WO2013152487A1 - 一种高效回收镍资源的红土镍矿处理方法 - Google Patents

一种高效回收镍资源的红土镍矿处理方法 Download PDF

Info

Publication number
WO2013152487A1
WO2013152487A1 PCT/CN2012/073833 CN2012073833W WO2013152487A1 WO 2013152487 A1 WO2013152487 A1 WO 2013152487A1 CN 2012073833 W CN2012073833 W CN 2012073833W WO 2013152487 A1 WO2013152487 A1 WO 2013152487A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
laterite
nickel ore
melting
furnace
Prior art date
Application number
PCT/CN2012/073833
Other languages
English (en)
French (fr)
Inventor
吴道洪
王静静
曹志成
Original Assignee
北京神雾环境能源科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京神雾环境能源科技集团股份有限公司 filed Critical 北京神雾环境能源科技集团股份有限公司
Priority to CA2863423A priority Critical patent/CA2863423A1/en
Priority to GB1411522.4A priority patent/GB2515196A/en
Publication of WO2013152487A1 publication Critical patent/WO2013152487A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/02Preliminary treatment of ores; Preliminary refining of zinc oxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/021Obtaining nickel or cobalt by dry processes by reduction in solid state, e.g. by segregation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Definitions

  • the present invention relates to a method for recovering nickel resources, and more particularly to a method for treating laterite nickel ore which efficiently recovers nickel resources. Background technique
  • “Sintering-blast furnace melting” process The disadvantage of this process is that the sintering process has high energy consumption and large environmental pollution; the reducing agent is coke, which leads to high melting cost and poor operating environment, which is easy to cause environmental pollution.
  • the Chinese patent application with the application number CN201110139300.4 discloses a method for iron-making of a coal-based rotary hearth furnace direct reduction-gas melting furnace melting, which is prepared by pressing a laterite nickel ore, a reducing agent coal and a flux according to a certain ratio. After the pellets are dried, they are transferred to a rotary hearth furnace for reduction, and then the hot-filled cans of the rotary hearth furnace discharge product are sent to a gas melting furnace which is fueled by gas to be melted, and finally a nickel-iron alloy is obtained.
  • the invention provides a lateritic nickel ore processing method capable of efficiently recovering nickel resources by saving the processing cost of the pellets in the early stage and improving the recovery rate of nickel.
  • a laterite nickel ore processing method for efficiently recovering nickel resources for achieving the object of the present invention comprises the following steps:
  • Laterite nickel ore The laterite nickel ore is crushed and sieved. Laterite nickel ore larger than 2 mm is blended into reducing coal and flux, and then directly placed into the rotary hearth furnace. The laterite nickel ore less than 2 mm is blended with reducing coal. After the flux is pressed into a carbon-containing pellet by a ball press, the carbon-containing pellet is dried and then placed in a rotary hearth furnace;
  • the melt is further divided: after the crushed slag obtained in the step (3) is subjected to crushing treatment, the magnetic separation treatment is performed, and the magnetically selected metal iron powder is returned to the melting in the step (3).
  • the equipment performs slag-iron separation to obtain a nickel-iron alloy.
  • the weight ratio of the raw materials in the step (1) is: 100 parts of laterite nickel ore, 5-20 parts of reduced coal, and 0-15 parts of flux.
  • the reduced coal is non-coking coal.
  • the fluxing agent is one or more of limestone, quicklime, white ash, sodium carbonate, and dolomite.
  • the carbon-containing pellets in the step (1) are dried by a grate machine, and the high-temperature flue gas produced by the rotary hearth furnace in the step (2) is sent to a grate machine for drying the carbon-containing pellets. .
  • the inlet flue gas temperature of the grate machine is 250 ° C ⁇ 350 ° C, and the outlet smoke temperature is 90 ° C ⁇ 150 ° C.
  • the laterite nickel ore of less than 2 mm is pressed into a carbon-containing pellet
  • a counter-roller ball press or a disc pelletizer is used.
  • said step (2) is used in a regenerative coal-based rotary hearth furnace, the heat value of the fuel used 800kcal / Nm 3 ⁇ 9000kcal / Nm 3.
  • the melting device of the step (3) comprises a melting device such as an electric arc furnace, an intermediate frequency furnace or a submerged arc furnace.
  • the beneficial effects of the laterite nickel ore processing method for efficiently recovering nickel resources of the present invention are as follows: 1. The method for treating laterite nickel ore with high-efficiency recovery of nickel resources, and grading the raw materials, so that some raw materials are omitted from the pressure ball-drying process, thereby saving production costs.
  • the raw material of the invention has wide adaptability and can treat laterite nickel ore with a nickel ore grade as low as 1.0%.
  • the nickel recovery rate of the nickel product obtained by the invention can be as high as 92% or more, so that the nickel resources can be recycled to the greatest extent, which can alleviate the serious shortage of nickel resources today.
  • the invention can directly use non-coking coal as a reducing agent, thereby eliminating the cost of the coking process and reducing the environmental pollution caused by coking.
  • the type of reducing agent and fluxing agent used in the invention has a wide range of sources, low price and saves production cost.
  • FIG. 1 is a flow chart of a method for treating laterite nickel ore with high efficiency recovery of nickel resources according to the present invention. detailed description
  • Fig. 1 is a flow chart showing the treatment method of laterite nickel ore of the present invention for efficiently recovering nickel resources.
  • the laterite nickel ore processing method of the invention adopts non-coking coal as a reducing agent, with or without a fluxing agent, pre-reducing laterite nickel ore with a rotary hearth furnace, and reducing nickel oxide in the laterite nickel ore to metal nickel, and partially reducing iron. It is converted into metallic iron.
  • the flux increases the activity of the oxide and lowers the initial reduction temperature.
  • the rotary hearth furnace product is melted in a smelting reduction device.
  • the flux can adjust the alkalinity of the material, reduce the melting point of the material, and form a molten phase in a lower temperature range to obtain a nickel-iron alloy product.
  • Example 1 The iron fine powder obtained by grinding and sizing the molten slag is returned to the smelting reduction equipment and then melted to obtain a nickel-iron alloy product, thereby forming a closed circuit, further recovering nickel iron in the slag, and improving the nickel recovery rate.
  • Example 1 The iron fine powder obtained by grinding and sizing the molten slag is returned to the smelting reduction equipment and then melted to obtain a nickel-iron alloy product, thereby forming a closed circuit, further recovering nickel iron in the slag, and improving the nickel recovery rate.
  • the raw material is a laterite nickel ore containing 1.18% nickel and 10.64% iron, mixed according to 100 parts of laterite nickel ore, 10 parts of non-coking coal, and no proportion of flux added, wherein the laterite nickel ore of 2mm-8mm size is
  • the ball is directly placed into the regenerative coal-based rotary hearth furnace.
  • the laterite nickel ore less than 2mm is mixed with coal and pressed into pellets. After being dried by a grate machine, it is placed into the regenerative coal.
  • Rotary hearth furnace at 1280 ° C Restore in the environment for 35min.
  • the high-temperature flue gas discharged from the rotary hearth furnace is returned to the furnace front system for pellet drying, and the rotary bottom furnace discharge product is sent to the melting furnace for melting at 1430-1550 ° C for lh to obtain nickel-iron alloy products and melting slag, and melting.
  • the grinding-magnetic separation treatment is performed, and the fineness is controlled to be magnetically selected under the condition of -0.074 mm, 65%, and magnetic field strength of 200 kA/m.
  • the iron fine powder obtained after the magnetic separation is sent to the melting furnace for melting. , get another part of the nickel-iron alloy product.
  • the raw material is a laterite nickel ore containing 1.35% nickel and 18.08% iron, mixed according to the weight ratio of 100 parts of laterite nickel ore, 11 parts of non-coking coal and 5 parts of white ash, of which later than 2mm-8mm grade laterite nickel ore and coal
  • the ball is directly placed into the regenerative coal-based rotary hearth furnace.
  • the laterite nickel ore less than 2mm is mixed with coal and white ash and pressed into pellets. After being dried by a grate machine, it is stored in heat storage.
  • the coal-based rotary hearth furnace is reduced at 1250 °C for 40 min, the high-temperature flue gas discharged from the rotary hearth furnace is returned to the furnace before the system is used for pellet drying, and the rotary bottom furnace discharging product is sent to the melting furnace at 1500-1550 °C.
  • the nickel-iron alloy product and the molten slag are obtained.
  • the grinding-magnetic separation treatment is performed, and the fineness is controlled at -0.074 mm, 75%, and the magnetic field strength is 200 kA/m, which is obtained after magnetic separation.
  • the iron fine powder is further melted to obtain another part of the nickel-iron alloy product.
  • the two-part nickel-iron alloy has been calculated to obtain the index of comprehensive nickel-iron products: nickel grade 6.56%, iron grade 84.92%, nickel recovery rate 95.6%, and the utilization rate of rotary hearth flue gas reaches over 70%.
  • the raw material is a laterite nickel ore containing 1.51% of nickel and 24.68% of iron, mixed according to 100 parts of laterite nickel ore, 14 parts of non-coking coal, and no proportion of flux added, wherein the laterite nickel ore of 2mm-6mm size is
  • the ball is directly placed into the regenerative coal-based rotary hearth furnace.
  • the laterite nickel ore less than 2mm is mixed with coal and pressed into pellets. After being dried by a grate machine, it is placed into the regenerative coal.
  • the rotary hearth furnace is reduced at 1300 °C for 40 min, and the high-temperature flue gas discharged from the rotary hearth furnace is returned to the furnace system for pellet drying.
  • the rotary bottom furnace discharge product is sent to the melting furnace for melting at 1500-1550 °C for 1 hour.
  • the nickel-iron alloy product and the molten slag are obtained, and the molten slag is cooled and subjected to grinding-magnetic separation treatment, and the fineness is controlled to be -0.074 mm, 70%, magnetic field strength is 150 kA/m, and the iron fine powder obtained after magnetic separation is obtained. Further melting is carried out to obtain another part of the nickel-iron alloy product.
  • the obtained integrated ferronickel product indicators are: nickel grade 8.64%, iron grade 76.02%, nickel recovery rate 98.8%, The utilization rate of flue gas in the rotary hearth furnace is over 70%.
  • the recovery rate of nickel by the laterite nickel ore processing method of the present invention is as high as 90% or more, and the flue gas of the rotary hearth furnace is fully utilized for drying the carbon-containing ball.
  • Mission utilization rate of up to 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供了一种能够节约前期球团处理成本,提高镍的回收率的高效回收镍资源的红土镍矿处理方法,包括如下步骤:(1)红土镍矿分级处理:将红土镍矿进行破碎筛分,大于2mm的红土镍矿配入还原煤、助熔剂后直接布入转底炉,小于2mm的红土镍矿配入还原煤、助熔剂后用压球机压制成含碳球团,含碳球团经烘干后再布入转底炉;(2)预还原:将含碳球团布入蓄热式煤基转底炉后在炉内进行高温快速还原,还原温度为1200°C~1300°C,还原时间20min~45min;(3)熔分:将转底炉出料产品送入熔融设备进行渣铁分离生产镍铁合金;(4)磨细选别后再熔分:将步骤(3)得到的熔分渣经过破碎处理后,进行磨矿磁选处理,磁选后的金属铁粉再返回步骤(3)的所述熔融设备进行渣铁分离,得到镍铁合金。

Description

一种高效回收镍资源的红土镍矿处理方法 技术领域
本发明涉及一种回收镍资源的方法, 尤其涉及一种高效回收镍资源的红土 镍矿处理方法。 背景技术
随着不锈钢和特殊钢的广泛应用, 对生产不锈钢原料镍的需求越来越大, 直接导致了全球镍价的飞涨, 镍成为影响不锈钢产业的重要因素。 当前, 红土 镍矿主要有以下火法处理工艺:
"烧结矿-小高炉"工艺冶炼生产低镍铁合金(产品含镍 1-4% ): 该工艺的缺 点是小高炉存在高炉利用系数低、能耗高、镍铁品质不稳定、 污染严重等问题。 目前国家已明令停产。
"烧结-鼓风炉熔炼"工艺: 该工艺的缺点是烧结工艺能耗高, 环境污染大; 还原剂为焦炭, 导致熔炼成本高, 且操作环境差, 易造成环境污染。
"回转窑 -电炉熔炼"工艺: 该工艺的缺点是回转窑还原温度不高, 只有 800°C左右, 预还原效果不好; 适宜处理原矿镍品位大于 1.5%的红土镍矿; 能 耗高, 易结圈。
申请号为 CN201110139300.4的中国专利申请中公开了一种煤基转底炉直 接还原-燃气熔分炉熔分的炼铁方法, 将红土镍矿、 还原剂煤、 助熔剂按照一 定比例压制成球团, 球团干燥后进入转底炉进行还原, 然后将转底炉出料产品 热装罐送入用煤气做燃料的燃气熔分炉进行熔分, 最终得到镍铁合金。 但是, 上述方法在进行原料处理时将红土镍矿全部破碎至较细粒级后进行压球, 并未 考虑对原料进行分级处理。 而且, 在压球过程中辊子易磨损, 致使压球成本较 高, 这在一定程度上造成了压球成本的提高和能源浪费。 用上述方法处理镍品 位较低(如镍品位 1%- 1.2% )的红土镍矿时, 若不对熔分后的产物进行后续处 理, 镍的回收率难以达到 90%以上, 造成镍资源浪费。 发明内容
本发明提供了一种能够节约前期球团处理成本,提高镍的回收率的高效回 收镍资源的红土镍矿处理方法。
实现本发明目的的高效回收镍资源的红土镍矿处理方法, 包括如下步骤:
( 1 )红土镍矿分级处理: 将红土镍矿进行破碎筛分, 大于 2mm的红土镍 矿配入还原煤、 助熔剂后直接布入转底炉, 小于 2mm的红土镍矿配入还原煤、 助熔剂后用压球机压制成含碳球团, 含碳球团经烘干后再布入转底炉;
( 2 )预还原: 将含碳球团布入蓄热式煤基转底炉后在炉内进行高温快速 还原, 还原温度为 1200°C~1300°C , 还原时间 20min~45min;
( 3 )熔分: 将转底炉出料产品送入熔融设备进行渣铁分离生产镍铁合金, 熔融设备的熔融温度为 1450°C~1550°C , 熔融时间 40min~90min;
( 4 )磨细选别后再熔分: 将步骤(3 )得到的熔分渣经过破碎处理后, 进 行磨矿磁选处理, 磁选后的金属铁粉再返回步骤(3 )所述熔融设备进行渣铁 分离得到镍铁合金。
优选地, 所述步骤( 1 )中原料重量配比为: 红土镍矿 100份,还原煤 5~20 份, 助熔剂 0~15份。
优选地, 所述还原煤为非焦煤。
优选地, 所述助熔剂为石灰石、 生石灰、 白灰、 碳酸钠、 白云石中的一种 或多种。
优选地, 所述步骤(1 ) 中含碳球团经链篦机烘干, 且所述步骤(2 ) 中转 底炉产出的高温烟气送入链篦机用于烘干含碳球团。
优选地, 所述步骤(2 )中链篦机进口烟气温度 250°C~350°C , 出口烟气温 度 90°C~150°C。
优选地, 所述步骤(1 ) 中将小于 2mm的红土镍矿压制成含碳球团时,采 用对辊式压球机或圆盘造球机。
优选地, 所述步骤(2 )使用的转底炉为蓄热式煤基转底炉, 所用燃料的 热值为 800kcal/Nm3~9000kcal/Nm3
优选地, 所述步骤(3 ) 的熔融设备包括电弧炉、 中频炉或矿热炉等熔分 设备。
本发明的高效回收镍资源的红土镍矿处理方法的有益效果如下: 1、 本发明高效回收镍资源的红土镍矿处理方法, 对原料进行分级处理, 使部分原料省去了压球 -烘干流程, 节省了生产成本。
2、 本发明原料的适应性广, 可处理原矿镍品位低至 1.0%的红土镍矿。
3、 本发明得到镍产品的镍回收率可高达 92%以上, 使镍资源得到最大程 度的回收利用, 这可以緩解当今镍资源严重短缺的困境。
4、 本发明可直接用非焦煤做还原剂, 省去了炼焦过程的成本, 同时减少 了炼焦对环境的污染。
5、 本发明所用的还原剂和助熔剂种类筒单, 来源广泛, 价格低廉, 节省 了生产成本。 附图说明
图 1为本发明的高效回收镍资源的红土镍矿处理方法的流程图。 具体实施方式
下面结合附图更详细地说明本发明的红土镍矿处理方法。 图 1示出了本发 明的高效回收镍资源的红土镍矿处理方法的流程图。
本发明的红土镍矿处理方法采用非焦煤为还原剂, 同时添加或不加助熔 剂, 用转底炉预还原红土镍矿, 使红土镍矿中的氧化镍还原转化为金属镍,铁 部分还原转化成金属铁, 还原过程中, 助熔剂提高氧化物的活度, 降低开始还 原温度。 转底炉产品在熔融还原设备中进行熔分, 在熔炼过程中, 助熔剂能够 调节物料的碱度, 降低物料的熔点, 使物料在较低温度范围形成熔融相聚合在 一起得到镍铁合金产品,将熔分渣进行磨细选别处理后得到的铁精粉返回熔融 还原设备中再进行熔分得到镍铁合金产品, 形成一个闭路, 进一步回收渣中镍 铁, 提高镍回收率。 实施例 1
将原料为含镍 1.18%, 含铁 10.64%的红土镍矿, 按照红土镍矿 100份、非 焦煤 10份、 不添加助熔剂的重量比例进行混合, 其中 2mm-8mm粒级的红土 镍矿与煤混勾后不压球直接布入蓄热式煤基转底炉, 小于 2mm粒级的红土镍 矿与煤混匀后压制成球团,经链篦机干燥后布入蓄热式煤基转底炉,在 1280°C 环境下还原 35min。 转底炉排出的高温烟气返回炉前系统用于球团烘干, 转底 炉出料产品送入熔炼炉在 1430-1550°C熔分 lh, 得到镍铁合金产品及熔分渣, 熔分渣冷却后进行磨细 -磁选处理, 磨细度控制在 -0.074mm占 65%、 磁场强度 200KA/m的条件下进行磁选, 磁选后得到的铁精粉再送入熔炼炉进行熔分,得 到另一部分镍铁合金产品。 将两部分镍铁合金的产品指标加权平均计算, 得出 综合镍铁产品的指标为: 镍品位 10.87%, 铁品位 75.58%, 镍回收率 92.3%, 转底炉烟气的利用率达到 70%以上。 实施例 2
将原料为含镍 1.35%, 含铁 18.08%的红土镍矿, 按照红土镍矿 100份、非 焦煤 11份、 白灰 5份的重量比例进行混合, 其中 2mm-8mm粒级的红土镍矿 与煤、 白灰混匀后不压球直接布入蓄热式煤基转底炉, 小于 2mm粒级的红土 镍矿与煤、 白灰混匀后压制成球团, 经链篦机干燥后布入蓄热式煤基转底炉在 1250°C条件下还原 40min,转底炉排出的高温烟气返回炉前系统用作球团烘干, 转底炉出料产品送入熔炼炉在 1500-1550°C熔分 lh, 得到镍铁合金产品及熔分 渣, 熔分渣冷却后进行磨细 -磁选处理, 磨细度控制在 -0.074mm占 75%、 磁场 强度为 200KA/m,磁选后得到的铁精粉再进行熔分,得到另一部分镍铁合金产 品。 将两部分镍铁合金经过计算得出综合镍铁产品的指标为: 镍品位 6.56%, 铁品位 84.92%, 镍回收率 95.6%, 转底炉烟气的利用率达到 70%以上。 实施例 3
将原料为含镍 1.51%, 含铁 24.68%的红土镍矿, 按照红土镍矿 100份、非 焦煤 14份、 不添加助熔剂的重量比例进行混合, 其中 2mm-6mm粒级的红土 镍矿与煤混勾后不压球直接布入蓄热式煤基转底炉, 小于 2mm粒级的红土镍 矿与煤混匀后压制成球团,经链篦机干燥后布入蓄热式煤基转底炉在 1300°C条 件下还原 40min, 转底炉排出的高温烟气返回炉前系统用于球团烘干, 转底炉 出料产品送入熔炼炉在 1500-1550°C熔分 lh, 得到镍铁合金产品及熔分渣, 熔 分渣冷却后进行磨细 -磁选处理, 磨细度控制在 -0.074mm占 70%、 磁场强度为 150KA/m, 磁选后得到的铁精粉再进行熔分, 得到另一部分镍铁合金产品。得 到的综合镍铁产品指标为: 镍品位 8.64%, 铁品位 76.02%, 镍回收率 98.8%, 转底炉烟气的利用率达到 70%以上。
通过上述实施例 1-3可以清楚地看出通过本发明的红土镍矿处理方法, 镍 回收率均高达 90%以上,且转底炉烟气得到了充分的利用,用于烘干含碳球团, 利用率高达 70%以上。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种高效回收镍资源的红土镍矿处理方法, 包括如下步骤:
( 1 )红土镍矿分级处理: 将红土镍矿进行破碎筛分, 大于 2mm的红土镍 矿配入还原煤、 助熔剂后直接布入转底炉, 小于 2mm的红土镍矿配入还原煤、 助熔剂后用压球机压制成含碳球团, 含碳球团经烘干后再布入转底炉;
( 2 )预还原: 将含碳球团布入转底炉后在炉内进行高温快速还原, 还原 温度为 1200°C~1300°C , 还原时间 20min~45min;
( 3 )熔分: 将转底炉出料产品送入熔融设备进行渣铁分离生产镍铁合金, 熔融设备的熔融温度为 1450°C~1550°C , 熔融时间 40min~90min;
( 4 )磨细选别后再熔分: 将步骤(3 )得到的熔分渣经过破碎处理后, 进 行磨矿磁选处理, 磁选后的金属铁粉再返回步骤(3 ) 的所述熔融设备进行渣 铁分离, 得到镍铁合金。
2、 根据权利要求 1所述的高效回收镍资源的红土镍矿处理方法, 其特征 在于: 所述步骤(1 ) 中原料重量配比为: 红土镍矿 100份, 还原煤 5~20份, 助熔剂 0~15份。
3、 根据权利要求 1或 2所述的高效回收镍资源的红土镍矿处理方法, 其 特征在于: 所述还原煤为非焦煤。
4、 根据权利要求 1或 2所述的高效回收镍资源的红土镍矿处理方法, 其 特征在于: 所述助熔剂为石灰石、 生石灰、 白灰、 碳酸钠、 白云石中的一种或 多种。
5、 根据权利要求 1所述的高效回收镍资源的红土镍矿处理方法, 其特征 在于: 所述步骤(1 ) 中含碳球团经链篦机烘干, 且所述步骤(2 ) 中转底炉产 出的高温烟气送入链篦机用于烘干含碳球团。
6、 根据权利要求 5所述的高效回收镍资源的红土镍矿处理方法, 其特征 在于: 所述步骤 (2 ) 中链篦机进口烟气温度 250°C~350°C , 出口烟气温度 90°C~150°C。
7、 根据权利要求 1所述的高效回收镍资源的红土镍矿处理方法, 其特征 在于: 所述步骤(1 ) 中将小于 2mm的红土镍矿压制成含碳球团时, 采用对辊 式压球机或圆盘造球机。
8、 根据权利要求 1所述的高效回收镍资源的红土镍矿处理方法, 其特征 在于: 所述步骤(2 )使用的转底炉为蓄热式煤基转底炉, 所用燃料的热值为 800kcal/Nm3~9000kcal/Nm3
9、 根据权利要求 1所述的高效回收镍资源的红土镍矿处理方法, 其特征 在于: 所述步骤(3 ) 的熔融设备包括电弧炉、 中频炉和矿热炉。
PCT/CN2012/073833 2012-04-09 2012-04-11 一种高效回收镍资源的红土镍矿处理方法 WO2013152487A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2863423A CA2863423A1 (en) 2012-04-09 2012-04-11 Laterite-nickel ore processing method for efficient nickel resource recovery
GB1411522.4A GB2515196A (en) 2012-04-09 2012-04-11 Laterite-nickel ore processing method for efficiently recovering nickel resources

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210102397.6 2012-04-09
CN201210102397.6A CN102643997B (zh) 2012-04-09 2012-04-09 一种高效回收镍资源的红土镍矿处理方法

Publications (1)

Publication Number Publication Date
WO2013152487A1 true WO2013152487A1 (zh) 2013-10-17

Family

ID=46657072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073833 WO2013152487A1 (zh) 2012-04-09 2012-04-11 一种高效回收镍资源的红土镍矿处理方法

Country Status (4)

Country Link
CN (1) CN102643997B (zh)
CA (1) CA2863423A1 (zh)
GB (1) GB2515196A (zh)
WO (1) WO2013152487A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104342560A (zh) * 2014-10-14 2015-02-11 钢铁研究总院 一种冶金复合渣一步还原得到铁水和锍相的工艺
CN104946881A (zh) * 2015-06-19 2015-09-30 西安建筑科技大学 一种利用红土镍矿制备镍铁合金和胶凝性材料的方法
CN105695773A (zh) * 2016-01-22 2016-06-22 昆明理工大学 一种天然气两步还原红土镍矿-电炉熔分制取镍铁合金的方法
CN110735012A (zh) * 2019-10-23 2020-01-31 苏州工业职业技术学院 一种用红土镍矿制备电炉冶炼镍铁合金原料的方法
CN112593080A (zh) * 2020-12-21 2021-04-02 北京博萃循环科技有限公司 一种火法-湿法联合处理红土镍矿的方法
CN114798136A (zh) * 2022-04-20 2022-07-29 中南大学 一种还原-磨选法高效利用复杂含铁资源的工艺及装置
CN115044768A (zh) * 2022-06-27 2022-09-13 安徽理工大学 一种提高铁橄榄石型炉渣还原产物中金属铁颗粒尺寸的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215436B (zh) * 2013-03-18 2016-06-08 酒泉钢铁(集团)有限责任公司 块状难选铁矿石竖炉磁化焙烧不同粒度分级处理方法
CN103667742B (zh) * 2013-09-16 2016-03-02 江苏省冶金设计院有限公司 红土镍矿处理方法
CN103667743B (zh) * 2013-09-16 2016-08-17 江苏省冶金设计院有限公司 红土镍矿处理方法
CN104313227B (zh) * 2014-10-29 2016-06-15 洪阳冶化工程科技有限公司 利用含铁熔体余热进行碳热还原的方法和系统
JP5975093B2 (ja) * 2014-12-24 2016-08-23 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
CN105420514A (zh) * 2015-11-30 2016-03-23 钱国庆 一种冶炼镍铁的方法和冶炼镍铁的设备
CN105714105A (zh) * 2016-02-26 2016-06-29 铜陵安东铸钢有限责任公司 一种镍矿粉高温烧结工艺
CN106399619A (zh) * 2016-06-08 2017-02-15 江苏省冶金设计院有限公司 高温链篦机与转底炉联合直接还原系统和方法
CN105907967A (zh) * 2016-06-13 2016-08-31 江苏省冶金设计院有限公司 从褐铁矿型红土镍矿中提取镍铁合金的系统和方法
CN105925818B (zh) * 2016-06-13 2018-08-28 江苏省冶金设计院有限公司 处理高铁红土镍矿的方法和系统
CN106319206A (zh) * 2016-08-31 2017-01-11 广西盛隆冶金有限公司 红土镍矿生产镍铁合金的方法
CN106148729A (zh) * 2016-08-31 2016-11-23 广西盛隆冶金有限公司 选择性还原处理红土镍矿的方法
CN106191465B (zh) * 2016-09-13 2018-07-13 江苏省冶金设计院有限公司 一种高效处理红土镍矿含水球团的还原反应系统及方法
CN106676222B (zh) * 2016-12-08 2018-09-28 徐州中矿大贝克福尔科技股份有限公司 一种红土镍矿煤基粉态还原生产镍铁的设施和方法
CN106755989A (zh) * 2017-03-24 2017-05-31 江苏省冶金设计院有限公司 处理提钒尾渣和红土镍矿的系统与方法
CN108300851A (zh) * 2018-01-31 2018-07-20 山东墨龙石油机械股份有限公司 一种HIsmelt含铁原料预热预还原处理工艺
CN109371260A (zh) * 2018-09-13 2019-02-22 华北理工大学 一种从红土镍矿中还原镍和铁的方法
CN114875206B (zh) * 2022-04-11 2023-09-19 辽宁石源科技有限公司 一种红土镍矿冶炼含铬高磷金属液的去磷保铬二重工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152816A (en) * 1976-06-16 1977-12-19 Nippon Steel Corp Electroslag refining method of nickel oxide ore
CN101376927A (zh) * 2008-10-06 2009-03-04 吴道洪 蓄热式转底炉-湿法选别-埋弧电炉冶炼镍矿方法
CN101586187A (zh) * 2009-03-10 2009-11-25 张国兴 一种新型以天然气为燃料用转底炉冶炼红土镍矿的方法
CN101935794A (zh) * 2010-10-11 2011-01-05 北京科技大学 一种红土镍矿在竖炉-熔分炉中生产镍铁合金的方法
CN101942558A (zh) * 2010-09-10 2011-01-12 平安鑫海资源开发有限公司 一种用烟煤干燥还原低品位红土镍矿的方法
CN102212636A (zh) * 2011-05-26 2011-10-12 吴道洪 红土镍矿转底炉煤基直接还原-燃气熔分炉熔分的炼铁方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003851A (zh) * 2006-09-22 2007-07-25 攀钢集团钢城企业总公司球团厂 链篦机—回转窑生产高钛型钒钛氧化球团方法
CN100478461C (zh) * 2006-12-22 2009-04-15 昆明贵金属研究所 一种转底炉-电炉联合法处理红土镍矿生产镍铁方法
CN100469912C (zh) * 2007-04-16 2009-03-18 中南大学 红土镍矿熔融还原制取镍铁合金工艺
CN101392330A (zh) * 2007-09-21 2009-03-25 毛耐文 红土镍矿在隧道窑——高炉中联合生产镍铁的方法
CN101323904A (zh) * 2008-07-28 2008-12-17 红河恒昊矿业股份有限公司 回转窑红土镍矿富集镍铁精矿的方法
CN101403043A (zh) * 2008-10-27 2009-04-08 昆明理工大学 回转窑直接还原红土镍矿生产镍铁粒的方法
CN101481753B (zh) * 2008-12-05 2010-08-11 首钢总公司 一种从红土氧化镍矿冶炼镍铁合金的方法
CN101413055B (zh) * 2008-12-09 2011-04-27 中南大学 一种由红土镍矿直接制取镍铁合金粉的工艺
CN101418389B (zh) * 2008-12-16 2010-07-28 毛黎生 红土镍矿在回转窑中直接还原粒镍铁的方法
CN101591718A (zh) * 2009-07-07 2009-12-02 吴道洪 直接还原-磨选处理铜渣及镍渣的炼铁方法
CN102051471B (zh) * 2011-01-30 2012-05-23 湖南长拓高科冶金有限公司 用微波处理红土镍矿富集镍铁的方法
CN102146511A (zh) * 2011-03-17 2011-08-10 北京科技大学 一种选择性还原焙烧回收红土镍矿中镍和铁的工艺方法
CN102242252A (zh) * 2011-06-29 2011-11-16 中南大学 低品位红土镍矿制取高镍精矿的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152816A (en) * 1976-06-16 1977-12-19 Nippon Steel Corp Electroslag refining method of nickel oxide ore
CN101376927A (zh) * 2008-10-06 2009-03-04 吴道洪 蓄热式转底炉-湿法选别-埋弧电炉冶炼镍矿方法
CN101586187A (zh) * 2009-03-10 2009-11-25 张国兴 一种新型以天然气为燃料用转底炉冶炼红土镍矿的方法
CN101942558A (zh) * 2010-09-10 2011-01-12 平安鑫海资源开发有限公司 一种用烟煤干燥还原低品位红土镍矿的方法
CN101935794A (zh) * 2010-10-11 2011-01-05 北京科技大学 一种红土镍矿在竖炉-熔分炉中生产镍铁合金的方法
CN102212636A (zh) * 2011-05-26 2011-10-12 吴道洪 红土镍矿转底炉煤基直接还原-燃气熔分炉熔分的炼铁方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104342560A (zh) * 2014-10-14 2015-02-11 钢铁研究总院 一种冶金复合渣一步还原得到铁水和锍相的工艺
CN104342560B (zh) * 2014-10-14 2016-08-24 钢铁研究总院 一种冶金复合渣一步还原得到铁水和锍相的工艺
CN104946881A (zh) * 2015-06-19 2015-09-30 西安建筑科技大学 一种利用红土镍矿制备镍铁合金和胶凝性材料的方法
CN105695773A (zh) * 2016-01-22 2016-06-22 昆明理工大学 一种天然气两步还原红土镍矿-电炉熔分制取镍铁合金的方法
CN110735012A (zh) * 2019-10-23 2020-01-31 苏州工业职业技术学院 一种用红土镍矿制备电炉冶炼镍铁合金原料的方法
CN110735012B (zh) * 2019-10-23 2021-05-11 苏州工业职业技术学院 一种用红土镍矿制备电炉冶炼镍铁合金原料的方法
CN112593080A (zh) * 2020-12-21 2021-04-02 北京博萃循环科技有限公司 一种火法-湿法联合处理红土镍矿的方法
CN114798136A (zh) * 2022-04-20 2022-07-29 中南大学 一种还原-磨选法高效利用复杂含铁资源的工艺及装置
CN114798136B (zh) * 2022-04-20 2023-08-08 中南大学 一种还原-磨选法高效利用复杂含铁资源的工艺及装置
CN115044768A (zh) * 2022-06-27 2022-09-13 安徽理工大学 一种提高铁橄榄石型炉渣还原产物中金属铁颗粒尺寸的方法
CN115044768B (zh) * 2022-06-27 2023-06-09 安徽理工大学 一种提高铁橄榄石型炉渣还原产物中金属铁颗粒尺寸的方法

Also Published As

Publication number Publication date
GB2515196A (en) 2014-12-17
CN102643997A (zh) 2012-08-22
CN102643997B (zh) 2015-07-01
GB201411522D0 (en) 2014-08-13
CA2863423A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
WO2013152487A1 (zh) 一种高效回收镍资源的红土镍矿处理方法
CN101967571B (zh) 一种红土镍矿在隧道窑-电炉中生产镍铁的方法
CN110016549B (zh) 一种强化红土镍矿直接还原的复合添加剂及其应用
WO2021244616A1 (zh) 基于气基能源的两步法高磷含铁资源铁磷高效分离的方法
CN113699370A (zh) 一种铁精矿回转窑煤基氢冶金-热造块-电炉生产半钢工艺
CN103276202B (zh) 一种高铁铝土矿生产金属粒铁和氧化铝的方法
CN101967570A (zh) 一种红土镍矿生产镍铁合金的方法
CN103866115B (zh) 红土镍矿一步法制备含镍不锈钢原料的方法
CN103614616B (zh) 一种炼钢降温冷料及其制备方法
CN102912209A (zh) 红土氧化镍矿转底炉煤基还原生产珠镍铁工艺
CN101538628A (zh) 红土镍矿在隧道窑中直接还原含镍粒铁的方法
CN103602773B (zh) 一种转底炉直接还原-电炉熔分综合利用硼铁矿的方法
CN108676951A (zh) 一种铁精矿碳氢联合直接还原工艺
KR100864458B1 (ko) 용철 제조 장치 및 제조 방법
CN105463214B (zh) 一种采用低贫品位红土镍矿生产高镍铁的方法
CN102312081B (zh) 一种利用车式快速还原炉对红土镍矿还原生产镍合金方法
CN101638703B (zh) 红土镍矿在隧道窑中直接还原含镍生铁的方法
CN103088183B (zh) 一步法控制性还原冶炼红土镍矿的方法
CN112899471B (zh) 一种制备大尺寸复合钒钛球团矿的方法
CN101967529A (zh) 一种利用回转窑生产含镍生铁的方法
CN114774705A (zh) 一种利用铜冶炼渣回收铁、锌并制备耐火原料的方法
CN103589865B (zh) 一种铁精粉碳循环增氧直接还原生产金属化球团的方法
CN106319206A (zh) 红土镍矿生产镍铁合金的方法
CN111961844A (zh) 一种不锈钢含金属固废磨矿方法
CN101376927A (zh) 蓄热式转底炉-湿法选别-埋弧电炉冶炼镍矿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1411522

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120411

WWE Wipo information: entry into national phase

Ref document number: 1411522.4

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2863423

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874253

Country of ref document: EP

Kind code of ref document: A1