WO2013152571A1 - 智能脉冲温控充电器 - Google Patents

智能脉冲温控充电器 Download PDF

Info

Publication number
WO2013152571A1
WO2013152571A1 PCT/CN2012/081273 CN2012081273W WO2013152571A1 WO 2013152571 A1 WO2013152571 A1 WO 2013152571A1 CN 2012081273 W CN2012081273 W CN 2012081273W WO 2013152571 A1 WO2013152571 A1 WO 2013152571A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
voltage
circuit
diode
charging
Prior art date
Application number
PCT/CN2012/081273
Other languages
English (en)
French (fr)
Inventor
李梦全
Original Assignee
杭州创美实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州创美实业有限公司 filed Critical 杭州创美实业有限公司
Priority to US13/985,573 priority Critical patent/US9270129B2/en
Publication of WO2013152571A1 publication Critical patent/WO2013152571A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D49/00Tractors
    • B62D49/06Tractors adapted for multi-purpose use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G11/00Arrangements of electric cables or lines between relatively-movable parts
    • H02G11/02Arrangements of electric cables or lines between relatively-movable parts using take-up reel or drum
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery charger, and in particular to a supplementary charging for use of an electric bicycle lead-acid battery. Background technique
  • the existing electric vehicle lead-acid battery chargers are mostly three-stage charging modes of constant current, constant voltage and constant voltage charging.
  • the output is DC, and the battery will be polarized during charging, and the charging voltage value and current are second. Values are given at 25 ° C. Due to the large charge of lead-acid batteries, the temperature will be greatly affected, so it will be overcharged in summer and insufficiently charged in winter. Overcharge and undercharge will cause water loss and sulphation of lead-acid batteries.
  • the object of the present invention is to overcome the deficiencies in the above background art, using a temperature sensor, and using a single-chip program control, with pulse current charging, can eliminate the polarization generated during battery charging, charging voltage and current can be based on ambient temperature auto-adjust.
  • the intelligent pulse temperature control charger is composed of a casing and a charging circuit.
  • the charging circuit is composed of a high voltage switching power supply circuit and a low voltage control circuit, and is characterized in that the low voltage control circuit is controlled by a single chip microcomputer, and the three terminals of the single chip microcomputer are The input terminal is connected to a temperature sampling circuit, a charging voltage sampling circuit of the battery DC, and a charging current sampling circuit; the two pins of the single chip are used as an output terminal, and one of the pins is connected to the high voltage switching power supply through the photocoupler, and One pin is connected in turn to the two-color LED and the cooling fan.
  • the single-chip microcomputer in the low-voltage control circuit has three pins as input terminals:
  • the voltage regulator integrated block is connected to the temperature sensitive diode D10, the diodes Dl l and D12 connected in series via the resistor R19, and is grounded through the negative pole of the diode D12, and the node of the resistor R19 and the temperature sensitive diode D10 is connected to the fifth pin of the single chip microcomputer. Temperature sampling circuit
  • the negative pole of the battery DC is connected to the connector of the resistors R15 and R16, the other end of the resistor R15 is grounded, and the other end of the resistor R16 is connected to the capacitor C14 and the sixth pin of the single chip microcomputer as the charging current sampling circuit;
  • the positive pole of the battery DC is connected to the positive terminal of the diode D9 and the contact of the contact of the relay K,
  • the negative pole of diode D9 is connected to the coil of relay K and one end of resistor R17.
  • the other end of resistor R17 is grounded via resistor R18.
  • the resistor R18 is connected in parallel with capacitor C12 as the voltage dividing filter circuit.
  • the voltage dividing point of resistors R18 and R17 is connected to the 7th pin of the microcontroller.
  • the other end of the contact of relay K is connected to the negative pole of diode D7, the anode of diode D7 is connected to terminal 5 of the secondary coil of the high-frequency transformer, and the terminal of terminal 6 of the secondary coil is grounded.
  • the single-chip microcomputer in the low-voltage control circuit has two pins as output terminals:
  • the second pin of the single chip microcomputer is grounded via a resistor R13, a light-emitting tube of the photocoupler PC, and an indicating light-emitting tube VL1 to control the high-voltage switching power supply;
  • the third leg of the MCU is connected to the base of the transistor VT2 via the resistor R25, the collector of the VT2 is connected to the connection point of the resistors R23, R26 and R27, the other end of the R26 is connected to the red light of the two-color LED VL2, and the other end of the R27 is connected to the triode VT3.
  • the base of the VT3 is connected to the base of the VT4.
  • the collector of the VT3 is connected to the green light of the two-color LED VL2 and one end of the resistor R24.
  • the emitter of the VT4 is grounded, and the collector of the VT4 is connected to the negative end of the cooling fan FS.
  • the positive end of the fan is connected to the positive terminal of the capacitor C13 via the resistor R14 and the negative terminal of the diode D8.
  • the anode of the diode D8 is connected to the terminal 7 of the secondary coil of the high-frequency transformer, and the terminal 8 of the secondary coil is grounded.
  • the battery DC is connected to the connector, and the positive electrode of the battery DC is divided by the diode D9, the coil of the relay K, the resistors R20 and R21, the capacitors C15 and C16 are filtered, the voltage regulator is integrated, and the resistor R22 is used. After trimming, the voltage of 5.12V is output, and then filtered by capacitors C17 and C18, and then supplied to the MCU for working power.
  • the collector of the phototransistor of the photocoupler PC is connected to the node of the resistors R5 and R6, and the other end of the resistor R5 is divided into two paths, and the first coil of the high-frequency transformer is connected via a resistor R1.
  • Terminal #1 the other terminal is connected to the No. 3 terminal of the primary coil of the high-frequency transformer via resistor R11 and diode D6, and the other end of the resistor R6 is connected to pin 2 of the integrated circuit.
  • the working principle of the invention is: The temperature is detected by the single-chip microcomputer through the temperature sensor 2 (the temperature sensor adopts the temperature-sensitive diode D10), the current voltage and current should be automatically calculated, and the output of the switching power supply is controlled by the photocoupler. The number of pulses per second for a certain duty cycle to control the voltage and current of the charge.
  • the beneficial effects of the present invention are:
  • the present invention has five characteristics compared with the existing lead-acid battery charger:
  • Pulse charging is beneficial to eliminate the polarization generated during charging; 2. Automatically adjust the charging voltage and current according to the ambient temperature, so that the lead-acid battery is not overheated, and it is not charged in cold weather; 3. It has the function of filling the time, lead Acid storage When the battery reaches the green light, it needs to be recharged for 2-3 hours (the existing charger has no timekeeping function); 4. Five-stage charging mode; 5. Anti-battery polarity reverse connection protection function.
  • 1 is a schematic block diagram of the present invention.
  • FIG. 1 Figure 2 is a circuit schematic of the present invention. detailed description
  • the intelligent pulse temperature control charger of the present invention is composed of a casing and a charging circuit. To make the drawing clean and tidy, the housing is omitted.
  • the charging circuit includes a high voltage switching power supply circuit 1 and a low voltage control circuit 3.
  • the plug PL is connected to the 220V AC power supply, and the two power lines of the plug respectively pass through the fuse F and the negative temperature coefficient thermistor RT, and the capacitors Cl are connected between the two power lines,
  • the root power lines are respectively input through the choke coil L bridge rectifier circuit (composed of diodes D1, D2, D3, D4).
  • the positive and negative output terminals of the bridge rectifier circuit are connected to the filter capacitor C2, and the positive terminal of the filter capacitor C2 is connected to the R R2 , R3 and one end of the capacitor C3 and the first terminal of the high frequency transformer T (ie the high voltage side) Resistor R2 and capacitor C3 are connected in parallel with the cathode of diode D5. Resistor R3 is connected in series with capacitor C4. The anode of diode D5 and the other end of capacitor C4 are connected to terminal No. 2 of the primary coil of the high-frequency transformer and the drain of FET VT1. (ie, D pole in Figure 2), the source of the FET (S pole in the figure)
  • R4 and R8 the other end of the resistor R4 is connected to the common side of the high voltage side, and the other end of the resistor R8 is connected to the capacitor C8 and the third leg of the integrated circuit (pulse width modulation integrated circuit, UC3842 is recommended), the first of the integrated circuit Connect the resistor R7 and the capacitor C7 between the foot and the second leg, the second pin is connected to the resistor R6, the other end of the resistor R6 is connected to the collector of the phototransistor of the photocoupler PC and the resistor R5, and the other end of the resistor R5 is connected to the high voltage side.
  • UC3842 pulse width modulation integrated circuit
  • the power supply (resistor R5 is connected to the resistor R1), the emitter of the phototransistor is connected to the common side of the high voltage side; the 8th pin of the integrated circuit outputs a 5V regulated power supply, the 8th pin is connected to the filter capacitor C9 and the resistor R12, and the other end of the resistor R12 Connect pin 4 of the integrated circuit and capacitor C10, the 5th pin of the integrated circuit is connected to the common side of the high voltage side, the 7th pin of the integrated circuit is connected to the high side power supply, and the 6th pin of the integrated circuit is connected to the gate of the FET through the resistor R9.
  • the pole (G pole in Figure 2) and the resistor R10, the other end of the resistor R10 is connected to the common side of the high voltage side; the terminal 3 of the high frequency transformer is connected to the positive terminal of the capacitor C5 via the diode D6 and the resistor R11, and the capacitor C5 is electrically connected.
  • Capacitor C6, Zener diode DW in parallel, C5 The positive terminal is connected to a 300V high-voltage rectified power supply via a resistor R1 (the bridge rectifier circuit composed of the above diodes D1, D2, D3, and D4 outputs 300V voltage).
  • the above high-frequency transformer is provided with four sets of independent windings (common core), and the terminals of the first winding are respectively the No. 1 and No. 2 terminals (on the high voltage side of the circuit), The terminals of the three windings are terminals No. 5 and No. 6 (at the low voltage side of the circuit); the terminals of the second winding are terminals No. 3 and No. 4 (terminal No. 4 is connected to the common terminal), and the fourth winding The terminals are No. 7 and No. 8 terminals, and a capacitor Cl l is connected between the No. 4 terminal and the No. 8 terminal.
  • PIC12F675 its three pins are used as input terminals, among which the voltage regulator integrated block (three-terminal voltage regulator integrated circuit, recommended 7805) is connected to the series temperature sensitive diode D10, diode Dl l, D12, and diode D12 via resistor R19. Grounding, the resistor R19 and the node of the temperature sensitive diode 10 are connected to the 5th pin of the single-chip microcomputer as the temperature sampling circuit; the negative pole of the battery DC is connected to the resistors R15 and R16 via the connector SK, and the other end of the resistor R15 is grounded, and the other end of the resistor R16 is connected.
  • the voltage regulator integrated block three-terminal voltage regulator integrated circuit, recommended 7805
  • Capacitor C14 and the 6th pin of the MCU (the other end of the capacitor C14 is grounded), the charging current sampling circuit; the positive terminal of the battery DC is connected to the positive terminal of the diode D9 and the end of the contact of the relay K, and the negative terminal of the diode D9 is connected to the relay.
  • the coil of K and the resistor R17, the other end of the resistor R17 is connected to the resistor R18, the resistor R18 is connected in parallel with the capacitor C12, and is connected to the component voltage filter circuit.
  • the voltage dividing point of the resistors R17 and R18 is connected to the seventh pin of the single chip microcomputer, and is used as the charging voltage sampling circuit;
  • the other end of the contact of K is connected to the negative pole of diode D7, and the positive pole of diode D7 is connected to the high frequency transformer.
  • Terminal 5 grounding terminal No. 6 of the high frequency transformer is grounded.
  • the single-chip microcomputer has two pins for output, and the second pin is connected to the light-emitting tube of the photocoupler PC via the resistor R13, and the light-emitting tube of the photocoupler PC is grounded via the indication light-emitting tube VL1
  • the third leg is connected to the base of the triode VT2 via the resistor R25, the collector of the triode VT2 is connected to the connection point of the resistors R23, R26, 27, and the other end of the resistor R26 is connected to the bi-color LED VL2.
  • the other end of the resistor R27 is connected to the base of the transistor VT3, the emitter of the transistor VT3 is connected to the base of the transistor VT4, the collector of the VT3 is connected to the green light of the two-color light-emitting tube VL2 and one end of the resistor R24, and the emitter of the transistor VT4 is grounded.
  • the collector of the transistor VT4 is connected to the negative end of the cooling fan FS.
  • the positive end of the cooling fan passes through the resistor R14, the positive terminal of the capacitor C13 and the negative terminal of the diode D8, and the anode of the diode D8 is connected to the terminal 7 of the high-frequency transformer, 8 The terminal is grounded.
  • the other end of the resistor R24 is connected to the positive terminal of the capacitor C13, and the cooling fan FS is connected in parallel with the diode D13.
  • the working power of the single-chip microcomputer in the low-voltage control circuit is taken from the battery DC (requires supplementary charging after use)
  • the battery still has a certain amount of electricity.
  • the battery DC is connected to the connector, its positive electrode is divided by the coil of the diode D9 and the relay K, and is divided by the resistors R20 and R21, filtered by the capacitors C15 and C16, and then subjected to the voltage regulation.
  • the integrated block voltage regulator and the output voltage regulation value of the resistor R22 are adjusted to 5.12V, and then filtered by the capacitors C17 and C18, and then supplied to the single-chip microcomputer for working power.
  • 220V AC power supply after rectification and filtering, obtains DC voltage of about 300V; one input from the No. 1 terminal of the high-frequency transformer, and the power field effect is applied to the No. 1 terminal and No. 2 terminal of the high-frequency transformer.
  • the drain of the tube; the other end is connected to the positive terminal of the capacitor C5 through the starting resistor R1.
  • the phototransistor When the light-emitting tube in the photocoupler PC is controlled to be turned on, the phototransistor is also turned on, so that the integrated circuit works, the sixth leg of the integrated circuit Output a switching pulse of about 54KHZ to turn on or block the FET VT1.
  • the terminal outputs the high-voltage side working power supply, and the terminals 7 and 8 output the required voltage of the cooling fan FS and the indicator light (ie, the two-color light-emitting tube VL2); when the light-emitting tube in the photocoupler PC is controlled to be turned off,
  • the integrated circuit also turns off the FET VT1.

Abstract

一种智能脉冲温控充电器,由壳体及充电电路组成,该充电电路由高压开关电源电路(1)及低压控制电路(3)组成,该低压控制电路(3)中:采用单片机控制,该单片机的三个引脚作为输入端,分别连接温度采样电路、蓄电池DC的充电电压采样电路、充电电流采样电路;该单片机的两个引脚作输出端,其中一个引脚通过光电耦合器与高压开关电源连接,另一个引脚依次与双色发光管和散热风扇连接。该充电器采用温度传感器以及单片机程序控制,以脉冲电流充电,具有可消除蓄电池充电过程中产生的极化,充电电压和电流能根据环境温度自动调整的特点。

Description

智能脉冲温控充电器
技术领域
[0001 ] 本发明涉及一种蓄电池充电器, 具体涉及一种用于电动自行车铅酸蓄电池 使用后的补充充电。 背景技术
[0002] 现有的电动车铅酸蓄电池充电器, 多为恒流、 恒压、 恒压涓充三阶段充电 模式, 输出都是直流, 充电时蓄电池会产生极化, 其次充电电压值和电流值都是 以 25°C温度条件下给出的。 由于铅酸蓄电池的充电、 受气温的影响很大, 因此夏 季将会过充, 冬季将会充电不足, 过充和欠充会引起铅酸蓄电池的失水和硫酸盐 化。 发明内容
[0003] 本发明的目的是克服上述背景技术中的不足, 采用温度传感器, 并采用单 片机程序控制, 以脉冲电流充电, 可消除蓄电池充电过程中产生的极化, 充电电 压和电流能根据环境温度自动调整。
[0004] 本发明提出以下技术方案:
智能脉冲温控充电器, 由壳体及充电电路组成, 所述充电电路由高压开关电 源电路及低压控制电路组成,其特征在于所述低压控制电路中:采用单片机控制, 该单片机的三个引脚作输入端, 分别连接温度采样电路、 蓄电池 DC 的充电电压采 样电路、 充电电流采样电路; 该单片机的两个引脚作输出端, 其中一个引脚通过 光电耦合器与高压开关电源连接, 另一个引脚依次与双色发光管和散热风扇连接。
[0005] 所述低压控制电路中的单片机, 其三个引脚作输入端:
稳压集成块经电阻 R19 连接相互串联的温敏二极管 D10、 二极管 Dl l、 D12, 并 通过所述二极管 D12 的负极接地, 电阻 R19 和温敏二极管 D10 的节点接单片机的 第 5 脚, 作为所述温度采样电路;
蓄电池 DC 的负极经接插件 SK接电阻 R15、 R16 的一端, 电阻 R15 的另一端接 地, 电阻 R16 的另一端接电容 C14 和单片机的第 6 脚, 作为所述充电电流采样电 路;
蓄电池 DC 的正极经接插件 SK 接二极管 D9 的正极和继电器 K 的触点的一端, 二极管 D9的负极接继电器 K 的线圈和电阻 R17 的一端, 电阻 R17 的另一端经电阻 R18 接地, 电阻 R18并联电容 C12 作为分压滤波电路, 电阻 R18、 R17 的分压点接 单片机的第 7 脚, 作为所述充电电压采样电路;
继电器 K 的触点的另一端接二极管 D7 的负极, 二极管 D7 的正极接高频变压 器的次级线圈的 5 号接线端, 次级线圈的 6 号接线端接地。
[0006] 所述低压控制电路中的单片机, 有二个引脚作输出端:
单片机的第 2 脚经电阻 R13、 光电耦合器 PC 的发光管、 指示发光管 VL1 接地 以控制高压开关电源;
单片机的第 3 脚经电阻 R25 接三极管 VT2 的基极, VT2 的集电极接电阻 R23、 R26、 R27的连接点, R26 的另一端接双色发光管 VL2 的红灯, R27 的另一端接三 极管 VT3 的基极, VT3的发射极接 VT4 的基极, VT3 的集电极接双色发光管 VL2 的 绿灯和电阻 R24 的一端, VT4 的发射极接地, VT4 的集电极接散热风扇 FS 的负端, 散热风扇的正端经电阻 R14 接电容 C13 的正端和二极管 D8 的负极, 二极管 D8 的 正极接高频变压器的次级线圈的 7 号接线端, 次级线圈的 8 号接线端接地。
所述的低压控制电路中, 蓄电池 DC 与接插件连接, 蓄电池 DC 的正极经二极 管 D9、 继电器 K 的线圈、 电阻 R20、 R21 分压、 电容 C15、 C16 滤波、 稳压集成块 稳压、 电阻 R22 微调后输出 5. 12V 电压, 再经电容 C17、 C18 滤波后, 供给单片机 作工作电源。
[0007] 所述高压开关电源电路中, 光电耦合器 PC 的光电三极管的集电极, 接电阻 R5 和 R6的节点, 电阻 R5 的另一端分两路, 一路经电阻 R1 接高频变压器的初级线 圈的 1 号接线端, 另一路经电阻 R11 和二极管 D6 接高频变压器的初级线圈的 3 号 接线端, 电阻 R6 的另一端接集成电路的第 2 脚。
[0008] 本发明的工作原理是: 由单片机通过温度传感器 2 检测环境温度 (温度传 感器采用温敏二极管 D10 ) , 自动计算出当前应充的电压和电流, 并通过光电耦合 器, 控制开关电源输出的一定占空比的每秒钟脉冲个数, 来控制充电的电压和电 流。
[0009] 本发明的有益效果是: 本发明与现有的铅酸蓄电池充电器相比, 具有五个 特点:
1、 脉冲充电, 有利于消除充电时产生的极化; 2 、 根据环境温度自动调整充电电 压和电流, 使铅酸蓄电池热天不过充, 冷天不欠充; 3、 有涓充报时功能, 铅酸蓄 电池达到涓充绿灯亮时, 还需再充 2-3 小时 (而现有的充电器无报时功能) ; 4、 五阶段充电模式; 5、 防电池极性反接保护功能。 附图说明
[0010] 图 1 是本发明的原理框图。
[001 1 ] 图 2 是本发明的电路原理图。 具体实施方式
[001 2] 以下结合说明书附图, 对本发明作进一步说明。
[001 3] 如图 1、 图 2 所示, 本发明所述的智能脉冲温控充电器, 由壳体以及充电电 路组成, 为使图面整洁, 图中壳体省略不画。
[0014] 所述充电电路包括高压开关电源电路 1 及低压控制电路 3。
[001 5] 在高压开关电源电路中, 插头 PL 接 220V 交流电源, 插头的二根电源线分 别经过熔断器 F和负温度系数热敏电阻 RT, 二根电源线之间连接有电容 Cl, 二根 电源线分别经扼流线圈 L 接桥式整流电路 (由二极管 Dl、 D2、 D3、 D4 组成) 的输 入端。桥式整流电路的正、负输出端接滤波电容 C2,滤波电容 C2 的正端接电阻 R R2、 R3 和电容 C3 的一端以及高频变压器 T 的初级线圈 (即高压侧) 的 1 号接线 端, 电阻 R2 和电容 C3 并联后接二极管 D5 的负极, 电阻 R3 串联电容 C4, 二极管 D5 的正极和电容 C4 的另一端接高频变压器的初级线圈的 2号接线端和场效应管 VT1 的漏极 (即图 2 中的 D 极) , 场效应管的源极 (图中的 S 极) 接电阻
R4、 R8 的一端, 电阻 R4 的另一端接高压侧的公共端, 电阻 R8 的另一端接电容 C8 和集成电路(脉宽调制集成电路, 推荐采用 UC3842 )的第 3 脚, 集成电路的第 1 脚 和第 2 脚间并联接电阻 R7 和电容 C7, 第 2 脚又接电阻 R6, 电阻 R6 的另一端接光 电耦合器 PC 的光电三极管的集电极和电阻 R5, 电阻 R5 的另一端接高压侧电源(电 阻 R5 与电阻 R1 连接) , 光电三极管的发射极接高压侧的公共端; 集成电路的第 8 脚输出 5V稳压电源, 第 8 脚接滤波电容 C9 和电阻 R12, 电阻 R12 的另一端接集成 电路的第 4 脚和电容 C10, 集成电路的第 5 脚接高压侧公共端, 集成电路的第 7 脚 接高压侧工作电源, 集成电路的第 6 脚通过电阻 R9 接场效应管的栅极 (图 2 中的 G 极) 和电阻 R10, 电阻 R10 的另一端接高压侧公共端; 高频变压器的 3 号接线端 经二极管 D6、 电阻 R11 接电容 C5 的正端, 电容 C5 与电容 C6、 稳压管 DW 并联, C5 的正端又经电阻 Rl 接 300V 高压整流电源 (上述二极管 Dl、 D2、 D3、 D4 组成的桥 式整流电路输出 300V 电压) 。
[001 6] 说明: 上述高频变压器设有四组相互独立的绕组 (共铁芯) , 第一绕组的 接线端子分别为所述 1 号、 2 号接线端 (处于电路的高压侧) , 第三绕组的接线 端子分别为 5 号、 6 号接线端 (处于电路的低压侧) ; 第二绕组的接线端子分别 为 3 号、 4 号接线端(4 号接线端连接公共端),第四绕组的接线端子分别为 7 号、 8 号接线端, 4 号接线端和 8 号接线端之间接有电容 Cl l。
[001 7] 上述结构与常规充电器类似。
[001 8] 所述低压控制电路中: 采用单片机作为主控芯片 (单片机推荐采用
PIC12F675 ) , 其三个引脚作输入端, 其中稳压集成块 (三端稳压集成电路, 推荐 采用 7805 ) 经电阻 R19 接串联的温敏二极管 D10、 二极管 Dl l、 D12, 二极管 D12 的 负极接地, 电阻 R19 和温敏二极管 10 的节点接单片机的第 5 脚,作温度采样电路; 蓄电池 DC 的负极经接插件 SK接电阻 R15、 R16, 电阻 R15 的另一端接地, 电阻 R16 的另一端接电容 C14 和单片机的第 6 脚 (电容 C14 另一端接地) , 作充电电流采 样电路; 蓄电池 DC 的正极经接插件 SK接二极管 D9 的正极和继电器 K 的触点的一 端,二极管 D9 的负极接继电器 K 的线圈和电阻 R17, 电阻 R17 的另一端接电阻 R18, 电阻 R18 并联电容 C12, 接成分压滤波电路, 电阻 R17、 R18 的分压点接单片机的 第 7脚, 作充电电压采样电路; 继电器 K 的触点的另一端接二极管 D7 的负极, 二 极管 D7 的正极接高频变压器的 5 号接线端, 高频变压器的 6 号接线端接地。
[001 9] 所述低压控制电路中: 单片机有二个引脚作输出, 其第 2 脚经电阻 R13 与 光电耦合器 PC 的发光管连接, 光电耦合器 PC 的发光管经指示发光管 VL1 接地, 作控制高压开关电源的用途; 其第 3 脚经电阻 R25 接三极管 VT2 的基极, 三极管 VT2 的集电极接电阻 R23、 R26、 27 的连接点, 电阻 R26 的另一端接双色发光管 VL2 的红灯, 电阻 R27 的另一端接三极管 VT3的基极,三极管 VT3 的发射极接三极管 VT4 的基极, VT3 的集电极接双色发光管 VL2 的绿灯和电阻 R24 的一端,三极管 VT4 的 发射极接地, 三极管 VT4 的集电极接散热风扇 FS 的负端, 散热风扇的正端经电阻 R14, 接电容 C13 的正端和二极管 D8 的负极, 二极管 D8 的正极接高频变压器的 7 号接线端, 8 号接线端接地。 所述电阻 R24 的另一端与所述电容 C13 的正端连接, 散热风扇 FS 并联有二极管 D13。
[0020] 所述的低压控制电路中单片机的工作电源取自蓄电池 DC (使用后需补充充 电的蓄电池还存有一定的电量) ; 蓄电池 DC 经接插件后, 其正极经二极管 D9、 继 电器 K 的线圈, 经电阻 R20、 R21 分压, 经电容 C15、 C16 滤波, 再经所述稳压集 成块稳压,以及电阻 R22 微调后输出稳压值为 5. 12V 的电压,再经电容 C17、C18 滤 波后, 供给单片机作工作电源。
[0021 ] 220V 交流电源, 经整流滤波后, 得到约 300V 的直流电压; 一路从高频变 压器的 1号接线端输入, 经高频变压器的 1 号接线端、 2 号接线端加到功率场效应 管的漏极; 另一路通过启动电阻 R1 接电容 C5 的正端, 当光电耦合器 PC 中的发光 管受控导通时, 光电三极管也导通, 使集成电路工作, 集成电路的第 6 脚输出约 54KHZ 的开关脉冲, 使场效应管 VT1 导通或阻断, 通过高频变压器的互感, 得到 正常工作所需的电压: 使 5 号、 6 号接线端输出充电电压, 使 3 号、 4 号接线端 输出高压侧工作电源, 7 号、 8 号接线端输出散热风扇 FS 及指示灯 (即双色发光 管 VL2 ) 所需的电压; 当光电耦合器 PC 中的发光管受控关断时, 集成电路也使场 效应管 VT1 关断。

Claims

权利要求书
1. 智能脉冲温控充电器, 由壳体及充电电路组成, 所述充电电路由高压开关 电源电路 (1 ) 及低压控制电路 (3 ) 组成, 其特征在于所述低压控制电路中: 采 用单片机控制, 该单片机的三个引脚作输入端, 分别连接温度采样电路、 蓄电池 的充电电压采样电路、 充电电流采样电路; 该单片机的两个引脚作输出端, 其中 一个引脚通过光电耦合器与高压开关电源连接, 另一个引脚依次与双色发光管和 散热风扇连接。
2. 根据权利要求 1 所述的智能脉冲温控充电器, 其特征在于: 所述低压控制 电路中的单片机, 其三个引脚作输入端:
稳压集成块经电阻 R19 连接相互串联的温敏二极管 D10、 二极管 Dl l、 D12, 并 通过所述二极管 D12 的负极接地, 电阻 R19 和温敏二极管 D10 的节点接单片机的 第 5 脚, 作为所述温度采样电路;
蓄电池 DC 的负极经接插件 SK接电阻 R15、 R16 的一端, 电阻 R15 的另一端接 地, 电阻 R16 的另一端接电容 C14 和单片机的第 6 脚, 作为所述充电电流采样电 路;
蓄电池的正极经接插件 SK 接二极管 D9 的正极和继电器 K 的触点的一端, 二 极管 D9 的负极接继电器 K 的线圈和电阻 R17 的一端, 电阻 R17 的另一端经电阻 R18 接地, 电阻 R18 并联电容 C12 作为分压滤波电路, 电阻 R18、 R17 的分压点接 单片机的第 7 脚, 作为所述充电电压采样电路;
继电器 K 的触点的另一端接二极管 D7 的负极, 二极管 D7 的正极接高频变压 器 T 的次级线圈的 5 号接线端, 次级线圈的 6 号接线端接地。
3. 根据权利要求 1 或 2 所述的智能脉冲温控充电器, 其特征在于: 所述低压 控制电路中的单片机, 有二个引脚作输出端:
单片机的第 2 脚经电阻 R13、 光电耦合器 PC 的发光管、 指示发光管 VL1 接地 以控制高压开关电源;
单片机的第 3 脚经电阻 R25 接三极管 VT2 的基极, VT2 的集电极接电阻 R23、 R26、 R27的连接点, R26 的另一端接双色发光管 VL2 的红灯, R27 的另一端接三 极管 VT3 的基极, VT3的发射极接 VT4 的基极, VT3 的集电极接双色发光管 VL2 的 绿灯和电阻 R24 的一端, VT4 的发射极接地, VT4 的集电极接散热风扇 FS 的负端, 散热风扇的正端经电阻 R14 接电容 C13 的正端和二极管 D8 的负极, 二极管 D8 的 正极接高频变压器的次级线圈的 7 号接线端, 次级线圈的 8 号接线端接地。
4. 根据权利要求 3 所述的智能脉冲温控充电器, 其特征在于: 所述的低压控 制电路中, 蓄电池与接插件连接, 蓄电池的正极经二极管 D9、 继电器 K 的线圈、 电阻 R20、 R21 分压、 电容 C15、 C16 滤波、 稳压集成块稳压、 电阻 R22 微调后输 出 5. 12V 电压, 再经电容 C17、 C18滤波后, 供给单片机作工作电源。
5. 根据权利要求 3 所述的智能脉冲温控充电器, 其特征在于: 所述高压开关 电源电路中, 光电耦合器 PC 的光电三极管的集电极, 接电阻 R5 和 R6 的节点, 电 阻 R5 的另一端分两路, 一路经电阻 R1 接高频变压器的初级线圈的 1 号接线端, 另一路经电阻 R11 和二极管 D6接高频变压器的初级线圈的 3 号接线端, 电阻 R6 的 另一端接集成电路的第 2 脚。
PCT/CN2012/081273 2012-04-12 2012-09-12 智能脉冲温控充电器 WO2013152571A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/985,573 US9270129B2 (en) 2012-04-12 2012-09-12 Intelligent pulse temperature control charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210107666.8A CN102629773B (zh) 2012-04-12 2012-04-12 智能脉冲温控充电器
CN201210107666.8 2012-04-12

Publications (1)

Publication Number Publication Date
WO2013152571A1 true WO2013152571A1 (zh) 2013-10-17

Family

ID=46587964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081273 WO2013152571A1 (zh) 2012-04-12 2012-09-12 智能脉冲温控充电器

Country Status (3)

Country Link
US (1) US9270129B2 (zh)
CN (1) CN102629773B (zh)
WO (1) WO2013152571A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629773B (zh) * 2012-04-12 2014-04-30 杭州创美实业有限公司 智能脉冲温控充电器
CN103972961A (zh) * 2014-04-28 2014-08-06 安徽速力洁电子科技有限公司 智能化定时电动车充电器
CN104852612A (zh) * 2015-05-26 2015-08-19 中国神华能源股份有限公司 一种基于uc3842的开关电源
CN104953666B (zh) * 2015-06-30 2018-10-23 黄伟聪 一种基于移动电源的供电控制方法
CN105048613B (zh) * 2015-09-02 2018-10-16 泉州市海通电子设备有限公司 一种电动车智能充电器
KR102157329B1 (ko) 2016-02-05 2020-09-17 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 단말을 위한 충전 시스템, 충전 방법 및 전원 어댑터
JP6633104B2 (ja) * 2016-07-26 2020-01-22 オッポ広東移動通信有限公司 アダプタ及び充電制御方法
CN106300532A (zh) * 2016-08-31 2017-01-04 徐州爱特普电子有限公司 智能电池修复充电器充电电路
CN106451711B (zh) * 2016-09-26 2018-12-25 成都月庚地科技有限公司 一种复合脉冲铅酸蓄电池充电器及其充电方法
CN108306400A (zh) * 2018-03-22 2018-07-20 广州云阳电子科技有限公司 一种可检测过放保护电池组连接并自动启动充电的智能充电器及其实现方法
US11540429B2 (en) 2018-07-30 2022-12-27 Milwaukee Electric Tool Corporation Battery charger
CN108954647A (zh) * 2018-08-17 2018-12-07 优氧环境技术有限公司 一种新型智能化恒净恒氧新风系统
CN210120406U (zh) 2018-10-17 2020-02-28 米沃奇电动工具公司 电池充电器
CN109037853B (zh) * 2018-10-29 2023-04-21 重庆科技学院 电动汽车动力电池温度管理系统
CN109875148A (zh) * 2019-04-17 2019-06-14 百裕集团(惠安)纺织服饰有限公司 一种学生防辐射智能加热保暖校服及其制作工艺
CN110011377A (zh) * 2019-04-20 2019-07-12 河南品志高新能源科技有限公司 一种铅酸蓄电池组智能充电器
CN113258637A (zh) * 2021-05-13 2021-08-13 浙江法然特浙科科技有限公司 一种高效能脉冲式充电器的控制系统
CN113612502B (zh) * 2021-06-22 2023-03-24 苏州大学 一种机器人自动充电电极载波通信电路
CN115009936B (zh) * 2022-06-15 2023-04-18 北京理工大学 控制单元内置、绕线滚筒开放式系留箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195559A (ja) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd 電池パック
CN1725597A (zh) * 2005-06-24 2006-01-25 成都市康铭电器有限公司 智能快速蓄电池充电器
CN2899242Y (zh) * 2006-03-20 2007-05-09 何茂彬 智能铅酸蓄电池充电器
CN102629773A (zh) * 2012-04-12 2012-08-08 杭州创美实业有限公司 智能脉冲温控充电器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589500B2 (en) * 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US8829799B2 (en) * 2006-03-28 2014-09-09 Wireless Environment, Llc Autonomous grid shifting lighting device
CN101291079B (zh) * 2007-04-18 2010-10-13 深圳市盈基实业有限公司 自适应电池充电电路
CN101359841B (zh) * 2007-07-31 2010-12-22 上海施能电器设备厂 充电机
KR101036061B1 (ko) * 2009-04-21 2011-05-19 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법
JP2012009819A (ja) * 2010-05-28 2012-01-12 Sony Corp 太陽光発電装置
CN202586409U (zh) * 2012-04-12 2012-12-05 杭州创美实业有限公司 智能脉冲温控充电器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195559A (ja) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd 電池パック
CN1725597A (zh) * 2005-06-24 2006-01-25 成都市康铭电器有限公司 智能快速蓄电池充电器
CN2899242Y (zh) * 2006-03-20 2007-05-09 何茂彬 智能铅酸蓄电池充电器
CN102629773A (zh) * 2012-04-12 2012-08-08 杭州创美实业有限公司 智能脉冲温控充电器

Also Published As

Publication number Publication date
US20140139177A1 (en) 2014-05-22
US9270129B2 (en) 2016-02-23
CN102629773A (zh) 2012-08-08
CN102629773B (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2013152571A1 (zh) 智能脉冲温控充电器
CN103066662B (zh) 应急电源
CN106026302A (zh) 一种智能型直流电能收集充电器
CN101969221B (zh) 蓄电池充电器及其充电控制方法
CN103236733B (zh) 具有延时断电功能的电动自行车充电装置
CN204118838U (zh) 一种三段式加脉冲智能电动车充电器
CN106849322A (zh) 一种智能家用备用储能系统
CN203289168U (zh) 铅酸电池充电器电路
CN207200316U (zh) 室内服务型机器人用供电电路
CN103580246A (zh) 铅酸蓄电池充电电路及充电器
CN203553910U (zh) 蓄电池充电保护电路
CN203233223U (zh) 具有延时断电功能的电动自行车充电装置
CN214227917U (zh) 一种用于叉车的大功率智能充电器
CN201813191U (zh) 蓄电池充电器
CN205489733U (zh) 一种基于单片机控制的充电器
CN204835678U (zh) 一种充电系统
CN203871911U (zh) 一种蓄电池充电器
CN202957640U (zh) 一种结构简易的自动充电器
CN208971208U (zh) 储能型逆变移动电源
CN102694410B (zh) 一种零功耗节能充电机
CN202586409U (zh) 智能脉冲温控充电器
CN200959527Y (zh) 恒流充电器
CN204794197U (zh) 一种电池充电自动控制电路
CN205836573U (zh) 电动汽车节能快速充电装置
CN204706910U (zh) 一种智能充电器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13985573

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874127

Country of ref document: EP

Kind code of ref document: A1