder 2.
  • the medium pressure gas flow passage is divided into three flow passage sections, which are the first intermediate pressure gas flow passage 32 on the lower flange 3 of the low pressure chamber exhaust flow passage side flow passage section, and the low pressure cylinder 2 of the intermediate flow passage section.
  • the second intermediate pressure gas flow passage 22 and the third intermediate pressure gas flow passage 111 on the pump body partition 11 and the oblique high pressure cylinder of the high pressure chamber suction flow side flow passage section located on the high pressure cylinder 12 are sucked Port 121.
  • the high pressure chamber exhaust runner is composed of a flow passage between the high pressure cylinder exhaust port 122 on the high pressure cylinder 12 and the upper flange exhaust port 141.
  • the ratio of the low pressure chamber exhaust runner area to the high pressure chamber exhaust runner area is 1.2.
  • the refrigerant pressure and the flow rate pulsation are reduced by setting the range of the cross-sectional area ratio of the three different flow path sections of the intermediate pressure gas flow path, thereby improving the energy efficiency of the compressor and reducing the power consumption.
  • the minimum cross-sectional ratio of the three flow passage sections of the intermediate pressure gas flow passage is set as follows: The minimum cross-sectional area of the low-pressure chamber exhaust runner side flow passage section and the minimum cross-sectional area ratio of the intermediate flow passage section are 3 ⁇ 4 in 1.2 Between 2 and intermediate flow The minimum cross-sectional area of the track section and the minimum cross-sectional area ratio H 3 of the high pressure chamber suction passage side flow passage section are between 1.2 and 2.
  • the minimum cross-sectional area of the low-pressure chamber exhaust runner side flow passage section and the minimum cross-sectional area ratio H of the high-pressure chamber suction passage side flow passage section are preferably between 1.4 and 4. Referring to FIG. 16 with the maximum relative amount of H curve qi 2, when H 2 is between 1.2 to 2, the maximum amount is relatively large qi. Referring to Figure 17, the energy efficiency ratio varies with 3 ⁇ 4. When 3 ⁇ 4 is between 1.2 and 2, the energy efficiency is relatively large. The maximum relative qi volume and energy efficiency ratio are similar to the 3 ⁇ 4 curve in Figures 16 and 17, respectively, and are also optimal between 1.2 and 2, not shown here.
  • the pressure pulsation and the flow rate pulsation of the refrigerant are relatively small, and the fullness of the first-stage exhaust and the second-stage intake can be improved, and the relative air supply amount can be increased, thereby improving the energy efficiency of the compressor and reducing the energy consumption.
  • the energy efficiency ratio increases with the ratio of 3 ⁇ 4.
  • the energy efficiency ratio increases first and then decreases with the increase of m.
  • the energy efficiency ratio is close to the maximum.
  • the ratio R1 of the high pressure chamber volume V ⁇ to the volume V? 6 of the low pressure chamber is between 0.8 and 0.9. See the maximum relative qi volume shown in Figure 20 as a ratio! The variation curve of ⁇ , as the ratio increases, the maximum relative qi volume gradually increases. When the ratio "between 0.8 and 0.9, the maximum relative qi volume increase begins to increase.
  • the ratio of the eccentric amount of the upper eccentric portion and the lower eccentric portion of the crankshaft 9 inserted into the high pressure cylinder 12 and the low pressure cylinder 2 can be adjusted, and the eccentricity of the lower eccentric portion can be made.
  • the amount of eccentricity of the upper eccentric portion is small to achieve a volume ratio of between 0.8 and 0.9.
  • the ratio of the cylinder height to the cylinder inner diameter of the high pressure cylinder 12 and the low pressure cylinder 2 is between 0.4 and 0.55, and the ratio of the eccentric amount of the eccentric portion and the lower eccentric portion on the crankshaft to the corresponding cylinder inner diameter ranges from 0.1 to 0.2.
  • the volume ratio can be made between 0.8 and 0.9 by simultaneously adjusting the inner diameter and height of the high pressure cylinder 12 and the low pressure cylinder 2, and adjusting the eccentricity of the upper and lower eccentric portions of the crankshaft 9.
  • the qi fluid pulsation is small, and the maximum relative qi volume and energy efficiency ratio are relatively large.
  • Maximum relative amount Qi as shown in FIG.
  • the maximum relative amount qi increases with R 2
  • R 2 is equal to 1 when the maximum amount reaches a relatively large value qi, when R 2 is greater than 1
  • Its maximum relative qi volume is large.
  • the energy efficiency ratio increases with the volume ratio R 2 , and the energy efficiency ratio increases as the volume ratio R 2 increases. When R 2 is greater than 1, the energy efficiency ratio approaches the maximum.
  • the compressor of the second embodiment is a two-stage enthalpy compressor with a medium pressure chamber between the low pressure compression assembly and the high pressure compression assembly, which mainly includes a liquid separator 201, a low pressure cylinder 202, The intermediate cylinder 203, the reinforced pipe 204, the pump body partition 205, the high pressure cylinder 206, the upper flange 207, the lower flange 208, and the like.
  • the intermediate pressure chamber is disposed at the upper portion of the low pressure chamber, the intermediate pressure refrigerant of the compressor unit flows directly upward to the high pressure compression assembly.
  • the liquid separator 201 is connected to the low pressure cylinder 202 through an air suction pipe, and the low pressure cylinder 202 is fixed to the lower flange 208 by screws.
  • the intermediate cylinder 203 is fixed to the low pressure cylinder 202 by screws, and the intermediate cylinder 203 is fixed.
  • the side includes a cavity, and the pump body partition 205 is disposed above the cavity of the intermediate cylinder 203 to form a medium pressure chamber, and the booster tube 204 is in communication with the intermediate pressure chamber in the intermediate cylinder 203.
  • the pump body partition 205 is fixed to the intermediate cylinder 203 by screws.
  • the high pressure cylinder 206 is fixed to the upper flange 207 by screws, and is connected to the pump body partition 205, and the upper flange 207 is welded to the housing assembly.
  • the low-pressure refrigerant gas flowing back from the air-conditioning system flows into the low-pressure cylinder suction port on the low-pressure cylinder 202 through the liquid separator 201, and is compressed by the low-pressure compression assembly to form a first intermediate-pressure refrigerant, and the first intermediate-pressure refrigerant passes through the low-pressure cylinder 202.
  • the cylinder vent and the intermediate cylinder vent on the intermediate cylinder 203 flow into the intermediate pressure chamber formed by the intermediate cylinder 203 and the pump body partition 205, and the second intermediate pressure refrigerant for qi enhancement is flowed through the reinforced tube 204.
  • the intermediate cylinder suction port on the intermediate cylinder 203 also flows into the intermediate cylinder 203, and is mixed with the first intermediate pressure refrigerant flowing into the intermediate pressure chamber to form a mixed medium pressure refrigerant, and the mixed medium pressure refrigerant passes through the pump body partition 205.
  • the medium pressure gas flow passage of the pump body partition flows into the high pressure cylinder suction port of the high pressure cylinder 206, and the high pressure refrigerant formed by the compression of the high pressure compression assembly passes through the high pressure cylinder exhaust port on the high pressure cylinder 206 and the upper flange of the upper flange 207.
  • the exhaust port is discharged into the upper cavity surrounded by the casing assembly and the upper flange 207, and finally flows into the air conditioning system through the compressor exhaust pipe, and then flows back to the compressor through the evaporation of the air conditioning system, thereby completing one cycle.
  • the low pressure chamber exhaust flow passage is composed of the low pressure cylinder exhaust port on the low pressure cylinder 202 and the intermediate cylinder exhaust port on the intermediate cylinder 203.
  • the intermediate pressure gas flow path is divided into two flow path sections, respectively: a pump body separator medium pressure gas flow path and a high pressure chamber on the pump body partition 205 on the low pressure chamber exhaust flow side
  • the high pressure chamber exhaust runner is composed of a high pressure cylinder exhaust port on the high pressure cylinder 206 and an upper flange exhaust port of the upper flange assembly 207.
  • the compressor of the second embodiment described above has no intermediate flow path section as compared with the first embodiment. It has been experimentally verified that in the second embodiment, the minimum cross-sectional area of the low-pressure chamber exhaust runner side flow passage section and the minimum cross-sectional area ratio H of the high-pressure chamber suction passage side flow passage section are also between 1.4 and 4. More suitable.
  • the range and effect of the other parameters R 2 and the ratio of the low-pressure chamber exhaust runner area to the high-pressure chamber exhaust runner area ratio are similar to those of the compressor of the first embodiment, and the volume ratios of the compressor of the first embodiment are realized.
  • the mode and the like are equally applicable to the compressor of the above second embodiment, and thus the description will not be repeated.
  • the compressor of the third embodiment forms a two-stage booster compressor of an intermediate pressure chamber external structure by adding an external sealed intermediate tank.
  • the compressor of the third embodiment mainly includes an electric motor, a low pressure compression assembly, an intermediate casing 304, a high pressure compression assembly, a casing assembly, a liquid separator 301, and the like.
  • the liquid separator 301 is connected to the low pressure cylinder 302 through an air suction pipe.
  • the low pressure cylinder 302 is fixed to the lower flange 303 by screws.
  • the intermediate casing 304 is fixed to the casing assembly 309 by welding, and the intermediate casing 304 passes through the first exhaust.
  • the tube communicates with the low pressure cylinder exhaust port on the low pressure cylinder 302, communicates with the high pressure cylinder suction port on the high pressure cylinder 307 through the second exhaust pipe, and the booster pipe 305 is connected to the intermediate tank 304, and the pump body partition 306 is placed.
  • the high pressure cylinder 307 is fixed to the upper flange 308 by screws, and is connected to the pump body partition 306, and the upper flange 308 is welded to the housing assembly 309.
  • the low-pressure refrigerant returning from the air-conditioning system flows into the low-pressure cylinder suction port on the low-pressure cylinder 302 through the liquid separator 301, and is compressed by the low-pressure compression assembly to form a first intermediate-pressure refrigerant, and the first intermediate-pressure refrigerant passes through the low-pressure cylinder on the low-pressure cylinder 302.
  • the exhaust port and the first exhaust pipe enter an intermediate pressure chamber inside the intermediate case 304.
  • the second intermediate pressure refrigerant for qi enhancement and enthalpy flows through the enthalpy tube 305 and enters the intermediate pressure chamber inside the intermediate tank 304, and mixes with the first intermediate pressure refrigerant in the medium pressure chamber to form a mixed medium pressure refrigerant, which is mixed.
  • the intermediate pressure refrigerant flows into the high pressure cylinder suction port of the high pressure cylinder 307 through the second exhaust pipe, and the high pressure refrigerant formed by the compression by the high pressure compression assembly passes through the high pressure cylinder exhaust port on the high pressure cylinder 307 and the upper flange 308.
  • the blue exhaust port is discharged into the upper space enclosed by the housing assembly 309 and the upper flange assembly 308, and finally It flows into the air conditioning system through the exhaust pipe of the compressor, and then flows back to the compressor through the evaporation of the air conditioning system to complete a cycle.
  • the low pressure chamber exhaust runner is the low pressure cylinder exhaust port on the low pressure cylinder 302.
  • the medium pressure gas flow passage is divided into three flow passage sections, which are: a first exhaust pipe of the low pressure chamber exhaust runner side flow passage section, and a second exhaust pipe of the intermediate flow passage section.
  • the high pressure chamber exhaust runner is composed of a high pressure cylinder exhaust port on the high pressure cylinder 307 and an upper flange exhaust port of the upper flange assembly 308.
  • the values and effects of the parameters H, 3 ⁇ 4 , H 2 , H 3 , Ri, R 2 of the compressor of the third embodiment and the area of the low-pressure chamber exhaust runner and the ratio of the area of the high-pressure chamber exhaust runner are the same.
  • the respective implementations of the volume ratio of the compressor of the first embodiment are also applicable to the compressor of the above third embodiment, and therefore the description will not be repeated.
  • the above-described embodiments of the present invention achieve the following technical effects: Since the medium-pressure gas flow path is reasonably set, the minimum cross-sectional area and high pressure of the flow path section of the low-pressure chamber exhaust flow passage side The minimum cross-sectional area ratio H of the side suction passage section of the cavity suction passage is set to a better range, and the pressure pulsation and the flow velocity pulsation of the refrigerant are relatively small, which can improve the first-stage exhaust and the second-stage intake.

Abstract

一种压缩机、具有该压缩机的空调系统以及热泵热水器系统。该压缩机包括:低压压缩组件;中压腔;低压腔排气流道;增焓组件;高压压缩组件;中压气体流道;高压腔排气流道;中压气体流道包括低压腔排气流道侧流道段和高压腔吸气流道侧流道段,其中,低压腔排气流道侧流道段的最小横截面积与高压腔吸气流道侧流道段的最小横截面积比在1.4至4之间。该压缩机,冷媒的压力脉动和流速脉动都相对较小,可以提高第一级排气和第二级吸气饱满度,提高补气量,从而提高压缩机效率和能效,降低能耗。

Description

压缩机、 具有该压缩机的空调系统以及热泵热水器系统 技术领域 本发明涉及空调和热泵领域, 更具体地, 涉及一种压缩机、 具有该压缩机的空调 系统以及热泵热水器系统。 背景技术 现有技术中, 具有双转子的两级增焓压缩机在进行补气增焓后, 中压气体流道中 的不同阶段冷媒压力和流速是不同的, 而其中压气体流道的截面积是相同的, 这导致 第一级的低压压缩组件排气和第二级的高压压缩组件吸气之间的气流脉动较大, 影响 了压缩机的吸所和排气的饱满度, 从而降低了压缩机效率和压缩机能效,增加了能耗。 发明内容 本发明目的在于提供一种能提高压缩机效率和能效, 降低能耗的压缩机、 具有该 压缩机的空调系统以及热泵热水器系统。 本发明提供了一种压缩机, 包括: 低压压缩组件, 具有低压腔, 低压压缩组件吸 入并压缩气体形成第一有压气体; 中压腔; 低压腔排气流道, 将第一有压气体从低压 压缩组件排入中压腔内; 增焓组件, 向中压腔内输送第二有压气体, 第二有压气体与 第一有压气体在中压腔内混合形成混合有压气体; 高压压缩组件, 包括高压腔, 高压 压缩组件吸入并压缩混合有压气体形成第三有压气体; 中压气体流道, 将混合有压气 体从中压腔输送至高压压缩组件; 高压腔排气流道, 将第三有压气体从高压压缩组件 排出; 中压气体流道包括低压腔排气流道侧流道段和高压腔吸气流道侧流道段,其中, 低压腔排气流道侧流道段的最小横截面积与高压腔吸气流道侧流道段的最小横截面积 比在 1.4至 4之间。 进一步地, 中压气体流道还包括中间流道段, 中间流道段位于低压腔排气流道侧 流道段和高压腔吸气流道侧流道段之间, 其中, 低压腔排气流道侧流道段的最小横截 面积与中间流道段的最小横截面积比 ¾在 1.2至 2之间, 且中间流道段的最小横截面 积与高压腔吸气流道侧流道段的最小横截面积比 H3在 1.2至 2之间。 进一步地, 低压腔排气流道面积与高压腔排气流道面积比值为 1.2。 进一步地, 中压气体流道的最小横截面积 H巾与低压腔排气流道的最小横截面积 H低的比值 大于 1.2。 进一步地, 高压腔的容积 V ¾与低压腔的容积 V is的比值 在 0.8至 0.9之间。 进一步地, 压缩机包括曲轴, 曲轴具有第一偏心部和第二偏心部; 低压压缩组件 包括低压缸和在低压缸内的设置于第一偏心部上的低压滚子, 低压缸和低压滚子之间 形成低压腔; 高压压缩组件包括高压缸和在高压缸内的设置于第二偏心部上的高压滚 子, 高压缸和高压滚子之间形成高压腔。 进一步地, 第一偏心部与第二偏心部的偏心量相同; 高压缸的高度小于低压缸的 高度。 进一步地, 第一偏心部的偏心量小于第二偏心部的偏心量; 高压缸的高度和低压 缸的高度相同。 进一步地, 低压缸的气缸高度与气缸内径的比值范围在 0.4至 0.55之间; 高压缸 的气缸高度与气缸内径比值范围在 0.4至 0.55内之间; 第一偏心部的偏心量与低压缸 的气缸内径的比值范围在 0.1 0.2内;第二偏心部的偏心量与高压缸的气缸内径的比值 范围在 0.1 0.2内。 进一步地, 中压腔的容积 V巾与低压腔的容积 V is的比值 R2大于 1。 进一步地, 压缩机还包括: 下法兰, 设置于低压压缩组件下方, 下法兰的下侧包 括下法兰凹腔; 下盖板, 设置于下法兰的下方且盖设在下法兰凹腔上, 与下法兰共同 形成中压腔。 进一步地, 压缩机还包括: 中间缸, 设置于低压压缩组件和高压压缩组件之间, 中间缸朝向高压压缩组件的一侧包括中间缸凹腔; 泵体隔板, 设置于高压压缩组件和 中间缸之间且盖设于中间缸凹腔上, 与中间缸共同形成中压腔。 进一步地, 压缩机还包括: 壳体组件, 容纳低压压缩组件和高压压缩组件; 中间 箱体, 设置于壳体组件外部, 中间箱体的内部空间形成中压腔。 本发明还提供了一种空调系统, 包括前述的压缩机。 本发明还提供了一种热泵热水器系统,包括前述的压缩机。根据本发明的压缩机, 由于合理地设置了中压气体流道, 对低压腔排气流道侧流道段的最小横截面积与高压 腔吸气流道侧流道段的最小横截面积比设定了较佳的范围, 冷媒的压力脉动和流速脉 动都相对较小, 可以提高第一级排气和第二级吸气饱满度, 提高补气量, 从而提高压 缩机效率和能效, 降低能耗。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明第一实施例的压缩机结构示意图; 图 2是根据本发明第一实施例压缩机的上法兰的剖视结构示意图; 图 3是图 2的左视结构示意图; 图 4是根据本发明第一实施例压缩机的高压缸的剖视结构示意图; 图 5是图 4的右视结构示意图; 图 6是图 4的左视结构示意图; 图 7是根据本发明第一实施例压缩机的泵体隔板的剖视结构示意图; 图 8是图 7的左视结构示意图; 图 9是根据本发明第一实施例压缩机的低压缸的剖视结构示意图; 图 10是图 9的右视结构示意图; 图 11是图 9的左视结构示意图; 图 12是根据本发明第一实施例压缩机的下法兰的剖视结构示意图; 图 13是图 12的右视结构示意图; 图 14是图 12的左视结构示意图; 图 15 是根据本发明的第一实施例压缩机的低压和高压压缩组件的分解结构示意 图; 图 16是根据本发明的第一实施例压缩机的最大相对补气量随 H2变化示意图; 图 17是根据本发明的第一实施例压缩机的能效比随面积比值 H2变化示意图; 图 18是根据本发明的第一实施例压缩机的最大相对补气量随比值 变化示意图; 图 19是根据本发明的第一实施例压缩机的能效比随比值 变化示意图; 图 20是根据本发明的第一实施例压缩机的最大相对补气量随比值 变化示意图; 图 21是根据本发明的第一实施例压缩机的能效比随比值!^变化示意图; 图 22是根据本发明的第一实施例压缩机的最大相对补气量随比值 R2变化示意图; 图 23是根据本发明的第一实施例压缩机的能效比随比值 R2变化示意图; 图 24是根据本发明第二实施例的压缩机结构示意图; 以及 图 25是根据本发明第三实施例的压缩机结构示意图。 具体实施方式 下面将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的情 况下, 本申请中的实施例及实施例中的特征可以相互组合。 第一实施例 图 1至图 15示出了本发明第一实施例的压缩机,该压缩机为中压腔在低压腔下部 的两级增焓压缩机。 第一实施例的压缩机主要包括壳体组件、 电机、 低压压缩组件、 增焓组件、 下法 兰 3、 高压压缩组件、 泵体隔板 11、 上法兰 14和分液器 1等等。 壳体组件包括上壳体 18a、 中间壳体 17和下壳体 18b。 电机设置于壳体组件内部, 主要由定子 15和转子 16组成。 低压压缩组件主要包括低压缸 2和设置于低压缸 2内 的低压滚子 10。 下法兰 3的下方设置凹腔, 下盖板 4盖设在下法兰 3的凹腔上围成中 压腔。 高压压缩组件主要包括高压缸 12和设置于高压缸 12内的高压滚子 13。 增焓组 件主要包括增焓密封圈 5、 增焓泵体吸气管 6、 增焓壳体吸气管 7和增焓弯管 8等。 分液器 1通过焊接固定在中间壳体 17上, 低压缸 2通过螺钉固定在下法兰 3上, 分液器 1通过吸气管与低压缸 2相连通。 下盖板 4通过螺钉固定在下法兰 3下。 增焓 壳体吸气管 7焊接在壳体 17上, 增焓泵体吸气管 6通过与其过盈配合的增焓密封圈 5 压紧在低压缸 2的增焓口 23的内壁上,增焓弯管 8通过焊接与增焓壳体吸气管 7和增 焓泵体吸气管 6相连通。 高压缸 12通过螺钉与上法兰组件 14固定, 同时与泵体隔板 11相连。 上法兰组件 14焊接在中间壳体 17上。 曲轴 9穿过下法兰 3、 低压缸 2、 下 盖板 4、 泵体隔板 11、 高压缸 12、 上法兰 14, 低压滚子 10套在曲轴 9的下偏心部上, 高压滚子 13套在曲轴 9的上偏心部上。 压缩机排气管 19焊接在上壳体 18a上, 上壳 体 18a密封地焊接在中间壳体 17上部, 下壳体 18b密封地焊接在中间壳体 17下部。 冷媒在第一实施例的压缩机中的流通过程简述如下: 在电机的拖动下, 压缩机的低压压缩组件和高压压缩组件运转, 从系统回流的低 压冷媒通过分液器 1进入到低压缸 2中压缩形成第一中压冷媒。 经低压压缩组件压缩 后的第一中压冷媒通过低压缸 2的低压缸排气口 21以及图 13至图 14所示的下法兰 3 上的下法兰排气口 31排到下法兰 3与下盖板 4共同形成的中压腔中。 同时,第二中压 冷媒通过系统的一个中压回路进入增焓弯管 8, 再进入增焓泵体吸气管 6, 通过图 10 至 11所示的低压缸 2上的增焓口 23流入到中压腔中, 与第一中压冷媒混合形成混合 中压冷媒, 混合中压冷媒再依次通过下法兰 3上的第一中压气体流道 32、 低压缸 2上 的第二中压气体流道 22、 泵体隔板 11上的第三中压气体流道 111后, 通过高压缸 12 的高压缸吸入口 121吸入高压缸 12内, 由高压压缩组件压缩成高压冷媒, 高压冷媒通 过上高压缸 12的高压缸排气口 122和上法兰 14上的上法兰排气口 141排入由上法兰 14、 中间壳体 17和上壳体 18a围成的上部空间内, 并从排气管 19排入系统的蒸发器 或冷凝器, 完成压缩机的一次双级压缩并进行增焓的工作过程。 图 1中的各箭头方向 代表了冷媒在压缩机中的流动过程。 根据以上描述可知,低压腔排气流道由低压缸 2上的低压缸排气口 21和下法兰排 气口 31组成。 中压气体流道分为三个流道段, 分别为低压腔排气流道侧流道段的位于下法兰 3 上的第一中压气体流道 32、 中间流道段的低压缸 2上的第二中压气体流道 22和泵体 隔板 11上的第三中压气体流道 111、 高压腔吸气流道侧流道段的位于高压缸 12上的 斜切的高压缸吸入口 121。 高压腔排气流道则由高压缸 12上的高压缸排气口 122至上法兰排气口 141之间的 流道组成。 优选地, 低压腔排气流道面积与高压腔排气流道面积比值为 1.2。 在本发明的第一实施例中, 通过设定中压气体流道的三个不同流道段的横截面积 比值的范围来降低冷媒压力和流速脉动, 从而提高压缩机的能效、 降低功耗。 具体地, 中压气体流道的三个流道段的最小截面比值设置为: 低压腔排气流道侧 流道段的最小横截面积与中间流道段的最小横截面积比 ¾在 1.2至 2之间, 且中间流 道段的最小横截面积与高压腔吸气流道侧流道段的最小横截面积比 H3在 1.2至 2之间。 而低压腔排气流道侧流道段的最小横截面积与高压腔吸气流道侧流道段的最小横截面 积比 H在 1.4至 4之间较为适宜。 参见图 16中最大相对补气量随 H2的变化曲线, 当 H2在 1.2至 2之间时, 最大相 对补气量较大。 参见图 17中能效比随 ¾的变化曲线, 当 ¾在 1.2至 2之间时, 能效 比较大。 最大相对补气量和能效比随 ¾的变化曲线分别与图 16和图 17中随 ¾的变 化曲线相类似, 也是 ¾在 1.2至 2之间最佳, 在此未图示。 此时冷媒的压力脉动和流 速脉动都相对较小, 可以提高第一级排气和第二级吸气的饱满度, 提高相对补气量, 从而提高压缩机能效, 降低能耗。 此外, 在第一实施例中优选地, 中压气体流道的最小横截面积 H Ψ与低压腔排气 流道最小横截面积 Η ί6的比值 ¾大于 1.2。 参见图 18中最大相对补气量随比值 ¾的 变化曲线, 最大相对补气量随横截面积比¾增大而增大, 当 ¾大于 1.2时, 最大相 对补气量随 ¾增大而提高的更加显著。参见图 19中能效比随比值¾的变化曲线, 能 效比随 m的增大先增大后减小, 当¾大于 1.2时, 能效比接近最大。 在第一实施例中更优选地, 高压腔容积 V ^与低压腔的容积 V ί6的比值 R1在 0.8 至 0.9之间。 参见图 20所示的最大相对补气量随比值!^的变化曲线, 随着比值 的 增大最大相对补气量逐渐增大, 当比值《 在 0.8至 0.9之间时, 最大相对补气量增加 的幅度开始加大。 参见图 21所示的能效比随比值 的变化曲线, 随着!^的增大, 能 效比先增大后减低, 当比值《 在 0.8至 0.9之间时, 能效比接近最大。 为了达到比值 1^的范围在 0.8至 0.9之间, 可以采用不同的方式实现。 例如, 可 以分别采用如下方式: 在插入高压缸 12与低压缸 2中的曲轴 9的上偏心部和下偏心部的偏心量相同时, 可以通过调节高压缸 12和低压缸 2的高度比值, 通过使高压缸 12的高度小于低压缸 2的高度来实现容积比 的值在 0.8至 0.9之间。 在高压缸 12和低压缸 2的缸高相同时, 可以通过调整插入高压缸 12与低压缸 2 中的曲轴 9的上偏心部和下偏心部的偏心量的比值, 通过使下偏心部的偏心量小上偏 心部的偏心量来实现容积比 的值在 0.8至 0.9之间。 在高压缸 12与低压缸 2各自的气缸高度与气缸内径比值范围均在 0.4至 0.55之间, 且曲轴上偏心部和下偏心部的偏心量与相应的气缸内径的比值范围在 0.1至 0.2之间的 前提下, 则可以通过同时调整高压缸 12和低压缸 2 的内径和高度, 以及调节曲轴 9 的上、 下偏心部的偏心量来实现容积比 的值在 0.8至 0.9之间。 在第一实施例中进一步优选地, 中压腔的容积 V 与低压腔的容积 V ί6比值 R2大 于 1。 此时补气流体脉动较小, 最大相对补气量和能效比均较大。 如图 22所示的最大 相对补气量随 R2的变化曲线,最大相对补气量随 R2增大而增大, 当 R2等于 1时最大 相对补气量达到较大值, 当 R2大于 1时其最大相对补气量较大。 如图 23所示的能效 比随容积比 R2的变化曲线, 能效比随容积比 R2的增大而增大, 当 R2大于 1时, 能效 比接近最大。 以下对本发明的另外两个实施例的结构进行描述, 对于与第一实施例的压缩机相 同或相近的结构或参数取值范围等不再详细说明。 第二实施例 如图 24所示,第二实施例的压缩机为中压腔在低压压缩组件和高压压缩组件之间 的两级增焓压缩机,其主要包括分液器 201、低压缸 202、中间缸 203、增焓管 204、 泵 体隔板 205、 高压缸 206、上法兰 207和下法兰 208等等。第二实施例的压缩机由于中 压腔设置在低压腔上部, 压缩机整机的中压冷媒直接向上流动至高压压缩组件。 第二实施例中, 分液器 201通过吸气管与低压缸 202相连接, 低压缸 202由螺钉 固定在下法兰 208上, 中间缸 203通过螺钉固定在低压缸 202上, 中间缸 203的上侧 包括凹腔, 泵体隔板 205盖设在中间缸 203的凹腔上方形成中压腔, 增焓管 204与中 间缸 203内的中压腔相连通。泵体隔板 205通过螺钉固定在中间缸 203上,高压缸 206 通过螺钉与上法兰 207固定, 同时与泵体隔板 205相连, 上法兰 207焊接在壳体组件 上。 从空调系统回流的低压冷媒气体通过分液器 201流入低压缸 202上的低压缸吸气 口, 由低压压缩组件压缩后形成第一中压冷媒, 第一中压冷媒通过低压缸 202上的低 压缸排气口和中间缸 203上的中间缸排气口流入中间缸 203与泵体隔板 205共同形成 的中压腔, 用于补气增焓的第二中压冷媒流经增焓管 204后通过中间缸 203上的中间 缸吸气口也流入中间缸 203内, 与流入中压腔的第一中压冷媒混合后形成混合中压冷 媒, 混合中压冷媒通过泵体隔板 205上的泵体隔板中压气体流道流入高压缸 206的高 压缸吸气口, 经过高压压缩组件压缩后形成的高压冷媒通过高压缸 206上的高压缸排 气口和上法兰 207的上法兰排气口排入壳体组件与上法兰 207围成的上部空腔中, 最 后通过压缩机排气管流入空调系统, 再通过空调系统的蒸发后流回压缩机, 从而完成 一次循环。 根据以上描述可知, 在第二实施例中低压腔排气流道由低压缸 202上的低压缸排 气口和中间缸 203上的中间缸排气口组成。 在第二实施例中, 中压气体流道分为二个流道段, 分别为: 低压腔排气流道侧的 泵体隔板 205上的泵体隔板中压气体流道和高压腔吸气流道侧的位于高压缸 206上的 高压缸吸入口。 高压腔排气流道则由高压缸 206上的高压缸排气口和上法兰组件 207的上法兰排 气口组成。 以上描述的第二实施例的压缩机, 与第一实施例相比, 没有中间流道段。 经实验 验证, 第二实施例中, 低压腔排气流道侧流道段的最小横截面积与高压腔吸气流道侧 流道段的最小横截面积比 H也在 1.4至 4之间较为适宜。 其它各参数 R2以 及低压腔排气流道面积与高压腔排气流道面积比值等的取值范围和效果与第一实施例 压缩机相近,第一实施例压缩机的容积比 的各实现方式等同样地适用于以上第二实 施例的压缩机, 因此不再重复描述。 第三实施例 如图 25所示,第三实施例的压缩机通过增加外置的密闭中间箱体形成中压腔外置 结构的两级增焓压缩机。 第三实施例的压缩机主要包括电机、 低压压缩组件、 中间箱 体 304、 高压压缩组件、 壳体组件、 分液器 301等等。 分液器 301通过吸气管与低压缸 302相连接,低压缸 302由螺钉固定在下法兰 303 上, 中间箱体 304通过焊接固定在壳体组件 309上, 中间箱体 304通过第一排气管与 低压缸 302上的低压缸排气口相通, 通过第二排气管与高压缸 307上的高压缸吸气口 连通, 增焓管 305与中间箱体 304相连, 泵体隔板 306放置在低压缸 302上侧, 高压 缸 307通过螺钉与上法兰 308固定, 同时与泵体隔板 306相连, 上法兰 308焊接在壳 体组件 309上。 从空调系统回流的低压冷媒通过分液器 301流入低压缸 302上的低压缸吸气口, 由低压压缩组件压缩后形成第一中压冷媒, 第一中压冷媒通过低压缸 302上的低压缸 排气口和第一排气管进入中间箱体 304内部的中压腔。 用于补气增焓的第二中压冷媒 流经增焓管 305后进入中间箱体 304内部的中压腔, 在中压腔内与第一中压冷媒混合 后形成混合中压冷媒,混合中压冷媒通过第二排气管流入高压缸 307的高压缸吸气口, 经过高压压缩组件压缩后形成的高压冷媒通过高压缸 307上的高压缸排气口和上法兰 308上的上法兰排气口排入壳体组件 309与上法兰组件 308围成的上部空间中, 最后 通过压缩机排气管流入空调系统, 再通过空调系统的蒸发后流回压缩机, 完成一次循 环。 根据以上描述可知, 在第三实施例中低压腔排气流道为低压缸 302上的低压缸排 气口。 在第三实施例中, 中压气体流道分为三个流道段, 分别为: 低压腔排气流道侧流 道段的第一排气管、 中间流道段的第二排气管与高压吸气流道侧流道段的位于高压缸 307上的斜切的高压腔吸入口。 高压腔排气流道则由高压缸 307上的高压缸排气口和上法兰组件 308的上法兰排 气口组成。 以上第三实施例的压缩机的各参数 H、 ¾、 H2、 H3、 Ri、 R2以及低压腔排气流道 面积与高压腔排气流道面积比值等的取值范围和效果同样与第一实施例压缩机相近, 第一实施例压缩机的容积比 的各实现方式也适用于以上第三实施例的压缩机,因此 不再重复描述。 从以上的描述中可以看出, 本发明上述的实施例实现了如下技术效果: 由于合理 地设置了中压气体流道, 对低压腔排气流道侧流道段的最小横截面积与高压腔吸气流 道侧流道段的最小横截面积比 H设定了较佳的范围, 冷媒的压力脉动和流速脉动都相 对较小, 可以提高第一级排气和第二级吸气饱满度, 提高补气量, 从而提高压缩机能 效, 降低能耗。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种压缩机, 包括:
低压压缩组件, 具有低压腔, 所述低压压缩组件吸入并压缩气体形成第一 有压气体;
中压腔;
低压腔排气流道, 将所述第一有压气体从所述低压压缩组件排入所述中压 腔内;
增焓组件, 向所述中压腔内输送第二有压气体, 所述第二有压气体与所述 第一有压气体在所述中压腔内混合形成混合有压气体;
高压压缩组件, 包括高压腔, 所述高压压缩组件吸入并压缩所述混合有压 气体形成第三有压气体;
中压气体流道, 将所述混合有压气体从所述中压腔输送至所述高压压缩组 件;
高压腔排气流道, 将所述第三有压气体从所述高压压缩组件排出; 其特征在于, 所述中压气体流道包括低压腔排气流道侧流道段和高压腔吸 气流道侧流道段, 其中, 所述低压腔排气流道侧流道段的最小横截面积与所述 高压腔吸气流道侧流道段的最小横截面积比在 1.4至 4之间。
2. 根据权利要求 1所述的压缩机, 其特征在于, 所述中压气体流道还包括中间流 道段, 所述中间流道段位于所述低压腔排气流道侧流道段和所述高压腔吸气流 道侧流道段之间, 其中, 所述低压腔排气流道侧流道段的最小横截面积与所述 中间流道段的最小横截面积比 H2在 1.2至 2之间, 且所述中间流道段的最小横 截面积与所述高压腔吸气流道侧流道段的最小横截面积比 H3在 1.2至 2之间。
3. 根据权利要求 1或 2所述的压缩机, 其特征在于, 所述低压腔排气流道面积与 所述高压腔排气流道面积比值为 1.2。
4. 根据权利要求 1或 2所述的压缩机, 其特征在于, 所述中压气体流道的最小横 截面积 H Ψ与所述低压腔排气流道的最小横截面积 Η <6的比值 ¾大于 1.2。
5. 根据权利要求 1或 2所述的压缩机, 其特征在于, 所述高压腔的容积 V 与所 述低压腔的容积 V <6的比值 在 0.8至 0.9之间。
6. 根据权利要求 5所述的压缩机, 其特征在于,
所述压缩机包括曲轴 (9), 所述曲轴 (9) 具有第一偏心部和第二偏心部; 所述低压压缩组件包括低压缸 (2) 和在所述低压缸 (2) 内的设置于所述 第一偏心部上的低压滚子 (10), 所述低压缸 (2) 和所述低压滚子 (10) 之间 形成所述低压腔;
所述高压压缩组件包括高压缸 (12) 和在所述高压缸 (12) 内的设置于所 述第二偏心部上的高压滚子(13 ), 所述高压缸(12)和所述高压滚子(13 )之 间形成所述高压腔。
7. 根据权利要求 6所述的压缩机, 其特征在于, 所述第一偏心部与所述第二偏心部的偏心量相同;
所述高压缸 (12) 的高度小于所述低压缸 (2) 的高度。
8. 根据权利要求 6所述的压缩机, 其特征在于, 所述第一偏心部的偏心量小于所述第二偏心部的偏心量;
所述高压缸 (12) 的高度和所述低压缸 (2) 的高度相同。
9. 根据权利要求 6所述的压缩机, 其特征在于,
所述低压缸 (2) 的气缸高度与气缸内径的比值范围在 0.4至 0.55之间; 所述高压缸 (12) 的气缸高度与气缸内径比值范围在 0.4至 0.55内之间; 所述第一偏心部的偏心量与所述低压缸 (2 ) 的气缸内径的比值范围在 0.1-0.2内;
所述第二偏心部的偏心量与所述高压缸 (12) 的气缸内径的比值范围在 0.1-0.2内。
10. 根据权利要求 1或 2所述的压缩机, 其特征在于, 所述中压腔的容积 V中与所 述低压腔的容积 V i6的比值 R2大于 1。
11. 根据权利要求 1或 2所述的压缩机, 其特征在于, 所述压缩机还包括: 下法兰(3 ), 设置于所述低压压缩组件下方, 所述下法兰(3 ) 的下侧包括 下法兰凹腔;
下盖板 (4), 设置于所述下法兰 (3 ) 的下方且盖设在所述下法兰凹腔上, 与所述下法兰 (3 ) 共同形成所述中压腔。
12. 根据权利要求 1所述的压缩机, 其特征在于, 所述压缩机还包括:
中间缸 (203 ), 设置于所述低压压缩组件和所述高压压缩组件之间, 所述 中间缸 (203 ) 朝向所述高压压缩组件的一侧包括中间缸凹腔;
泵体隔板(204), 设置于所述高压压缩组件和所述中间缸(203 )之间且盖 设于所述中间缸凹腔上, 与所述中间缸 (203 ) 共同形成所述中压腔。
13. 根据权利要求 1或 2所述的压缩机, 其特征在于, 所述压缩机还包括:
壳体组件 (309), 容纳所述低压压缩组件和所述高压压缩组件; 中间箱体(304), 设置于所述壳体组件(309)外部, 所述中间箱体(304) 的内部空间形成所述中压腔。
14. 一种空调系统, 包括压缩机, 其特征在于, 所述压缩机为根据权利要求 1至 13 中任一项所述的压缩机。
15. 一种热泵热水器系统, 包括压缩机, 其特征在于, 所述压缩机为根据权利要求 1至 13中任一项所述的压缩机。
PCT/CN2012/086194 2012-04-10 2012-12-07 压缩机、具有该压缩机的空调系统以及热泵热水器系统 WO2013152599A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/391,384 US10041482B2 (en) 2012-04-10 2012-12-07 Compressor, air conditioner system comprising the compressor and heat pump water heater system
EP12874116.2A EP2837828B1 (en) 2012-04-10 2012-12-07 Compressor, air conditioner system comprising the compressor and heat pump water heater system
CA2870096A CA2870096C (en) 2012-04-10 2012-12-07 Compressor, air conditioner system comprising the compressor and heat pump water heater system
AU2012376626A AU2012376626B2 (en) 2012-04-10 2012-12-07 Compressor, air conditioner system comprising the compressor and heat pump water heater system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210104581.4A CN103362807B (zh) 2012-04-10 2012-04-10 压缩机、具有该压缩机的空调系统以及热泵热水器系统
CN201210104581.4 2012-04-10

Publications (1)

Publication Number Publication Date
WO2013152599A1 true WO2013152599A1 (zh) 2013-10-17

Family

ID=49327047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086194 WO2013152599A1 (zh) 2012-04-10 2012-12-07 压缩机、具有该压缩机的空调系统以及热泵热水器系统

Country Status (6)

Country Link
US (1) US10041482B2 (zh)
EP (1) EP2837828B1 (zh)
CN (1) CN103362807B (zh)
AU (1) AU2012376626B2 (zh)
CA (1) CA2870096C (zh)
WO (1) WO2013152599A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210041151A1 (en) * 2017-12-19 2021-02-11 Green Refrigeration Equipment Engineering Research Center Of Zhuhai Gree Co., Ltd. Air-conditioning system and air conditioner having same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177741B2 (ja) * 2014-08-22 2017-08-09 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置
CN104295501B (zh) * 2014-09-19 2016-08-24 珠海格力电器股份有限公司 一种压缩机排气结构、螺杆压缩机及空调机组
US10458408B2 (en) 2014-12-19 2019-10-29 Fujitsu General Limited Rotary compressor having communication path hole overlap with discharge chamber concave portion
CN105782051A (zh) * 2014-12-24 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 压缩机
CN105508246B (zh) * 2016-01-13 2017-06-06 珠海格力节能环保制冷技术研究中心有限公司 一种滚动转子式双级压缩机
CN105570132A (zh) * 2016-03-10 2016-05-11 广东美芝制冷设备有限公司 压缩机
JP7044463B2 (ja) 2016-11-14 2022-03-30 株式会社富士通ゼネラル ロータリ圧縮機
CN106762642A (zh) * 2016-12-05 2017-05-31 广东美芝制冷设备有限公司 旋转压缩机
US10429297B2 (en) 2017-01-26 2019-10-01 Acumentor Llc Monitoring opacity of smoke exhausted by wood stove and controlling wood stove based on same
CN107366621B (zh) * 2017-07-13 2021-06-08 清华大学 带有三级补气的滚动转子压缩机及空调系统
CN108087238B (zh) * 2017-11-03 2024-04-02 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调系统
CN109958622B (zh) * 2017-12-25 2021-06-08 上海海立电器有限公司 一种滚动转子式压缩机
CN108050065B (zh) * 2018-01-15 2023-10-24 广东美芝制冷设备有限公司 压缩机和具有其的空调器
CN108730181B (zh) * 2018-05-18 2020-06-19 珠海凌达压缩机有限公司 泵体结构及具有其的压缩机
CN109236649B (zh) * 2018-08-01 2020-03-10 珠海格力电器股份有限公司 一种转子式压缩机
CN109026697A (zh) * 2018-08-03 2018-12-18 天津商业大学 三缸双级滑槽平行布置的滚动转子压缩机
CN109026717A (zh) * 2018-08-28 2018-12-18 珠海凌达压缩机有限公司 一种补气通道组件及旋转式压缩机
CA3110456A1 (en) * 2018-09-03 2020-03-12 Enersize Oy A method for analyzing energy used for producing a unit of mass or volume of compressed gas (specific energy consumption)
CN109098972A (zh) * 2018-11-07 2018-12-28 珠海格力节能环保制冷技术研究中心有限公司 转子压缩机及空调器
CN109915375A (zh) * 2019-04-17 2019-06-21 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及压缩机
CN112228338A (zh) * 2019-07-15 2021-01-15 艾默生环境优化技术(苏州)有限公司 压缩机构和压缩机
CN112576514B (zh) * 2020-11-30 2022-09-16 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、压缩机以及具有其的空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054975A (ja) * 1998-08-07 2000-02-22 Daikin Ind Ltd 2段圧縮機
JP2006177595A (ja) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc 空気調和機
CN101835987A (zh) * 2007-11-09 2010-09-15 Lg电子株式会社 两级旋转式压缩机
CN201963552U (zh) * 2011-03-23 2011-09-07 珠海格力节能环保制冷技术研究中心有限公司 旋转压缩机
CN102374166A (zh) * 2010-08-23 2012-03-14 珠海格力节能环保制冷技术研究中心有限公司 带有沉头槽的泵体及具有该泵体的双转子两级增焓压缩机
CN202560563U (zh) * 2012-04-10 2012-11-28 珠海格力节能环保制冷技术研究中心有限公司 压缩机、具有该压缩机的空调系统以及热泵热水器系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699724B2 (ja) * 1991-11-12 1998-01-19 松下電器産業株式会社 2段気体圧縮機
JP2005220752A (ja) * 2004-02-03 2005-08-18 Sanyo Electric Co Ltd 圧縮機
JP2008002364A (ja) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd 多気筒圧縮機
JP4877054B2 (ja) * 2007-04-27 2012-02-15 株式会社富士通ゼネラル ロータリ圧縮機
US8485789B2 (en) * 2007-05-18 2013-07-16 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor system and method
US8459053B2 (en) * 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
CN102042227B (zh) * 2009-10-13 2014-04-16 珠海格力电器股份有限公司 双转子两级增焓压缩机、空调器及热泵热水器
CN202082104U (zh) * 2011-05-11 2011-12-21 珠海格力节能环保制冷技术研究中心有限公司 一种双转子两级增焓压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054975A (ja) * 1998-08-07 2000-02-22 Daikin Ind Ltd 2段圧縮機
JP2006177595A (ja) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc 空気調和機
CN101835987A (zh) * 2007-11-09 2010-09-15 Lg电子株式会社 两级旋转式压缩机
CN102374166A (zh) * 2010-08-23 2012-03-14 珠海格力节能环保制冷技术研究中心有限公司 带有沉头槽的泵体及具有该泵体的双转子两级增焓压缩机
CN201963552U (zh) * 2011-03-23 2011-09-07 珠海格力节能环保制冷技术研究中心有限公司 旋转压缩机
CN202560563U (zh) * 2012-04-10 2012-11-28 珠海格力节能环保制冷技术研究中心有限公司 压缩机、具有该压缩机的空调系统以及热泵热水器系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2837828A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210041151A1 (en) * 2017-12-19 2021-02-11 Green Refrigeration Equipment Engineering Research Center Of Zhuhai Gree Co., Ltd. Air-conditioning system and air conditioner having same

Also Published As

Publication number Publication date
EP2837828B1 (en) 2017-08-30
CA2870096A1 (en) 2013-10-17
CN103362807A (zh) 2013-10-23
AU2012376626A1 (en) 2014-10-23
US20150078928A1 (en) 2015-03-19
AU2012376626B2 (en) 2016-03-31
CA2870096C (en) 2017-11-28
CN103362807B (zh) 2016-06-08
EP2837828A1 (en) 2015-02-18
EP2837828A4 (en) 2015-11-11
US10041482B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2013152599A1 (zh) 压缩机、具有该压缩机的空调系统以及热泵热水器系统
WO2017219669A1 (zh) 泵体组件及具有其的压缩机
CN104251207B (zh) 双级增焓转子压缩机及具有其的空调器、热泵热水器
CN203272136U (zh) 单缸多级压缩机
CN105443384B (zh) 压缩机及其控制方法和空调器
CN105673510A (zh) 一种带中间补气结构的单缸滚动转子压缩机
JP2017150466A (ja) 高圧圧縮機及びそれを備えた冷凍サイクル装置
JP2016513766A (ja) ロータリ圧縮機及びその圧縮装置、エアコン
CN202560563U (zh) 压缩机、具有该压缩机的空调系统以及热泵热水器系统
CN202900660U (zh) 双转子两级增焓压缩机、空调器和热泵热水器
CN103807175B (zh) 双转子两级增焓压缩机、空调器和热泵热水器
CN203962390U (zh) 一种旋转式双级压缩机及具有其的空调器和热泵热水器
CN105443385B (zh) 双级增焓压缩机及空调器
CN102444583B (zh) 双转子压缩机
CN104214100B (zh) 压缩机及具有其的空调器
CN203285687U (zh) 压缩机及具有其的空调器
CN210033831U (zh) 泵体组件及压缩机
CN205207179U (zh) 压缩机和空调器
CN203822586U (zh) 压缩机
CN104047857A (zh) 一种双转子两级增焓压缩机
CN103147986B (zh) 双级增焓压缩机及具有其的空调器和热泵热水器
CN104110377B (zh) 一种双级增焓旋转式压缩机及空调器、热泵热水器
CN112360738B (zh) 变容压缩机及空调器
JP5595324B2 (ja) 圧縮機
CN103967792A (zh) 转子式压缩机及具有其的空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14391384

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2870096

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012874116

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012874116

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012376626

Country of ref document: AU

Date of ref document: 20121207

Kind code of ref document: A